/* * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The OpenAirInterface Software Alliance licenses this file to You under * the OAI Public License, Version 1.0 (the "License"); you may not use this file * except in compliance with the License. * You may obtain a copy of the License at * * http://www.openairinterface.org/?page_id=698 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *------------------------------------------------------------------------------- * For more information about the OpenAirInterface (OAI) Software Alliance: * contact@openairinterface.org */ #ifdef USER_MODE #include <string.h> #endif //#include "defs.h" //#include "SCHED/defs.h" #include "PHY/defs_nr_UE.h" #include "filt16a_32.h" #include "T.h" //#define DEBUG_CH int nr_pbch_channel_estimation(PHY_VARS_NR_UE *ue, uint8_t eNB_id, uint8_t eNB_offset, unsigned char Ns, unsigned char p, unsigned char l, unsigned char symbol) { int pilot[2][200] __attribute__((aligned(16))); unsigned char aarx; unsigned short k; unsigned int pilot_cnt; int16_t ch[2],*pil,*rxF,*dl_ch,*fl,*fm,*fr; int ch_offset,symbol_offset; //uint16_t Nid_cell = (eNB_offset == 0) ? ue->frame_parms.Nid_cell : ue->measurements.adj_cell_id[eNB_offset-1]; uint8_t nushift, ssb_index=0, n_hf=0; int **dl_ch_estimates =ue->common_vars.common_vars_rx_data_per_thread[ue->current_thread_id[Ns>>1]].dl_ch_estimates[eNB_offset]; int **rxdataF=ue->common_vars.common_vars_rx_data_per_thread[ue->current_thread_id[Ns>>1]].rxdataF; nushift = ue->frame_parms.Nid_cell%4; ue->frame_parms.nushift = nushift; if (ue->high_speed_flag == 0) // use second channel estimate position for temporary storage ch_offset = ue->frame_parms.ofdm_symbol_size ; else ch_offset = ue->frame_parms.ofdm_symbol_size*symbol; symbol_offset = ue->frame_parms.ofdm_symbol_size*symbol; k = nushift; #ifdef DEBUG_CH printf("PBCH Channel Estimation : ThreadId %d, eNB_offset %d cell_id %d ch_offset %d, OFDM size %d, Ncp=%d, l=%d, Ns=%d, k=%d symbol %d\n",ue->current_thread_id[Ns>>1], eNB_offset,Nid_cell,ch_offset,ue->frame_parms.ofdm_symbol_size, ue->frame_parms.Ncp,l,Ns,k, symbol); #endif switch (k) { case 0: fl = filt16a_l0; fm = filt16a_m0; fr = filt16a_r0; break; case 1: fl = filt16a_l1; fm = filt16a_m1; fr = filt16a_r1; break; case 2: fl = filt16a_l2; fm = filt16a_m2; fr = filt16a_r2; break; case 3: fl = filt16a_l3; fm = filt16a_m3; fr = filt16a_r3; break; default: msg("pbch_channel_estimation: k=%d -> ERROR\n",k); return(-1); break; } // generate pilot nr_pbch_dmrs_rx(ue->nr_gold_pbch[n_hf][ssb_index], &pilot[p][0]); for (aarx=0; aarx<ue->frame_parms.nb_antennas_rx; aarx++) { pil = (int16_t *)&pilot[p][0]; rxF = (int16_t *)&rxdataF[aarx][(symbol_offset+k+(ue->frame_parms.ofdm_symbol_size-10*12))]; dl_ch = (int16_t *)&dl_ch_estimates[(p<<1)+aarx][ch_offset]; memset(dl_ch,0,4*(ue->frame_parms.ofdm_symbol_size)); if (ue->high_speed_flag==0) // multiply previous channel estimate by ch_est_alpha multadd_complex_vector_real_scalar(dl_ch-(ue->frame_parms.ofdm_symbol_size<<1), ue->ch_est_alpha,dl_ch-(ue->frame_parms.ofdm_symbol_size<<1), 1,ue->frame_parms.ofdm_symbol_size); #ifdef DEBUG_CH printf("ch est pilot addr %p RB_DL %d\n",&pilot[p][0], ue->frame_parms.N_RB_DL); printf("k %d, first_carrier %d\n",k,ue->frame_parms.first_carrier_offset); printf("rxF addr %p\n", rxF); printf("dl_ch addr %p\n",dl_ch); #endif if ((ue->frame_parms.N_RB_DL&1)==0) { // Treat first 2 pilots specially (left edge) ch[0] = (int16_t)(((int32_t)pil[0]*rxF[0] - (int32_t)pil[1]*rxF[1])>>15); ch[1] = (int16_t)(((int32_t)pil[0]*rxF[1] + (int32_t)pil[1]*rxF[0])>>15); #ifdef DEBUG_CH printf("ch 0 %d\n",((int32_t)pil[0]*rxF[0] - (int32_t)pil[1]*rxF[1])); printf("pilot 0 : rxF - > (%d,%d) addr %p ch -> (%d,%d), pil -> (%d,%d) \n",rxF[0],rxF[1],&rxF[0],ch[0],ch[1],pil[0],pil[1]); #endif multadd_real_vector_complex_scalar(fl, ch, dl_ch, 16); pil+=2; rxF+=8; //for (int i= 0; i<8; i++) //printf("dl_ch addr %p %d\n", dl_ch+i, *(dl_ch+i)); ch[0] = (int16_t)(((int32_t)pil[0]*rxF[0] - (int32_t)pil[1]*rxF[1])>>15); ch[1] = (int16_t)(((int32_t)pil[0]*rxF[1] + (int32_t)pil[1]*rxF[0])>>15); #ifdef DEBUG_CH printf("pilot 1 : rxF - > (%d,%d) ch -> (%d,%d), pil -> (%d,%d) \n",rxF[0],rxF[1],ch[0],ch[1],pil[0],pil[1]); #endif multadd_real_vector_complex_scalar(fm, ch, dl_ch, 16); pil+=2; rxF+=8; ch[0] = (int16_t)(((int32_t)pil[0]*rxF[0] - (int32_t)pil[1]*rxF[1])>>15); ch[1] = (int16_t)(((int32_t)pil[0]*rxF[1] + (int32_t)pil[1]*rxF[0])>>15); #ifdef DEBUG_CH printf("pilot 2 : rxF - > (%d,%d) ch -> (%d,%d), pil -> (%d,%d) \n",rxF[0],rxF[1],ch[0],ch[1],pil[0],pil[1]); #endif multadd_real_vector_complex_scalar(fr, ch, dl_ch, 16); pil+=2; rxF+=8; dl_ch+=24; for (pilot_cnt=3; pilot_cnt<(3*20); pilot_cnt+=3) { if (pilot_cnt == 30) rxF = (int16_t *)&rxdataF[aarx][(symbol_offset+k)]; ch[0] = (int16_t)(((int32_t)pil[0]*rxF[0] - (int32_t)pil[1]*rxF[1])>>15); ch[1] = (int16_t)(((int32_t)pil[0]*rxF[1] + (int32_t)pil[1]*rxF[0])>>15); #ifdef DEBUG_CH printf("pilot %d : rxF - > (%d,%d) ch -> (%d,%d), pil -> (%d,%d) \n",pilot_cnt,rxF[0],rxF[1],ch[0],ch[1],pil[0],pil[1]); #endif multadd_real_vector_complex_scalar(fl, ch, dl_ch, 16); //for (int i= 0; i<8; i++) // printf("pilot_cnt %d dl_ch %d %d\n", pilot_cnt, dl_ch+i, *(dl_ch+i)); pil+=2; rxF+=8; ch[0] = (int16_t)(((int32_t)pil[0]*rxF[0] - (int32_t)pil[1]*rxF[1])>>15); ch[1] = (int16_t)(((int32_t)pil[0]*rxF[1] + (int32_t)pil[1]*rxF[0])>>15); #ifdef DEBUG_CH printf("pilot %d : rxF - > (%d,%d) ch -> (%d,%d), pil -> (%d,%d) \n",pilot_cnt+1,rxF[0],rxF[1],ch[0],ch[1],pil[0],pil[1]); #endif