/******************************************************************************* OpenAirInterface Copyright(c) 1999 - 2014 Eurecom OpenAirInterface is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenAirInterface is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenAirInterface.The full GNU General Public License is included in this distribution in the file called "COPYING". If not, see <http://www.gnu.org/licenses/>. Contact Information OpenAirInterface Admin: openair_admin@eurecom.fr OpenAirInterface Tech : openair_tech@eurecom.fr OpenAirInterface Dev : openair4g-devel@lists.eurecom.fr Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE *******************************************************************************/ #include "defs.h" #include "PHY/sse_intrin.h" // returns the complex dot product of x and y #ifdef MAIN void print_ints(char *s,__m128i *x); void print_shorts(char *s,__m128i *x); void print_bytes(char *s,__m128i *x); #endif int32_t dot_product(int16_t *x, int16_t *y, uint32_t N, //must be a multiple of 8 uint8_t output_shift) { uint32_t n; #if defined(__x86_64__) || defined(__i386__) __m128i *x128,*y128,mmtmp1,mmtmp2,mmtmp3,mmcumul,mmcumul_re,mmcumul_im; __m64 mmtmp7; __m128i minus_i = _mm_set_epi16(-1,1,-1,1,-1,1,-1,1); int32_t result; x128 = (__m128i*) x; y128 = (__m128i*) y; mmcumul_re = _mm_setzero_si128(); mmcumul_im = _mm_setzero_si128(); for (n=0; n<(N>>2); n++) { //printf("n=%d, x128=%p, y128=%p\n",n,x128,y128); // print_shorts("x",&x128[0]); // print_shorts("y",&y128[0]); // this computes Re(z) = Re(x)*Re(y) + Im(x)*Im(y) mmtmp1 = _mm_madd_epi16(x128[0],y128[0]); // print_ints("re",&mmtmp1); // mmtmp1 contains real part of 4 consecutive outputs (32-bit) // shift and accumulate results mmtmp1 = _mm_srai_epi32(mmtmp1,output_shift); mmcumul_re = _mm_add_epi32(mmcumul_re,mmtmp1); // print_ints("re",&mmcumul_re); // this computes Im(z) = Re(x)*Im(y) - Re(y)*Im(x) mmtmp2 = _mm_shufflelo_epi16(y128[0],_MM_SHUFFLE(2,3,0,1)); // print_shorts("y",&mmtmp2); mmtmp2 = _mm_shufflehi_epi16(mmtmp2,_MM_SHUFFLE(2,3,0,1)); // print_shorts("y",&mmtmp2); mmtmp2 = _mm_sign_epi16(mmtmp2,minus_i); // print_shorts("y",&mmtmp2); mmtmp3 = _mm_madd_epi16(x128[0],mmtmp2); // print_ints("im",&mmtmp3); // mmtmp3 contains imag part of 4 consecutive outputs (32-bit) // shift and accumulate results mmtmp3 = _mm_srai_epi32(mmtmp3,output_shift); mmcumul_im = _mm_add_epi32(mmcumul_im,mmtmp3); // print_ints("im",&mmcumul_im); x128++; y128++; } // this gives Re Re Im Im mmcumul = _mm_hadd_epi32(mmcumul_re,mmcumul_im); // print_ints("cumul1",&mmcumul); // this gives Re Im Re Im mmcumul = _mm_hadd_epi32(mmcumul,mmcumul); // print_ints("cumul2",&mmcumul); //mmcumul = _mm_srai_epi32(mmcumul,output_shift); // extract the lower half mmtmp7 = _mm_movepi64_pi64(mmcumul); // print_ints("mmtmp7",&mmtmp7); // pack the result mmtmp7 = _mm_packs_pi32(mmtmp7,mmtmp7); // print_shorts("mmtmp7",&mmtmp7); // convert back to integer result = _mm_cvtsi64_si32(mmtmp7); _mm_empty(); _m_empty(); return(result); #elif defined(__arm__) int16x4_t *x_128=(int16x4_t*)x; int16x4_t *y_128=(int16x4_t*)y; int32x4_t tmp_re,tmp_im; int32x4_t tmp_re1,tmp_im1; int32x4_t re_cumul,im_cumul; int32x2_t