Commit 42fa3f05 authored by Niels Lohmann's avatar Niels Lohmann Committed by GitHub

:twisted_rightwards_arrows: merge pull request #435 (based on #338, #355, and #423)

conversion from/to user-defined types
parents ce0b3fe5 cd9701b1
......@@ -21,6 +21,7 @@
- [Conversion from STL containers](#conversion-from-stl-containers)
- [JSON Pointer and JSON Patch](#json-pointer-and-json-patch)
- [Implicit conversions](#implicit-conversions)
- [Conversions to/from arbitrary types](#arbitrary-types-conversions)
- [Binary formats (CBOR and MessagePack)](#binary-formats-cbor-and-messagepack)
- [Supported compilers](#supported-compilers)
- [License](#license)
......@@ -442,6 +443,224 @@ int vi = jn.get<int>();
// etc.
```
### Arbitrary types conversions
Every type can be serialized in JSON, not just STL-containers and scalar types. Usually, you would do something along those lines:
```cpp
namespace ns {
// a simple struct to model a person
struct person {
std::string name;
std::string address;
int age;
};
}
ns::person p = {"Ned Flanders", "744 Evergreen Terrace", 60};
// convert to JSON: copy each value into the JSON object
json j;
j["name"] = p.name;
j["address"] = p.address;
j["age"] = p.age;
// ...
// convert from JSON: copy each value from the JSON object
ns::person p {
j["name"].get<std::string>(),
j["address"].get<std::string>(),
j["age"].get<int>()
};
```
It works, but that's quite a lot of boilerplate... Fortunately, there's a better way:
```cpp
// create a person
ns::person p {"Ned Flanders", "744 Evergreen Terrace", 60};
// conversion: person -> json
json j = p;
std::cout << j << std::endl;
// {"address":"744 Evergreen Terrace","age":60,"name":"Ned Flanders"}
// conversion: json -> person
ns::person p2 = j;
// that's it
assert(p == p2);
```
#### Basic usage
To make this work with one of your types, you only need to provide two functions:
```cpp
using nlohmann::json;
namespace ns {
void to_json(json& j, const person& p) {
j = json{{"name", p.name}, {"address", p.address}, {"age", p.age}};
}
void from_json(const json& j, person& p) {
p.name = j["name"].get<std::string>();
p.address = j["address"].get<std::string>();
p.age = j["age"].get<int>();
}
} // namespace ns
```
That's all! When calling the `json` constructor with your type, your custom `to_json` method will be automatically called.
Likewise, when calling `get<your_type>()`, the `from_json` method will be called.
Some important things:
* Those methods **MUST** be in your type's namespace (which can be the global namespace), or the library will not be able to locate them (in this example, they are in namespace `ns`, where `person` is defined).
* When using `get<your_type>()`, `your_type` **MUST** be [DefaultConstructible](http://en.cppreference.com/w/cpp/concept/DefaultConstructible). (There is a way to bypass this requirement described later.)
#### How do I convert third-party types?
This requires a bit more advanced technique. But first, let's see how this conversion mechanism works:
The library uses **JSON Serializers** to convert types to json.
The default serializer for `nlohmann::json` is `nlohmann::adl_serializer` (ADL means [Argument-Dependent Lookup](http://en.cppreference.com/w/cpp/language/adl)).
It is implemented like this (simplified):
```cpp
template <typename T>
struct adl_serializer {
static void to_json(json& j, const T& value) {
// calls the "to_json" method in T's namespace
}
static void from_json(const json& j, T& value) {
// same thing, but with the "from_json" method
}
};
```
This serializer works fine when you have control over the type's namespace. However, what about `boost::optional`, or `std::filesystem::path` (C++17)? Hijacking the `boost` namespace is pretty bad, and it's illegal to add something other than template specializations to `std`...
To solve this, you need to add a specialization of `adl_serializer` to the `nlohmann` namespace, here's an example:
```cpp
// partial specialization (full specialization works too)
namespace nlohmann {
template <typename T>
struct adl_serializer<boost::optional<T>> {
static void to_json(json& j, const boost::optional<T>& opt) {
if (opt == boost::none) {
j = nullptr;
} else {
j = *opt; // this will call adl_serializer<T>::to_json which will
// find the free function to_json in T's namespace!
}
}
static void from_json(const json& j, boost::optional<T>& opt) {
if (!j.is_null()) {
opt = j.get<T>(); // same as above, but with
// adl_serializer<T>::from_json
}
}
};
}
```
#### How can I use `get()` for non-default constructible/non-copyable types?
There is a way, if your type is [MoveConstructible](http://en.cppreference.com/w/cpp/concept/MoveConstructible). You will need to specialize the `adl_serializer` as well, but with a special `from_json` overload:
```cpp
struct move_only_type {
move_only_type() = delete;
move_only_type(int ii): i(ii) {}
move_only_type(const move_only_type&) = delete;
move_only_type(move_only_type&&) = default;
int i;
};
namespace nlohmann {
template <>
struct adl_serializer<move_only_type> {
// note: the return type is no longer 'void', and the method only takes
// one argument
static move_only_type from_json(const json& j) {
return {j.get<int>()};
}
// Here's the catch! You must provide a to_json method! Otherwise you
// will not be able to convert move_only_type to json, since you fully
// specialized adl_serializer on that type
static void to_json(json& j, move_only_type t) {
j = t.i;
}
};
}
```
#### Can I write my own serializer? (Advanced use)
Yes. You might want to take a look at [`unit-udt.cpp`](https://github.com/nlohmann/json/blob/develop/test/src/unit-udt.cpp) in the test suite, to see a few examples.
If you write your own serializer, you'll need to do a few things:
* use a different `basic_json` alias than `nlohmann::json` (the last template parameter of `basic_json` is the `JSONSerializer`)
* use your `basic_json` alias (or a template parameter) in all your `to_json`/`from_json` methods
* use `nlohmann::to_json` and `nlohmann::from_json` when you need ADL
Here is an example, without simplifications, that only accepts types with a size <= 32, and uses ADL.
```cpp
// You should use void as a second template argument
// if you don't need compile-time checks on T
template<typename T, typename SFINAE = typename std::enable_if<sizeof(T) <= 32>::type>
struct less_than_32_serializer {
template <typename BasicJsonType>
static void to_json(BasicJsonType& j, T value) {
// we want to use ADL, and call the correct to_json overload
using nlohmann::to_json; // this method is called by adl_serializer,
// this is where the magic happens
to_json(j, value);
}
template <typename BasicJsonType>
static void from_json(const BasicJsonType& j, T& value) {
// same thing here
using nlohmann::from_json;
from_json(j, value);
}
};
```
Be **very** careful when reimplementing your serializer, you can stack overflow if you don't pay attention:
```cpp
template <typename T, void>
struct bad_serializer
{
template <typename BasicJsonType>
static void to_json(BasicJsonType& j, const T& value) {
// this calls BasicJsonType::json_serializer<T>::to_json(j, value);
// if BasicJsonType::json_serializer == bad_serializer ... oops!
j = value;
}
template <typename BasicJsonType>
static void to_json(const BasicJsonType& j, T& value) {
// this calls BasicJsonType::json_serializer<T>::from_json(j, value);
// if BasicJsonType::json_serializer == bad_serializer ... oops!
value = j.template get<T>(); // oops!
}
};
```
### Binary formats (CBOR and MessagePack)
Though JSON is a ubiquitous data format, it is not a very compact format suitable for data exchange, for instance over a network. Hence, the library supports [CBOR](http://cbor.io) (Concise Binary Object Representation) and [MessagePack](http://msgpack.org) to efficiently encode JSON values to byte vectors and to decode such vectors.
......@@ -546,7 +765,7 @@ I deeply appreciate the help of the following people.
- [Eric Cornelius](https://github.com/EricMCornelius) pointed out a bug in the handling with NaN and infinity values. He also improved the performance of the string escaping.
- [易思龙](https://github.com/likebeta) implemented a conversion from anonymous enums.
- [kepkin](https://github.com/kepkin) patiently pushed forward the support for Microsoft Visual studio.
- [gregmarr](https://github.com/gregmarr) simplified the implementation of reverse iterators and helped with numerous hints and improvements.
- [gregmarr](https://github.com/gregmarr) simplified the implementation of reverse iterators and helped with numerous hints and improvements. In particular, he pushed forward the implementation of user-defined types.
- [Caio Luppi](https://github.com/caiovlp) fixed a bug in the Unicode handling.
- [dariomt](https://github.com/dariomt) fixed some typos in the examples.
- [Daniel Frey](https://github.com/d-frey) cleaned up some pointers and implemented exception-safe memory allocation.
......@@ -574,7 +793,7 @@ I deeply appreciate the help of the following people.
- [duncanwerner](https://github.com/duncanwerner) found a really embarrassing performance regression in the 2.0.0 release.
- [Damien](https://github.com/dtoma) fixed one of the last conversion warnings.
- [Thomas Braun](https://github.com/t-b) fixed a warning in a test case.
- [Théo DELRIEU](https://github.com/theodelrieu) patiently and constructively oversaw the long way toward [iterator-range parsing](https://github.com/nlohmann/json/issues/290).
- [Théo DELRIEU](https://github.com/theodelrieu) patiently and constructively oversaw the long way toward [iterator-range parsing](https://github.com/nlohmann/json/issues/290). He also implemented the magic behind the serialization/deserialization of user-defined types.
- [Stefan](https://github.com/5tefan) fixed a minor issue in the documentation.
- [Vasil Dimov](https://github.com/vasild) fixed the documentation regarding conversions from `std::multiset`.
- [ChristophJud](https://github.com/ChristophJud) overworked the CMake files to ease project inclusion.
......@@ -588,6 +807,9 @@ I deeply appreciate the help of the following people.
- [Bosswestfalen](https://github.com/Bosswestfalen) merged two iterator classes into a smaller one.
- [Daniel599](https://github.com/Daniel599) helped to get Travis execute the tests with Clang's sanitizers.
- [Jonathan Lee](https://github.com/vjon) fixed an example in the README file.
- [gnzlbg](https://github.com/gnzlbg) supported the implementation of user-defined types.
- [Alexej Harm](https://github.com/qis) helped to get the user-defined types working with Visual Studio.
- [Jared Grubb](https://github.com/jaredgrubb) supported the implementation of user-defined types.
Thanks a lot for helping out! Please [let me know](mailto:mail@nlohmann.me) if I forgot someone.
......@@ -611,10 +833,11 @@ Thanks a lot for helping out! Please [let me know](mailto:mail@nlohmann.me) if I
To compile and run the tests, you need to execute
```sh
$ make check
$ make json_unit -Ctest
$ ./test/json_unit "*""
===============================================================================
All tests passed (11202040 assertions in 44 test cases)
All tests passed (11202052 assertions in 47 test cases)
```
Alternatively, you can use [CMake](https://cmake.org) and run
......
......@@ -109,7 +109,7 @@ RECURSIVE = NO
EXCLUDE =
EXCLUDE_SYMLINKS = NO
EXCLUDE_PATTERNS =
EXCLUDE_SYMBOLS = nlohmann::anonymous_namespace
EXCLUDE_SYMBOLS = nlohmann::detail
EXAMPLE_PATH = examples
EXAMPLE_PATTERNS =
EXAMPLE_RECURSIVE = NO
......
#include <json.hpp>
#include <deque>
#include <list>
#include <forward_list>
#include <set>
#include <unordered_set>
using json = nlohmann::json;
int main()
{
// create an array from std::vector
std::vector<int> c_vector {1, 2, 3, 4};
json j_vec(c_vector);
// create an array from std::deque
std::deque<double> c_deque {1.2, 2.3, 3.4, 5.6};
json j_deque(c_deque);
// create an array from std::list
std::list<bool> c_list {true, true, false, true};
json j_list(c_list);
// create an array from std::forward_list
std::forward_list<int64_t> c_flist {12345678909876, 23456789098765, 34567890987654, 45678909876543};
json j_flist(c_flist);
// create an array from std::array
std::array<unsigned long, 4> c_array {{1, 2, 3, 4}};
json j_array(c_array);
// create an array from std::set
std::set<std::string> c_set {"one", "two", "three", "four", "one"};
json j_set(c_set); // only one entry for "one" is used
// create an array from std::unordered_set
std::unordered_set<std::string> c_uset {"one", "two", "three", "four", "one"};
json j_uset(c_uset); // only one entry for "one" is used
// create an array from std::multiset
std::multiset<std::string> c_mset {"one", "two", "one", "four"};
json j_mset(c_mset); // both entries for "one" are used
// create an array from std::unordered_multiset
std::unordered_multiset<std::string> c_umset {"one", "two", "one", "four"};
json j_umset(c_umset); // both entries for "one" are used
// serialize the JSON arrays
std::cout << j_vec << '\n';
std::cout << j_deque << '\n';
std::cout << j_list << '\n';
std::cout << j_flist << '\n';
std::cout << j_array << '\n';
std::cout << j_set << '\n';
std::cout << j_uset << '\n';
std::cout << j_mset << '\n';
std::cout << j_umset << '\n';
}
<a target="_blank" href="http://melpon.org/wandbox/permlink/3BIhBw91FUVuHE1D"><b>online</b></a>
\ No newline at end of file
#include <json.hpp>
using json = nlohmann::json;
int main()
{
// create values of different integer types
short n42 = 42;
int n23 = 23;
long n1024 = 1024;
int_least32_t n17 = 17;
uint8_t n8 = 8;
// create JSON numbers
json j42(n42);
json j23(n23);
json j1024(n1024);
json j17(n17);
json j8(n8);
// serialize the JSON numbers
std::cout << j42 << '\n';
std::cout << j23 << '\n';
std::cout << j1024 << '\n';
std::cout << j17 << '\n';
std::cout << j8 << '\n';
}
<a target="_blank" href="http://melpon.org/wandbox/permlink/PcMzhcu2RpD7KSwr"><b>online</b></a>
\ No newline at end of file
42
23
1024
17
8
#include <json.hpp>
using json = nlohmann::json;
int main()
{
// create values of different floating-point types
float f42 = 42.23;
float f_nan = 1.0f / 0.0f;
double f23 = 23.42;
// create JSON numbers
json j42(f42);
json j_nan(f_nan);
json j23(f23);
// serialize the JSON numbers
std::cout << j42 << '\n';
std::cout << j_nan << '\n';
std::cout << j23 << '\n';
}
<a target="_blank" href="http://melpon.org/wandbox/permlink/2TCYWSrOxnR05AZI"><b>online</b></a>
\ No newline at end of file
42.2299995422363
null
23.42
#include <json.hpp>
#include <unordered_map>
using json = nlohmann::json;
int main()
{
// create an object from std::map
std::map<std::string, int> c_map
{
{"one", 1}, {"two", 2}, {"three", 3}
};
json j_map(c_map);
// create an object from std::unordered_map
std::unordered_map<const char*, double> c_umap
{
{"one", 1.2}, {"two", 2.3}, {"three", 3.4}
};
json j_umap(c_umap);
// create an object from std::multimap
std::multimap<std::string, bool> c_mmap
{
{"one", true}, {"two", true}, {"three", false}, {"three", true}
};
json j_mmap(c_mmap); // only one entry for key "three" is used
// create an object from std::unordered_multimap
std::unordered_multimap<std::string, bool> c_ummap
{
{"one", true}, {"two", true}, {"three", false}, {"three", true}
};
json j_ummap(c_ummap); // only one entry for key "three" is used
// serialize the JSON objects
std::cout << j_map << '\n';
std::cout << j_umap << '\n';
std::cout << j_mmap << '\n';
std::cout << j_ummap << '\n';
}
<a target="_blank" href="http://melpon.org/wandbox/permlink/JzLCMcSXNsh4uVWa"><b>online</b></a>
\ No newline at end of file
{"one":1,"three":3,"two":2}
{"one":1.2,"three":3.4,"two":2.3}
{"one":true,"three":false,"two":true}
{"one":true,"three":false,"two":true}
#include <json.hpp>
using json = nlohmann::json;
int main()
{
// create a string value
std::string s = "The quick brown fox jumps over the lazy dog.";
// create a JSON string value
json j = s;
// serialize the JSON string
std::cout << j << '\n';
}
<a target="_blank" href="http://melpon.org/wandbox/permlink/b9hbCY8zfOiTOuoK"><b>online</b></a>
\ No newline at end of file
"The quick brown fox jumps over the lazy dog."
