/*******************************************************************************

  Eurecom OpenAirInterface
  Copyright(c) 1999 - 2011 Eurecom

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information
  Openair Admin: openair_admin@eurecom.fr
  Openair Tech : openair_tech@eurecom.fr
  Forums       : http://forums.eurecom.fsr/openairinterface
  Address      : Eurecom, 2229, route des crĂȘtes, 06560 Valbonne Sophia Antipolis, France

*******************************************************************************/

/*! \file PHY/LTE_TRANSPORT/pbch.c
* \brief Top-level routines for generating and decoding  the PBCH/BCH physical/transport channel V8.6 2009-03
* \author R. Knopp, F. Kaltenberger
* \date 2011
* \version 0.1
* \company Eurecom
* \email: knopp@eurecom.fr,florian.kaltenberger.fr
* \note
* \warning
*/
#include <emmintrin.h>
#include <xmmintrin.h>
#ifdef __SSE3__
#include <pmmintrin.h>
#include <tmmintrin.h>
#endif
#include "PHY/defs.h"
#include "PHY/CODING/extern.h"
#include "PHY/CODING/lte_interleaver_inline.h"
#include "defs.h"
#include "extern.h"
#include "PHY/extern.h"

#ifndef __SSE3__
extern __m128i zero;
#define _mm_abs_epi16(xmmx) _mm_xor_si128((xmmx),_mm_cmpgt_epi16(zero,(xmmx)))
#define _mm_sign_epi16(xmmx,xmmy) _mm_xor_si128((xmmx),_mm_cmpgt_epi16(zero,(xmmy)))
#endif
  
//#define DEBUG_PBCH 1
//#define DEBUG_PBCH_ENCODING
#define INTERFERENCE_MITIGATION 1

#ifdef OPENAIR2
#include "PHY_INTERFACE/defs.h"
#endif

#define PBCH_A 24

//u8 pbch_d[96+(3*(16+PBCH_A))], pbch_w[3*3*(16+PBCH_A)],pbch_e[1920];  //one bit per byte
int generate_pbch(LTE_eNB_PBCH *eNB_pbch,
		  mod_sym_t **txdataF,
		  int amp,
		  LTE_DL_FRAME_PARMS *frame_parms,
		  u8 *pbch_pdu,
		  u8 frame_mod4) {

  int i, l;

  u32  pbch_D,pbch_E;//,pbch_coded_bytes;
  u8 pbch_a[PBCH_A>>3];
  u8 RCC;

  u32 nsymb = (frame_parms->Ncp==NORMAL) ? 14:12;
  u32 pilots,pilots_2;
  u32 second_pilot = (frame_parms->Ncp==NORMAL) ? 4 : 3;
  u32 jj=0;
  u32 re_allocated=0;
  u32 rb, re_offset, symbol_offset;
  u16 amask=0;

  pbch_D    = 16+PBCH_A;

  pbch_E  = (frame_parms->Ncp==NORMAL) ? 1920 : 1728; //RE/RB * #RB * bits/RB (QPSK)
  //  pbch_E_bytes = pbch_coded_bits>>3;

  if (frame_mod4==0) {
    bzero(pbch_a,PBCH_A>>3);
    bzero(eNB_pbch->pbch_e,pbch_E);
    memset(eNB_pbch->pbch_d,LTE_NULL,96);
    // Encode data
    
    // CRC attachment
    //  crc = (u16) (crc16(pbch_pdu, pbch_crc_bits-16) >> 16); 
    
    /*
    // scramble crc with PBCH CRC mask (Table 5.3.1.1-1 of 3GPP 36.212-860)
    switch (frame_parms->nb_antennas_tx_eNB) {
    case 1:
    crc = crc ^ (u16) 0;
    break;
    case 2:
    crc = crc ^ (u16) 0xFFFF;
    break;
    case 4:
    crc = crc ^ (u16) 0xAAAA;
    break;
    default:
    msg("[PBCH] Unknown number of TX antennas!\n");
    break;
    }
    */
    
    // Fix byte endian of PBCH (bit 23 goes in first)
    for (i=0;i<(PBCH_A>>3);i++) 
      pbch_a[(PBCH_A>>3)-i-1] = pbch_pdu[i];
    //  pbch_data[i] = ((char*) &crc)[0];
    //  pbch_data[i+1] = ((char*) &crc)[1];
#ifdef DEBUG_PBCH
    for (i=0;i<(PBCH_A>>3);i++) 
      msg("[PBCH] pbch_data[%d] = %x\n",i,pbch_a[i]);
#endif
    if (frame_parms->mode1_flag == 1)
      amask = 0x0000;
    else {
      switch (frame_parms->nb_antennas_tx_eNB) {
      case 1:
	amask = 0x0000;
	break;
      case 2:
	amask = 0xffff;
	break;
      case 4:
	amask = 0x5555;
      }
    }
    ccodelte_encode(PBCH_A,2,pbch_a,eNB_pbch->pbch_d+96,amask);

