/******************************************************************************* Eurecom OpenAirInterface 2 Copyright(c) 1999 - 2010 Eurecom This program is free software; you can redistribute it and/or modify it under the terms and conditions of the GNU General Public License, version 2, as published by the Free Software Foundation. This program is distributed in the hope it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. The full GNU General Public License is included in this distribution in the file called "COPYING". Contact Information Openair Admin: openair_admin@eurecom.fr Openair Tech : openair_tech@eurecom.fr Forums : http://forums.eurecom.fsr/openairinterface Address : Eurecom, 2229, route des crĂȘtes, 06560 Valbonne Sophia Antipolis, France *******************************************************************************/ /*! \file rrc_common.c * \brief rrc common procedures for eNB and UE * \author Raymond Knopp and Navid Nikaein * \date 2011 * \version 1.0 * \company Eurecom * \email: raymond.knopp@eurecom.fr and navid.nikaein@eurecom.fr */ #include "defs.h" #include "extern.h" #include "LAYER2/MAC/extern.h" #include "COMMON/openair_defs.h" #include "COMMON/platform_types.h" #include "RRC/L2_INTERFACE/openair_rrc_L2_interface.h" #include "LAYER2/RLC/rlc.h" #include "COMMON/mac_rrc_primitives.h" #include "UTIL/LOG/log.h" #include "asn1_msg.h" #include "pdcp.h" #define DEBUG_RRC 1 extern eNB_MAC_INST *eNB_mac_inst; extern UE_MAC_INST *UE_mac_inst; extern mui_t rrc_eNB_mui; //configure BCCH & CCCH Logical Channels and associated rrc_buffers, configure associated SRBs void openair_rrc_on(module_id_t Mod_id, const eNB_flag_t eNB_flag) { unsigned short i; if (eNB_flag == 1) { LOG_I(RRC, "[eNB %d] OPENAIR RRC IN....\n", Mod_id); rrc_config_buffer (&eNB_rrc_inst[Mod_id].SI, BCCH, 1); eNB_rrc_inst[Mod_id].SI.Active = 1; rrc_config_buffer (&eNB_rrc_inst[Mod_id].Srb0, CCCH, 1); eNB_rrc_inst[Mod_id].Srb0.Active = 1; } else { LOG_I(RRC, "[UE %d] OPENAIR RRC IN....\n", Mod_id); for (i = 0; i < NB_eNB_INST; i++) { LOG_D(RRC, "[RRC][UE %d] Activating CCCH (eNB %d)\n", Mod_id, i); UE_rrc_inst[Mod_id].Srb0[i].Srb_id = CCCH; memcpy (&UE_rrc_inst[Mod_id].Srb0[i].Lchan_desc[0], &CCCH_LCHAN_DESC, LCHAN_DESC_SIZE); memcpy (&UE_rrc_inst[Mod_id].Srb0[i].Lchan_desc[1], &CCCH_LCHAN_DESC, LCHAN_DESC_SIZE); rrc_config_buffer (&UE_rrc_inst[Mod_id].Srb0[i], CCCH, 1); UE_rrc_inst[Mod_id].Srb0[i].Active = 1; } } } int rrc_init_global_param(void) { //#ifdef USER_MODE // Rrc_xface = (RRC_XFACE*)malloc16(sizeof(RRC_XFACE)); //#endif //USRE_MODE // Rrc_xface->openair_rrc_top_init = openair_rrc_top_init; // Rrc_xface->openair_rrc_eNB_init = openair_rrc_eNB_init; // Rrc_xface->openair_rrc_UE_init = openair_rrc_ue_init; // Rrc_xface->mac_rrc_data_ind = mac_rrc_data_ind; //Rrc_xface->mac_rrc_data_req = mac_rrc_data_req; // Rrc_xface->rrc_data_indP = (void *)rlcrrc_data_ind; // Rrc_xface->rrc_rx_tx = rrc_rx_tx; // Rrc_xface->mac_rrc_meas_ind = mac_rrc_meas_ind; // Rrc_xface->get_rrc_status = get_rrc_status; //Rrc_xface->rrc_get_status = ... // Mac_rlc_xface->mac_out_of_sync_ind=mac_out_of_sync_ind; #ifndef NO_RRM // Rrc_xface->fn_rrc=fn_rrc; #endif // LOG_D(RRC, "[RRC]INIT_GLOBAL_PARAM: Mac_rlc_xface %p, rrc_rlc_register %p,rlcrrc_data_ind%p\n",Mac_rlc_xface,Mac_rlc_xface->rrc_rlc_register_rrc,rlcrrc_data_ind); /* if((Mac_rlc_xface==NULL) || (Mac_rlc_xface->rrc_rlc_register_rrc==NULL) || (rlcrrc_data_ind==NULL)) { LOG_E(RRC,"Data structured is not initialized \n"); return -1; } */ rrc_rlc_register_rrc (rlcrrc_data_ind, NULL); //register with rlc DCCH_LCHAN_DESC.transport_block_size = 4; DCCH_LCHAN_DESC.max_transport_blocks = 16; DCCH_LCHAN_DESC.Delay_class = 1; DTCH_DL_LCHAN_DESC.transport_block_size = 52; DTCH_DL_LCHAN_DESC.max_transport_blocks = 20; DTCH_DL_LCHAN_DESC.Delay_class = 1; DTCH_UL_LCHAN_DESC.transport_block_size = 52; DTCH_UL_LCHAN_DESC.max_transport_blocks = 20; DTCH_UL_LCHAN_DESC.Delay_class = 1; Rlc_info_um.rlc_mode = RLC_MODE_UM; Rlc_info_um.rlc.rlc_um_info.timer_reordering = 5; Rlc_info_um.rlc.rlc_um_info.sn_field_length = 10; Rlc_info_um.rlc.rlc_um_info.is_mXch = 0; //Rlc_info_um.rlc.rlc_um_info.sdu_discard_mode=16; Rlc_info_am_config.rlc_mode = RLC_MODE_AM; Rlc_info_am_config.rlc.rlc_am_info.max_retx_threshold = 50; Rlc_info_am_config.rlc.rlc_am_info.poll_pdu = 8; Rlc_info_am_config.rlc.rlc_am_info.poll_byte = 1000; Rlc_info_am_config.rlc.rlc_am_info.t_poll_retransmit = 15; Rlc_info_am_config.rlc.rlc_am_info.t_reordering = 50; Rlc_info_am_config.rlc.rlc_am_info.t_status_prohibit = 10; #ifndef NO_RRM if (L3_xface_init ()) return (-1); #endif return 0; } #ifndef NO_RRM /*------------------------------------------------------------------------------*/ int L3_xface_init(void) { /*------------------------------------------------------------------------------*/ int ret = 0; #ifdef USER_MODE int sock; LOG_D(RRC, "[L3_XFACE] init de l'interface \n"); if (open_socket (&S_rrc, RRC_RRM_SOCK_PATH, RRM_RRC_SOCK_PATH, 0) == -1) return (-1); if (S_rrc.s == -1) { return (-1); } socket_setnonblocking (S_rrc.s); msg ("Interface Connected... RRM-RRC\n"); return 0; #else ret=rtf_create(RRC2RRM_FIFO,32768); if (ret < 0) { msg("[openair][MAC][INIT] Cannot create RRC2RRM fifo %d (ERROR %d)\n",RRC2RRM_FIFO,ret); return(-1); } else { msg("[openair][MAC][INIT] Created RRC2RRM fifo %d\n",RRC2RRM_FIFO); rtf_reset(RRC2RRM_FIFO); } ret=rtf_create(RRM2RRC_FIFO,32768); if (ret < 0) { msg("[openair][MAC][INIT] Cannot create RRM2RRC fifo %d (ERROR %d)\n",RRM2RRC_FIFO,ret); return(-1); } else { msg("[openair][MAC][INIT] Created RRC2RRM fifo %d\n",RRM2RRC_FIFO); rtf_reset(RRM2RRC_FIFO); } return(0); #endif } #endif void rrc_config_buffer(SRB_INFO *Srb_info, uint8_t Lchan_type, uint8_t Role) { Srb_info->Rx_buffer.payload_size = 0; Srb_info->Tx_buffer.payload_size = 0; } /*------------------------------------------------------------------------------*/ void openair_rrc_top_init(int eMBMS_active, uint8_t cba_group_active,uint8_t HO_active){ /*-----------------------------------------------------------------------------*/ module_id_t module_id; OAI_UECapability_t *UECap = NULL; // uint8_t dummy_buffer[100]; LOG_D(RRC, "[OPENAIR][INIT] Init function start: NB_UE_INST=%d, NB_eNB_INST=%d\n", NB_UE_INST, NB_eNB_INST); if (NB_UE_INST > 0) { UE_rrc_inst = (UE_RRC_INST*) malloc16(NB_UE_INST*sizeof(UE_RRC_INST)); memset (UE_rrc_inst, 