re_cumul2,im_cumul2; int32x4_t shift = vdupq_n_s32(-output_shift); int32x2x2_t result2; int16_t conjug[4]__attribute__((aligned(16))) = {-1,1,-1,1} ; re_cumul = vdupq_n_s32(0); im_cumul = vdupq_n_s32(0); for (n=0; n<(N>>2); n++) { tmp_re = vmull_s16(*x_128++, *y_128++); //tmp_re = [Re(x[0])Re(y[0]) Im(x[0])Im(y[0]) Re(x[1])Re(y[1]) Im(x[1])Im(y[1])] tmp_re1 = vmull_s16(*x_128++, *y_128++); //tmp_re1 = [Re(x1[1])Re(x2[1]) Im(x1[1])Im(x2[1]) Re(x1[1])Re(x2[2]) Im(x1[1])Im(x2[2])] tmp_re = vcombine_s32(vpadd_s32(vget_low_s32(tmp_re),vget_high_s32(tmp_re)), vpadd_s32(vget_low_s32(tmp_re1),vget_high_s32(tmp_re1))); //tmp_re = [Re(ch[0])Re(rx[0])+Im(ch[0])Im(ch[0]) Re(ch[1])Re(rx[1])+Im(ch[1])Im(ch[1]) Re(ch[2])Re(rx[2])+Im(ch[2]) Im(ch[2]) Re(ch[3])Re(rx[3])+Im(ch[3])Im(ch[3])] tmp_im = vmull_s16(vrev32_s16(vmul_s16(*x_128++,*(int16x4_t*)conjug)),*y_128++); //tmp_im = [-Im(ch[0])Re(rx[0]) Re(ch[0])Im(rx[0]) -Im(ch[1])Re(rx[1]) Re(ch[1])Im(rx[1])] tmp_im1 = vmull_s16(vrev32_s16(vmul_s16(*x_128++,*(int16x4_t*)conjug)),*y_128++); //tmp_im1 = [-Im(ch[2])Re(rx[2]) Re(ch[2])Im(rx[2]) -Im(ch[3])Re(rx[3]) Re(ch[3])Im(rx[3])] tmp_im = vcombine_s32(vpadd_s32(vget_low_s32(tmp_im),vget_high_s32(tmp_im)), vpadd_s32(vget_low_s32(tmp_im1),vget_high_s32(tmp_im1))); //tmp_im = [-Im(ch[0])Re(rx[0])+Re(ch[0])Im(rx[0]) -Im(ch[1])Re(rx[1])+Re(ch[1])Im(rx[1]) -Im(ch[2])Re(rx[2])+Re(ch[2])Im(rx[2]) -Im(ch[3])Re(rx[3])+Re(ch[3])Im(rx[3])] re_cumul = vqaddq_s32(re_cumul,vqshlq_s32(tmp_re,shift)); im_cumul = vqaddq_s32(im_cumul,vqshlq_s32(tmp_im,shift)); } re_cumul2 = vpadd_s32(vget_low_s32(re_cumul),vget_high_s32(re_cumul)); im_cumul2 = vpadd_s32(vget_low_s32(im_cumul),vget_high_s32(im_cumul)); re_cumul2 = vpadd_s32(re_cumul2,re_cumul2); im_cumul2 = vpadd_s32(im_cumul2,im_cumul2); result2 = vzip_s32(re_cumul2,im_cumul2); return(vget_lane_s32(result2.val[0],0)); #endif } #ifdef MAIN void print_bytes(char *s,__m128i *x) { char *tempb = (char *)x; printf("%s : %d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d\n",s, tempb[0],tempb[1],tempb[2],tempb[3],tempb[4],tempb[5],tempb[6],tempb[7], tempb[8],tempb[9],tempb[10],tempb[11],tempb[12],tempb[13],tempb[14],tempb[15] ); } void print_shorts(char *s,__m128i *x) { int16_t *tempb = (int16_t *)x; printf("%s : %d,%d,%d,%d,%d,%d,%d,%d\n",s, tempb[0],tempb[1],tempb[2],tempb[3],tempb[4],tempb[5],tempb[6],tempb[7] ); } void print_ints(char *s,__m128i *x) { int32_t *tempb = (int32_t *)x; printf("%s : %d,%d,%d,%d\n",s, tempb[0],tempb[1],tempb[2],tempb[3] ); } void main(void) { int32_t result; int16_t x[16*2] __attribute__((aligned(16))) = {1<<0,1<<1,1<<2,1<<3,1<<4,1<<5,1<<6,1<<7,1<<8,1<<9,1<<10,1<<11,1<<12,1<<13,1<<12,1<<13,1<<0,1<<1,1<<2,1<<3,1<<4,1<<5,1<<6,1<<7,1<<8,1<<9,1<<10,1<<11,1<<12,1<<13,1<<12,1<<13}; int16_t y[16*2] __attribute__((aligned(16))) = {1<<0,1<<1,1<<2,1<<3,1<<4,1<<5,1<<6,1<<7,1<<8,1<<9,1<<10,1<<11,1<<12,1<<13,1<<12,1<<13,1<<0,1<<1,1<<2,1<<3,1<<4,1<<5,1<<6,1<<7,1<<8,1<<9,1<<10,1<<11,1<<12,1<<13,1<<12,1<<13}; // int16_t y[16*2] __attribute__((aligned(16))) = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}; result = dot_product(x,y,8*2,15); printf("result = %d, %d\n", ((int16_t*) &result)[0], ((int16_t*) &result)[1] ); } #endif