     
#ifdef DEBUG_PBCH_ENCODING
    for (i=0;i<16+PBCH_A;i++)
      msg("%d : (%d,%d,%d)\n",i,*(eNB_pbch->pbch_d+96+(3*i)),*(eNB_pbch->pbch_d+97+(3*i)),*(eNB_pbch->pbch_d+98+(3*i)));
#endif //DEBUG_PBCH_ENCODING
    
    // Bit collection
    /*
      j2=0;
      for (j=0;j<pbch_crc_bits*3+12;j++) {
      if ((pbch_coded_data[j]&0x80) > 0) { // bit is to be transmitted
      pbch_coded_data2[j2++] = pbch_coded_data[j]&1;
      //Bit is repeated
      if ((pbch_coded_data[j]&0x40)>0)
      pbch_coded_data2[j2++] = pbch_coded_data[j]&1;
      }
      }
      
      #ifdef DEBUG_PBCH			
      msg("[PBCH] rate matched bits=%d, pbch_coded_bits=%d, pbch_crc_bits=%d\n",j2,pbch_coded_bits,pbch_crc_bits);
      #endif
      
      #ifdef DEBUG_PBCH
      #ifdef USER_MODE
      write_output("pbch_encoded_output2.m","pbch_encoded_out2",
      pbch_coded_data2,
      pbch_coded_bits,
      1,
      4);
      #endif //USER_MODE
      #endif //DEBUG_PBCH
    */
#ifdef DEBUG_PBCH_ENCODING
    msg("Doing PBCH interleaving for %d coded bits, e %p\n",pbch_D,eNB_pbch->pbch_e);
#endif
    RCC = sub_block_interleaving_cc(pbch_D,eNB_pbch->pbch_d+96,eNB_pbch->pbch_w);
    
    lte_rate_matching_cc(RCC,pbch_E,eNB_pbch->pbch_w,eNB_pbch->pbch_e);

#ifdef DEBUG_PBCH_ENCODING
    msg("PBCH_e:\n");
    for (i=0;i<pbch_E;i++)
      msg("%d %d\n",i,*(eNB_pbch->pbch_e+i));
    msg("\n");
#endif


   
#ifdef DEBUG_PBCH
#ifdef USER_MODE
    if (frame_mod4==0) {
      write_output("pbch_e.m","pbch_e",
		   eNB_pbch->pbch_e,
		   pbch_E,
		   1,
		   4);
      for (i=0;i<16;i++)
	printf("e[%d] %d\n",i,eNB_pbch->pbch_e[i]);
    }
#endif //USER_MODE
#endif //DEBUG_PBCH
    // scrambling

    pbch_scrambling(frame_parms,
		    eNB_pbch->pbch_e,
		    pbch_E);
#ifdef DEBUG_PBCH
#ifdef USER_MODE
    if (frame_mod4==0) {
      write_output("pbch_e_s.m","pbch_e_s",
		   eNB_pbch->pbch_e,
		   pbch_E,
		   1,
		   4);
      for (i=0;i<16;i++)
	printf("e_s[%d] %d\n",i,eNB_pbch->pbch_e[i]);
    }
#endif //USER_MODE
#endif //DEBUG_PBCH 
  } // frame_mod4==0

  // modulation and mapping (slot 1, symbols 0..3)
  for (l=(nsymb>>1);l<(nsymb>>1)+4;l++) {
    
    pilots=0;
    pilots_2 = 0;
    if ((l==0) || (l==(nsymb>>1))){
      pilots=1;
      pilots_2=1;
    }

    if ((l==1) || (l==(nsymb>>1)+1)){
      pilots=1;
    }

    if ((l==second_pilot)||(l==(second_pilot+(nsymb>>1)))) {
      pilots=1;
    }

#ifdef DEBUG_PBCH
    msg("[PBCH] l=%d, pilots=%d\n",l,pilots);
#endif

    
#ifdef IFFT_FPGA
    re_offset = frame_parms->N_RB_DL*12-3*12;
    symbol_offset = frame_parms->N_RB_DL*12*l;
#else
    re_offset = frame_parms->ofdm_symbol_size-3*12;
    symbol_offset = frame_parms->ofdm_symbol_size*l;
#endif
    