#include <json.hpp>
#include <deque>
#include <list>
#include <forward_list>
#include <set>
#include <unordered_map>
#include <unordered_set>
using json = nlohmann::json;
int main()
{
// ============
// object types
// ============
// create an object from an object_t value
json::object_t object_value = { {"one", 1}, {"two", 2} };
json j_object_t(object_value);
// create an object from std::map
std::map<std::string, int> c_map
{
{"one", 1}, {"two", 2}, {"three", 3}
};
json j_map(c_map);
// create an object from std::unordered_map
std::unordered_map<const char*, double> c_umap
{
{"one", 1.2}, {"two", 2.3}, {"three", 3.4}
};
json j_umap(c_umap);
// create an object from std::multimap
std::multimap<std::string, bool> c_mmap
{
{"one", true}, {"two", true}, {"three", false}, {"three", true}
};
json j_mmap(c_mmap); // only one entry for key "three" is used
// create an object from std::unordered_multimap
std::unordered_multimap<std::string, bool> c_ummap
{
{"one", true}, {"two", true}, {"three", false}, {"three", true}
};
json j_ummap(c_ummap); // only one entry for key "three" is used
// serialize the JSON objects
std::cout << j_object_t << '\n';
std::cout << j_map << '\n';
std::cout << j_umap << '\n';
std::cout << j_mmap << '\n';
std::cout << j_ummap << "\n\n";
// ===========
// array types
// ===========
// create an array from an array_t value
json::array_t array_value = {"one", "two", 3, 4.5, false};
json j_array_t(array_value);
// create an array from std::vector
std::vector<int> c_vector {1, 2, 3, 4};
json j_vec(c_vector);
// create an array from std::deque
std::deque<double> c_deque {1.2, 2.3, 3.4, 5.6};
json j_deque(c_deque);
// create an array from std::list
std::list<bool> c_list {true, true, false, true};
json j_list(c_list);
// create an array from std::forward_list
std::forward_list<int64_t> c_flist {12345678909876, 23456789098765, 34567890987654, 45678909876543};
json j_flist(c_flist);
// create an array from std::array
std::array<unsigned long, 4> c_array {{1, 2, 3, 4}};
json j_array(c_array);
// create an array from std::set
std::set<std::string> c_set {"one", "two", "three", "four", "one"};
json j_set(c_set); // only one entry for "one" is used
// create an array from std::unordered_set
std::unordered_set<std::string> c_uset {"one", "two", "three", "four", "one"};
json j_uset(c_uset); // only one entry for "one" is used
// create an array from std::multiset
std::multiset<std::string> c_mset {"one", "two", "one", "four"};
json j_mset(c_mset); // both entries for "one" are used
// create an array from std::unordered_multiset
std::unordered_multiset<std::string> c_umset {"one", "two", "one", "four"};
json j_umset(c_umset); // both entries for "one" are used
// serialize the JSON arrays
std::cout << j_array_t << '\n';
std::cout << j_vec << '\n';
std::cout << j_deque << '\n';
std::cout << j_list << '\n';
std::cout << j_flist << '\n';
std::cout << j_array << '\n';
std::cout << j_set << '\n';
std::cout << j_uset << '\n';
std::cout << j_mset << '\n';
std::cout << j_umset << "\n\n";
// ============
// string types
// ============
// create string from a string_t value
json::string_t string_value = "The quick brown fox jumps over the lazy dog.";
json j_string_t(string_value);
// create a JSON string directly from a string literal
json j_string_literal("The quick brown fox jumps over the lazy dog.");
// create string from std::string
std::string s_stdstring = "The quick brown fox jumps over the lazy dog.";
json j_stdstring(s_stdstring);
// serialize the JSON strings
std::cout << j_string_t << '\n';
std::cout << j_string_literal << '\n';
std::cout << j_stdstring << "\n\n";
// ============
// number types
// ============
// create a JSON number from number_integer_t
json::number_integer_t value_integer_t = -42;
json j_integer_t(value_integer_t);
// create a JSON number from number_unsigned_t
json::number_integer_t value_unsigned_t = 17;
json j_unsigned_t(value_unsigned_t);
// create a JSON number from an anonymous enum
enum { enum_value = 17 };
json j_enum(enum_value);
// create values of different integer types
short n_short = 42;
int n_int = -23;
long n_long = 1024;
int_least32_t n_int_least32_t = -17;
uint8_t n_uint8_t = 8;
// create (integer) JSON numbers
json j_short(n_short);
json j_int(n_int);
json j_long(n_long);
json j_int_least32_t(n_int_least32_t);
json j_uint8_t(n_uint8_t);
// create values of different floating-point types
json::number_float_t v_ok = 3.141592653589793;
json::number_float_t v_nan = NAN;
json::number_float_t v_infinity = INFINITY;
// create values of different floating-point types
float n_float = 42.23;
float n_float_nan = 1.0f / 0.0f;
double n_double = 23.42;
// create (floating point) JSON numbers
json j_ok(v_ok);
json j_nan(v_nan);
json j_infinity(v_infinity);
json j_float(n_float);
json j_float_nan(n_float_nan);
json j_double(n_double);
// serialize the JSON numbers
std::cout << j_integer_t << '\n';
std::cout << j_unsigned_t << '\n';
std::cout << j_enum << '\n';
std::cout << j_short << '\n';
std::cout << j_int << '\n';
std::cout << j_long << '\n';
std::cout << j_int_least32_t << '\n';
std::cout << j_uint8_t << '\n';
std::cout << j_ok << '\n';
std::cout << j_nan << '\n';
std::cout << j_infinity << '\n';
std::cout << j_float << '\n';
std::cout << j_float_nan << '\n';
std::cout << j_double << "\n\n";
// =============
// boolean types
// =============
// create boolean values
json j_truth = true;
json j_falsity = false;
// serialize the JSON booleans
std::cout << j_truth << '\n';
std::cout << j_falsity << '\n';
}
<a target="_blank" href="http://melpon.org/wandbox/permlink/VM7W2kpE7sIYJ5DW"><b>online</b></a>
\ No newline at end of file
{"one":1,"two":2}
{"one":1,"three":3,"two":2}
{"one":1.2,"three":3.4,"two":2.3}
{"one":true,"three":false,"two":true}
{"one":true,"three":false,"two":true}
["one","two",3,4.5,false]
[1,2,3,4]
[1.2,2.3,3.4,5.6]
[true,true,false,true]
......@@ -7,3 +14,25 @@
["four","three","two","one"]
["four","one","one","two"]
["four","two","one","one"]
"The quick brown fox jumps over the lazy dog."
"The quick brown fox jumps over the lazy dog."
"The quick brown fox jumps over the lazy dog."
-42
17
17
42
-23
1024
-17
8
3.14159265358979
null
null
42.2299995422363
null
23.42
true
false
#include <json.hpp>
using json = nlohmann::json;
int main()
{
// create an array_t value
json::array_t value = {"one", "two", 3, 4.5, false};
// create a JSON array from the value
json j(value);
// serialize the JSON array
std::cout << j << '\n';
}
<a target="_blank" href="http://melpon.org/wandbox/permlink/dTbSNAvl6TqrMEAn"><b>online</b></a>
\ No newline at end of file
["one","two",3,4.5,false]
#include <json.hpp>
using json = nlohmann::json;
int main()
{
// create boolean values
json j_truth = true;
json j_falsity = false;
// serialize the JSON booleans
std::cout << j_truth << '\n';
std::cout << j_falsity << '\n';
}
<a target="_blank" href="http://melpon.org/wandbox/permlink/VmVl9pyrQp8LyOnU"><b>online</b></a>
\ No newline at end of file
true
false
#include <json.hpp>
using json = nlohmann::json;
int main()
{
// an anonymous enum
enum { t = 17 };
// create a JSON number from the enum
json j(t);
// serialize the JSON numbers
std::cout << j << '\n';
}
<a target="_blank" href="http://melpon.org/wandbox/permlink/3xQ1qy7BT9OrSSCo"><b>online</b></a>
\ No newline at end of file
17
#include <json.hpp>
using json = nlohmann::json;
int main()
{
// create values of different floating-point types
json::number_float_t v_ok = 3.141592653589793;
json::number_float_t v_nan = NAN;
json::number_float_t v_infinity = INFINITY;
// create JSON numbers
json j_ok(v_ok);
json j_nan(v_nan);
json j_infinity(v_infinity);
// serialize the JSON numbers
std::cout << j_ok << '\n';
std::cout << j_nan << '\n';
std::cout << j_infinity << '\n';
}
<a target="_blank" href="http://melpon.org/wandbox/permlink/OTgOxjIAKFvxpFdm"><b>online</b></a>
\ No newline at end of file
3.14159265358979
null
null
#include <json.hpp>
using json = nlohmann::json;
int main()
{
// create a JSON number from number_integer_t
json::number_integer_t value = 42;
json j(value);
// serialize the JSON numbers
std::cout << j << '\n';
}
<a target="_blank" href="http://melpon.org/wandbox/permlink/cCQRCvjXdRM9YpT5"><b>online</b></a>
\ No newline at end of file
42
#include <json.hpp>
using json = nlohmann::json;
int main()
{
// create an object_t value
json::object_t value = { {"one", 1}, {"two", 2} };
// create a JSON object from the value
json j(value);
// serialize the JSON object
std::cout << j << '\n';
}
<a target="_blank" href="http://melpon.org/wandbox/permlink/DgtHcz5L6JphTOGJ"><b>online</b></a>
\ No newline at end of file
{"one":1,"two":2}
#include <json.hpp>
using json = nlohmann::json;
int main()
{
// create an string_t value
json::string_t value = "The quick brown fox jumps over the lazy doc";
// create a JSON string from the value
json j(value);
// serialize the JSON array
std::cout << j << '\n';
}
<a target="_blank" href="http://melpon.org/wandbox/permlink/cwNYP1q2mT8CFLTk"><b>online</b></a>
\ No newline at end of file
"The quick brown fox jumps over the lazy doc"
#include <json.hpp>
using json = nlohmann::json;
int main()
{
// create a JSON string directly from a string literal
json j("The quick brown fox jumps over the lazy doc");
// serialize the JSON array
std::cout << j << '\n';
}
<a target="_blank" href="http://melpon.org/wandbox/permlink/AtV4zVErfLwkileg"><b>online</b></a>
\ No newline at end of file
"The quick brown fox jumps over the lazy doc"
......@@ -39,6 +39,7 @@ SOFTWARE.
#include <cstdint> // int64_t, uint64_t
#include <cstdlib> // strtod, strtof, strtold, strtoul
#include <cstring> // strlen
#include <forward_list> // forward_list
#include <functional> // function, hash, less
#include <initializer_list> // initializer_list
#include <iomanip> // setw
......@@ -107,37 +108,840 @@ SOFTWARE.
namespace nlohmann
{
/*!
@brief unnamed namespace with internal helper functions
This namespace collects some functions that could not be defined inside the
@ref basic_json class.
@since version 2.1.0
*/
namespace detail
{
///////////////////////////
// JSON type enumeration //
///////////////////////////
/*!
@brief the JSON type enumeration
This enumeration collects the different JSON types. It is internally used to
distinguish the stored values, and the functions @ref basic_json::is_null(),
@ref basic_json::is_object(), @ref basic_json::is_array(),
@ref basic_json::is_string(), @ref basic_json::is_boolean(),
@ref basic_json::is_number() (with @ref basic_json::is_number_integer(),
@ref basic_json::is_number_unsigned(), and @ref basic_json::is_number_float()),
@ref basic_json::is_discarded(), @ref basic_json::is_primitive(), and
@ref basic_json::is_structured() rely on it.
@note There are three enumeration entries (number_integer, number_unsigned, and
number_float), because the library distinguishes these three types for numbers:
@ref basic_json::number_unsigned_t is used for unsigned integers,
@ref basic_json::number_integer_t is used for signed integers, and
@ref basic_json::number_float_t is used for floating-point numbers or to
approximate integers which do not fit in the limits of their respective type.
@sa @ref basic_json::basic_json(const value_t value_type) -- create a JSON
value with the default value for a given type
@since version 1.0.0
*/
namespace
enum class value_t : uint8_t
{
null, ///< null value
object, ///< object (unordered set of name/value pairs)
array, ///< array (ordered collection of values)
string, ///< string value
boolean, ///< boolean value
number_integer, ///< number value (signed integer)
number_unsigned, ///< number value (unsigned integer)
number_float, ///< number value (floating-point)
discarded ///< discarded by the the parser callback function
};
/*!
@brief comparison operator for JSON types
Returns an ordering that is similar to Python:
- order: null < boolean < number < object < array < string
- furthermore, each type is not smaller than itself
@since version 1.0.0
*/
inline bool operator<(const value_t lhs, const value_t rhs) noexcept
{
static constexpr std::array<uint8_t, 8> order = {{
0, // null
3, // object
4, // array
5, // string
1, // boolean
2, // integer
2, // unsigned
2, // float
}
};
// discarded values are not comparable
if (lhs == value_t::discarded or rhs == value_t::discarded)
{
return false;
}
return order[static_cast<std::size_t>(lhs)] <
order[static_cast<std::size_t>(rhs)];
}
/////////////
// helpers //
/////////////
// alias templates to reduce boilerplate
template<bool B, typename T = void>
using enable_if_t = typename std::enable_if<B, T>::type;
template<typename T>
using uncvref_t = typename std::remove_cv<typename std::remove_reference<T>::type>::type;
// taken from http://stackoverflow.com/a/26936864/266378
template<typename T>
using is_unscoped_enum =
std::integral_constant<bool, std::is_convertible<T, int>::value and
std::is_enum<T>::value>;
/*
Implementation of two C++17 constructs: conjunction, negation. This is needed
to avoid evaluating all the traits in a condition
For example: not std::is_same<void, T>::value and has_value_type<T>::value
will not compile when T = void (on MSVC at least). Whereas
conjunction<negation<std::is_same<void, T>>, has_value_type<T>>::value will
stop evaluating if negation<...>::value == false
Please note that those constructs must be used with caution, since symbols can
become very long quickly (which can slow down compilation and cause MSVC
internal compiler errors). Only use it when you have to (see example ahead).
*/
template<class...> struct conjunction : std::true_type {};
template<class B1> struct conjunction<B1> : B1 {};
template<class B1, class... Bn>
struct conjunction<B1, Bn...> : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
template<class B> struct negation : std::integral_constant < bool, !B::value > {};
// dispatch utility (taken from ranges-v3)
template<unsigned N> struct priority_tag : priority_tag < N - 1 > {};
template<> struct priority_tag<0> {};
//////////////////
// constructors //
//////////////////
template<value_t> struct external_constructor;
template<>
struct external_constructor<value_t::boolean>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::boolean_t b) noexcept
{
j.m_type = value_t::boolean;
j.m_value = b;
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::string>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, const typename BasicJsonType::string_t& s)
{
j.m_type = value_t::string;
j.m_value = s;
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::number_float>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::number_float_t val) noexcept
{
// replace infinity and NAN by null
if (not std::isfinite(val))
{
j = BasicJsonType{};
}
else
{
j.m_type = value_t::number_float;
j.m_value = val;
}
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::number_unsigned>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::number_unsigned_t val) noexcept
{
j.m_type = value_t::number_unsigned;
j.m_value = val;
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::number_integer>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::number_integer_t val) noexcept
{
j.m_type = value_t::number_integer;
j.m_value = val;
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::array>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, const typename BasicJsonType::array_t& arr)
{
j.m_type = value_t::array;
j.m_value = arr;
j.assert_invariant();
}
template<typename BasicJsonType, typename CompatibleArrayType,
enable_if_t<not std::is_same<CompatibleArrayType,
typename BasicJsonType::array_t>::value,
int> = 0>
static void construct(BasicJsonType& j, const CompatibleArrayType& arr)
{
using std::begin;
using std::end;
j.m_type = value_t::array;
j.m_value.array = j.template create<typename BasicJsonType::array_t>(begin(arr), end(arr));
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::object>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, const typename BasicJsonType::object_t& obj)
{
j.m_type = value_t::object;
j.m_value = obj;
j.assert_invariant();
}
template<typename BasicJsonType, typename CompatibleObjectType,
enable_if_t<not std::is_same<CompatibleObjectType,
typename BasicJsonType::object_t>::value,
int> = 0>
static void construct(BasicJsonType& j, const CompatibleObjectType& obj)
{
using std::begin;
using std::end;
j.m_type = value_t::object;
j.m_value.object = j.template create<typename BasicJsonType::object_t>(begin(obj), end(obj));
j.assert_invariant();
}
};
////////////////////////
// has_/is_ functions //
////////////////////////
/*!
@brief Helper to determine whether there's a key_type for T.
Thus helper is used to tell associative containers apart from other containers
This helper is used to tell associative containers apart from other containers
such as sequence containers. For instance, `std::map` passes the test as it
contains a `mapped_type`, whereas `std::vector` fails the test.
