/*******************************************************************************
    OpenAirInterface
    Copyright(c) 1999 - 2014 Eurecom

    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.


    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with OpenAirInterface.The full GNU General Public License is
   included in this distribution in the file called "COPYING". If not,
   see <http://www.gnu.org/licenses/>.

  Contact Information
  OpenAirInterface Admin: openair_admin@eurecom.fr
  OpenAirInterface Tech : openair_tech@eurecom.fr
  OpenAirInterface Dev  : openair4g-devel@lists.eurecom.fr

  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE

 *******************************************************************************/

/*! \file PHY/LTE_TRANSPORT/dlsch_coding.c
* \brief Top-level routines for implementing Turbo-coded (DLSCH) transport channels from 36-212, V8.6 2009-03
* \author R. Knopp
* \date 2011
* \version 0.1
* \company Eurecom
* \email: knopp@eurecom.fr
* \note
* \warning
*/

#include "PHY/defs.h"
#include "PHY/extern.h"
#include "PHY/CODING/defs.h"
#include "PHY/CODING/extern.h"
#include "PHY/CODING/lte_interleaver_inline.h"
#include "PHY/LTE_TRANSPORT/defs.h"
#include "PHY/LTE_TRANSPORT/proto.h"
#include "SCHED/defs.h"
#include "defs.h"
#include "UTIL/LOG/vcd_signal_dumper.h"

//#define DEBUG_DLSCH_CODING
//#define DEBUG_DLSCH_FREE 1

/*
#define is_not_pilot(pilots,first_pilot,re) (pilots==0) || \
  ((pilots==1)&&(first_pilot==1)&&(((re>2)&&(re<6))||((re>8)&&(re<12)))) || \
  ((pilots==1)&&(first_pilot==0)&&(((re<3))||((re>5)&&(re<9)))) \
*/
#define is_not_pilot(pilots,first_pilot,re) (1)


void free_eNB_dlsch(LTE_eNB_DLSCH_t *dlsch)
{
  int i;
  int r;

  if (dlsch) {
#ifdef DEBUG_DLSCH_FREE
    msg("Freeing dlsch %p\n",dlsch);
#endif

    for (i=0; i<dlsch->Mdlharq; i++) {
#ifdef DEBUG_DLSCH_FREE
      msg("Freeing dlsch process %d\n",i);
#endif

      if (dlsch->harq_processes[i]) {
#ifdef DEBUG_DLSCH_FREE
        msg("Freeing dlsch process %d (%p)\n",i,dlsch->harq_processes[i]);
#endif

        if (dlsch->harq_processes[i]->b) {
          free16(dlsch->harq_processes[i]->b,MAX_DLSCH_PAYLOAD_BYTES);
          dlsch->harq_processes[i]->b = NULL;
#ifdef DEBUG_DLSCH_FREE
          msg("Freeing dlsch process %d b (%p)\n",i,dlsch->harq_processes[i]->b);
#endif
        }

#ifdef DEBUG_DLSCH_FREE
        msg("Freeing dlsch process %d c (%p)\n",i,dlsch->harq_processes[i]->c);
#endif

        for (r=0; r<MAX_NUM_DLSCH_SEGMENTS; r++) {
	  
#ifdef DEBUG_DLSCH_FREE
          msg("Freeing dlsch process %d c[%d] (%p)\n",i,r,dlsch->harq_processes[i]->c[r]);
#endif
	  
          if (dlsch->harq_processes[i]->c[r]) {
            free16(dlsch->harq_processes[i]->c[r],((r==0)?8:0) + 3+768);
            dlsch->harq_processes[i]->c[r] = NULL;
          }
          if (dlsch->harq_processes[i]->d[r]) {
            free16(dlsch->harq_processes[i]->d[r],(96+12+3+(3*6144)));
            dlsch->harq_processes[i]->d[r] = NULL;
          }
        
	}
	free16(dlsch->harq_processes[i],sizeof(LTE_DL_eNB_HARQ_t));
	dlsch->harq_processes[i] = NULL;
      }
    }
    
    free16(dlsch,sizeof(LTE_eNB_DLSCH_t));
    dlsch = NULL;
    }
  
}

LTE_eNB_DLSCH_t *new_eNB_dlsch(unsigned char Kmimo,unsigned char Mdlharq,uint32_t Nsoft,unsigned char N_RB_DL, uint8_t abstraction_flag)
{