    for (rb=0;rb<6;rb++) {

#ifdef DEBUG_PBCH
      msg("RB %d, jj %d, re_offset %d, symbol_offset %d, pilots %d, nushift %d\n",rb,jj,re_offset, symbol_offset, pilots,frame_parms->nushift);
#endif
      allocate_REs_in_RB(txdataF,
			 &jj,
			 re_offset,
			 symbol_offset,
			 &eNB_pbch->pbch_e[frame_mod4*(pbch_E>>2)],
			 (frame_parms->mode1_flag == 1) ? SISO : ALAMOUTI,
			 0,
			 pilots,
			 2,
			 0,
#ifdef INTERFERENCE_MITIGATION
			 (pilots_2==1)?(amp/3):amp,
#else
			 amp,
#endif
			 NULL,
			 &re_allocated,
			 0,
			 0,
			 0,
			 frame_parms);
      
      re_offset+=12; // go to next RB
      
      // check if we crossed the symbol boundary and skip DC
#ifdef IFFT_FPGA
      if (re_offset >= frame_parms->N_RB_DL*12) 
	re_offset = 0;
#else
      if (re_offset >= frame_parms->ofdm_symbol_size)
	re_offset=1;
#endif
    }
    
    //    }
  }
#ifdef DEBUG_PBCH
  msg("[PBCH] txdataF=\n");
  for (i=0;i<frame_parms->ofdm_symbol_size;i++) 
    msg("%d=>(%d,%d)\n",i,((short*)&txdataF[0][frame_parms->ofdm_symbol_size*(nsymb>>1)+i])[0],
	((short*)&txdataF[0][frame_parms->ofdm_symbol_size*(nsymb>>1)+i])[1]);
#endif
  
  
  return(0);
}

s32 generate_pbch_emul(PHY_VARS_eNB *phy_vars_eNB,u8 *pbch_pdu) {
  
  LOG_D(PHY,"[eNB %d] generate_pbch_emul \n",phy_vars_eNB->Mod_id);
  eNB_transport_info[phy_vars_eNB->Mod_id].cntl.pbch_flag=1;
  // Copy PBCH payload 
  eNB_transport_info[phy_vars_eNB->Mod_id].cntl.pbch_payload=*(u32 *)pbch_pdu;
  return(0);
}

u16 pbch_extract(int **rxdataF,
		 int **dl_ch_estimates,
		 int **rxdataF_ext,
		 int **dl_ch_estimates_ext,
		 u32 symbol,
		 LTE_DL_FRAME_PARMS *frame_parms) {
  

  u16 rb,nb_rb=6;
  u8 i,j,aarx,aatx;
  int *dl_ch0,*dl_ch0_ext,*rxF,*rxF_ext;
 
  u32 nsymb = (frame_parms->Ncp==0) ? 7:6;
  u32 symbol_mod = symbol % nsymb;

  int rx_offset = frame_parms->ofdm_symbol_size-3*12;
  int ch_offset = frame_parms->N_RB_DL*6-3*12;
  int nushiftmod3 = frame_parms->nushift%3;

  for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++) {
    /*
    printf("extract_rbs (nushift %d): symbol_mod=%d, rx_offset=%d, ch_offset=%d\n",frame_parms->nushift,symbol_mod,
	   (rx_offset + (symbol*(frame_parms->ofdm_symbol_size)))*2,
	   LTE_CE_OFFSET+ch_offset+(symbol_mod*(frame_parms->ofdm_symbol_size)));
    */
#ifndef NEW_FFT
    rxF        = &rxdataF[aarx][(rx_offset + (symbol*(frame_parms->ofdm_symbol_size)))*2];
#else
    rxF        = &rxdataF[aarx][(rx_offset + (symbol*(frame_parms->ofdm_symbol_size)))];
#endif
    rxF_ext    = &rxdataF_ext[aarx][symbol_mod*(6*12)];