@sa http://stackoverflow.com/a/7728728/266378
@since version 1.0.0, overworked in version 2.0.6
*/
template<typename T>
struct has_mapped_type
#define NLOHMANN_JSON_HAS_HELPER(type) \
template<typename T> struct has_##type { \
private: \
template<typename U, typename = typename U::type> \
static int detect(U &&); \
static void detect(...); \
public: \
static constexpr bool value = \
std::is_integral<decltype(detect(std::declval<T>()))>::value; \
}
NLOHMANN_JSON_HAS_HELPER(mapped_type);
NLOHMANN_JSON_HAS_HELPER(key_type);
NLOHMANN_JSON_HAS_HELPER(value_type);
NLOHMANN_JSON_HAS_HELPER(iterator);
#undef NLOHMANN_JSON_HAS_HELPER
template<bool B, class RealType, class CompatibleObjectType>
struct is_compatible_object_type_impl : std::false_type {};
template<class RealType, class CompatibleObjectType>
struct is_compatible_object_type_impl<true, RealType, CompatibleObjectType>
{
static constexpr auto value =
std::is_constructible<typename RealType::key_type,
typename CompatibleObjectType::key_type>::value and
std::is_constructible<typename RealType::mapped_type,
typename CompatibleObjectType::mapped_type>::value;
};
template<class BasicJsonType, class CompatibleObjectType>
struct is_compatible_object_type
{
static auto constexpr value = is_compatible_object_type_impl <
conjunction<negation<std::is_same<void, CompatibleObjectType>>,
has_mapped_type<CompatibleObjectType>,
has_key_type<CompatibleObjectType>>::value,
typename BasicJsonType::object_t, CompatibleObjectType >::value;
};
template<typename BasicJsonType, typename T>
struct is_basic_json_nested_type
{
static auto constexpr value = std::is_same<T, typename BasicJsonType::iterator>::value or
std::is_same<T, typename BasicJsonType::const_iterator>::value or
std::is_same<T, typename BasicJsonType::reverse_iterator>::value or
std::is_same<T, typename BasicJsonType::const_reverse_iterator>::value or
std::is_same<T, typename BasicJsonType::json_pointer>::value;
};
template<class BasicJsonType, class CompatibleArrayType>
struct is_compatible_array_type
{
static auto constexpr value =
conjunction<negation<std::is_same<void, CompatibleArrayType>>,
negation<is_compatible_object_type<
BasicJsonType, CompatibleArrayType>>,
negation<std::is_constructible<typename BasicJsonType::string_t,
CompatibleArrayType>>,
negation<is_basic_json_nested_type<BasicJsonType, CompatibleArrayType>>,
has_value_type<CompatibleArrayType>,
has_iterator<CompatibleArrayType>>::value;
};
template<bool, typename, typename>
struct is_compatible_integer_type_impl : std::false_type {};
template<typename RealIntegerType, typename CompatibleNumberIntegerType>
struct is_compatible_integer_type_impl<true, RealIntegerType, CompatibleNumberIntegerType>
{
// is there an assert somewhere on overflows?
using RealLimits = std::numeric_limits<RealIntegerType>;
using CompatibleLimits = std::numeric_limits<CompatibleNumberIntegerType>;
static constexpr auto value =
std::is_constructible<RealIntegerType,
CompatibleNumberIntegerType>::value and
CompatibleLimits::is_integer and
RealLimits::is_signed == CompatibleLimits::is_signed;
};
template<typename RealIntegerType, typename CompatibleNumberIntegerType>
struct is_compatible_integer_type
{
static constexpr auto value =
is_compatible_integer_type_impl <
std::is_integral<CompatibleNumberIntegerType>::value and
not std::is_same<bool, CompatibleNumberIntegerType>::value,
RealIntegerType, CompatibleNumberIntegerType > ::value;
};
// trait checking if JSONSerializer<T>::from_json(json const&, udt&) exists
template<typename BasicJsonType, typename T>
struct has_from_json
{
private:
template <typename U, typename = typename U::mapped_type>
// also check the return type of from_json
template<typename U, typename = enable_if_t<std::is_same<void, decltype(uncvref_t<U>::from_json(
std::declval<BasicJsonType>(), std::declval<T&>()))>::value>>
static int detect(U&&);
static void detect(...);
public:
static constexpr bool value = std::is_integral<decltype(
detect(std::declval<typename BasicJsonType::template json_serializer<T, void>>()))>::value;
};
// This trait checks if JSONSerializer<T>::from_json(json const&) exists
// this overload is used for non-default-constructible user-defined-types
template<typename BasicJsonType, typename T>
struct has_non_default_from_json
{
private:
template <
typename U,
typename = enable_if_t<std::is_same<
T, decltype(uncvref_t<U>::from_json(std::declval<BasicJsonType>()))>::value >>
static int detect(U&&);
static void detect(...);
public:
static constexpr bool value = std::is_integral<decltype(detect(
std::declval<typename BasicJsonType::template json_serializer<T, void>>()))>::value;
};
// This trait checks if BasicJsonType::json_serializer<T>::to_json exists
template<typename BasicJsonType, typename T>
struct has_to_json
{
private:
template<typename U, typename = decltype(uncvref_t<U>::to_json(
std::declval<BasicJsonType&>(), std::declval<T>()))>
static int detect(U&&);
static void detect(...);
public:
static constexpr bool value = std::is_integral<decltype(detect(
std::declval<typename BasicJsonType::template json_serializer<T, void>>()))>::value;
};
/////////////
// to_json //
/////////////
template<typename BasicJsonType>
void to_json(BasicJsonType& j, typename BasicJsonType::boolean_t b) noexcept
{
external_constructor<value_t::boolean>::construct(j, b);
}
template<typename BasicJsonType, typename CompatibleString,
enable_if_t<std::is_constructible<typename BasicJsonType::string_t,
CompatibleString>::value, int> = 0>
void to_json(BasicJsonType& j, const CompatibleString& s)
{
external_constructor<value_t::string>::construct(j, s);
}
template<typename BasicJsonType, typename FloatType,
enable_if_t<std::is_floating_point<FloatType>::value, int> = 0>
void to_json(BasicJsonType& j, FloatType val) noexcept
{
external_constructor<value_t::number_float>::construct(j, static_cast<typename BasicJsonType::number_float_t>(val));
}
template <
typename BasicJsonType, typename CompatibleNumberUnsignedType,
enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_unsigned_t,
CompatibleNumberUnsignedType>::value, int> = 0 >
void to_json(BasicJsonType& j, CompatibleNumberUnsignedType val) noexcept
{
external_constructor<value_t::number_unsigned>::construct(j, static_cast<typename BasicJsonType::number_unsigned_t>(val));
}
template <
typename BasicJsonType, typename CompatibleNumberIntegerType,
enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_integer_t,
CompatibleNumberIntegerType>::value, int> = 0 >
void to_json(BasicJsonType& j, CompatibleNumberIntegerType val) noexcept
{
external_constructor<value_t::number_integer>::construct(j, static_cast<typename BasicJsonType::number_integer_t>(val));
}
template<typename BasicJsonType, typename UnscopedEnumType,
enable_if_t<is_unscoped_enum<UnscopedEnumType>::value, int> = 0>
void to_json(BasicJsonType& j, UnscopedEnumType e) noexcept
{
external_constructor<value_t::number_integer>::construct(j, e);
}
template <
typename BasicJsonType, typename CompatibleArrayType,
enable_if_t <
is_compatible_array_type<BasicJsonType, CompatibleArrayType>::value or
std::is_same<typename BasicJsonType::array_t, CompatibleArrayType>::value,
int > = 0 >
void to_json(BasicJsonType& j, const CompatibleArrayType& arr)
{
external_constructor<value_t::array>::construct(j, arr);
}
template <
typename BasicJsonType, typename CompatibleObjectType,
enable_if_t<is_compatible_object_type<BasicJsonType, CompatibleObjectType>::value,
int> = 0 >
void to_json(BasicJsonType& j, const CompatibleObjectType& arr)
{
external_constructor<value_t::object>::construct(j, arr);
}
///////////////
// from_json //
///////////////
// overloads for basic_json template parameters
template<typename BasicJsonType, typename ArithmeticType,
enable_if_t<std::is_arithmetic<ArithmeticType>::value and
not std::is_same<ArithmeticType,
typename BasicJsonType::boolean_t>::value,
int> = 0>
void get_arithmetic_value(const BasicJsonType& j, ArithmeticType& val)
{
switch (static_cast<value_t>(j))
{
case value_t::number_unsigned:
{
val = static_cast<ArithmeticType>(
*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
break;
}
case value_t::number_integer:
{
val = static_cast<ArithmeticType>(
*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
break;
}
case value_t::number_float:
{
val = static_cast<ArithmeticType>(
*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
break;
}
default:
{
JSON_THROW(
std::domain_error("type must be number, but is " + j.type_name()));
}
}
}
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename BasicJsonType::boolean_t& b)
{
if (not j.is_boolean())
{
JSON_THROW(std::domain_error("type must be boolean, but is " + j.type_name()));
}
b = *j.template get_ptr<const typename BasicJsonType::boolean_t*>();
}
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename BasicJsonType::string_t& s)
{
if (not j.is_string())
{
JSON_THROW(std::domain_error("type must be string, but is " + j.type_name()));
}
s = *j.template get_ptr<const typename BasicJsonType::string_t*>();
}
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename BasicJsonType::number_float_t& val)
{
get_arithmetic_value(j, val);
}
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename BasicJsonType::number_unsigned_t& val)
{
get_arithmetic_value(j, val);
}
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename BasicJsonType::number_integer_t& val)
{
get_arithmetic_value(j, val);
}
template<typename BasicJsonType, typename UnscopedEnumType,
enable_if_t<is_unscoped_enum<UnscopedEnumType>::value, int> = 0>
void from_json(const BasicJsonType& j, UnscopedEnumType& e)
{
typename std::underlying_type<UnscopedEnumType>::type val = e;
get_arithmetic_value(j, val);
e = static_cast<UnscopedEnumType>(val);
}
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename BasicJsonType::array_t& arr)
{
if (not j.is_array())
{
JSON_THROW(std::domain_error("type must be array, but is " + j.type_name()));
}
arr = *j.template get_ptr<const typename BasicJsonType::array_t*>();
}
// forward_list doesn't have an insert method
template<typename BasicJsonType, typename T, typename Allocator>
void from_json(const BasicJsonType& j, std::forward_list<T, Allocator>& l)
{
// do not perform the check when user wants to retrieve jsons
// (except when it's null.. ?)
if (j.is_null())
{
JSON_THROW(std::domain_error("type must be array, but is " + j.type_name()));
}
if (not std::is_same<T, BasicJsonType>::value)
{
if (not j.is_array())
{
JSON_THROW(std::domain_error("type must be array, but is " + j.type_name()));
}
}
for (auto it = j.rbegin(), end = j.rend(); it != end; ++it)
{
l.push_front(it->template get<T>());
}
}
template<typename BasicJsonType, typename CompatibleArrayType>
void from_json_array_impl(const BasicJsonType& j, CompatibleArrayType& arr, priority_tag<0>)
{
using std::begin;
using std::end;
std::transform(j.begin(), j.end(),
std::inserter(arr, end(arr)), [](const BasicJsonType & i)
{
// get<BasicJsonType>() returns *this, this won't call a from_json
// method when value_type is BasicJsonType
return i.template get<typename CompatibleArrayType::value_type>();
});
}
template<typename BasicJsonType, typename CompatibleArrayType>
auto from_json_array_impl(const BasicJsonType& j, CompatibleArrayType& arr, priority_tag<1>)
-> decltype(
arr.reserve(std::declval<typename CompatibleArrayType::size_type>()),
void())
{
using std::begin;
using std::end;
arr.reserve(j.size());
std::transform(
j.begin(), j.end(), std::inserter(arr, end(arr)), [](const BasicJsonType & i)
{
// get<BasicJsonType>() returns *this, this won't call a from_json
// method when value_type is BasicJsonType
return i.template get<typename CompatibleArrayType::value_type>();
});
}
template<typename BasicJsonType, typename CompatibleArrayType,
enable_if_t<is_compatible_array_type<BasicJsonType, CompatibleArrayType>::value and
not std::is_same<typename BasicJsonType::array_t, CompatibleArrayType>::value, int> = 0>
void from_json(const BasicJsonType& j, CompatibleArrayType& arr)
{
if (j.is_null())
{
JSON_THROW(std::domain_error("type must be array, but is " + j.type_name()));
}
// when T == BasicJsonType, do not check if value_t is correct
if (not std::is_same<typename CompatibleArrayType::value_type, BasicJsonType>::value)
{
if (not j.is_array())
{
JSON_THROW(std::domain_error("type must be array, but is " + j.type_name()));
}
}
from_json_array_impl(j, arr, priority_tag<1> {});
}
template<typename BasicJsonType, typename CompatibleObjectType,
enable_if_t<is_compatible_object_type<BasicJsonType, CompatibleObjectType>::value, int> = 0>
void from_json(const BasicJsonType& j, CompatibleObjectType& obj)
{
if (not j.is_object())
{
JSON_THROW(std::domain_error("type must be object, but is " + j.type_name()));
}
auto inner_object = j.template get_ptr<const typename BasicJsonType::object_t*>();
using std::begin;
using std::end;
// we could avoid the assignment, but this might require a for loop, which
// might be less efficient than the container constructor for some
// containers (would it?)
obj = CompatibleObjectType(begin(*inner_object), end(*inner_object));
}
// overload for arithmetic types, not chosen for basic_json template arguments
// (BooleanType, etc..); note: Is it really necessary to provide explicit
// overloads for boolean_t etc. in case of a custom BooleanType which is not
// an arithmetic type?
template<typename BasicJsonType, typename ArithmeticType,
enable_if_t <
std::is_arithmetic<ArithmeticType>::value and
not std::is_same<ArithmeticType, typename BasicJsonType::number_unsigned_t>::value and
not std::is_same<ArithmeticType, typename BasicJsonType::number_integer_t>::value and
not std::is_same<ArithmeticType, typename BasicJsonType::number_float_t>::value and
not std::is_same<ArithmeticType, typename BasicJsonType::boolean_t>::value,
int> = 0>
void from_json(const BasicJsonType& j, ArithmeticType& val)
{
switch (static_cast<value_t>(j))
{
case value_t::number_unsigned:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
break;
}
case value_t::number_integer:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
break;
}
case value_t::number_float:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
break;
}
case value_t::boolean:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::boolean_t*>());
break;
}
default:
{
JSON_THROW(std::domain_error("type must be number, but is " + j.type_name()));
}
}
}
struct to_json_fn
{
private:
template<typename BasicJsonType, typename T>
auto call(BasicJsonType& j, T&& val, priority_tag<1>) const noexcept(noexcept(to_json(j, std::forward<T>(val))))
-> decltype(to_json(j, std::forward<T>(val)), void())
{
return to_json(j, std::forward<T>(val));
}
template<typename BasicJsonType, typename T>
void call(BasicJsonType&, T&&, priority_tag<0>) const noexcept
{
static_assert(sizeof(BasicJsonType) == 0,
"could not find to_json() method in T's namespace");
}
public:
static constexpr bool value =
std::is_integral<decltype(detect(std::declval<T>()))>::value;
template<typename BasicJsonType, typename T>
void operator()(BasicJsonType& j, T&& val) const
noexcept(noexcept(std::declval<to_json_fn>().call(j, std::forward<T>(val), priority_tag<1> {})))
{
return call(j, std::forward<T>(val), priority_tag<1> {});
}
};
struct from_json_fn
{
private:
template<typename BasicJsonType, typename T>
auto call(const BasicJsonType& j, T& val, priority_tag<1>) const
noexcept(noexcept(from_json(j, val)))
-> decltype(from_json(j, val), void())
{
return from_json(j, val);
}
template<typename BasicJsonType, typename T>
void call(const BasicJsonType&, T&, priority_tag<0>) const noexcept
{
static_assert(sizeof(BasicJsonType) == 0,
"could not find from_json() method in T's namespace");
}
public:
template<typename BasicJsonType, typename T>
void operator()(const BasicJsonType& j, T& val) const
noexcept(noexcept(std::declval<from_json_fn>().call(j, val, priority_tag<1> {})))
{
return call(j, val, priority_tag<1> {});
}
};
// taken from ranges-v3
template<typename T>
struct static_const
{
static constexpr T value{};
};
template<typename T>
constexpr T static_const<T>::value;
} // namespace detail
/// namespace to hold default `to_json` / `from_json` functions
namespace
{
constexpr const auto& to_json = detail::static_const<detail::to_json_fn>::value;
constexpr const auto& from_json = detail::static_const<detail::from_json_fn>::value;
}
/*!
@brief default JSONSerializer template argument
This serializer ignores the template arguments and uses ADL
([argument-dependent lookup](http://en.cppreference.com/w/cpp/language/adl))
for serialization.
*/
template<typename = void, typename = void>
struct adl_serializer
{
/*!
@brief convert a JSON value to any value type
This function is usually called by the `get()` function of the
@ref basic_json class (either explicit or via conversion operators).
@param[in] j JSON value to read from
@param[in, out] val value to write to
*/
template<typename BasicJsonType, typename ValueType>
static void from_json(BasicJsonType&& j, ValueType& val) noexcept(
noexcept(::nlohmann::from_json(std::forward<BasicJsonType>(j), val)))
{
::nlohmann::from_json(std::forward<BasicJsonType>(j), val);
}
/*!
@brief convert any value type to a JSON value
This function is usually called by the constructors of the @ref basic_json
class.
@param[in, out] j JSON value to write to
@param[in] val value to read from
*/
template<typename BasicJsonType, typename ValueType>
static void to_json(BasicJsonType& j, ValueType&& val) noexcept(
noexcept(::nlohmann::to_json(j, std::forward<ValueType>(val))))
{
::nlohmann::to_json(j, std::forward<ValueType>(val));
}
};
} // namespace
/*!
@brief a class to store JSON values
......@@ -158,6 +962,8 @@ default; will be used in @ref number_integer_t)
default; will be used in @ref number_float_t)
@tparam AllocatorType type of the allocator to use (`std::allocator` by
default)
@tparam JSONSerializer the serializer to resolve internal calls to `to_json()`
and `from_json()` (@ref adl_serializer by default)
@requirement The class satisfies the following concept requirements:
- Basic
......@@ -226,21 +1032,26 @@ template <
class NumberIntegerType = std::int64_t,
class NumberUnsignedType = std::uint64_t,
class NumberFloatType = double,
template<typename U> class AllocatorType = std::allocator
template<typename U> class AllocatorType = std::allocator,
template<typename T, typename SFINAE = void> class JSONSerializer = adl_serializer
>
class basic_json
{
private:
template<detail::value_t> friend struct detail::external_constructor;
/// workaround type for MSVC
using basic_json_t = basic_json<ObjectType, ArrayType, StringType,
BooleanType, NumberIntegerType, NumberUnsignedType, NumberFloatType,
AllocatorType>;
AllocatorType, JSONSerializer>;
public:
using value_t = detail::value_t;
// forward declarations
template<typename U> class iter_impl;
template<typename Base> class json_reverse_iterator;
class json_pointer;
template<typename T, typename SFINAE>
using json_serializer = JSONSerializer<T, SFINAE>;
/////////////////////
// container types //
......@@ -774,59 +1585,18 @@ class basic_json
#### Storage
Floating-point number values are stored directly inside a @ref basic_json
type.
@sa @ref number_integer_t -- type for number values (integer)
@sa @ref number_unsigned_t -- type for number values (unsigned integer)
@since version 1.0.0
*/
using number_float_t = NumberFloatType;
/// @}
///////////////////////////
// JSON type enumeration //
///////////////////////////
/*!