  LTE_eNB_DLSCH_t *dlsch;
  unsigned char exit_flag = 0,i,j,r;
  unsigned char bw_scaling =1;

  switch (N_RB_DL) {
  case 6:
    bw_scaling =16;
    break;

  case 25:
    bw_scaling =4;
    break;

  case 50:
    bw_scaling =2;
    break;

  default:
    bw_scaling =1;
    break;
  }

  dlsch = (LTE_eNB_DLSCH_t *)malloc16(sizeof(LTE_eNB_DLSCH_t));

  if (dlsch) {
    bzero(dlsch,sizeof(LTE_eNB_DLSCH_t));
    dlsch->Kmimo = Kmimo;
    dlsch->Mdlharq = Mdlharq;
    dlsch->Mlimit = 4;
    dlsch->Nsoft = Nsoft;

    for (i=0; i<10; i++)
      dlsch->harq_ids[i] = Mdlharq;

    dlsch->head_freelist = 0;
    dlsch->tail_freelist = 0;

    for (i=0; i<Mdlharq; i++) {
      dlsch->harq_processes[i] = (LTE_DL_eNB_HARQ_t *)malloc16(sizeof(LTE_DL_eNB_HARQ_t));
      LOG_T(PHY, "Required mem size %d (bw scaling %d), dlsch->harq_processes[%d] %p\n",
            MAX_DLSCH_PAYLOAD_BYTES/bw_scaling,bw_scaling, i,dlsch->harq_processes[i]);

      if (dlsch->harq_processes[i]) {
        bzero(dlsch->harq_processes[i],sizeof(LTE_DL_eNB_HARQ_t));
        //    dlsch->harq_processes[i]->first_tx=1;
        dlsch->harq_processes[i]->b = (unsigned char*)malloc16(MAX_DLSCH_PAYLOAD_BYTES/bw_scaling);

        if (dlsch->harq_processes[i]->b) {
          bzero(dlsch->harq_processes[i]->b,MAX_DLSCH_PAYLOAD_BYTES/bw_scaling);
        } else {
          msg("Can't get b\n");
          exit_flag=1;
        }

        if (abstraction_flag==0) {
          for (r=0; r<MAX_NUM_DLSCH_SEGMENTS/bw_scaling; r++) {
            // account for filler in first segment and CRCs for multiple segment case
            dlsch->harq_processes[i]->c[r] = (uint8_t*)malloc16(((r==0)?8:0) + 3+ 768);
            dlsch->harq_processes[i]->d[r] = (uint8_t*)malloc16((96+12+3+(3*6144)));
            if (dlsch->harq_processes[i]->c[r]) {
              bzero(dlsch->harq_processes[i]->c[r],((r==0)?8:0) + 3+ 768);
            } else {
              msg("Can't get c\n");
              exit_flag=2;
            }
            if (dlsch->harq_processes[i]->d[r]) {
              bzero(dlsch->harq_processes[i]->d[r],(96+12+3+(3*6144)));
            } else {
              msg("Can't get d\n");
              exit_flag=2;
            }
          }
        }
      } else {
        msg("Can't get harq_p %d\n",i);
        exit_flag=3;
      }

      put_harq_pid_in_freelist(dlsch, i);
    }

    if (exit_flag==0) {
      for (i=0; i<Mdlharq; i++) {
        dlsch->harq_processes[i]->round=0;

	for (j=0; j<96; j++)
	  for (r=0; r<MAX_NUM_DLSCH_SEGMENTS/bw_scaling; r++) {
	    //      printf("dlsch->harq_processes[%d]->d[%d] %p\n",i,r,dlsch->harq_processes[i]->d[r]);
	    if (dlsch->harq_processes[i]->d[r])
	      dlsch->harq_processes[i]->d[r][j] = LTE_NULL;
	  }
        
      }

      return(dlsch);
    }
  }

  LOG_D(PHY,"new_eNB_dlsch exit flag %d, size of  %ld\n",
	exit_flag, sizeof(LTE_eNB_DLSCH_t));
  free_eNB_dlsch(dlsch);
  return(NULL);


}

void clean_eNb_dlsch(LTE_eNB_DLSCH_t *dlsch)
{

  unsigned char Mdlharq;
  unsigned char i,j,r;

  if (dlsch) {
    Mdlharq = dlsch->Mdlharq;
    dlsch->rnti = 0;
    dlsch->active = 0;

    for (i=0; i<10; i++)
      dlsch->harq_ids[i] = Mdlharq;

    for (i=0; i<Mdlharq; i++) {
      if (dlsch->harq_processes[i]) {
        //  dlsch->harq_processes[i]->Ndi    = 0;
        dlsch->harq_processes[i]->status = 0;
        dlsch->harq_processes[i]->round  = 0;

	for (j=0; j<96; j++)
	  for (r=0; r<MAX_NUM_DLSCH_SEGMENTS; r++)
	    if (dlsch->harq_processes[i]->d[r])
	      dlsch->harq_processes[i]->d[r][j] = LTE_NULL;
        