    for (rb=0; rb<nb_rb; rb++) {
      // skip DC carrier
      if (rb==3) {
#ifndef NEW_FFT
	rxF       = &rxdataF[aarx][(1 + (symbol*(frame_parms->ofdm_symbol_size)))*2];
#else
	rxF       = &rxdataF[aarx][(1 + (symbol*(frame_parms->ofdm_symbol_size)))];
#endif
      }
      if ((symbol_mod==0) || (symbol_mod==1)) {
	j=0;
	for (i=0;i<12;i++) {
	  if ((i!=nushiftmod3) && 
	      (i!=(nushiftmod3+3)) && 
	      (i!=(nushiftmod3+6)) && 
	      (i!=(nushiftmod3+9))) {
#ifndef NEW_FFT
	    rxF_ext[j++]=rxF[i<<1];
#else
	    rxF_ext[j++]=rxF[i];
#endif
	  }
	}
#ifndef NEW_FFT
	rxF+=24;
#else
	rxF+=12;
#endif
	rxF_ext+=8;
      }
      else {
	for (i=0;i<12;i++) {
#ifndef NEW_FFT
	  rxF_ext[i]=rxF[i<<1];
#else
	  rxF_ext[i]=rxF[i];
#endif
	}
#ifndef NEW_FFT
	rxF+=24;
#else
	rxF+=12;
#endif
	rxF_ext+=12;
      }
    }

    for (aatx=0;aatx<4;aatx++) {//frame_parms->nb_antennas_tx_eNB;aatx++) {
      dl_ch0     = &dl_ch_estimates[(aatx<<1)+aarx][LTE_CE_OFFSET+ch_offset+(symbol*(frame_parms->ofdm_symbol_size))];
      dl_ch0_ext = &dl_ch_estimates_ext[(aatx<<1)+aarx][symbol_mod*(6*12)];

      for (rb=0; rb<nb_rb; rb++) {
	// skip DC carrier
	// if (rb==3) dl_ch0++;
	if (symbol_mod>1) {
	  memcpy(dl_ch0_ext,dl_ch0,12*sizeof(int));
	  dl_ch0+=12;
	  dl_ch0_ext+=12;
	}
	else {
	  j=0;
	  for (i=0;i<12;i++) {
	    if ((i!=nushiftmod3) && 
		(i!=(nushiftmod3+3)) && 
		(i!=(nushiftmod3+6)) && 
		(i!=(nushiftmod3+9))){
	      //	      printf("PBCH extract i %d j %d => (%d,%d)\n",i,j,*(short *)&dl_ch0[i],*(1+(short*)&dl_ch0[i]));
	      dl_ch0_ext[j++]=dl_ch0[i];
	    }
	  }	    
	  dl_ch0+=12;
	  dl_ch0_ext+=8;
	}
     }
    }  //tx antenna loop

  }

  return(0);
}

__m128i avg128;

//compute average channel_level on each (TX,RX) antenna pair
int pbch_channel_level(int **dl_ch_estimates_ext,
		       LTE_DL_FRAME_PARMS *frame_parms,
		       u32 symbol) {

  s16 rb, nb_rb=6;
  u8 aatx,aarx;
  __m128i *dl_ch128;
  int avg1=0,avg2=0;

  u32 nsymb = (frame_parms->Ncp==0) ? 7:6;
  u32 symbol_mod = symbol % nsymb;

  for (aatx=0;aatx<4;aatx++) //frame_parms->nb_antennas_tx_eNB;aatx++)
    for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++) {
      //clear average level
      avg128 = _mm_xor_si128(avg128,avg128);
      dl_ch128=(__m128i *)&dl_ch_estimates_ext[(aatx<<1)+aarx][symbol_mod*6*12];

      for (rb=0;rb<nb_rb;rb++) {
    
	avg128 = _mm_add_epi32(avg128,_mm_madd_epi16(dl_ch128[0],dl_ch128[0]));
	avg128 = _mm_add_epi32(avg128,_mm_madd_epi16(dl_ch128[1],dl_ch128[1]));
	avg128 = _mm_add_epi32(avg128,_mm_madd_epi16(dl_ch128[2],dl_ch128[2]));

	dl_ch128+=3;	
	/*
	  if (rb==0) {
	  print_shorts("dl_ch128",&dl_ch128[0]);
	  print_shorts("dl_ch128",&dl_ch128[1]);
	  print_shorts("dl_ch128",&dl_ch128[2]);
	  }
	*/
      }

      avg1 = (((int*)&avg128)[0] + 
	      ((int*)&avg128)[1] + 
	      ((int*)&avg128)[2] + 
	      ((int*)&avg128)[3])/(nb_rb*12);

      if (avg1>avg2) 
	avg2 = avg1;

      //msg("Channel level : %d, %d\n",avg1, avg2);
    }

  _mm_empty();
  _m_empty();

  return(avg2);