@brief the JSON type enumeration
This enumeration collects the different JSON types. It is internally used
to distinguish the stored values, and the functions @ref is_null(), @ref
is_object(), @ref is_array(), @ref is_string(), @ref is_boolean(), @ref
is_number() (with @ref is_number_integer(), @ref is_number_unsigned(), and
@ref is_number_float()), @ref is_discarded(), @ref is_primitive(), and
@ref is_structured() rely on it.
Floating-point number values are stored directly inside a @ref basic_json
type.
@note There are three enumeration entries (number_integer,
number_unsigned, and number_float), because the library distinguishes
these three types for numbers: @ref number_unsigned_t is used for unsigned
integers, @ref number_integer_t is used for signed integers, and @ref
number_float_t is used for floating-point numbers or to approximate
integers which do not fit in the limits of their respective type.
@sa @ref number_integer_t -- type for number values (integer)
@sa @ref basic_json(const value_t value_type) -- create a JSON value with
the default value for a given type
@sa @ref number_unsigned_t -- type for number values (unsigned integer)
@since version 1.0.0
*/
enum class value_t : uint8_t
{
null, ///< null value
object, ///< object (unordered set of name/value pairs)
array, ///< array (ordered collection of values)
string, ///< string value
boolean, ///< boolean value
number_integer, ///< number value (signed integer)
number_unsigned, ///< number value (unsigned integer)
number_float, ///< number value (floating-point)
discarded ///< discarded by the the parser callback function
};
using number_float_t = NumberFloatType;
/// @}
private:
......@@ -1090,548 +1860,132 @@ class basic_json
// constructors //
//////////////////
/// @name constructors and destructors
/// Constructors of class @ref basic_json, copy/move constructor, copy
/// assignment, static functions creating objects, and the destructor.
/// @{
/*!
@brief create an empty value with a given type
Create an empty JSON value with a given type. The value will be default
initialized with an empty value which depends on the type:
Value type | initial value
----------- | -------------
null | `null`
boolean | `false`
string | `""`
number | `0`
object | `{}`
array | `[]`
@param[in] value_type the type of the value to create
@complexity Constant.
@throw std::bad_alloc if allocation for object, array, or string value
fails
@liveexample{The following code shows the constructor for different @ref
value_t values,basic_json__value_t}
@sa @ref basic_json(std::nullptr_t) -- create a `null` value
@sa @ref basic_json(boolean_t value) -- create a boolean value
@sa @ref basic_json(const string_t&) -- create a string value
@sa @ref basic_json(const object_t&) -- create a object value
@sa @ref basic_json(const array_t&) -- create a array value
@sa @ref basic_json(const number_float_t) -- create a number
(floating-point) value
@sa @ref basic_json(const number_integer_t) -- create a number (integer)
value
@sa @ref basic_json(const number_unsigned_t) -- create a number (unsigned)
value
@since version 1.0.0
*/
basic_json(const value_t value_type)
: m_type(value_type), m_value(value_type)
{
assert_invariant();
}
/*!
@brief create a null object
Create a `null` JSON value. It either takes a null pointer as parameter
(explicitly creating `null`) or no parameter (implicitly creating `null`).
The passed null pointer itself is not read -- it is only used to choose
the right constructor.
@complexity Constant.
@exceptionsafety No-throw guarantee: this constructor never throws
exceptions.
@liveexample{The following code shows the constructor with and without a
null pointer parameter.,basic_json__nullptr_t}
@since version 1.0.0
*/
basic_json(std::nullptr_t = nullptr) noexcept
: basic_json(value_t::null)
{
assert_invariant();
}
/*!
@brief create an object (explicit)
Create an object JSON value with a given content.
@param[in] val a value for the object
@complexity Linear in the size of the passed @a val.
@throw std::bad_alloc if allocation for object value fails
@liveexample{The following code shows the constructor with an @ref
object_t parameter.,basic_json__object_t}
@sa @ref basic_json(const CompatibleObjectType&) -- create an object value
from a compatible STL container
@since version 1.0.0
*/
basic_json(const object_t& val)
: m_type(value_t::object), m_value(val)
{
assert_invariant();
}
/*!
@brief create an object (implicit)
Create an object JSON value with a given content. This constructor allows
any type @a CompatibleObjectType that can be used to construct values of
type @ref object_t.
@tparam CompatibleObjectType An object type whose `key_type` and
`value_type` is compatible to @ref object_t. Examples include `std::map`,
`std::unordered_map`, `std::multimap`, and `std::unordered_multimap` with
a `key_type` of `std::string`, and a `value_type` from which a @ref
basic_json value can be constructed.
@param[in] val a value for the object
@complexity Linear in the size of the passed @a val.
@throw std::bad_alloc if allocation for object value fails
@liveexample{The following code shows the constructor with several
compatible object type parameters.,basic_json__CompatibleObjectType}
@sa @ref basic_json(const object_t&) -- create an object value
@since version 1.0.0
*/
template<class CompatibleObjectType, typename std::enable_if<
std::is_constructible<typename object_t::key_type, typename CompatibleObjectType::key_type>::value and
std::is_constructible<basic_json, typename CompatibleObjectType::mapped_type>::value, int>::type = 0>
basic_json(const CompatibleObjectType& val)
: m_type(value_t::object)
{
using std::begin;
using std::end;
m_value.object = create<object_t>(begin(val), end(val));
assert_invariant();
}
/*!
@brief create an array (explicit)
Create an array JSON value with a given content.
@param[in] val a value for the array
@complexity Linear in the size of the passed @a val.
@throw std::bad_alloc if allocation for array value fails
@liveexample{The following code shows the constructor with an @ref array_t
parameter.,basic_json__array_t}
@sa @ref basic_json(const CompatibleArrayType&) -- create an array value
from a compatible STL containers
@since version 1.0.0
*/
basic_json(const array_t& val)
: m_type(value_t::array), m_value(val)
{
assert_invariant();
}
/*!
@brief create an array (implicit)
Create an array JSON value with a given content. This constructor allows
any type @a CompatibleArrayType that can be used to construct values of
type @ref array_t.
@tparam CompatibleArrayType An object type whose `value_type` is
compatible to @ref array_t. Examples include `std::vector`, `std::deque`,
`std::list`, `std::forward_list`, `std::array`, `std::set`,
`std::unordered_set`, `std::multiset`, and `unordered_multiset` with a
`value_type` from which a @ref basic_json value can be constructed.
@param[in] val a value for the array
@complexity Linear in the size of the passed @a val.
@throw std::bad_alloc if allocation for array value fails
@liveexample{The following code shows the constructor with several
compatible array type parameters.,basic_json__CompatibleArrayType}
@sa @ref basic_json(const array_t&) -- create an array value
@since version 1.0.0
*/
template<class CompatibleArrayType, typename std::enable_if<
not std::is_same<CompatibleArrayType, typename basic_json_t::iterator>::value and
not std::is_same<CompatibleArrayType, typename basic_json_t::const_iterator>::value and
not std::is_same<CompatibleArrayType, typename basic_json_t::reverse_iterator>::value and
not std::is_same<CompatibleArrayType, typename basic_json_t::const_reverse_iterator>::value and
not std::is_same<CompatibleArrayType, typename array_t::iterator>::value and
not std::is_same<CompatibleArrayType, typename array_t::const_iterator>::value and
std::is_constructible<basic_json, typename CompatibleArrayType::value_type>::value, int>::type = 0>
basic_json(const CompatibleArrayType& val)
: m_type(value_t::array)
{
using std::begin;
using std::end;
m_value.array = create<array_t>(begin(val), end(val));
assert_invariant();
}
/*!
@brief create a string (explicit)
Create an string JSON value with a given content.
@param[in] val a value for the string
@complexity Linear in the size of the passed @a val.
@throw std::bad_alloc if allocation for string value fails
@liveexample{The following code shows the constructor with an @ref
string_t parameter.,basic_json__string_t}
@sa @ref basic_json(const typename string_t::value_type*) -- create a
string value from a character pointer
@sa @ref basic_json(const CompatibleStringType&) -- create a string value
from a compatible string container
@since version 1.0.0
*/
basic_json(const string_t& val)
: m_type(value_t::string), m_value(val)
{
assert_invariant();
}
/*!
@brief create a string (explicit)
Create a string JSON value with a given content.
@param[in] val a literal value for the string
@complexity Linear in the size of the passed @a val.
@throw std::bad_alloc if allocation for string value fails
@liveexample{The following code shows the constructor with string literal
parameter.,basic_json__string_t_value_type}
@sa @ref basic_json(const string_t&) -- create a string value
@sa @ref basic_json(const CompatibleStringType&) -- create a string value
from a compatible string container
@since version 1.0.0
*/
basic_json(const typename string_t::value_type* val)
: basic_json(string_t(val))
{
assert_invariant();
}
/*!
@brief create a string (implicit)
Create a string JSON value with a given content.
@param[in] val a value for the string
@tparam CompatibleStringType an string type which is compatible to @ref
string_t, for instance `std::string`.
@complexity Linear in the size of the passed @a val.
@throw std::bad_alloc if allocation for string value fails
@liveexample{The following code shows the construction of a string value
from a compatible type.,basic_json__CompatibleStringType}
@sa @ref basic_json(const string_t&) -- create a string value
@sa @ref basic_json(const typename string_t::value_type*) -- create a
string value from a character pointer
@since version 1.0.0
*/
template<class CompatibleStringType, typename std::enable_if<
std::is_constructible<string_t, CompatibleStringType>::value, int>::type = 0>
basic_json(const CompatibleStringType& val)
: basic_json(string_t(val))
{
assert_invariant();
}
/*!
@brief create a boolean (explicit)
Creates a JSON boolean type from a given value.
@param[in] val a boolean value to store
@complexity Constant.
@liveexample{The example below demonstrates boolean
values.,basic_json__boolean_t}
@since version 1.0.0
*/
basic_json(boolean_t val) noexcept
: m_type(value_t::boolean), m_value(val)
{
assert_invariant();
}
/*!
@brief create an integer number (explicit)
Create an integer number JSON value with a given content.
@tparam T A helper type to remove this function via SFINAE in case @ref
number_integer_t is the same as `int`. In this case, this constructor
would have the same signature as @ref basic_json(const int value). Note
the helper type @a T is not visible in this constructor's interface.
@param[in] val an integer to create a JSON number from
@complexity Constant.
@liveexample{The example below shows the construction of an integer
number value.,basic_json__number_integer_t}
@sa @ref basic_json(const int) -- create a number value (integer)
@sa @ref basic_json(const CompatibleNumberIntegerType) -- create a number
value (integer) from a compatible number type
@since version 1.0.0
*/
template<typename T, typename std::enable_if<
not (std::is_same<T, int>::value) and
std::is_same<T, number_integer_t>::value, int>::type = 0>
basic_json(const number_integer_t val) noexcept
: m_type(value_t::number_integer), m_value(val)
{
assert_invariant();
}
/*!
@brief create an integer number from an enum type (explicit)
Create an integer number JSON value with a given content.
@param[in] val an integer to create a JSON number from
@note This constructor allows to pass enums directly to a constructor. As
C++ has no way of specifying the type of an anonymous enum explicitly, we
can only rely on the fact that such values implicitly convert to int. As
int may already be the same type of number_integer_t, we may need to
switch off the constructor @ref basic_json(const number_integer_t).
@complexity Constant.
@liveexample{The example below shows the construction of an integer
number value from an anonymous enum.,basic_json__const_int}
@sa @ref basic_json(const number_integer_t) -- create a number value
(integer)
@sa @ref basic_json(const CompatibleNumberIntegerType) -- create a number
value (integer) from a compatible number type
@since version 1.0.0
*/
basic_json(const int val) noexcept
: m_type(value_t::number_integer),
m_value(static_cast<number_integer_t>(val))
{
assert_invariant();
}
/*!
@brief create an integer number (implicit)
Create an integer number JSON value with a given content. This constructor
allows any type @a CompatibleNumberIntegerType that can be used to
construct values of type @ref number_integer_t.
@tparam CompatibleNumberIntegerType An integer type which is compatible to
@ref number_integer_t. Examples include the types `int`, `int32_t`,
`long`, and `short`.
@param[in] val an integer to create a JSON number from
@complexity Constant.
@liveexample{The example below shows the construction of several integer
number values from compatible
types.,basic_json__CompatibleIntegerNumberType}
@sa @ref basic_json(const number_integer_t) -- create a number value
(integer)
@sa @ref basic_json(const int) -- create a number value (integer)
@since version 1.0.0
*/
template<typename CompatibleNumberIntegerType, typename std::enable_if<
std::is_constructible<number_integer_t, CompatibleNumberIntegerType>::value and
std::numeric_limits<CompatibleNumberIntegerType>::is_integer and
std::numeric_limits<CompatibleNumberIntegerType>::is_signed,
CompatibleNumberIntegerType>::type = 0>
basic_json(const CompatibleNumberIntegerType val) noexcept
: m_type(value_t::number_integer),
m_value(static_cast<number_integer_t>(val))
{
assert_invariant();
}
/*!
@brief create an unsigned integer number (explicit)
Create an unsigned integer number JSON value with a given content.
@tparam T helper type to compare number_unsigned_t and unsigned int (not
visible in) the interface.
@param[in] val an integer to create a JSON number from
@complexity Constant.
@sa @ref basic_json(const CompatibleNumberUnsignedType) -- create a number
value (unsigned integer) from a compatible number type
@since version 2.0.0
*/
template<typename T, typename std::enable_if<
not (std::is_same<T, int>::value) and
std::is_same<T, number_unsigned_t>::value, int>::type = 0>
basic_json(const number_unsigned_t val) noexcept
: m_type(value_t::number_unsigned), m_value(val)
{
assert_invariant();
}
/// @name constructors and destructors
/// Constructors of class @ref basic_json, copy/move constructor, copy
/// assignment, static functions creating objects, and the destructor.
/// @{
/*!
@brief create an unsigned number (implicit)
@brief create an empty value with a given type
Create an unsigned number JSON value with a given content. This
constructor allows any type @a CompatibleNumberUnsignedType that can be
used to construct values of type @ref number_unsigned_t.
Create an empty JSON value with a given type. The value will be default
initialized with an empty value which depends on the type:
@tparam CompatibleNumberUnsignedType An integer type which is compatible
to @ref number_unsigned_t. Examples may include the types `unsigned int`,
`uint32_t`, or `unsigned short`.
Value type | initial value
----------- | -------------
null | `null`
boolean | `false`
string | `""`
number | `0`
object | `{}`
array | `[]`
@param[in] val an unsigned integer to create a JSON number from
@param[in] value_type the type of the value to create
@complexity Constant.
@sa @ref basic_json(const number_unsigned_t) -- create a number value
(unsigned)
@throw std::bad_alloc if allocation for object, array, or string value
fails
@since version 2.0.0
@liveexample{The following code shows the constructor for different @ref
value_t values,basic_json__value_t}
@since version 1.0.0
*/
template<typename CompatibleNumberUnsignedType, typename std::enable_if <
std::is_constructible<number_unsigned_t, CompatibleNumberUnsignedType>::value and
std::numeric_limits<CompatibleNumberUnsignedType>::is_integer and
not std::numeric_limits<CompatibleNumberUnsignedType>::is_signed,
CompatibleNumberUnsignedType>::type = 0>
basic_json(const CompatibleNumberUnsignedType val) noexcept
: m_type(value_t::number_unsigned),
m_value(static_cast<number_unsigned_t>(val))
basic_json(const value_t value_type)
: m_type(value_type), m_value(value_type)
{
assert_invariant();
}
/*!
@brief create a floating-point number (explicit)
Create a floating-point number JSON value with a given content.
@param[in] val a floating-point value to create a JSON number from
@brief create a null object
@note [RFC 7159](http://www.rfc-editor.org/rfc/rfc7159.txt), section 6
disallows NaN values:
> Numeric values that cannot be represented in the grammar below (such as
> Infinity and NaN) are not permitted.
In case the parameter @a val is not a number, a JSON null value is created
instead.
Create a `null` JSON value. It either takes a null pointer as parameter
(explicitly creating `null`) or no parameter (implicitly creating `null`).
The passed null pointer itself is not read -- it is only used to choose
the right constructor.
@complexity Constant.
@liveexample{The following example creates several floating-point
values.,basic_json__number_float_t}
@exceptionsafety No-throw guarantee: this constructor never throws
exceptions.
@sa @ref basic_json(const CompatibleNumberFloatType) -- create a number
value (floating-point) from a compatible number type
@liveexample{The following code shows the constructor with and without a
null pointer parameter.,basic_json__nullptr_t}
@since version 1.0.0
*/
basic_json(const number_float_t val) noexcept
: m_type(value_t::number_float), m_value(val)
{
// replace infinity and NAN by null
if (not std::isfinite(val))
basic_json(std::nullptr_t = nullptr) noexcept
: basic_json(value_t::null)
{
m_type = value_t::null;
m_value = json_value();
}
assert_invariant();
}
/*!
@brief create an floating-point number (implicit)
@brief create a JSON value
Create an floating-point number JSON value with a given content. This
constructor allows any type @a CompatibleNumberFloatType that can be used
to construct values of type @ref number_float_t.
This is a "catch all" constructor for all compatible JSON types; that is,
types for which a `to_json()` method exsits. The constructor forwards the
parameter @a val to that method (to `json_serializer<U>::to_json` method
with `U = uncvref_t<CompatibleType>`, to be exact).
@tparam CompatibleNumberFloatType A floating-point type which is
compatible to @ref number_float_t. Examples may include the types `float`
or `double`.
Template type @a CompatibleType includes, but is not limited to, the
following types:
- **arrays**: @ref array_t and all kinds of compatible containers such as
`std::vector`, `std::deque`, `std::list`, `std::forward_list`,
`std::array`, `std::set`, `std::unordered_set`, `std::multiset`, and
`unordered_multiset` with a `value_type` from which a @ref basic_json
value can be constructed.