      }
    }
  }
}


int dlsch_encoding(unsigned char *a,
                   LTE_DL_FRAME_PARMS *frame_parms,
                   uint8_t num_pdcch_symbols,
                   LTE_eNB_DLSCH_t *dlsch,
                   int frame,
                   uint8_t subframe,
                   time_stats_t *rm_stats,
                   time_stats_t *te_stats,
                   time_stats_t *i_stats)
{

  unsigned int G;
  unsigned int crc=1;
  unsigned short iind;

  unsigned char harq_pid = dlsch->current_harq_pid;
  unsigned short nb_rb = dlsch->harq_processes[harq_pid]->nb_rb;
  unsigned int A;
  unsigned char mod_order;
  unsigned int Kr=0,Kr_bytes,r,r_offset=0;
  unsigned short m=dlsch->harq_processes[harq_pid]->mcs;

  VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_ENB_DLSCH_ENCODING, VCD_FUNCTION_IN);

  A = dlsch->harq_processes[harq_pid]->TBS; //6228
  // printf("Encoder: A: %d\n",A);
  mod_order = get_Qm(dlsch->harq_processes[harq_pid]->mcs);

  G = get_G(frame_parms,nb_rb,dlsch->harq_processes[harq_pid]->rb_alloc,mod_order,dlsch->harq_processes[harq_pid]->Nl,num_pdcch_symbols,frame,subframe);


  //  if (dlsch->harq_processes[harq_pid]->Ndi == 1) {  // this is a new packet
  if (dlsch->harq_processes[harq_pid]->round == 0) {  // this is a new packet

    /*
    int i;
    printf("dlsch (tx): \n");
    for (i=0;i<(A>>3);i++)
      printf("%02x.",a[i]);
    printf("\n");
    */
    // Add 24-bit crc (polynomial A) to payload
    crc = crc24a(a, //input bits for computation, A is a size of a
                 A)>>8;
    a[A>>3] = ((uint8_t*)&crc)[2];
    a[1+(A>>3)] = ((uint8_t*)&crc)[1];
    a[2+(A>>3)] = ((uint8_t*)&crc)[0];
    //    printf("CRC %x (A %d)\n",crc,A);

    dlsch->harq_processes[harq_pid]->B = A+24;
    //    dlsch->harq_processes[harq_pid]->b = a;
    memcpy(dlsch->harq_processes[harq_pid]->b,a,(A/8)+4);

    if (lte_segmentation(dlsch->harq_processes[harq_pid]->b, // bits after CRC attachement
                         dlsch->harq_processes[harq_pid]->c, // output from segmentation
                         dlsch->harq_processes[harq_pid]->B, //size of B=L+A
                         &dlsch->harq_processes[harq_pid]->C, //number of codeblocks
                         &dlsch->harq_processes[harq_pid]->Cplus, //Number of segments of size K+
                         &dlsch->harq_processes[harq_pid]->Cminus,//Number of segments of size K_
                         &dlsch->harq_processes[harq_pid]->Kplus, //First segmentation size
                         &dlsch->harq_processes[harq_pid]->Kminus, //Second segmentation size
                         &dlsch->harq_processes[harq_pid]->F)<0) //Number of filler bits
      return(-1);

    for (r=0; r<dlsch->harq_processes[harq_pid]->C; r++) {
      if (r<dlsch->harq_processes[harq_pid]->Cminus)
        Kr = dlsch->harq_processes[harq_pid]->Kminus;
      else
        Kr = dlsch->harq_processes[harq_pid]->Kplus;

      Kr_bytes = Kr>>3;

      // get interleaver index for Turbo code (lookup in Table 5.1.3-3 36-212, V8.6 2009-03, p. 13-14)
      if (Kr_bytes<=64)
        iind = (Kr_bytes-5);
      else if (Kr_bytes <=128)
        iind = 59 + ((Kr_bytes-64)>>1);
      else if (Kr_bytes <= 256)
        iind = 91 + ((Kr_bytes-128)>>2);
      else if (Kr_bytes <= 768)
        iind = 123 + ((Kr_bytes-256)>>3);
      else {
        msg("dlsch_coding: Illegal codeword size %d!!!\n",Kr_bytes);
        return(-1);
      }


#ifdef DEBUG_DLSCH_CODING
      printf("Generating Code Segment %d (%d bits)\n",r,Kr);
      // generate codewords

      msg("bits_per_codeword (Kr)= %d, A %d\n",Kr,A);
      msg("N_RB = %d\n",nb_rb);
      msg("Ncp %d\n",frame_parms->Ncp);
      msg("mod_order %d\n",mod_order);
#endif