0, NB_UE_INST * sizeof(UE_RRC_INST)); LOG_D(RRC, "ALLOCATE %d Bytes for UE_RRC_INST @ %p\n", (unsigned int)(NB_UE_INST*sizeof(UE_RRC_INST)), UE_rrc_inst); // fill UE capability UECap = fill_ue_capability (); for (module_id = 0; module_id < NB_UE_INST; module_id++) { UE_rrc_inst[module_id].UECapability = UECap->sdu; UE_rrc_inst[module_id].UECapability_size = UECap->sdu_size; } /* do_UECapabilityEnquiry(0, dummy_buffer, 0, 0);*/ #ifdef Rel10 LOG_I(RRC,"[UE] eMBMS active state is %d \n", eMBMS_active); for (module_id=0;module_id 0) { eNB_rrc_inst = (eNB_RRC_INST*) malloc16(NB_eNB_INST*sizeof(eNB_RRC_INST)); memset (eNB_rrc_inst, 0, NB_eNB_INST * sizeof(eNB_RRC_INST)); LOG_I(RRC,"[eNB] handover active state is %d \n", HO_active); for (module_id=0;module_id 0) free (UE_rrc_inst); if (NB_eNB_INST > 0) free (eNB_rrc_inst); } void rrc_t310_expiration(const frame_t frameP, uint8_t Mod_id, uint8_t eNB_index) { if (UE_rrc_inst[Mod_id].Info[eNB_index].State != RRC_CONNECTED) { LOG_D(RRC, "Timer 310 expired, going to RRC_IDLE\n"); UE_rrc_inst[Mod_id].Info[eNB_index].State = RRC_IDLE; UE_rrc_inst[Mod_id].Info[eNB_index].UE_index = 0xffff; UE_rrc_inst[Mod_id].Srb0[eNB_index].Rx_buffer.payload_size = 0; UE_rrc_inst[Mod_id].Srb0[eNB_index].Tx_buffer.payload_size = 0; UE_rrc_inst[Mod_id].Srb1[eNB_index].Srb_info.Rx_buffer.payload_size = 0; UE_rrc_inst[Mod_id].Srb1[eNB_index].Srb_info.Tx_buffer.payload_size = 0; if (UE_rrc_inst[Mod_id].Srb2[eNB_index].Active == 1) { msg ("[RRC Inst %d] eNB_index %d, Remove RB %d\n ", Mod_id, eNB_index, UE_rrc_inst[Mod_id].Srb2[eNB_index].Srb_info.Srb_id); rrc_pdcp_config_req (eNB_index, Mod_id, frameP, ENB_FLAG_NO, SRB_FLAG_YES, CONFIG_ACTION_REMOVE, UE_rrc_inst[Mod_id].Srb2[eNB_index].Srb_info.Srb_id, 0); rrc_rlc_config_req (eNB_index, Mod_id, frameP, ENB_FLAG_NO, SRB_FLAG_YES, MBMS_FLAG_NO, CONFIG_ACTION_REMOVE, UE_rrc_inst[Mod_id].Srb2[eNB_index].Srb_info.Srb_id, Rlc_info_um); UE_rrc_inst[Mod_id].Srb2[eNB_index].Active = 0; UE_rrc_inst[Mod_id].Srb2[eNB_index].Status = IDLE; UE_rrc_inst[Mod_id].Srb2[eNB_index].Next_check_frame = 0; } } else { // Restablishment procedure LOG_D(RRC, "Timer 310 expired, trying RRCRestablishment ...\n"); } } RRC_status_t rrc_rx_tx(uint8_t Mod_id, const frame_t frameP, const eNB_flag_t eNB_flagP,uint8_t index){ if(eNB_flagP == 0) { // check timers if (UE_rrc_inst[Mod_id].Info[index].T300_active == 1) { if ((UE_rrc_inst[Mod_id].Info[index].T300_cnt % 10) == 0) LOG_D(RRC, "[UE %d][RAPROC] Frame %d T300 Count %d ms\n", Mod_id, frameP, UE_rrc_inst[Mod_id].Info[index].T300_cnt); if (UE_rrc_inst[Mod_id].Info[index].T300_cnt == T300[UE_rrc_inst[Mod_id].sib2[index]->ue_TimersAndConstants.t300]) { UE_rrc_inst[Mod_id].Info[index].T300_active = 0; // ALLOW CCCH to be used UE_rrc_inst[Mod_id].Srb0[index].Tx_buffer.payload_size = 0; rrc_ue_generate_RRCConnectionRequest (Mod_id, frameP, index); return (RRC_ConnSetup_failed); } UE_rrc_inst[Mod_id].Info[index].T300_cnt++; } if (UE_rrc_inst[Mod_id].sib2[index]) { if (UE_rrc_inst[Mod_id].Info[index].N310_cnt == N310[UE_rrc_inst[Mod_id].sib2[index]->ue_TimersAndConstants.n310]) { UE_rrc_inst[Mod_id].Info[index].T310_active = 1; } } else { // in case we have not received SIB2 