Using the Open ASN.1 Compiler

Lev Walkin <vim@6ionet.info >

14th September 2004

Revision : 1.8 — describes asnl1c-0.9.5

4.3.2
4.3.3
4.3.4
4.3.5

CONTENTS

EncodingDER 24
Validating the target structure 25
Printing the target structure 25

Freeing the target structure 26

Part |

ASN.1 Basics

Chapter 1

Abstract Syntax Notation:
ASN.1

This chapter defines some basic ASN.1 concepts and describes several most widely used
types. It is by no means an authoritative or complete reference. For more complete
ASN.1 description, please refer to Olivier Dubuisson’s book [Dub00] or the ASN.1
body of standards itself [ITU-T/ASN.1].

The Abstract Syntax Notation One is used to formally describe the semantics of
data transmitted across the network. Two communicating parties may have different
formats of their native data types (i.e. number of bits in the integer type), thus it is
important to have a way to describe the data in a manner which is independent from
the particular machine’s representation. The ASN.1 specifications is used to achieve
one or more of the following:

CHAPTER 1. ABSTRACT SYNTAX NOTATION: ASN.1

1.1. SOME OF THE ASN.1 BASIC TYPES 9

1.1.3 The ENUMERATED type

The ENUMERATED type is semantically equivalent to the INTEGER type with some
integer values explicitly named.

Fruitld ::= ENUMERATED { apple(1), orange(2) }

-- The numbers in braces are optional,
-- the enumeration can be performed
-- automatically by the compiler
ComputerOSType ::= ENUMERATED ({

FreeBSD, -- will be 0
Windows, - will be 1
Solaris(5), -- will remain 5
Linux, -- will be 6
MacOS -- will be 7

1.1.4 The OCTET STRING type

This type models the sequence of 8-bit bytes. This may be used to transmit some
opaque data or data serialized by other types of encoders (i.e. video file, photo picture,
etc).

1.1.5 The OBJECT IDENTIFIER type

The OBJECT IDENTIFIER is used to represent the unique identifier of any object,

starting from the very root of the registration tree. If your organization needs to

uniquely identify something (a router, a room, a person, a standard, or whatever), you

are encouraged to get your own identification subtrdstpt//www.iana.org/

protocols/forms.htm .ComputerOlaquepernet.5(alues)-250(e)15(xplicrnet-iapple used)-36955 77(0.2aqu42 Td

10

CHAPTER 1. ABSTRACT SYNTAX NOTATION: ASN.1

12 CHAPTER 1. ABSTRACT SYNTAX NOTATION: ASN.1

-- an array of structures defined in place.
ManyCircles ::= SEQUENCE OF SEQUENCE {
radius INTEGER

}

1.3.5 The SET OF type

Part Il

Using the ASN.1 Compiler

13

Chapter 2

Introduction to the ASN.1
Compiler

The purpose of the ASN.1 compiler, of which this document is part, is to convert the

16

CHAPTER 2.

INTRODUCTION TO THE ASN.1 COMPILER

Chapter 3

18

CHAPTER 3. QUICK START

Chapter 4

Using the ASN.1 Compiler

4.1 Command-line options

20

4.3. INVOKING THE ASN.1 HELPER CODE FROM THE APPLICATION 21

4.3 Invoking the ASN.1 helper code from the applica-
tion

First of all, you should to include one or more header files into your application. For

our Rectangle module, including the Rectangle.h file is enough:

#include <Rectangle.h>

The header files defines the C structure corresponding to the ASN.1 definition of a rect-
angle and the declaration of the ASN.1 type descriptor, which is used as an argument
to most of the functions provided by the ASN.1 module. For example, here is the code

which frees the Rectangle_t structure:

Rectangle_t *rect = ..;

asnl DEF_Rectangle->free_struct(&asnl_DEF_ Rectangle,
rect, 0);

This code defines gect pointer which points to the Rectangle_t structure which needs
to be freed. The second line invokes the generic free_struct routine created specifically
for this Rectangle_t structure. Tlasnl DEF_Rectangis the type descriptor, which

22 CHAPTER 4. USING THE ASN.1 COMPILER

Each of the above function takes the type descripgsn{_ DEF _..) and the target

structure fect, in the above example). The target structure is typically created by the
generic BER decoder or by the application itself.

Here is how the buffer can be deserialized into the structure:

Rectangle_t *

simple_deserializer(const void *buffer, size_t buf_size) {
Rectangle_t *rect = 0; /* Note this 0! */
ber_dec rval t rval;

rval = asnl_DEF_Rectangle->ber_decoder(
&asnl_DEF_Rectangle,
(void **)&rect,
buffer, buf_size,
0);

if(rval .code == RC_OK) {

return rect; /* Decoding succeeded */
} else {

[* Free partially decoded rect */

asnl DEF_Rectangle->free_struct(

&asnl_DEF_Rectangle, rect, 0);
return O;

4.3. INVOKING THE ASN.1 HELPER CODE FROM THE APPLICATION 23

The ASN.1 compiler provides the generic BER decoder which is implicitly capable
of decoding BER, CER and DER encoded data.

24 CHAPTER 4. USING THE ASN.1 COMPILER

4.3.2 Encoding DER

4.3. INVOKING THE ASN.1 HELPER CODE FROM THE APPLICATION 25

}

As you see, the DER encoder does not write into some sort of buffer or something.

Bibliography

[ASN1C]

[Dub00]

[ITU-T/ASN.1]

The OpenSource ASN.1 Compilehttp://lionet.info/
asnl/

Olivier Dubuisson -ASN.1 Communication between heterogeneous
systems- Morgan Kaufmann Publishers, 200Bttp://asnl.
elibel.tm.fr/en/book/ . ISBN:0-12-6333361-0.

ITU-T Study Group 17 — Languages for Telecommunication Systems
http://ww.itu.int/ITU-T/studygroups/com17/
languages/

27