#ifdef DEBUG_DLSCH_CODING
      msg("Encoding ... iind %d f1 %d, f2 %d\n",iind,f1f2mat_old[iind*2],f1f2mat_old[(iind*2)+1]);
#endif
      start_meas(te_stats);
      threegpplte_turbo_encoder(dlsch->harq_processes[harq_pid]->c[r],
                                Kr>>3,
                                &dlsch->harq_processes[harq_pid]->d[r][96],
                                (r==0) ? dlsch->harq_processes[harq_pid]->F : 0,
                                f1f2mat_old[iind*2],   // f1 (see 36121-820, page 14)
                                f1f2mat_old[(iind*2)+1]  // f2 (see 36121-820, page 14)
                               );
      stop_meas(te_stats);
#ifdef DEBUG_DLSCH_CODING

      if (r==0)
        write_output("enc_output0.m","enc0",&dlsch->harq_processes[harq_pid]->d[r][96],(3*8*Kr_bytes)+12,1,4);

#endif
      start_meas(i_stats);
      dlsch->harq_processes[harq_pid]->RTC[r] =
        sub_block_interleaving_turbo(4+(Kr_bytes*8),
                                     &dlsch->harq_processes[harq_pid]->d[r][96],
                                     dlsch->harq_processes[harq_pid]->w[r]);
      stop_meas(i_stats);
    }

  }

  // Fill in the "e"-sequence from 36-212, V8.6 2009-03, p. 16-17 (for each "e") and concatenate the
  // outputs for each code segment, see Section 5.1.5 p.20

  for (r=0; r<dlsch->harq_processes[harq_pid]->C; r++) {
#ifdef DEBUG_DLSCH_CODING
    msg("Rate Matching, Code segment %d (coded bits (G) %d,unpunctured/repeated bits per code segment %d,mod_order %d, nb_rb %d)...\n",
        r,
        G,
        Kr*3,
        mod_order,nb_rb);
#endif

    start_meas(rm_stats);
    r_offset += lte_rate_matching_turbo(dlsch->harq_processes[harq_pid]->RTC[r],
                                        G,  //G
                                        dlsch->harq_processes[harq_pid]->w[r],
                                        dlsch->harq_processes[harq_pid]->e+r_offset, // sequence of bits for transmission
                                        dlsch->harq_processes[harq_pid]->C, // C
                                        dlsch->Nsoft,                    // Nsoft,
                                        dlsch->Mdlharq,
                                        dlsch->Kmimo,
                                        dlsch->harq_processes[harq_pid]->rvidx,
                                        get_Qm(dlsch->harq_processes[harq_pid]->mcs),
                                        dlsch->harq_processes[harq_pid]->Nl,
                                        r,
                                        nb_rb,
                                        m);                       // r
    stop_meas(rm_stats);
#ifdef DEBUG_DLSCH_CODING

    if (r==dlsch->harq_processes[harq_pid]->C-1)
      write_output("enc_output.m","enc",dlsch->harq_processes[harq_pid]->e,r_offset,1,4);

#endif
  }

  VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_ENB_DLSCH_ENCODING, VCD_FUNCTION_OUT);

  return(0);
}

#ifdef PHY_ABSTRACTION
void dlsch_encoding_emul(PHY_VARS_eNB *phy_vars_eNB,
                         uint8_t *DLSCH_pdu,
                         LTE_eNB_DLSCH_t *dlsch)
{

  //int payload_offset = 0;
  unsigned char harq_pid = dlsch->current_harq_pid;
  unsigned short i;

  //  if (dlsch->harq_processes[harq_pid]->Ndi == 1) {
  if (dlsch->harq_processes[harq_pid]->round == 0) {
    memcpy(dlsch->harq_processes[harq_pid]->b,
           DLSCH_pdu,
           dlsch->harq_processes[harq_pid]->TBS>>3);
    LOG_D(PHY, "eNB %d dlsch_encoding_emul, tbs is %d harq pid %d \n",
          phy_vars_eNB->Mod_id,
          dlsch->harq_processes[harq_pid]->TBS>>3,
          harq_pid);

    for (i=0; i<dlsch->harq_processes[harq_pid]->TBS>>3; i++)
      LOG_T(PHY,"%x.",DLSCH_pdu[i]);

    LOG_T(PHY,"\n");

    memcpy(&eNB_transport_info[phy_vars_eNB->Mod_id][phy_vars_eNB->CC_id].transport_blocks[eNB_transport_info_TB_index[phy_vars_eNB->Mod_id][phy_vars_eNB->CC_id]],
           //     memcpy(&eNB_transport_info[phy_vars_eNB->Mod_id].transport_blocks[payload_offset],
           DLSCH_pdu,
           dlsch->harq_processes[harq_pid]->TBS>>3);
  }

  eNB_transport_info_TB_index[phy_vars_eNB->Mod_id][phy_vars_eNB->CC_id]+=dlsch->harq_processes[harq_pid]->TBS>>3;
  //payload_offset +=dlsch->harq_processes[harq_pid]->TBS>>3;

}
#endif