}

__m128i mmtmpP0,mmtmpP1,mmtmpP2,mmtmpP3;

void pbch_channel_compensation(int **rxdataF_ext,
			       int **dl_ch_estimates_ext,
			       int **rxdataF_comp,
			       LTE_DL_FRAME_PARMS *frame_parms,
			       u8 symbol,
			       u8 output_shift) {

  u16 rb,nb_rb=6;
  u8 aatx,aarx,symbol_mod;
  __m128i *dl_ch128,*rxdataF128,*rxdataF_comp128;

  symbol_mod = (symbol>=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol;
  
  for (aatx=0;aatx<4;aatx++) //frame_parms->nb_antennas_tx_eNB;aatx++)
    for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++) {

      dl_ch128          = (__m128i *)&dl_ch_estimates_ext[(aatx<<1)+aarx][symbol_mod*6*12];
      rxdataF128        = (__m128i *)&rxdataF_ext[aarx][symbol_mod*6*12];
      rxdataF_comp128   = (__m128i *)&rxdataF_comp[(aatx<<1)+aarx][symbol_mod*6*12];


      for (rb=0;rb<nb_rb;rb++) {
	//printf("rb %d\n",rb);
	
	// multiply by conjugated channel
	mmtmpP0 = _mm_madd_epi16(dl_ch128[0],rxdataF128[0]);
	//	print_ints("re",&mmtmpP0);
	// mmtmpP0 contains real part of 4 consecutive outputs (32-bit)
	mmtmpP1 = _mm_shufflelo_epi16(dl_ch128[0],_MM_SHUFFLE(2,3,0,1));
	mmtmpP1 = _mm_shufflehi_epi16(mmtmpP1,_MM_SHUFFLE(2,3,0,1));
	mmtmpP1 = _mm_sign_epi16(mmtmpP1,*(__m128i*)&conjugate[0]);
	//	print_ints("im",&mmtmpP1);
	mmtmpP1 = _mm_madd_epi16(mmtmpP1,rxdataF128[0]);
	// mmtmpP1 contains imag part of 4 consecutive outputs (32-bit)
	mmtmpP0 = _mm_srai_epi32(mmtmpP0,output_shift);
	//	print_ints("re(shift)",&mmtmpP0);
	mmtmpP1 = _mm_srai_epi32(mmtmpP1,output_shift);
	//	print_ints("im(shift)",&mmtmpP1);
	mmtmpP2 = _mm_unpacklo_epi32(mmtmpP0,mmtmpP1);
	mmtmpP3 = _mm_unpackhi_epi32(mmtmpP0,mmtmpP1);
	//      print_ints("c0",&mmtmpP2);
	//	print_ints("c1",&mmtmpP3);
	rxdataF_comp128[0] = _mm_packs_epi32(mmtmpP2,mmtmpP3);
	//	print_shorts("rx:",rxdataF128);
	//	print_shorts("ch:",dl_ch128);
	//	print_shorts("pack:",rxdataF_comp128);

	// multiply by conjugated channel
	mmtmpP0 = _mm_madd_epi16(dl_ch128[1],rxdataF128[1]);
	// mmtmpP0 contains real part of 4 consecutive outputs (32-bit)
	mmtmpP1 = _mm_shufflelo_epi16(dl_ch128[1],_MM_SHUFFLE(2,3,0,1));
	mmtmpP1 = _mm_shufflehi_epi16(mmtmpP1,_MM_SHUFFLE(2,3,0,1));
	mmtmpP1 = _mm_sign_epi16(mmtmpP1,*(__m128i*)&conjugate[0]);
	mmtmpP1 = _mm_madd_epi16(mmtmpP1,rxdataF128[1]);
	// mmtmpP1 contains imag part of 4 consecutive outputs (32-bit)
	mmtmpP0 = _mm_srai_epi32(mmtmpP0,output_shift);
	mmtmpP1 = _mm_srai_epi32(mmtmpP1,output_shift);
	mmtmpP2 = _mm_unpacklo_epi32(mmtmpP0,mmtmpP1);
	mmtmpP3 = _mm_unpackhi_epi32(mmtmpP0,mmtmpP1);
	rxdataF_comp128[1] = _mm_packs_epi32(mmtmpP2,mmtmpP3);
	//	print_shorts("rx:",rxdataF128+1);
	//	print_shorts("ch:",dl_ch128+1);
	//	print_shorts("pack:",rxdataF_comp128+1);	