- **objects**: @ref object_t and all kinds of compatible associative
containers such as `std::map`, `std::unordered_map`, `std::multimap`,
and `std::unordered_multimap` with a `key_type` compatible to
@ref string_t and a `value_type` from which a @ref basic_json value can
be constructed.
- **strings**: @ref string_t, string literals, and all compatible string
containers can be used.
- **numbers**: @ref number_integer_t, @ref number_unsigned_t,
@ref number_float_t, and all convertible number types such as `int`,
`size_t`, `int64_t`, `float` or `double` can be used.
- **boolean**: @ref boolean_t / `bool` can be used.
@param[in] val a floating-point to create a JSON number from
See the examples below.
@note [RFC 7159](http://www.rfc-editor.org/rfc/rfc7159.txt), section 6
disallows NaN values:
> Numeric values that cannot be represented in the grammar below (such as
> Infinity and NaN) are not permitted.
In case the parameter @a val is not a number, a JSON null value is
created instead.
@tparam CompatibleType a type such that:
- @a CompatibleType is not derived from `std::istream`,
- @a CompatibleType is not @ref basic_json (to avoid hijacking copy/move
constructors),
- @a CompatibleType is not a @ref basic_json nested type (e.g.,
@ref json_pointer, @ref iterator, etc ...)
- @ref @ref json_serializer<U> has a
`to_json(basic_json_t&, CompatibleType&&)` method
@complexity Constant.
@tparam U = `uncvref_t<CompatibleType>`
@liveexample{The example below shows the construction of several
floating-point number values from compatible
types.,basic_json__CompatibleNumberFloatType}
@param[in] val the value to be forwarded
@sa @ref basic_json(const number_float_t) -- create a number value
(floating-point)
@complexity Usually linear in the size of the passed @a val, also
depending on the implementation of the called `to_json()`
method.
@since version 1.0.0
@throw what `json_serializer<U>::to_json()` throws
@liveexample{The following code shows the constructor with several
compatible types.,basic_json__CompatibleType}
@since version 2.1.0
*/
template<typename CompatibleNumberFloatType, typename = typename std::enable_if<
std::is_constructible<number_float_t, CompatibleNumberFloatType>::value and
std::is_floating_point<CompatibleNumberFloatType>::value>::type>
basic_json(const CompatibleNumberFloatType val) noexcept
: basic_json(number_float_t(val))
template<typename CompatibleType, typename U = detail::uncvref_t<CompatibleType>,
detail::enable_if_t<not std::is_base_of<std::istream, U>::value and
not std::is_same<U, basic_json_t>::value and
not detail::is_basic_json_nested_type<
basic_json_t, U>::value and
detail::has_to_json<basic_json, U>::value,
int> = 0>
basic_json(CompatibleType && val) noexcept(noexcept(JSONSerializer<U>::to_json(
std::declval<basic_json_t&>(), std::forward<CompatibleType>(val))))
{
JSONSerializer<U>::to_json(*this, std::forward<CompatibleType>(val));
assert_invariant();
}
......@@ -2655,142 +3009,6 @@ class basic_json
// value access //
//////////////////
/// get an object (explicit)
template<class T, typename std::enable_if<
std::is_convertible<typename object_t::key_type, typename T::key_type>::value and
std::is_convertible<basic_json_t, typename T::mapped_type>::value, int>::type = 0>
T get_impl(T* /*unused*/) const
{
if (is_object())
{
return T(m_value.object->begin(), m_value.object->end());
}
JSON_THROW(std::domain_error("type must be object, but is " + type_name()));
}
/// get an object (explicit)
object_t get_impl(object_t* /*unused*/) const
{
if (is_object())
{
return *(m_value.object);
}
JSON_THROW(std::domain_error("type must be object, but is " + type_name()));
}
/// get an array (explicit)
template<class T, typename std::enable_if<
std::is_convertible<basic_json_t, typename T::value_type>::value and
not std::is_same<basic_json_t, typename T::value_type>::value and
not std::is_arithmetic<T>::value and
not std::is_convertible<std::string, T>::value and
not has_mapped_type<T>::value, int>::type = 0>
T get_impl(T* /*unused*/) const
{
if (is_array())
{
T to_vector;
std::transform(m_value.array->begin(), m_value.array->end(),
std::inserter(to_vector, to_vector.end()), [](basic_json i)
{
return i.get<typename T::value_type>();
});
return to_vector;
}
JSON_THROW(std::domain_error("type must be array, but is " + type_name()));
}
/// get an array (explicit)
template<class T, typename std::enable_if<
std::is_convertible<basic_json_t, T>::value and
not std::is_same<basic_json_t, T>::value, int>::type = 0>
std::vector<T> get_impl(std::vector<T>* /*unused*/) const
{
if (is_array())
{
std::vector<T> to_vector;
to_vector.reserve(m_value.array->size());
std::transform(m_value.array->begin(), m_value.array->end(),
std::inserter(to_vector, to_vector.end()), [](basic_json i)
{
return i.get<T>();
});
return to_vector;
}
JSON_THROW(std::domain_error("type must be array, but is " + type_name()));
}
/// get an array (explicit)
template<class T, typename std::enable_if<
std::is_same<basic_json, typename T::value_type>::value and
not has_mapped_type<T>::value, int>::type = 0>
T get_impl(T* /*unused*/) const
{
if (is_array())
{
return T(m_value.array->begin(), m_value.array->end());
}
JSON_THROW(std::domain_error("type must be array, but is " + type_name()));
}
/// get an array (explicit)
array_t get_impl(array_t* /*unused*/) const
{
if (is_array())
{
return *(m_value.array);
}
JSON_THROW(std::domain_error("type must be array, but is " + type_name()));
}
/// get a string (explicit)
template<typename T, typename std::enable_if<
std::is_convertible<string_t, T>::value, int>::type = 0>
T get_impl(T* /*unused*/) const
{
if (is_string())
{
return *m_value.string;
}
JSON_THROW(std::domain_error("type must be string, but is " + type_name()));
}
/// get a number (explicit)
template<typename T, typename std::enable_if<
std::is_arithmetic<T>::value, int>::type = 0>
T get_impl(T* /*unused*/) const
{
switch (m_type)
{
case value_t::number_integer:
{
return static_cast<T>(m_value.number_integer);
}
case value_t::number_unsigned:
{
return static_cast<T>(m_value.number_unsigned);
}
case value_t::number_float:
{
return static_cast<T>(m_value.number_float);
}
default:
{
JSON_THROW(std::domain_error("type must be number, but is " + type_name()));
}
}
}
/// get a boolean (explicit)
boolean_t get_impl(boolean_t* /*unused*/) const
{
......@@ -2918,26 +3136,63 @@ class basic_json
}
public:
/// @name value access
/// Direct access to the stored value of a JSON value.
/// @{
/*!
@brief get special-case overload
This overloads avoids a lot of template boilerplate, it can be seen as the
identity method
@tparam BasicJsonType == @ref basic_json
@return a copy of *this
@complexity Constant.
@since version 2.1.0
*/
template <
typename BasicJsonType,
detail::enable_if_t<std::is_same<typename std::remove_const<BasicJsonType>::type,
basic_json_t>::value,
int> = 0 >
basic_json get() const
{
return *this;
}
/*!
@brief get a value (explicit)
Explicit type conversion between the JSON value and a compatible value.
Explicit type conversion between the JSON value and a compatible value
which is [CopyConstructible](http://en.cppreference.com/w/cpp/concept/CopyConstructible)
and [DefaultConstructible](http://en.cppreference.com/w/cpp/concept/DefaultConstructible).
The value is converted by calling the @ref json_serializer<ValueType>
`from_json()` method.
@tparam ValueType non-pointer type compatible to the JSON value, for
instance `int` for JSON integer numbers, `bool` for JSON booleans, or
`std::vector` types for JSON arrays
The function is equivalent to executing
@code {.cpp}
ValueType ret;
JSONSerializer<ValueType>::from_json(*this, ret);
return ret;
@endcode
@return copy of the JSON value, converted to type @a ValueType
This overloads is chosen if:
- @a ValueType is not @ref basic_json,
- @ref json_serializer<ValueType> has a `from_json()` method of the form
`void from_json(const @ref basic_json&, ValueType&)`, and
- @ref json_serializer<ValueType> does not have a `from_json()` method of
the form `ValueType from_json(const @ref basic_json&)`
@throw std::domain_error in case passed type @a ValueType is incompatible
to JSON; example: `"type must be object, but is null"`
@tparam ValueTypeCV the provided value type
@tparam ValueType the returned value type
@complexity Linear in the size of the JSON value.
@return copy of the JSON value, converted to @a ValueType
@throw what @ref json_serializer<ValueType> `from_json()` method throws
@liveexample{The example below shows several conversions from JSON values
to other types. There a few things to note: (1) Floating-point numbers can
......@@ -2946,21 +3201,75 @@ class basic_json
associative containers such as `std::unordered_map<std::string\,
json>`.,get__ValueType_const}
@internal
The idea of using a casted null pointer to choose the correct
implementation is from <http://stackoverflow.com/a/8315197/266378>.
@endinternal
@since version 2.1.0
*/
template <
typename ValueTypeCV,
typename ValueType = detail::uncvref_t<ValueTypeCV>,
detail::enable_if_t <
not std::is_same<basic_json_t, ValueType>::value and
detail::has_from_json<basic_json_t, ValueType>::value and
not detail::has_non_default_from_json<basic_json_t, ValueType>::value,
int > = 0 >
ValueType get() const noexcept(noexcept(
JSONSerializer<ValueType>::from_json(std::declval<const basic_json_t&>(), std::declval<ValueType&>())))
{
// we cannot static_assert on ValueTypeCV being non-const, because
// there is support for get<const basic_json_t>(), which is why we
// still need the uncvref
static_assert(not std::is_reference<ValueTypeCV>::value,
"get() cannot be used with reference types, you might want to use get_ref()");
static_assert(std::is_default_constructible<ValueType>::value,
"types must be DefaultConstructible when used with get()");
ValueType ret;
JSONSerializer<ValueType>::from_json(*this, ret);
return ret;
}
/*!
@brief get a value (explicit); special case
@sa @ref operator ValueType() const for implicit conversion
@sa @ref get() for pointer-member access
Explicit type conversion between the JSON value and a compatible value
which is **not** [CopyConstructible](http://en.cppreference.com/w/cpp/concept/CopyConstructible)
and **not** [DefaultConstructible](http://en.cppreference.com/w/cpp/concept/DefaultConstructible).
The value is converted by calling the @ref json_serializer<ValueType>
`from_json()` method.
@since version 1.0.0
The function is equivalent to executing
@code {.cpp}
return JSONSerializer<ValueTypeCV>::from_json(*this);
@endcode
This overloads is chosen if:
- @a ValueType is not @ref basic_json and
- @ref json_serializer<ValueType> has a `from_json()` method of the form
`ValueType from_json(const @ref basic_json&)`
@note If @ref json_serializer<ValueType> has both overloads of
`from_json()`, this one is chosen.
@tparam ValueTypeCV the provided value type
@tparam ValueType the returned value type
@return copy of the JSON value, converted to @a ValueType
@throw what @ref json_serializer<ValueType> `from_json()` method throws
@since version 2.1.0
*/
template<typename ValueType, typename std::enable_if<
not std::is_pointer<ValueType>::value, int>::type = 0>
ValueType get() const
template <
typename ValueTypeCV,
typename ValueType = detail::uncvref_t<ValueTypeCV>,
detail::enable_if_t<not std::is_same<basic_json_t, ValueType>::value and
detail::has_non_default_from_json<basic_json_t,
ValueType>::value, int> = 0 >
ValueType get() const noexcept(noexcept(
JSONSerializer<ValueTypeCV>::from_json(std::declval<const basic_json_t&>())))
{
return get_impl(static_cast<ValueType*>(nullptr));
static_assert(not std::is_reference<ValueTypeCV>::value,
"get() cannot be used with reference types, you might want to use get_ref()");
return JSONSerializer<ValueTypeCV>::from_json(*this);
}
/*!
......@@ -5528,7 +5837,7 @@ class basic_json
/// @}
public:
//////////////////////////////////////////
// lexicographical comparison operators //
//////////////////////////////////////////
......@@ -5536,40 +5845,6 @@ class basic_json
/// @name lexicographical comparison operators
/// @{
private:
/*!
@brief comparison operator for JSON types
Returns an ordering that is similar to Python:
- order: null < boolean < number < object < array < string
- furthermore, each type is not smaller than itself
@since version 1.0.0
*/
friend bool operator<(const value_t lhs, const value_t rhs) noexcept
{
static constexpr std::array<uint8_t, 8> order = {{
0, // null
3, // object
4, // array
5, // string
1, // boolean
2, // integer
2, // unsigned
2, // float
}
};
// discarded values are not comparable
if (lhs == value_t::discarded or rhs == value_t::discarded)
{
return false;
}
return order[static_cast<std::size_t>(lhs)] < order[static_cast<std::size_t>(rhs)];
}
public:
/*!
@brief comparison: equal
......@@ -7782,11 +8057,12 @@ class basic_json
@complexity Constant.
@liveexample{The following code exemplifies `type_name()` for all JSON
types.,typename}
types.,type_name}
@since version 1.0.0
*/
std::string type_name() const
{
{
switch (m_type)
{
......@@ -7806,6 +8082,7 @@ class basic_json
return "number";
}
}
}
private:
/*!
......@@ -8155,6 +8432,11 @@ class basic_json
class primitive_iterator_t
{
public:
difference_type get_value() const noexcept
{
return m_it;
}
/// set iterator to a defined beginning
void set_begin() noexcept
{
......@@ -8179,16 +8461,87 @@ class basic_json
return (m_it == end_value);
}
/// return reference to the value to change and compare
operator difference_type& () noexcept
friend constexpr bool operator==(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
{
return m_it;
return lhs.m_it == rhs.m_it;
}
/// return value to compare
constexpr operator difference_type () const noexcept
friend constexpr bool operator!=(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
{
return m_it;
return !(lhs == rhs);
}
friend constexpr bool operator<(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
{
return lhs.m_it < rhs.m_it;
}
friend constexpr bool operator<=(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
{
return lhs.m_it <= rhs.m_it;
}
friend constexpr bool operator>(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
{
return lhs.m_it > rhs.m_it;
}
friend constexpr bool operator>=(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
{
return lhs.m_it >= rhs.m_it;
}
primitive_iterator_t operator+(difference_type i)
{
auto result = *this;
result += i;
return result;
}
friend constexpr difference_type operator-(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
{
return lhs.m_it - rhs.m_it;
}
friend std::ostream& operator<<(std::ostream& os, primitive_iterator_t it)
{
return os << it.m_it;
}
primitive_iterator_t& operator++()
{
++m_it;
return *this;
}
primitive_iterator_t& operator++(int)
{
m_it++;
return *this;
}
primitive_iterator_t& operator--()
{
--m_it;
return *this;
}
primitive_iterator_t& operator--(int)
{
m_it--;
return *this;
}
primitive_iterator_t& operator+=(difference_type n)
{
m_it += n;
return *this;
}
primitive_iterator_t& operator-=(difference_type n)
{
m_it -= n;
return *this;
}
private:
......@@ -8893,7 +9246,7 @@ class basic_json
default:
{
if (m_it.primitive_iterator == -n)
if (m_it.primitive_iterator.get_value() == -n)
{
return *m_object;
}
......@@ -10572,7 +10925,7 @@ basic_json_parser_66:
for (; curptr < m_cursor; curptr++)
{
// quickly skip tests if a digit
if (*curptr < '0' || *curptr > '9')
if (*curptr < '0' or* curptr > '9')
{
if (*curptr == '.')
{
......@@ -11546,6 +11899,18 @@ basic_json_parser_66:
}
private:
friend bool operator==(json_pointer const& lhs,
json_pointer const& rhs) noexcept
{
return lhs.reference_tokens == rhs.reference_tokens;
}
friend bool operator!=(json_pointer const& lhs,
json_pointer const& rhs) noexcept
{
return !(lhs == rhs);
}
/// the reference tokens
std::vector<std::string> reference_tokens {};
};
......@@ -12206,7 +12571,6 @@ basic_json_parser_66:
/// @}
};
/////////////
// presets //
/////////////
......
......@@ -39,6 +39,7 @@ SOFTWARE.
#include <cstdint> // int64_t, uint64_t
#include <cstdlib> // strtod, strtof, strtold, strtoul
#include <cstring> // strlen
#include <forward_list> // forward_list
#include <functional> // function, hash, less
#include <initializer_list> // initializer_list
#include <iomanip> // setw
......@@ -107,37 +108,840 @@ SOFTWARE.
namespace nlohmann
{
/*!
@brief unnamed namespace with internal helper functions
This namespace collects some functions that could not be defined inside the
@ref basic_json class.
@since version 2.1.0
*/
namespace detail
{
///////////////////////////
// JSON type enumeration //
///////////////////////////
/*!
@brief the JSON type enumeration
This enumeration collects the different JSON types. It is internally used to
distinguish the stored values, and the functions @ref basic_json::is_null(),
@ref basic_json::is_object(), @ref basic_json::is_array(),
@ref basic_json::is_string(), @ref basic_json::is_boolean(),
@ref basic_json::is_number() (with @ref basic_json::is_number_integer(),
@ref basic_json::is_number_unsigned(), and @ref basic_json::is_number_float()),
@ref basic_json::is_discarded(), @ref basic_json::is_primitive(), and
@ref basic_json::is_structured() rely on it.
@note There are three enumeration entries (number_integer, number_unsigned, and
number_float), because the library distinguishes these three types for numbers:
@ref basic_json::number_unsigned_t is used for unsigned integers,
@ref basic_json::number_integer_t is used for signed integers, and
@ref basic_json::number_float_t is used for floating-point numbers or to
approximate integers which do not fit in the limits of their respective type.