yet if (UE_rrc_inst[Mod_id].Info[index].N310_cnt == 100) { UE_rrc_inst[Mod_id].Info[index].N310_cnt = 0; return RRC_PHY_RESYNCH; } } if (UE_rrc_inst[Mod_id].Info[index].T310_active == 1) { if (UE_rrc_inst[Mod_id].Info[index].N311_cnt == N311[UE_rrc_inst[Mod_id].sib2[index]->ue_TimersAndConstants.n311]) { UE_rrc_inst[Mod_id].Info[index].T310_active = 0; UE_rrc_inst[Mod_id].Info[index].N311_cnt = 0; } if ((UE_rrc_inst[Mod_id].Info[index].T310_cnt % 10) == 0) LOG_D(RRC, "[UE %d] Frame %d T310 Count %d ms\n", Mod_id, frameP, UE_rrc_inst[Mod_id].Info[index].T310_cnt); if (UE_rrc_inst[Mod_id].Info[index].T310_cnt == T310[UE_rrc_inst[Mod_id].sib2[index]->ue_TimersAndConstants.t310]) { UE_rrc_inst[Mod_id].Info[index].T310_active = 0; rrc_t310_expiration (frameP, Mod_id, index); return (RRC_PHY_RESYNCH); } UE_rrc_inst[Mod_id].Info[index].T310_cnt++; } if (UE_rrc_inst[Mod_id].Info[index].T304_active==1) { if ((UE_rrc_inst[Mod_id].Info[index].T304_cnt % 10) == 0) LOG_D(RRC,"[UE %d][RAPROC] Frame %d T304 Count %d ms\n",Mod_id,frameP, UE_rrc_inst[Mod_id].Info[index].T304_cnt); if (UE_rrc_inst[Mod_id].Info[index].T304_cnt == 0) { UE_rrc_inst[Mod_id].Info[index].T304_active = 0; UE_rrc_inst[Mod_id].HandoverInfoUe.measFlag = 1; LOG_E(RRC,"[UE %d] Handover failure..initiating connection re-establishment procedure... \n"); //Implement 36.331, section 5.3.5.6 here return(RRC_Handover_failed); } UE_rrc_inst[Mod_id].Info[index].T304_cnt--; } // Layer 3 filtering of RRC measurements if (UE_rrc_inst[Mod_id].QuantityConfig[0] != NULL) { ue_meas_filtering(Mod_id,frameP,index); } ue_measurement_report_triggering(Mod_id,frameP,index); if (UE_rrc_inst[Mod_id].Info[0].handoverTarget > 0) LOG_I(RRC,"[UE %d] Frame %d : RRC handover initiated\n", Mod_id, frameP); if((UE_rrc_inst[Mod_id].Info[index].State == RRC_HO_EXECUTION) && (UE_rrc_inst[Mod_id].HandoverInfoUe.targetCellId != 0xFF)) { UE_rrc_inst[Mod_id].Info[index].State= RRC_IDLE; return(RRC_HO_STARTED); } } else { check_handovers(Mod_id,frameP); } return (RRC_OK); } long binary_search_int(int elements[], long numElem, int value) { long first, last, middle, search = -1; first = 0; last = numElem-1; middle = (first+last)/2; if(value < elements[0]) return first; if(value > elements[last]) return last; while (first <= last) { if (elements[middle] < value) first = middle+1; else if (elements[middle] == value) { search = middle+1; break; } else last = middle -1; middle = (first+last)/2; } if (first > last) LOG_E(RRC,"Error in binary search!"); return search; } /* This is a binary search routine which operates on an array of floating point numbers and returns the index of the range the value lies in Used for RSRP and RSRQ measurement mapping. Can potentially be used for other things */ long binary_search_float(float elements[], long numElem, float value) { long first, last, middle; first = 0; last = numElem-1; middle = (first+last)/2; if(value <= elements[0]) return first; if(value >= elements[last]) return last; while (last - first > 1) { if (elements[middle] > value) last = middle; else first = middle; middle = (first+last)/2; } if (first < 0 || first >= numElem) LOG_E(RRC,"\n Error in binary search float!"); return first; }