	if (symbol_mod>1) {
	  // multiply by conjugated channel
	  mmtmpP0 = _mm_madd_epi16(dl_ch128[2],rxdataF128[2]);
	  // mmtmpP0 contains real part of 4 consecutive outputs (32-bit)
	  mmtmpP1 = _mm_shufflelo_epi16(dl_ch128[2],_MM_SHUFFLE(2,3,0,1));
	  mmtmpP1 = _mm_shufflehi_epi16(mmtmpP1,_MM_SHUFFLE(2,3,0,1));
	  mmtmpP1 = _mm_sign_epi16(mmtmpP1,*(__m128i*)&conjugate[0]);
	  mmtmpP1 = _mm_madd_epi16(mmtmpP1,rxdataF128[2]);
	  // mmtmpP1 contains imag part of 4 consecutive outputs (32-bit)
	  mmtmpP0 = _mm_srai_epi32(mmtmpP0,output_shift);
	  mmtmpP1 = _mm_srai_epi32(mmtmpP1,output_shift);
	  mmtmpP2 = _mm_unpacklo_epi32(mmtmpP0,mmtmpP1);
	  mmtmpP3 = _mm_unpackhi_epi32(mmtmpP0,mmtmpP1);
	  rxdataF_comp128[2] = _mm_packs_epi32(mmtmpP2,mmtmpP3);
	  //	print_shorts("rx:",rxdataF128+2);
	  //	print_shorts("ch:",dl_ch128+2);
	  //      print_shorts("pack:",rxdataF_comp128+2);
	  
	  dl_ch128+=3;
	  rxdataF128+=3;
	  rxdataF_comp128+=3;
	}
	else {
	  dl_ch128+=2;
	  rxdataF128+=2;
	  rxdataF_comp128+=2;
	}
      }
    }
  _mm_empty();
  _m_empty();
}     

void pbch_detection_mrc(LTE_DL_FRAME_PARMS *frame_parms,
			int **rxdataF_comp,
			u8 symbol) {

  u8 aatx, symbol_mod;
  int i, nb_rb=6;
  __m128i *rxdataF_comp128_0,*rxdataF_comp128_1;

  symbol_mod = (symbol>=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol;

  if (frame_parms->nb_antennas_rx>1) {
    for (aatx=0;aatx<4;aatx++) {//frame_parms->nb_antennas_tx_eNB;aatx++) {
      rxdataF_comp128_0   = (__m128i *)&rxdataF_comp[(aatx<<1)][symbol_mod*6*12];  
      rxdataF_comp128_1   = (__m128i *)&rxdataF_comp[(aatx<<1)+1][symbol_mod*6*12];  
      // MRC on each re of rb, both on MF output and magnitude (for 16QAM/64QAM llr computation)
      for (i=0;i<nb_rb*3;i++) {
	rxdataF_comp128_0[i] = _mm_adds_epi16(_mm_srai_epi16(rxdataF_comp128_0[i],1),_mm_srai_epi16(rxdataF_comp128_1[i],1));
      }
    }
  }
  _mm_empty();
  _m_empty();
}

void pbch_scrambling(LTE_DL_FRAME_PARMS *frame_parms,
		     u8 *pbch_e,
		     u32 length) {
  int i;
  u8 reset;
  u32 x1, x2, s=0;

  reset = 1;
  // x1 is set in lte_gold_generic
  x2 = frame_parms->Nid_cell; //this is c_init in 36.211 Sec 6.6.1
  //  msg("pbch_scrambling: Nid_cell = %d\n",x2);

  for (i=0; i<length; i++) {
    if ((i&0x1f)==0) {
      s = lte_gold_generic(&x1, &x2, reset);
      //      printf("lte_gold[%d]=%x\n",i,s);
      reset = 0;
    }

    pbch_e[i] = (pbch_e[i]&1) ^ ((s>>(i&0x1f))&1);

  }
}

void pbch_unscrambling(LTE_DL_FRAME_PARMS *frame_parms,
		       s8* llr,
		       u32 length,
		       u8 frame_mod4) {
  int i;
  u8 reset;
  u32 x1, x2, s=0;

  reset = 1;
  // x1 is set in first call to lte_gold_generic
  x2 = frame_parms->Nid_cell; //this is c_init in 36.211 Sec 6.6.1
  //  msg("pbch_unscrambling: Nid_cell = %d\n",x2);

  for (i=0; i<length; i++) {
    if (i%32==0) {
      s = lte_gold_generic(&x1, &x2, reset);
      //      printf("lte_gold[%d]=%x\n",i,s);
      reset = 0;
    } 
    // take the quarter of the PBCH that corresponds to this frame
    if ((i>=(frame_mod4*(length>>2))) && (i<((1+frame_mod4)*(length>>2)))) {
      //      if (((s>>(i%32))&1)==1)

      if (((s>>(i%32))&1)==0)
	llr[i] = -llr[i];
    }
  }
}

void pbch_alamouti(LTE_DL_FRAME_PARMS *frame_parms,
		   int **rxdataF_comp,
		   u8 symbol) {


  s16 *rxF0,*rxF1;
  //  __m128i *ch_mag0,*ch_mag1,*ch_mag0b,*ch_mag1b;
  u8 rb,re,symbol_mod;
  int jj;