@sa @ref basic_json::basic_json(const value_t value_type) -- create a JSON
value with the default value for a given type
@since version 1.0.0
*/
namespace
enum class value_t : uint8_t
{
null, ///< null value
object, ///< object (unordered set of name/value pairs)
array, ///< array (ordered collection of values)
string, ///< string value
boolean, ///< boolean value
number_integer, ///< number value (signed integer)
number_unsigned, ///< number value (unsigned integer)
number_float, ///< number value (floating-point)
discarded ///< discarded by the the parser callback function
};
/*!
@brief comparison operator for JSON types
Returns an ordering that is similar to Python:
- order: null < boolean < number < object < array < string
- furthermore, each type is not smaller than itself
@since version 1.0.0
*/
inline bool operator<(const value_t lhs, const value_t rhs) noexcept
{
static constexpr std::array<uint8_t, 8> order = {{
0, // null
3, // object
4, // array
5, // string
1, // boolean
2, // integer
2, // unsigned
2, // float
}
};
// discarded values are not comparable
if (lhs == value_t::discarded or rhs == value_t::discarded)
{
return false;
}
return order[static_cast<std::size_t>(lhs)] <
order[static_cast<std::size_t>(rhs)];
}
/////////////
// helpers //
/////////////
// alias templates to reduce boilerplate
template<bool B, typename T = void>
using enable_if_t = typename std::enable_if<B, T>::type;
template<typename T>
using uncvref_t = typename std::remove_cv<typename std::remove_reference<T>::type>::type;
// taken from http://stackoverflow.com/a/26936864/266378
template<typename T>
using is_unscoped_enum =
std::integral_constant<bool, std::is_convertible<T, int>::value and
std::is_enum<T>::value>;
/*
Implementation of two C++17 constructs: conjunction, negation. This is needed
to avoid evaluating all the traits in a condition
For example: not std::is_same<void, T>::value and has_value_type<T>::value
will not compile when T = void (on MSVC at least). Whereas
conjunction<negation<std::is_same<void, T>>, has_value_type<T>>::value will
stop evaluating if negation<...>::value == false
Please note that those constructs must be used with caution, since symbols can
become very long quickly (which can slow down compilation and cause MSVC
internal compiler errors). Only use it when you have to (see example ahead).
*/
template<class...> struct conjunction : std::true_type {};
template<class B1> struct conjunction<B1> : B1 {};
template<class B1, class... Bn>
struct conjunction<B1, Bn...> : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
template<class B> struct negation : std::integral_constant < bool, !B::value > {};
// dispatch utility (taken from ranges-v3)
template<unsigned N> struct priority_tag : priority_tag < N - 1 > {};
template<> struct priority_tag<0> {};
//////////////////
// constructors //
//////////////////
template<value_t> struct external_constructor;
template<>
struct external_constructor<value_t::boolean>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::boolean_t b) noexcept
{
j.m_type = value_t::boolean;
j.m_value = b;
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::string>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, const typename BasicJsonType::string_t& s)
{
j.m_type = value_t::string;
j.m_value = s;
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::number_float>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::number_float_t val) noexcept
{
// replace infinity and NAN by null
if (not std::isfinite(val))
{
j = BasicJsonType{};
}
else
{
j.m_type = value_t::number_float;
j.m_value = val;
}
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::number_unsigned>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::number_unsigned_t val) noexcept
{
j.m_type = value_t::number_unsigned;
j.m_value = val;
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::number_integer>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::number_integer_t val) noexcept
{
j.m_type = value_t::number_integer;
j.m_value = val;
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::array>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, const typename BasicJsonType::array_t& arr)
{
j.m_type = value_t::array;
j.m_value = arr;
j.assert_invariant();
}
template<typename BasicJsonType, typename CompatibleArrayType,
enable_if_t<not std::is_same<CompatibleArrayType,
typename BasicJsonType::array_t>::value,
int> = 0>
static void construct(BasicJsonType& j, const CompatibleArrayType& arr)
{
using std::begin;
using std::end;
j.m_type = value_t::array;
j.m_value.array = j.template create<typename BasicJsonType::array_t>(begin(arr), end(arr));
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::object>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, const typename BasicJsonType::object_t& obj)
{
j.m_type = value_t::object;
j.m_value = obj;
j.assert_invariant();
}
template<typename BasicJsonType, typename CompatibleObjectType,
enable_if_t<not std::is_same<CompatibleObjectType,
typename BasicJsonType::object_t>::value,
int> = 0>
static void construct(BasicJsonType& j, const CompatibleObjectType& obj)
{
using std::begin;
using std::end;
j.m_type = value_t::object;
j.m_value.object = j.template create<typename BasicJsonType::object_t>(begin(obj), end(obj));
j.assert_invariant();
}
};
////////////////////////
// has_/is_ functions //
////////////////////////
/*!
@brief Helper to determine whether there's a key_type for T.
Thus helper is used to tell associative containers apart from other containers
This helper is used to tell associative containers apart from other containers
such as sequence containers. For instance, `std::map` passes the test as it
contains a `mapped_type`, whereas `std::vector` fails the test.
@sa http://stackoverflow.com/a/7728728/266378
@since version 1.0.0, overworked in version 2.0.6
*/
template<typename T>
struct has_mapped_type
#define NLOHMANN_JSON_HAS_HELPER(type) \
template<typename T> struct has_##type { \
private: \
template<typename U, typename = typename U::type> \
static int detect(U &&); \
static void detect(...); \
public: \
static constexpr bool value = \
std::is_integral<decltype(detect(std::declval<T>()))>::value; \
}
NLOHMANN_JSON_HAS_HELPER(mapped_type);
NLOHMANN_JSON_HAS_HELPER(key_type);
NLOHMANN_JSON_HAS_HELPER(value_type);
NLOHMANN_JSON_HAS_HELPER(iterator);
#undef NLOHMANN_JSON_HAS_HELPER
template<bool B, class RealType, class CompatibleObjectType>
struct is_compatible_object_type_impl : std::false_type {};
template<class RealType, class CompatibleObjectType>
struct is_compatible_object_type_impl<true, RealType, CompatibleObjectType>
{
static constexpr auto value =
std::is_constructible<typename RealType::key_type,
typename CompatibleObjectType::key_type>::value and
std::is_constructible<typename RealType::mapped_type,
typename CompatibleObjectType::mapped_type>::value;
};
template<class BasicJsonType, class CompatibleObjectType>
struct is_compatible_object_type
{
static auto constexpr value = is_compatible_object_type_impl <
conjunction<negation<std::is_same<void, CompatibleObjectType>>,
has_mapped_type<CompatibleObjectType>,
has_key_type<CompatibleObjectType>>::value,
typename BasicJsonType::object_t, CompatibleObjectType >::value;
};
template<typename BasicJsonType, typename T>
struct is_basic_json_nested_type
{
static auto constexpr value = std::is_same<T, typename BasicJsonType::iterator>::value or
std::is_same<T, typename BasicJsonType::const_iterator>::value or
std::is_same<T, typename BasicJsonType::reverse_iterator>::value or
std::is_same<T, typename BasicJsonType::const_reverse_iterator>::value or
std::is_same<T, typename BasicJsonType::json_pointer>::value;
};
template<class BasicJsonType, class CompatibleArrayType>
struct is_compatible_array_type
{
static auto constexpr value =
conjunction<negation<std::is_same<void, CompatibleArrayType>>,
negation<is_compatible_object_type<
BasicJsonType, CompatibleArrayType>>,
negation<std::is_constructible<typename BasicJsonType::string_t,
CompatibleArrayType>>,
negation<is_basic_json_nested_type<BasicJsonType, CompatibleArrayType>>,
has_value_type<CompatibleArrayType>,
has_iterator<CompatibleArrayType>>::value;
};
template<bool, typename, typename>
struct is_compatible_integer_type_impl : std::false_type {};
template<typename RealIntegerType, typename CompatibleNumberIntegerType>
struct is_compatible_integer_type_impl<true, RealIntegerType, CompatibleNumberIntegerType>
{
// is there an assert somewhere on overflows?
using RealLimits = std::numeric_limits<RealIntegerType>;
using CompatibleLimits = std::numeric_limits<CompatibleNumberIntegerType>;
static constexpr auto value =
std::is_constructible<RealIntegerType,
CompatibleNumberIntegerType>::value and
CompatibleLimits::is_integer and
RealLimits::is_signed == CompatibleLimits::is_signed;
};
template<typename RealIntegerType, typename CompatibleNumberIntegerType>
struct is_compatible_integer_type
{
static constexpr auto value =
is_compatible_integer_type_impl <
std::is_integral<CompatibleNumberIntegerType>::value and
not std::is_same<bool, CompatibleNumberIntegerType>::value,
RealIntegerType, CompatibleNumberIntegerType > ::value;
};
// trait checking if JSONSerializer<T>::from_json(json const&, udt&) exists
template<typename BasicJsonType, typename T>
struct has_from_json
{
private:
template <typename U, typename = typename U::mapped_type>
// also check the return type of from_json
template<typename U, typename = enable_if_t<std::is_same<void, decltype(uncvref_t<U>::from_json(
std::declval<BasicJsonType>(), std::declval<T&>()))>::value>>
static int detect(U&&);
static void detect(...);
public:
static constexpr bool value = std::is_integral<decltype(
detect(std::declval<typename BasicJsonType::template json_serializer<T, void>>()))>::value;
};
// This trait checks if JSONSerializer<T>::from_json(json const&) exists
// this overload is used for non-default-constructible user-defined-types
template<typename BasicJsonType, typename T>
struct has_non_default_from_json
{
private:
template <
typename U,
typename = enable_if_t<std::is_same<
T, decltype(uncvref_t<U>::from_json(std::declval<BasicJsonType>()))>::value >>
static int detect(U&&);
static void detect(...);
public:
static constexpr bool value = std::is_integral<decltype(detect(
std::declval<typename BasicJsonType::template json_serializer<T, void>>()))>::value;
};
// This trait checks if BasicJsonType::json_serializer<T>::to_json exists
template<typename BasicJsonType, typename T>
struct has_to_json
{
private:
template<typename U, typename = decltype(uncvref_t<U>::to_json(
std::declval<BasicJsonType&>(), std::declval<T>()))>
static int detect(U&&);
static void detect(...);
public:
static constexpr bool value = std::is_integral<decltype(detect(
std::declval<typename BasicJsonType::template json_serializer<T, void>>()))>::value;
};
/////////////
// to_json //
/////////////
template<typename BasicJsonType>
void to_json(BasicJsonType& j, typename BasicJsonType::boolean_t b) noexcept
{
external_constructor<value_t::boolean>::construct(j, b);
}
template<typename BasicJsonType, typename CompatibleString,
enable_if_t<std::is_constructible<typename BasicJsonType::string_t,
CompatibleString>::value, int> = 0>
void to_json(BasicJsonType& j, const CompatibleString& s)
{
external_constructor<value_t::string>::construct(j, s);
}
template<typename BasicJsonType, typename FloatType,
enable_if_t<std::is_floating_point<FloatType>::value, int> = 0>
void to_json(BasicJsonType& j, FloatType val) noexcept
{
external_constructor<value_t::number_float>::construct(j, static_cast<typename BasicJsonType::number_float_t>(val));
}
template <
typename BasicJsonType, typename CompatibleNumberUnsignedType,
enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_unsigned_t,
CompatibleNumberUnsignedType>::value, int> = 0 >
void to_json(BasicJsonType& j, CompatibleNumberUnsignedType val) noexcept
{
external_constructor<value_t::number_unsigned>::construct(j, static_cast<typename BasicJsonType::number_unsigned_t>(val));
}
template <
typename BasicJsonType, typename CompatibleNumberIntegerType,
enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_integer_t,
CompatibleNumberIntegerType>::value, int> = 0 >
void to_json(BasicJsonType& j, CompatibleNumberIntegerType val) noexcept
{
external_constructor<value_t::number_integer>::construct(j, static_cast<typename BasicJsonType::number_integer_t>(val));
}
template<typename BasicJsonType, typename UnscopedEnumType,
enable_if_t<is_unscoped_enum<UnscopedEnumType>::value, int> = 0>
void to_json(BasicJsonType& j, UnscopedEnumType e) noexcept
{
external_constructor<value_t::number_integer>::construct(j, e);
}
template <
typename BasicJsonType, typename CompatibleArrayType,
enable_if_t <
is_compatible_array_type<BasicJsonType, CompatibleArrayType>::value or
std::is_same<typename BasicJsonType::array_t, CompatibleArrayType>::value,
int > = 0 >
void to_json(BasicJsonType& j, const CompatibleArrayType& arr)
{
external_constructor<value_t::array>::construct(j, arr);
}
template <
typename BasicJsonType, typename CompatibleObjectType,
enable_if_t<is_compatible_object_type<BasicJsonType, CompatibleObjectType>::value,
int> = 0 >
void to_json(BasicJsonType& j, const CompatibleObjectType& arr)
{
external_constructor<value_t::object>::construct(j, arr);
}
///////////////
// from_json //
///////////////
// overloads for basic_json template parameters
template<typename BasicJsonType, typename ArithmeticType,
enable_if_t<std::is_arithmetic<ArithmeticType>::value and
not std::is_same<ArithmeticType,
typename BasicJsonType::boolean_t>::value,
int> = 0>
void get_arithmetic_value(const BasicJsonType& j, ArithmeticType& val)
{
switch (static_cast<value_t>(j))
{
case value_t::number_unsigned:
{
val = static_cast<ArithmeticType>(
*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
break;
}
case value_t::number_integer:
{
val = static_cast<ArithmeticType>(
*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
break;
}
case value_t::number_float:
{
val = static_cast<ArithmeticType>(
*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
break;
}
default:
{
JSON_THROW(
std::domain_error("type must be number, but is " + j.type_name()));
}
}
}
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename BasicJsonType::boolean_t& b)
{
if (not j.is_boolean())
{
JSON_THROW(std::domain_error("type must be boolean, but is " + j.type_name()));
}
b = *j.template get_ptr<const typename BasicJsonType::boolean_t*>();
}
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename BasicJsonType::string_t& s)
{
if (not j.is_string())
{
JSON_THROW(std::domain_error("type must be string, but is " + j.type_name()));
}
s = *j.template get_ptr<const typename BasicJsonType::string_t*>();
}
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename BasicJsonType::number_float_t& val)
{
get_arithmetic_value(j, val);
}
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename BasicJsonType::number_unsigned_t& val)
{
get_arithmetic_value(j, val);
}
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename BasicJsonType::number_integer_t& val)
{
get_arithmetic_value(j, val);
}
template<typename BasicJsonType, typename UnscopedEnumType,
enable_if_t<is_unscoped_enum<UnscopedEnumType>::value, int> = 0>
void from_json(const BasicJsonType& j, UnscopedEnumType& e)
{
typename std::underlying_type<UnscopedEnumType>::type val = e;
get_arithmetic_value(j, val);
e = static_cast<UnscopedEnumType>(val);
}
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename BasicJsonType::array_t& arr)
{
if (not j.is_array())
{
JSON_THROW(std::domain_error("type must be array, but is " + j.type_name()));
}
arr = *j.template get_ptr<const typename BasicJsonType::array_t*>();
}
// forward_list doesn't have an insert method
template<typename BasicJsonType, typename T, typename Allocator>
void from_json(const BasicJsonType& j, std::forward_list<T, Allocator>& l)
{
// do not perform the check when user wants to retrieve jsons
// (except when it's null.. ?)
if (j.is_null())
{
JSON_THROW(std::domain_error("type must be array, but is " + j.type_name()));
}
if (not std::is_same<T, BasicJsonType>::value)
{
if (not j.is_array())
{
JSON_THROW(std::domain_error("type must be array, but is " + j.type_name()));
}
}
for (auto it = j.rbegin(), end = j.rend(); it != end; ++it)
{
l.push_front(it->template get<T>());
}
}
template<typename BasicJsonType, typename CompatibleArrayType>
void from_json_array_impl(const BasicJsonType& j, CompatibleArrayType& arr, priority_tag<0>)
{
using std::begin;
using std::end;
std::transform(j.begin(), j.end(),
std::inserter(arr, end(arr)), [](const BasicJsonType & i)
{
// get<BasicJsonType>() returns *this, this won't call a from_json
// method when value_type is BasicJsonType
return i.template get<typename CompatibleArrayType::value_type>();
});
}
template<typename BasicJsonType, typename CompatibleArrayType>
auto from_json_array_impl(const BasicJsonType& j, CompatibleArrayType& arr, priority_tag<1>)
-> decltype(
arr.reserve(std::declval<typename CompatibleArrayType::size_type>()),
void())
{
using std::begin;
using std::end;
arr.reserve(j.size());
std::transform(
j.begin(), j.end(), std::inserter(arr, end(arr)), [](const BasicJsonType & i)
{
// get<BasicJsonType>() returns *this, this won't call a from_json
// method when value_type is BasicJsonType
return i.template get<typename CompatibleArrayType::value_type>();
});
}
template<typename BasicJsonType, typename CompatibleArrayType,
enable_if_t<is_compatible_array_type<BasicJsonType, CompatibleArrayType>::value and
not std::is_same<typename BasicJsonType::array_t, CompatibleArrayType>::value, int> = 0>
void from_json(const BasicJsonType& j, CompatibleArrayType& arr)
{
if (j.is_null())
{
JSON_THROW(std::domain_error("type must be array, but is " + j.type_name()));
}
// when T == BasicJsonType, do not check if value_t is correct
if (not std::is_same<typename CompatibleArrayType::value_type, BasicJsonType>::value)
{
if (not j.is_array())
{
JSON_THROW(std::domain_error("type must be array, but is " + j.type_name()));
}
}
from_json_array_impl(j, arr, priority_tag<1> {});
}
template<typename BasicJsonType, typename CompatibleObjectType,
enable_if_t<is_compatible_object_type<BasicJsonType, CompatibleObjectType>::value, int> = 0>
void from_json(const BasicJsonType& j, CompatibleObjectType& obj)
{
if (not j.is_object())
{
JSON_THROW(std::domain_error("type must be object, but is " + j.type_name()));
}
auto inner_object = j.template get_ptr<const typename BasicJsonType::object_t*>();
using std::begin;
using std::end;
// we could avoid the assignment, but this might require a for loop, which
// might be less efficient than the container constructor for some
// containers (would it?)