multadd_real_vector_complex_scalar(fm, ch, dl_ch, 16); pil+=2; rxF+=8; ch[0] = (int16_t)(((int32_t)pil[0]*rxF[0] - (int32_t)pil[1]*rxF[1])>>15); ch[1] = (int16_t)(((int32_t)pil[0]*rxF[1] + (int32_t)pil[1]*rxF[0])>>15); #ifdef DEBUG_CH printf("pilot 1 : rxF - > (%d,%d) ch -> (%d,%d), pil -> (%d,%d) \n",rxF[0],rxF[1],ch[0],ch[1],pil[0],pil[1]); #endif multadd_real_vector_complex_scalar(fr, ch, dl_ch, 16); pil+=2; rxF+=8; dl_ch+=24; } } } return(0); } int nr_pdcch_channel_estimation(PHY_VARS_NR_UE *ue, uint8_t eNB_id, uint8_t eNB_offset, unsigned char Ns, unsigned char p, unsigned char l, unsigned char symbol, unsigned short coreset_start_subcarrier, unsigned short nb_rb_coreset) { int pilot[2][200] __attribute__((aligned(16))); unsigned char aarx; unsigned short k; unsigned int pilot_cnt; int16_t ch[2],*pil,*rxF,*dl_ch,*fl,*fm,*fr; int ch_offset,symbol_offset; //uint16_t Nid_cell = (eNB_offset == 0) ? ue->frame_parms.Nid_cell : ue->measurements.adj_cell_id[eNB_offset-1]; uint8_t nushift; int **dl_ch_estimates =ue->common_vars.common_vars_rx_data_per_thread[ue->current_thread_id[Ns>>1]].dl_ch_estimates[eNB_offset]; int **rxdataF=ue->common_vars.common_vars_rx_data_per_thread[ue->current_thread_id[Ns>>1]].rxdataF; nushift = 1; ue->frame_parms.nushift = nushift; if (ue->high_speed_flag == 0) // use second channel estimate position for temporary storage ch_offset = ue->frame_parms.ofdm_symbol_size ; else ch_offset = ue->frame_parms.ofdm_symbol_size*symbol; symbol_offset = ue->frame_parms.ofdm_symbol_size*symbol; k = coreset_start_subcarrier; #ifdef DEBUG_CH printf("PBCH Channel Estimation : ThreadId %d, eNB_offset %d cell_id %d ch_offset %d, OFDM size %d, Ncp=%d, l=%d, Ns=%d, k=%d symbol %d\n",ue->current_thread_id[Ns>>1], eNB_offset,Nid_cell,ch_offset,ue->frame_parms.ofdm_symbol_size, ue->frame_parms.Ncp,l,Ns,k, symbol); #endif fl = filt16a_l1; fm = filt16a_m1; fr = filt16a_r1; // generate pilot nr_pdcch_dmrs_rx(ue,eNB_offset,Ns,ue->nr_gold_pdcch[eNB_offset][Ns][symbol], &pilot[p][0],2000,symbol, nb_rb_coreset); for (aarx=0; aarx<ue->frame_parms.nb_antennas_rx; aarx++) { pil = (int16_t *)&pilot[p][0]; rxF = (int16_t *)&rxdataF[aarx][(symbol_offset+k+nushift)]; dl_ch = (int16_t *)&dl_ch_estimates[(p<<1)+aarx][ch_offset]; memset(dl_ch,0,4*(ue->frame_parms.ofdm_symbol_size)); if (ue->high_speed_flag==0) // multiply previous channel estimate by ch_est_alpha multadd_complex_vector_real_scalar(dl_ch-(ue->frame_parms.ofdm_symbol_size<<1), ue->ch_est_alpha,dl_ch-(ue->frame_parms.ofdm_symbol_size<<1), 1,ue->frame_parms.ofdm_symbol_size); #ifdef DEBUG_CH printf("ch est pilot addr %p RB_DL %d\n",&pilot[p][0], ue->frame_parms.N_RB_DL); printf("k %d, first_carrier %d\n",k,ue->frame_parms.first_carrier_offset); printf("rxF addr %p\n", rxF); printf("dl_ch addr %p\n",dl_ch); #endif if ((ue->frame_parms.N_RB_DL&1)==0) { // Treat first 2 pilots specially (left edge) ch[0] = (int16_t)(((int32_t)pil[0]*rxF[0] - (int32_t)pil[1]*rxF[1])>>15); ch[1] = (int16_t)(((int32_t)pil[0]*rxF[1] + (int32_t)pil[1]*rxF[0])>>15); #ifdef DEBUG_CH printf("ch 0 %d\n",((int32_t)pil[0]*rxF[0] - (int32_t)pil[1]*rxF[1])); printf("pilot 0 : rxF - > (%d,%d) addr %p ch -> (%d,%d), pil -> (%d,%d) \n",rxF[0],rxF[1],&rxF[0],ch[0],ch[1],pil[0],pil[1]); #endif multadd_real_vector_complex_scalar(fl, ch, dl_ch, 16); pil+=2; rxF+=8; //for (int i= 0; i<8; i++) //printf("dl_ch addr %p %d\n", dl_ch+i, *(dl_ch+i)); ch[0] = (int16_t)(((int32_t)pil[0]*rxF[0] - (int32_t)pil[1]*rxF[1])>>15); ch[1] = (int16_t)(((int32_t)pil[0]*rxF[1] + (int32_t)pil[1]*rxF[0])>>15); #ifdef DEBUG_CH printf("pilot 1 : rxF - > (%d,%d) ch -> (%d,%d), pil -> (%d,%d) \n",rxF[0],rxF[1],ch[0],ch[1],pil[0],pil[1]); #endif multadd_real_vector_complex_scalar(fm, ch, dl_ch, 16); pil+=2; rxF+=8; ch[0] = (int16_t)(((int32_t)pil[0]*rxF[0] - (int32_t)pil[1]*rxF[1])>>15); ch[1] = (int16_t)(((int32_t)pil[0]*rxF[1] + (int32_t)pil[1]*rxF[0])>>15); #ifdef DEBUG_CH printf("pilot 2 : rxF - > (%d,%d) ch -> (%d,%d), pil -> (%d,%d) \n",rxF[0],rxF[1],ch[0],ch[1],pil[0],pil[1]); #endif multadd_real_vector_complex_scalar(fr, ch, dl_ch, 16); pil+=2; rxF+=8; dl_ch+=24; k+=12; for (pilot_cnt=3; pilot_cnt<(3*nb_rb_coreset); pilot_cnt+=3) { if (k >= ue->frame_parms.ofdm_symbol_size){ k-=ue->frame_parms.ofdm_symbol_size; rxF = (int16_t *)&rxdataF[aarx][(symbol_offset+k+nushift)];} ch[0] = (int16_t)(((int32_t)pil[0]*rxF[0] - (int32_t)pil[1]*rxF[1])>>15); ch[1] = (int16_t)(((int32_t)pil[0]*rxF[1] + (int32_t)pil[1]*rxF[0])>>15); #ifdef DEBUG_CH printf("pilot %d : rxF - > (%d,%d) ch -> (%d,%d), pil -> (%d,%d) \n",pilot_cnt,rxF[0],rxF[1],ch[0],ch[1],pil[0],pil[1]); #endif multadd_real_vector_complex_scalar(fl, ch, dl_ch, 16); //for (int i= 0; i<8; i++) // printf("pilot_cnt %d dl_ch %d %d\n", pilot_cnt, dl_ch+i, *(dl_ch+i)); pil+=2; rxF+=8; ch[0] = (int16_t)(((int32_t)pil[0]*rxF[0] - (int32_t)pil[1]*rxF[1])>>15); ch[1] = (int16_t)(((int32_t)pil[0]*rxF[1] + (int32_t)pil[1]*rxF[0])>>15); #ifdef DEBUG_CH printf("pilot %d : rxF - > (%d,%d) ch -> (%d,%d), pil -> (%d,%d) \n",pilot_cnt+1,rxF[0],rxF[1],ch[0],ch[1],pil[0],pil[1]); #endif multadd_real_vector_complex_scalar(fm, ch, dl_ch, 16); pil+=2; rxF+=8; ch[0] = (int16_t)(((int32_t)pil[0]*rxF[0] - (int32_t)pil[1]*rxF[1])>>15); ch[1] = (int16_t)(((int32_t)pil[0]*rxF[1] + (int32_t)pil[1]*rxF[0])>>15); #ifdef DEBUG_CH printf("pilot 1 : rxF - > (%d,%d) ch -> (%d,%d), pil -> (%d,%d) \n",rxF[0],rxF[1],ch[0],ch[1],pil[0],pil[1]); #endif multadd_real_vector_complex_scalar(fr, ch, dl_ch, 