  //  printf("Doing alamouti\n");
  symbol_mod = (symbol>=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol;
  jj         = (symbol_mod*6*12);

  rxF0     = (s16*)&rxdataF_comp[0][jj];  //tx antenna 0  h0*y
  rxF1     = (s16*)&rxdataF_comp[2][jj];  //tx antenna 1  h1*y

  for (rb=0;rb<6;rb++) {

    for (re=0;re<12;re+=2) {

      // Alamouti RX combining
      
      rxF0[0] = rxF0[0] + rxF1[2];
      rxF0[1] = rxF0[1] - rxF1[3];

      rxF0[2] = rxF0[2] - rxF1[0];
      rxF0[3] = rxF0[3] + rxF1[1];
 
      rxF0+=4;
      rxF1+=4;
    }

  }

  _mm_empty();
  _m_empty();
  
}

void pbch_quantize(s8 *pbch_llr8,
		   s16 *pbch_llr,
		   u16 len) {

  u16 i;

  for (i=0;i<len;i++) { 
    if (pbch_llr[i]>7)
      pbch_llr8[i]=7;
    else if (pbch_llr[i]<-8)
      pbch_llr8[i]=-8;
    else
      pbch_llr8[i] = (char)(pbch_llr[i]);

  }
}

static unsigned char dummy_w_rx[3*3*(16+PBCH_A)];
static int8_t pbch_w_rx[3*3*(16+PBCH_A)],pbch_d_rx[96+(3*(16+PBCH_A))];


u16 rx_pbch(LTE_UE_COMMON *lte_ue_common_vars,
	    LTE_UE_PBCH *lte_ue_pbch_vars,
	    LTE_DL_FRAME_PARMS *frame_parms,
	    u8 eNB_id,
	    MIMO_mode_t mimo_mode,
	    u8 frame_mod4) {

  u8 log2_maxh;//,aatx,aarx;
  int max_h=0;

  int symbol,i;
  u32 nsymb = (frame_parms->Ncp==0) ? 14:12;
  u16  pbch_E;
  u8 pbch_a[8];
  u8 RCC;

  s8 *pbch_e_rx;
  u8 *decoded_output = lte_ue_pbch_vars->decoded_output;
  u16 crc;


  //  pbch_D    = 16+PBCH_A;

  pbch_E  = (frame_parms->Ncp==0) ? 1920 : 1728; //RE/RB * #RB * bits/RB (QPSK)
  pbch_e_rx = &lte_ue_pbch_vars->llr[frame_mod4*(pbch_E>>2)];
#ifdef DEBUG_PBCH
  msg("[PBCH] starting symbol loop\n");
#endif

  // clear LLR buffer
  memset(lte_ue_pbch_vars->llr,0,pbch_E);

  for (symbol=(nsymb>>1);symbol<(nsymb>>1)+4;symbol++) {

#ifdef DEBUG_PBCH
    msg("[PBCH] starting extract\n");
#endif
    pbch_extract(lte_ue_common_vars->rxdataF,
		 lte_ue_common_vars->dl_ch_estimates[eNB_id],
		 lte_ue_pbch_vars->rxdataF_ext,
		 lte_ue_pbch_vars->dl_ch_estimates_ext,
		 symbol,
		 frame_parms);
#ifdef DEBUG_PBCH    
    msg("[PHY] PBCH Symbol %d\n",symbol);
    msg("[PHY] PBCH starting channel_level\n");
#endif
    
    max_h = pbch_channel_level(lte_ue_pbch_vars->dl_ch_estimates_ext,
			       frame_parms,
			       symbol);
    log2_maxh = 3+(log2_approx(max_h)/2);
    