obj = CompatibleObjectType(begin(*inner_object), end(*inner_object));
}
// overload for arithmetic types, not chosen for basic_json template arguments
// (BooleanType, etc..); note: Is it really necessary to provide explicit
// overloads for boolean_t etc. in case of a custom BooleanType which is not
// an arithmetic type?
template<typename BasicJsonType, typename ArithmeticType,
enable_if_t <
std::is_arithmetic<ArithmeticType>::value and
not std::is_same<ArithmeticType, typename BasicJsonType::number_unsigned_t>::value and
not std::is_same<ArithmeticType, typename BasicJsonType::number_integer_t>::value and
not std::is_same<ArithmeticType, typename BasicJsonType::number_float_t>::value and
not std::is_same<ArithmeticType, typename BasicJsonType::boolean_t>::value,
int> = 0>
void from_json(const BasicJsonType& j, ArithmeticType& val)
{
switch (static_cast<value_t>(j))
{
case value_t::number_unsigned:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
break;
}
case value_t::number_integer:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
break;
}
case value_t::number_float:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
break;
}
case value_t::boolean:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::boolean_t*>());
break;
}
default:
{
JSON_THROW(std::domain_error("type must be number, but is " + j.type_name()));
}
}
}
struct to_json_fn
{
private:
template<typename BasicJsonType, typename T>
auto call(BasicJsonType& j, T&& val, priority_tag<1>) const noexcept(noexcept(to_json(j, std::forward<T>(val))))
-> decltype(to_json(j, std::forward<T>(val)), void())
{
return to_json(j, std::forward<T>(val));
}
template<typename BasicJsonType, typename T>
void call(BasicJsonType&, T&&, priority_tag<0>) const noexcept
{
static_assert(sizeof(BasicJsonType) == 0,
"could not find to_json() method in T's namespace");
}
public:
static constexpr bool value =
std::is_integral<decltype(detect(std::declval<T>()))>::value;
template<typename BasicJsonType, typename T>
void operator()(BasicJsonType& j, T&& val) const
noexcept(noexcept(std::declval<to_json_fn>().call(j, std::forward<T>(val), priority_tag<1> {})))
{
return call(j, std::forward<T>(val), priority_tag<1> {});
}
};
struct from_json_fn
{
private:
template<typename BasicJsonType, typename T>
auto call(const BasicJsonType& j, T& val, priority_tag<1>) const
noexcept(noexcept(from_json(j, val)))
-> decltype(from_json(j, val), void())
{
return from_json(j, val);
}
template<typename BasicJsonType, typename T>
void call(const BasicJsonType&, T&, priority_tag<0>) const noexcept
{
static_assert(sizeof(BasicJsonType) == 0,
"could not find from_json() method in T's namespace");
}
public:
template<typename BasicJsonType, typename T>
void operator()(const BasicJsonType& j, T& val) const
noexcept(noexcept(std::declval<from_json_fn>().call(j, val, priority_tag<1> {})))
{
return call(j, val, priority_tag<1> {});
}
};
// taken from ranges-v3
template<typename T>
struct static_const
{
static constexpr T value{};
};
template<typename T>
constexpr T static_const<T>::value;
} // namespace detail
/// namespace to hold default `to_json` / `from_json` functions
namespace
{
constexpr const auto& to_json = detail::static_const<detail::to_json_fn>::value;
constexpr const auto& from_json = detail::static_const<detail::from_json_fn>::value;
}
/*!
@brief default JSONSerializer template argument
This serializer ignores the template arguments and uses ADL
([argument-dependent lookup](http://en.cppreference.com/w/cpp/language/adl))
for serialization.
*/
template<typename = void, typename = void>
struct adl_serializer
{
/*!
@brief convert a JSON value to any value type
This function is usually called by the `get()` function of the
@ref basic_json class (either explicit or via conversion operators).
@param[in] j JSON value to read from
@param[in, out] val value to write to
*/
template<typename BasicJsonType, typename ValueType>
static void from_json(BasicJsonType&& j, ValueType& val) noexcept(
noexcept(::nlohmann::from_json(std::forward<BasicJsonType>(j), val)))
{
::nlohmann::from_json(std::forward<BasicJsonType>(j), val);
}
/*!
@brief convert any value type to a JSON value
This function is usually called by the constructors of the @ref basic_json
class.
@param[in, out] j JSON value to write to
@param[in] val value to read from
*/
template<typename BasicJsonType, typename ValueType>
static void to_json(BasicJsonType& j, ValueType&& val) noexcept(
noexcept(::nlohmann::to_json(j, std::forward<ValueType>(val))))
{
::nlohmann::to_json(j, std::forward<ValueType>(val));
}
};
} // namespace
/*!
@brief a class to store JSON values
......@@ -158,6 +962,8 @@ default; will be used in @ref number_integer_t)
default; will be used in @ref number_float_t)
@tparam AllocatorType type of the allocator to use (`std::allocator` by
default)
@tparam JSONSerializer the serializer to resolve internal calls to `to_json()`
and `from_json()` (@ref adl_serializer by default)
@requirement The class satisfies the following concept requirements:
- Basic
......@@ -226,21 +1032,26 @@ template <
class NumberIntegerType = std::int64_t,
class NumberUnsignedType = std::uint64_t,
class NumberFloatType = double,
template<typename U> class AllocatorType = std::allocator
template<typename U> class AllocatorType = std::allocator,
template<typename T, typename SFINAE = void> class JSONSerializer = adl_serializer
>
class basic_json
{
private:
template<detail::value_t> friend struct detail::external_constructor;
/// workaround type for MSVC
using basic_json_t = basic_json<ObjectType, ArrayType, StringType,
BooleanType, NumberIntegerType, NumberUnsignedType, NumberFloatType,
AllocatorType>;
AllocatorType, JSONSerializer>;
public:
using value_t = detail::value_t;
// forward declarations
template<typename U> class iter_impl;
template<typename Base> class json_reverse_iterator;
class json_pointer;
template<typename T, typename SFINAE>
using json_serializer = JSONSerializer<T, SFINAE>;
/////////////////////
// container types //
......@@ -774,59 +1585,18 @@ class basic_json
#### Storage
Floating-point number values are stored directly inside a @ref basic_json
type.
@sa @ref number_integer_t -- type for number values (integer)
@sa @ref number_unsigned_t -- type for number values (unsigned integer)
@since version 1.0.0
*/
using number_float_t = NumberFloatType;
/// @}
///////////////////////////
// JSON type enumeration //
///////////////////////////
/*!
@brief the JSON type enumeration
This enumeration collects the different JSON types. It is internally used
to distinguish the stored values, and the functions @ref is_null(), @ref
is_object(), @ref is_array(), @ref is_string(), @ref is_boolean(), @ref
is_number() (with @ref is_number_integer(), @ref is_number_unsigned(), and
@ref is_number_float()), @ref is_discarded(), @ref is_primitive(), and
@ref is_structured() rely on it.
Floating-point number values are stored directly inside a @ref basic_json
type.
@note There are three enumeration entries (number_integer,
number_unsigned, and number_float), because the library distinguishes
these three types for numbers: @ref number_unsigned_t is used for unsigned
integers, @ref number_integer_t is used for signed integers, and @ref
number_float_t is used for floating-point numbers or to approximate
integers which do not fit in the limits of their respective type.
@sa @ref number_integer_t -- type for number values (integer)
@sa @ref basic_json(const value_t value_type) -- create a JSON value with
the default value for a given type
@sa @ref number_unsigned_t -- type for number values (unsigned integer)
@since version 1.0.0
*/
enum class value_t : uint8_t
{
null, ///< null value
object, ///< object (unordered set of name/value pairs)
array, ///< array (ordered collection of values)
string, ///< string value
boolean, ///< boolean value
number_integer, ///< number value (signed integer)
number_unsigned, ///< number value (unsigned integer)
number_float, ///< number value (floating-point)
discarded ///< discarded by the the parser callback function
};
using number_float_t = NumberFloatType;
/// @}
private:
......@@ -1090,548 +1860,132 @@ class basic_json
// constructors //
//////////////////
/// @name constructors and destructors
/// Constructors of class @ref basic_json, copy/move constructor, copy
/// assignment, static functions creating objects, and the destructor.
/// @{
/*!
@brief create an empty value with a given type
Create an empty JSON value with a given type. The value will be default
initialized with an empty value which depends on the type:
Value type | initial value
----------- | -------------
null | `null`
boolean | `false`
string | `""`
number | `0`
object | `{}`
array | `[]`
@param[in] value_type the type of the value to create
@complexity Constant.
@throw std::bad_alloc if allocation for object, array, or string value
fails
@liveexample{The following code shows the constructor for different @ref
value_t values,basic_json__value_t}
@sa @ref basic_json(std::nullptr_t) -- create a `null` value
@sa @ref basic_json(boolean_t value) -- create a boolean value
@sa @ref basic_json(const string_t&) -- create a string value
@sa @ref basic_json(const object_t&) -- create a object value
@sa @ref basic_json(const array_t&) -- create a array value
@sa @ref basic_json(const number_float_t) -- create a number
(floating-point) value
@sa @ref basic_json(const number_integer_t) -- create a number (integer)
value
@sa @ref basic_json(const number_unsigned_t) -- create a number (unsigned)
value
@since version 1.0.0
*/
basic_json(const value_t value_type)
: m_type(value_type), m_value(value_type)
{
assert_invariant();
}
/*!
@brief create a null object
Create a `null` JSON value. It either takes a null pointer as parameter
(explicitly creating `null`) or no parameter (implicitly creating `null`).
The passed null pointer itself is not read -- it is only used to choose
the right constructor.
@complexity Constant.
@exceptionsafety No-throw guarantee: this constructor never throws
exceptions.
@liveexample{The following code shows the constructor with and without a
null pointer parameter.,basic_json__nullptr_t}
@since version 1.0.0
*/
basic_json(std::nullptr_t = nullptr) noexcept
: basic_json(value_t::null)
{
assert_invariant();
}
/*!
@brief create an object (explicit)
Create an object JSON value with a given content.
@param[in] val a value for the object
@complexity Linear in the size of the passed @a val.
@throw std::bad_alloc if allocation for object value fails
@liveexample{The following code shows the constructor with an @ref
object_t parameter.,basic_json__object_t}
@sa @ref basic_json(const CompatibleObjectType&) -- create an object value
from a compatible STL container
@since version 1.0.0
*/
basic_json(const object_t& val)
: m_type(value_t::object), m_value(val)
{
assert_invariant();
}
/*!
@brief create an object (implicit)
Create an object JSON value with a given content. This constructor allows
any type @a CompatibleObjectType that can be used to construct values of
type @ref object_t.
@tparam CompatibleObjectType An object type whose `key_type` and
`value_type` is compatible to @ref object_t. Examples include `std::map`,
`std::unordered_map`, `std::multimap`, and `std::unordered_multimap` with
a `key_type` of `std::string`, and a `value_type` from which a @ref
basic_json value can be constructed.
@param[in] val a value for the object
@complexity Linear in the size of the passed @a val.
@throw std::bad_alloc if allocation for object value fails
@liveexample{The following code shows the constructor with several
compatible object type parameters.,basic_json__CompatibleObjectType}
@sa @ref basic_json(const object_t&) -- create an object value
@since version 1.0.0
*/
template<class CompatibleObjectType, typename std::enable_if<
std::is_constructible<typename object_t::key_type, typename CompatibleObjectType::key_type>::value and
std::is_constructible<basic_json, typename CompatibleObjectType::mapped_type>::value, int>::type = 0>
basic_json(const CompatibleObjectType& val)
: m_type(value_t::object)
{
using std::begin;
using std::end;
m_value.object = create<object_t>(begin(val), end(val));
assert_invariant();
}
/*!
@brief create an array (explicit)
Create an array JSON value with a given content.
@param[in] val a value for the array
@complexity Linear in the size of the passed @a val.
@throw std::bad_alloc if allocation for array value fails
@liveexample{The following code shows the constructor with an @ref array_t
parameter.,basic_json__array_t}
@sa @ref basic_json(const CompatibleArrayType&) -- create an array value
from a compatible STL containers
@since version 1.0.0
*/
basic_json(const array_t& val)
: m_type(value_t::array), m_value(val)
{
assert_invariant();
}
/*!
@brief create an array (implicit)
Create an array JSON value with a given content. This constructor allows
any type @a CompatibleArrayType that can be used to construct values of
type @ref array_t.
@tparam CompatibleArrayType An object type whose `value_type` is
compatible to @ref array_t. Examples include `std::vector`, `std::deque`,
`std::list`, `std::forward_list`, `std::array`, `std::set`,
`std::unordered_set`, `std::multiset`, and `unordered_multiset` with a
`value_type` from which a @ref basic_json value can be constructed.
@param[in] val a value for the array
@complexity Linear in the size of the passed @a val.
@throw std::bad_alloc if allocation for array value fails
@liveexample{The following code shows the constructor with several
compatible array type parameters.,basic_json__CompatibleArrayType}
@sa @ref basic_json(const array_t&) -- create an array value
@since version 1.0.0
*/
template<class CompatibleArrayType, typename std::enable_if<
not std::is_same<CompatibleArrayType, typename basic_json_t::iterator>::value and
not std::is_same<CompatibleArrayType, typename basic_json_t::const_iterator>::value and
not std::is_same<CompatibleArrayType, typename basic_json_t::reverse_iterator>::value and
not std::is_same<CompatibleArrayType, typename basic_json_t::const_reverse_iterator>::value and
not std::is_same<CompatibleArrayType, typename array_t::iterator>::value and
not std::is_same<CompatibleArrayType, typename array_t::const_iterator>::value and
std::is_constructible<basic_json, typename CompatibleArrayType::value_type>::value, int>::type = 0>
basic_json(const CompatibleArrayType& val)
: m_type(value_t::array)
{
using std::begin;
using std::end;
m_value.array = create<array_t>(begin(val), end(val));
assert_invariant();
}
/*!
@brief create a string (explicit)
Create an string JSON value with a given content.
@param[in] val a value for the string
@complexity Linear in the size of the passed @a val.
@throw std::bad_alloc if allocation for string value fails
@liveexample{The following code shows the constructor with an @ref
string_t parameter.,basic_json__string_t}
@sa @ref basic_json(const typename string_t::value_type*) -- create a
string value from a character pointer
@sa @ref basic_json(const CompatibleStringType&) -- create a string value
from a compatible string container
@since version 1.0.0
*/
basic_json(const string_t& val)
: m_type(value_t::string), m_value(val)
{
assert_invariant();
}
/*!
@brief create a string (explicit)
Create a string JSON value with a given content.
@param[in] val a literal value for the string
@complexity Linear in the size of the passed @a val.
@throw std::bad_alloc if allocation for string value fails
@liveexample{The following code shows the constructor with string literal
parameter.,basic_json__string_t_value_type}
@sa @ref basic_json(const string_t&) -- create a string value
@sa @ref basic_json(const CompatibleStringType&) -- create a string value
from a compatible string container
@since version 1.0.0
*/
basic_json(const typename string_t::value_type* val)
: basic_json(string_t(val))
{
assert_invariant();
}
/*!
@brief create a string (implicit)
Create a string JSON value with a given content.
@param[in] val a value for the string
@tparam CompatibleStringType an string type which is compatible to @ref
string_t, for instance `std::string`.
@complexity Linear in the size of the passed @a val.
@throw std::bad_alloc if allocation for string value fails
@liveexample{The following code shows the construction of a string value
from a compatible type.,basic_json__CompatibleStringType}
@sa @ref basic_json(const string_t&) -- create a string value
@sa @ref basic_json(const typename string_t::value_type*) -- create a
string value from a character pointer
@since version 1.0.0
*/
template<class CompatibleStringType, typename std::enable_if<
std::is_constructible<string_t, CompatibleStringType>::value, int>::type = 0>
basic_json(const CompatibleStringType& val)
: basic_json(string_t(val))
{
assert_invariant();
}
/*!
@brief create a boolean (explicit)
Creates a JSON boolean type from a given value.
@param[in] val a boolean value to store
@complexity Constant.
@liveexample{The example below demonstrates boolean
values.,basic_json__boolean_t}
@since version 1.0.0
*/
basic_json(boolean_t val) noexcept
: m_type(value_t::boolean), m_value(val)
{
assert_invariant();
}
/*!
@brief create an integer number (explicit)
Create an integer number JSON value with a given content.
@tparam T A helper type to remove this function via SFINAE in case @ref
number_integer_t is the same as `int`. In this case, this constructor
would have the same signature as @ref basic_json(const int value). Note
the helper type @a T is not visible in this constructor's interface.
@param[in] val an integer to create a JSON number from
@complexity Constant.