16); pil+=2; rxF+=8; dl_ch+=24; k+=12; } } } return(0); } int nr_pdsch_channel_estimation(PHY_VARS_NR_UE *ue, uint8_t eNB_id, uint8_t eNB_offset, unsigned char Ns, unsigned char p, unsigned char l, unsigned char symbol, unsigned short bwp_start_subcarrier, unsigned short nb_rb_pdsch) { int pilot[2][200] __attribute__((aligned(16))); unsigned char aarx; unsigned short k; unsigned int pilot_cnt; int16_t ch[2],*pil,*rxF,*dl_ch,*fl,*fm,*fr,*fml,*fmr; int ch_offset,symbol_offset; //uint16_t Nid_cell = (eNB_offset == 0) ? ue->frame_parms.Nid_cell : ue->measurements.adj_cell_id[eNB_offset-1]; uint8_t nushift; int **dl_ch_estimates =ue->common_vars.common_vars_rx_data_per_thread[ue->current_thread_id[Ns>>1]].dl_ch_estimates[eNB_offset]; int **rxdataF=ue->common_vars.common_vars_rx_data_per_thread[ue->current_thread_id[Ns>>1]].rxdataF; nushift = (p>>1)&1; ue->frame_parms.nushift = nushift; if (ue->high_speed_flag == 0) // use second channel estimate position for temporary storage ch_offset = ue->frame_parms.ofdm_symbol_size ; else ch_offset = ue->frame_parms.ofdm_symbol_size*symbol; symbol_offset = ue->frame_parms.ofdm_symbol_size*symbol; k = bwp_start_subcarrier; #ifdef DEBUG_CH printf("PBCH Channel Estimation : ThreadId %d, eNB_offset %d cell_id %d ch_offset %d, OFDM size %d, Ncp=%d, l=%d, Ns=%d, k=%d symbol %d\n",ue->current_thread_id[Ns>>1], eNB_offset,Nid_cell,ch_offset,ue->frame_parms.ofdm_symbol_size, ue->frame_parms.Ncp,l,Ns,k, symbol); #endif switch (nushift) { case 0: fl = filt8_l0; fm = filt8_m0; fr = filt8_r0; fml = filt8_m0; fmr = filt8_mr0; break; case 1: fl = filt8_l1; fm = filt8_m1; fr = filt8_r1; fml = filt8_ml1; fmr = filt8_m1; break; default: msg("pdsch_channel_estimation: nushift=%d -> ERROR\n",nushift); return(-1); break; } // generate pilot nr_pdsch_dmrs_rx(ue,eNB_offset,Ns,ue->nr_gold_pdsch[eNB_offset][Ns][symbol], &pilot[p][0],1000,1,nb_rb_pdsch); for (aarx=0; aarx<ue->frame_parms.nb_antennas_rx; aarx++) { pil = (int16_t *)&pilot[p][0]; rxF = (int16_t *)&rxdataF[aarx][(symbol_offset+k+nushift)]; dl_ch = (int16_t *)&dl_ch_estimates[(p<<1)+aarx][ch_offset]; memset(dl_ch,0,4*(ue->frame_parms.ofdm_symbol_size)); if (ue->high_speed_flag==0) // multiply previous channel estimate by ch_est_alpha multadd_complex_vector_real_scalar(dl_ch-(ue->frame_parms.ofdm_symbol_size<<1), ue->ch_est_alpha,dl_ch-(ue->frame_parms.ofdm_symbol_size<<1), 1,ue->frame_parms.ofdm_symbol_size); #ifdef DEBUG_CH printf("ch est pilot addr %p RB_DL %d\n",&pilot[p][0], ue->frame_parms.N_RB_DL); printf("k %d, first_carrier %d\n",k,ue->frame_parms.first_carrier_offset); printf("rxF addr %p\n", rxF); printf("dl_ch addr %p\n",dl_ch); #endif if ((ue->frame_parms.N_RB_DL&1)==0) { // Treat first 2 pilots specially (left