#ifdef DEBUG_PBCH
    msg("[PHY] PBCH log2_maxh = %d (%d)\n",log2_maxh,max_h);
#endif
    
    pbch_channel_compensation(lte_ue_pbch_vars->rxdataF_ext,
			      lte_ue_pbch_vars->dl_ch_estimates_ext,
			      lte_ue_pbch_vars->rxdataF_comp,
			      frame_parms,
			      symbol,
			      log2_maxh); // log2_maxh+I0_shift
    
    if (frame_parms->nb_antennas_rx > 1)
      pbch_detection_mrc(frame_parms,
			 lte_ue_pbch_vars->rxdataF_comp,
			 symbol);
    
    
    if (mimo_mode == ALAMOUTI) {
      pbch_alamouti(frame_parms,lte_ue_pbch_vars->rxdataF_comp,symbol);
      //	msg("[PBCH][RX] Alamouti receiver not yet implemented!\n");
      //	return(-1);
    }
    else if ((mimo_mode != ANTCYCLING) && (mimo_mode != SISO)) {
      msg("[PBCH][RX] Unsupported MIMO mode\n");
      return(-1);
    }
  
    if (symbol>(nsymb>>1)+1) {
      pbch_quantize(pbch_e_rx,
		    (short*)&(lte_ue_pbch_vars->rxdataF_comp[0][(symbol%(nsymb>>1))*72]),
		    144);
      
      pbch_e_rx+=144;
    }
    else {
      pbch_quantize(pbch_e_rx,
		    (short*)&(lte_ue_pbch_vars->rxdataF_comp[0][(symbol%(nsymb>>1))*72]),
		    96);

      pbch_e_rx+=96;
    }


  }

  pbch_e_rx = lte_ue_pbch_vars->llr;



  //un-scrambling
#ifdef DEBUG_PBCH
  msg("[PBCH] doing unscrambling\n");
#endif

  
  pbch_unscrambling(frame_parms,
		    pbch_e_rx,
		    pbch_E,
		    frame_mod4);
  


  //un-rate matching
#ifdef DEBUG_PBCH
  msg("[PBCH] doing un-rate-matching\n");
#endif


  memset(dummy_w_rx,0,3*3*(16+PBCH_A));
  RCC = generate_dummy_w_cc(16+PBCH_A,
			    dummy_w_rx);


  lte_rate_matching_cc_rx(RCC,pbch_E,pbch_w_rx,dummy_w_rx,pbch_e_rx);

  sub_block_deinterleaving_cc((unsigned int)(PBCH_A+16), 
			      &pbch_d_rx[96], 
			      &pbch_w_rx[0]); 

  memset(pbch_a,0,((16+PBCH_A)>>3));




  phy_viterbi_lte_sse2(pbch_d_rx+96,pbch_a,16+PBCH_A);
  
  // Fix byte endian of PBCH (bit 23 goes in first)
  for (i=0;i<(PBCH_A>>3);i++) 
    decoded_output[(PBCH_A>>3)-i-1] = pbch_a[i];

#ifdef DEBUG_PBCH
  for (i=0;i<(PBCH_A>>3);i++) 
    msg("[PBCH] pbch_a[%d] = %x\n",i,decoded_output[i]);

#endif //DEBUG_PBCH

#ifdef DEBUG_PBCH
  msg("PBCH CRC %x : %x\n",
      crc16(pbch_a,PBCH_A),
      ((u16)pbch_a[PBCH_A>>3]<<8)+pbch_a[(PBCH_A>>3)+1]);
#endif

  crc = (crc16(pbch_a,PBCH_A)>>16) ^ 
    (((u16)pbch_a[PBCH_A>>3]<<8)+pbch_a[(PBCH_A>>3)+1]);

  if (crc == 0x0000)
    return(1);
  else if (crc == 0xffff)
    return(2);
  else if (crc == 0x5555)
    return(4);
  else 
    return(-1);
  
  
}


u16 rx_pbch_emul(PHY_VARS_UE *phy_vars_ue,
		 u8 eNB_id,
		 u8 pbch_phase) {

  u8 pbch_error=0;

  LOG_D(PHY,"EMUL UE rx_pbch_emul: eNB_id %d, pbch_phase %d\n",eNB_id,pbch_phase);

  if (pbch_phase == (phy_vars_ue->frame % 4)) {

    // abtract pbch error here
    // pbch_error = pbch_abstraction();

    if (pbch_error == 0) {
      memcpy(phy_vars_ue->lte_ue_pbch_vars[eNB_id]->decoded_output,PHY_vars_eNB_g[eNB_id]->pbch_pdu,PBCH_PDU_SIZE);    
      return(PHY_vars_eNB_g[eNB_id]->lte_frame_parms.nb_antennas_tx_eNB);
    }
    else
      return(-1);
  }
  else
    return(-1);
}