edge) ch[0] = (int16_t)(((int32_t)pil[0]*rxF[0] - (int32_t)pil[1]*rxF[1])>>15); ch[1] = (int16_t)(((int32_t)pil[0]*rxF[1] + (int32_t)pil[1]*rxF[0])>>15); #ifdef DEBUG_CH printf("ch 0 %d\n",((int32_t)pil[0]*rxF[0] - (int32_t)pil[1]*rxF[1])); printf("pilot 0 : rxF - > (%d,%d) addr %p ch -> (%d,%d), pil -> (%d,%d) \n",rxF[0],rxF[1],&rxF[0],ch[0],ch[1],pil[0],pil[1]); #endif multadd_real_vector_complex_scalar(fl, ch, dl_ch, 8); pil+=2; rxF+=4; //for (int i= 0; i<8; i++) //printf("dl_ch addr %p %d\n", dl_ch+i, *(dl_ch+i)); ch[0] = (int16_t)(((int32_t)pil[0]*rxF[0] - (int32_t)pil[1]*rxF[1])>>15); ch[1] = (int16_t)(((int32_t)pil[0]*rxF[1] + (int32_t)pil[1]*rxF[0])>>15); #ifdef DEBUG_CH printf("pilot 1 : rxF - > (%d,%d) ch -> (%d,%d), pil -> (%d,%d) \n",rxF[0],rxF[1],ch[0],ch[1],pil[0],pil[1]); #endif multadd_real_vector_complex_scalar(fml, ch, dl_ch, 8); pil+=2; rxF+=4; dl_ch+=4; k+=4; for (pilot_cnt=2; pilot_cnt<(6*(nb_rb_pdsch-1)+4); pilot_cnt+=2) { if ((pilot_cnt%6)==0) dl_ch+=4; if (k >= ue->frame_parms.ofdm_symbol_size){ k-=ue->frame_parms.ofdm_symbol_size; rxF = (int16_t *)&rxdataF[aarx][(symbol_offset+k+nushift)];} ch[0] = (int16_t)(((int32_t)pil[0]*rxF[0] - (int32_t)pil[1]*rxF[1])>>15); ch[1] = (int16_t)(((int32_t)pil[0]*rxF[1] + (int32_t)pil[1]*rxF[0])>>15); #ifdef DEBUG_CH printf("pilot %d : rxF - > (%d,%d) ch -> (%d,%d), pil -> (%d,%d) \n",pilot_cnt,rxF[0],rxF[1],ch[0],ch[1],pil[0],pil[1]); #endif multadd_real_vector_complex_scalar(fm, ch, dl_ch, 8); pil+=2; rxF+=4; dl_ch+=4; ch[0] = (int16_t)(((int32_t)pil[0]*rxF[0] - (int32_t)pil[1]*rxF[1])>>15); ch[1] = (int16_t)(((int32_t)pil[0]*rxF[1] + (int32_t)pil[1]*rxF[0])>>15); #ifdef DEBUG_CH printf("pilot %d : rxF - > (%d,%d) ch -> (%d,%d), pil -> (%d,%d) \n",pilot_cnt+1,rxF[0],rxF[1],ch[0],ch[1],pil[0],pil[1]); #endif multadd_real_vector_complex_scalar(fm, ch, dl_ch, 8); pil+=2; rxF+=4; dl_ch+=4; k+=4; } // Treat first 2 pilots specially (right edge) ch[0] = (int16_t)(((int32_t)pil[0]*rxF[0] - (int32_t)pil[1]*rxF[1])>>15); ch[1] = (int16_t)(((int32_t)pil[0]*rxF[1] + (int32_t)pil[1]*rxF[0])>>15); #ifdef DEBUG_CH printf("ch 0 %d\n",((int32_t)pil[0]*rxF[0] - (int32_t)pil[1]*rxF[1])); printf("pilot 0 : rxF - > (%d,%d) addr %p ch -> (%d,%d), pil -> (%d,%d) \n",rxF[0],rxF[1],&rxF[0],ch[0],ch[1],pil[0],pil[1]); #endif multadd_real_vector_complex_scalar(fmr, ch, dl_ch, 8); pil+=2; rxF+=4; //for (int i= 0; i<8; i++) //printf("dl_ch addr %p %d\n", dl_ch+i, *(dl_ch+i)); ch[0] = (int16_t)(((int32_t)pil[0]*rxF[0] - (int32_t)pil[1]*rxF[1])>>15); ch[1] = (int16_t)(((int32_t)pil[0]*rxF[1] + (int32_t)pil[1]*rxF[0])>>15); #ifdef DEBUG_CH printf("pilot 1 : rxF - > (%d,%d) ch -> (%d,%d), pil -> (%d,%d) \n",rxF[0],rxF[1],ch[0],ch[1],pil[0],pil[1]); #endif multadd_real_vector_complex_scalar(fr, ch, dl_ch, 8); pil+=2; rxF+=4; dl_ch+=4; k+=4; } } return(0); }