@liveexample{The example below shows the construction of an integer
number value.,basic_json__number_integer_t}
@sa @ref basic_json(const int) -- create a number value (integer)
@sa @ref basic_json(const CompatibleNumberIntegerType) -- create a number
value (integer) from a compatible number type
@since version 1.0.0
*/
template<typename T, typename std::enable_if<
not (std::is_same<T, int>::value) and
std::is_same<T, number_integer_t>::value, int>::type = 0>
basic_json(const number_integer_t val) noexcept
: m_type(value_t::number_integer), m_value(val)
{
assert_invariant();
}
/*!
@brief create an integer number from an enum type (explicit)
Create an integer number JSON value with a given content.
@param[in] val an integer to create a JSON number from
@note This constructor allows to pass enums directly to a constructor. As
C++ has no way of specifying the type of an anonymous enum explicitly, we
can only rely on the fact that such values implicitly convert to int. As
int may already be the same type of number_integer_t, we may need to
switch off the constructor @ref basic_json(const number_integer_t).
@complexity Constant.
@liveexample{The example below shows the construction of an integer
number value from an anonymous enum.,basic_json__const_int}
@sa @ref basic_json(const number_integer_t) -- create a number value
(integer)
@sa @ref basic_json(const CompatibleNumberIntegerType) -- create a number
value (integer) from a compatible number type
@since version 1.0.0
*/
basic_json(const int val) noexcept
: m_type(value_t::number_integer),
m_value(static_cast<number_integer_t>(val))
{
assert_invariant();
}
/*!
@brief create an integer number (implicit)
Create an integer number JSON value with a given content. This constructor
allows any type @a CompatibleNumberIntegerType that can be used to
construct values of type @ref number_integer_t.
@tparam CompatibleNumberIntegerType An integer type which is compatible to
@ref number_integer_t. Examples include the types `int`, `int32_t`,
`long`, and `short`.
@param[in] val an integer to create a JSON number from
@complexity Constant.
@liveexample{The example below shows the construction of several integer
number values from compatible
types.,basic_json__CompatibleIntegerNumberType}
@sa @ref basic_json(const number_integer_t) -- create a number value
(integer)
@sa @ref basic_json(const int) -- create a number value (integer)
@since version 1.0.0
*/
template<typename CompatibleNumberIntegerType, typename std::enable_if<
std::is_constructible<number_integer_t, CompatibleNumberIntegerType>::value and
std::numeric_limits<CompatibleNumberIntegerType>::is_integer and
std::numeric_limits<CompatibleNumberIntegerType>::is_signed,
CompatibleNumberIntegerType>::type = 0>
basic_json(const CompatibleNumberIntegerType val) noexcept
: m_type(value_t::number_integer),
m_value(static_cast<number_integer_t>(val))
{
assert_invariant();
}
/*!
@brief create an unsigned integer number (explicit)
Create an unsigned integer number JSON value with a given content.
@tparam T helper type to compare number_unsigned_t and unsigned int (not
visible in) the interface.
@param[in] val an integer to create a JSON number from
@complexity Constant.
@sa @ref basic_json(const CompatibleNumberUnsignedType) -- create a number
value (unsigned integer) from a compatible number type
@since version 2.0.0
*/
template<typename T, typename std::enable_if<
not (std::is_same<T, int>::value) and
std::is_same<T, number_unsigned_t>::value, int>::type = 0>
basic_json(const number_unsigned_t val) noexcept
: m_type(value_t::number_unsigned), m_value(val)
{
assert_invariant();
}
/// @name constructors and destructors
/// Constructors of class @ref basic_json, copy/move constructor, copy
/// assignment, static functions creating objects, and the destructor.
/// @{
/*!
@brief create an unsigned number (implicit)
@brief create an empty value with a given type
Create an unsigned number JSON value with a given content. This
constructor allows any type @a CompatibleNumberUnsignedType that can be
used to construct values of type @ref number_unsigned_t.
Create an empty JSON value with a given type. The value will be default
initialized with an empty value which depends on the type:
@tparam CompatibleNumberUnsignedType An integer type which is compatible
to @ref number_unsigned_t. Examples may include the types `unsigned int`,
`uint32_t`, or `unsigned short`.
Value type | initial value
----------- | -------------
null | `null`
boolean | `false`
string | `""`
number | `0`
object | `{}`
array | `[]`
@param[in] val an unsigned integer to create a JSON number from
@param[in] value_type the type of the value to create
@complexity Constant.
@sa @ref basic_json(const number_unsigned_t) -- create a number value
(unsigned)
@throw std::bad_alloc if allocation for object, array, or string value
fails
@since version 2.0.0
@liveexample{The following code shows the constructor for different @ref
value_t values,basic_json__value_t}
@since version 1.0.0
*/
template<typename CompatibleNumberUnsignedType, typename std::enable_if <
std::is_constructible<number_unsigned_t, CompatibleNumberUnsignedType>::value and
std::numeric_limits<CompatibleNumberUnsignedType>::is_integer and
not std::numeric_limits<CompatibleNumberUnsignedType>::is_signed,
CompatibleNumberUnsignedType>::type = 0>
basic_json(const CompatibleNumberUnsignedType val) noexcept
: m_type(value_t::number_unsigned),
m_value(static_cast<number_unsigned_t>(val))
basic_json(const value_t value_type)
: m_type(value_type), m_value(value_type)
{
assert_invariant();
}
/*!
@brief create a floating-point number (explicit)
Create a floating-point number JSON value with a given content.
@param[in] val a floating-point value to create a JSON number from
@brief create a null object
@note [RFC 7159](http://www.rfc-editor.org/rfc/rfc7159.txt), section 6
disallows NaN values:
> Numeric values that cannot be represented in the grammar below (such as
> Infinity and NaN) are not permitted.
In case the parameter @a val is not a number, a JSON null value is created
instead.
Create a `null` JSON value. It either takes a null pointer as parameter
(explicitly creating `null`) or no parameter (implicitly creating `null`).
The passed null pointer itself is not read -- it is only used to choose
the right constructor.
@complexity Constant.
@liveexample{The following example creates several floating-point
values.,basic_json__number_float_t}
@exceptionsafety No-throw guarantee: this constructor never throws
exceptions.
@sa @ref basic_json(const CompatibleNumberFloatType) -- create a number
value (floating-point) from a compatible number type
@liveexample{The following code shows the constructor with and without a
null pointer parameter.,basic_json__nullptr_t}
@since version 1.0.0
*/
basic_json(const number_float_t val) noexcept
: m_type(value_t::number_float), m_value(val)
{
// replace infinity and NAN by null
if (not std::isfinite(val))
basic_json(std::nullptr_t = nullptr) noexcept
: basic_json(value_t::null)
{
m_type = value_t::null;
m_value = json_value();
}
assert_invariant();
}
/*!
@brief create an floating-point number (implicit)
@brief create a JSON value
Create an floating-point number JSON value with a given content. This
constructor allows any type @a CompatibleNumberFloatType that can be used
to construct values of type @ref number_float_t.
This is a "catch all" constructor for all compatible JSON types; that is,
types for which a `to_json()` method exsits. The constructor forwards the
parameter @a val to that method (to `json_serializer<U>::to_json` method
with `U = uncvref_t<CompatibleType>`, to be exact).
@tparam CompatibleNumberFloatType A floating-point type which is
compatible to @ref number_float_t. Examples may include the types `float`
or `double`.
Template type @a CompatibleType includes, but is not limited to, the
following types:
- **arrays**: @ref array_t and all kinds of compatible containers such as
`std::vector`, `std::deque`, `std::list`, `std::forward_list`,
`std::array`, `std::set`, `std::unordered_set`, `std::multiset`, and
`unordered_multiset` with a `value_type` from which a @ref basic_json
value can be constructed.
- **objects**: @ref object_t and all kinds of compatible associative
containers such as `std::map`, `std::unordered_map`, `std::multimap`,
and `std::unordered_multimap` with a `key_type` compatible to
@ref string_t and a `value_type` from which a @ref basic_json value can
be constructed.
- **strings**: @ref string_t, string literals, and all compatible string
containers can be used.
- **numbers**: @ref number_integer_t, @ref number_unsigned_t,
@ref number_float_t, and all convertible number types such as `int`,
`size_t`, `int64_t`, `float` or `double` can be used.
- **boolean**: @ref boolean_t / `bool` can be used.
@param[in] val a floating-point to create a JSON number from
See the examples below.
@note [RFC 7159](http://www.rfc-editor.org/rfc/rfc7159.txt), section 6
disallows NaN values:
> Numeric values that cannot be represented in the grammar below (such as
> Infinity and NaN) are not permitted.
In case the parameter @a val is not a number, a JSON null value is
created instead.
@tparam CompatibleType a type such that:
- @a CompatibleType is not derived from `std::istream`,
- @a CompatibleType is not @ref basic_json (to avoid hijacking copy/move
constructors),
- @a CompatibleType is not a @ref basic_json nested type (e.g.,
@ref json_pointer, @ref iterator, etc ...)
- @ref @ref json_serializer<U> has a
`to_json(basic_json_t&, CompatibleType&&)` method
@complexity Constant.
@tparam U = `uncvref_t<CompatibleType>`
@liveexample{The example below shows the construction of several
floating-point number values from compatible
types.,basic_json__CompatibleNumberFloatType}
@param[in] val the value to be forwarded
@sa @ref basic_json(const number_float_t) -- create a number value
(floating-point)
@complexity Usually linear in the size of the passed @a val, also
depending on the implementation of the called `to_json()`
method.
@since version 1.0.0
@throw what `json_serializer<U>::to_json()` throws
@liveexample{The following code shows the constructor with several
compatible types.,basic_json__CompatibleType}
@since version 2.1.0
*/
template<typename CompatibleNumberFloatType, typename = typename std::enable_if<
std::is_constructible<number_float_t, CompatibleNumberFloatType>::value and
std::is_floating_point<CompatibleNumberFloatType>::value>::type>
basic_json(const CompatibleNumberFloatType val) noexcept
: basic_json(number_float_t(val))
template<typename CompatibleType, typename U = detail::uncvref_t<CompatibleType>,
detail::enable_if_t<not std::is_base_of<std::istream, U>::value and
not std::is_same<U, basic_json_t>::value and
not detail::is_basic_json_nested_type<
basic_json_t, U>::value and
detail::has_to_json<basic_json, U>::value,
int> = 0>
basic_json(CompatibleType && val) noexcept(noexcept(JSONSerializer<U>::to_json(
std::declval<basic_json_t&>(), std::forward<CompatibleType>(val))))
{
JSONSerializer<U>::to_json(*this, std::forward<CompatibleType>(val));
assert_invariant();
}
......@@ -2655,142 +3009,6 @@ class basic_json
// value access //
//////////////////
/// get an object (explicit)
template<class T, typename std::enable_if<
std::is_convertible<typename object_t::key_type, typename T::key_type>::value and
std::is_convertible<basic_json_t, typename T::mapped_type>::value, int>::type = 0>
T get_impl(T* /*unused*/) const
{
if (is_object())
{
return T(m_value.object->begin(), m_value.object->end());
}
JSON_THROW(std::domain_error("type must be object, but is " + type_name()));
}
/// get an object (explicit)
object_t get_impl(object_t* /*unused*/) const
{
if (is_object())
{
return *(m_value.object);
}
JSON_THROW(std::domain_error("type must be object, but is " + type_name()));
}
/// get an array (explicit)
template<class T, typename std::enable_if<
std::is_convertible<basic_json_t, typename T::value_type>::value and
not std::is_same<basic_json_t, typename T::value_type>::value and
not std::is_arithmetic<T>::value and
not std::is_convertible<std::string, T>::value and
not has_mapped_type<T>::value, int>::type = 0>
T get_impl(T* /*unused*/) const
{
if (is_array())
{
T to_vector;
std::transform(m_value.array->begin(), m_value.array->end(),
std::inserter(to_vector, to_vector.end()), [](basic_json i)
{
return i.get<typename T::value_type>();
});
return to_vector;
}
JSON_THROW(std::domain_error("type must be array, but is " + type_name()));
}
/// get an array (explicit)
template<class T, typename std::enable_if<
std::is_convertible<basic_json_t, T>::value and
not std::is_same<basic_json_t, T>::value, int>::type = 0>
std::vector<T> get_impl(std::vector<T>* /*unused*/) const
{
if (is_array())
{
std::vector<T> to_vector;
to_vector.reserve(m_value.array->size());
std::transform(m_value.array->begin(), m_value.array->end(),
std::inserter(to_vector, to_vector.end()), [](basic_json i)
{
return i.get<T>();
});
return to_vector;
}
JSON_THROW(std::domain_error("type must be array, but is " + type_name()));
}
/// get an array (explicit)
template<class T, typename std::enable_if<
std::is_same<basic_json, typename T::value_type>::value and
not has_mapped_type<T>::value, int>::type = 0>
T get_impl(T* /*unused*/) const
{
if (is_array())
{
return T(m_value.array->begin(), m_value.array->end());
}
JSON_THROW(std::domain_error("type must be array, but is " + type_name()));
}
/// get an array (explicit)
array_t get_impl(array_t* /*unused*/) const
{
if (is_array())
{
return *(m_value.array);
}
JSON_THROW(std::domain_error("type must be array, but is " + type_name()));
}
/// get a string (explicit)
template<typename T, typename std::enable_if<
std::is_convertible<string_t, T>::value, int>::type = 0>
T get_impl(T* /*unused*/) const
{
if (is_string())
{
return *m_value.string;
}
JSON_THROW(std::domain_error("type must be string, but is " + type_name()));
}
/// get a number (explicit)
template<typename T, typename std::enable_if<
std::is_arithmetic<T>::value, int>::type = 0>
T get_impl(T* /*unused*/) const
{
switch (m_type)
{
case value_t::number_integer:
{
return static_cast<T>(m_value.number_integer);
}
case value_t::number_unsigned:
{
return static_cast<T>(m_value.number_unsigned);
}
case value_t::number_float:
{
return static_cast<T>(m_value.number_float);
}
default:
{
JSON_THROW(std::domain_error("type must be number, but is " + type_name()));
}
}
}
/// get a boolean (explicit)
boolean_t get_impl(boolean_t* /*unused*/) const
{
......@@ -2918,26 +3136,63 @@ class basic_json
}
public:
/// @name value access
/// Direct access to the stored value of a JSON value.
/// @{
/*!
@brief get special-case overload
This overloads avoids a lot of template boilerplate, it can be seen as the
identity method
@tparam BasicJsonType == @ref basic_json
@return a copy of *this
@complexity Constant.
@since version 2.1.0
*/
template <
typename BasicJsonType,
detail::enable_if_t<std::is_same<typename std::remove_const<BasicJsonType>::type,
basic_json_t>::value,
int> = 0 >
basic_json get() const
{
return *this;
}
/*!
@brief get a value (explicit)
Explicit type conversion between the JSON value and a compatible value.
Explicit type conversion between the JSON value and a compatible value
which is [CopyConstructible](http://en.cppreference.com/w/cpp/concept/CopyConstructible)
and [DefaultConstructible](http://en.cppreference.com/w/cpp/concept/DefaultConstructible).
The value is converted by calling the @ref json_serializer<ValueType>
`from_json()` method.
@tparam ValueType non-pointer type compatible to the JSON value, for
instance `int` for JSON integer numbers, `bool` for JSON booleans, or
`std::vector` types for JSON arrays
The function is equivalent to executing
@code {.cpp}
ValueType ret;
JSONSerializer<ValueType>::from_json(*this, ret);
return ret;
@endcode
@return copy of the JSON value, converted to type @a ValueType
This overloads is chosen if:
- @a ValueType is not @ref basic_json,
- @ref json_serializer<ValueType> has a `from_json()` method of the form
`void from_json(const @ref basic_json&, ValueType&)`, and
- @ref json_serializer<ValueType> does not have a `from_json()` method of
the form `ValueType from_json(const @ref basic_json&)`
@throw std::domain_error in case passed type @a ValueType is incompatible
to JSON; example: `"type must be object, but is null"`
@tparam ValueTypeCV the provided value type
@tparam ValueType the returned value type
@complexity Linear in the size of the JSON value.
@return copy of the JSON value, converted to @a ValueType
@throw what @ref json_serializer<ValueType> `from_json()` method throws
@liveexample{The example below shows several conversions from JSON values
to other types. There a few things to note: (1) Floating-point numbers can
......@@ -2946,21 +3201,75 @@ class basic_json
associative containers such as `std::unordered_map<std::string\,
json>`.,get__ValueType_const}
@internal
The idea of using a casted null pointer to choose the correct
implementation is from <http://stackoverflow.com/a/8315197/266378>.
@endinternal
@since version 2.1.0
*/
template <
typename ValueTypeCV,
typename ValueType = detail::uncvref_t<ValueTypeCV>,
detail::enable_if_t <
not std::is_same<basic_json_t, ValueType>::value and
detail::has_from_json<basic_json_t, ValueType>::value and
not detail::has_non_default_from_json<basic_json_t, ValueType>::value,
int > = 0 >
ValueType get() const noexcept(noexcept(
JSONSerializer<ValueType>::from_json(std::declval<const basic_json_t&>(), std::declval<ValueType&>())))
{
// we cannot static_assert on ValueTypeCV being non-const, because
// there is support for get<const basic_json_t>(), which is why we
// still need the uncvref
static_assert(not std::is_reference<ValueTypeCV>::value,
"get() cannot be used with reference types, you might want to use get_ref()");
static_assert(std::is_default_constructible<ValueType>::value,
"types must be DefaultConstructible when used with get()");
ValueType ret;
JSONSerializer<ValueType>::from_json(*this, ret);
return ret;
}
/*!
@brief get a value (explicit); special case
@sa @ref operator ValueType() const for implicit conversion
@sa @ref get() for pointer-member access
Explicit type conversion between the JSON value and a compatible value
which is **not** [CopyConstructible](http://en.cppreference.com/w/cpp/concept/CopyConstructible)
and **not** [DefaultConstructible](http://en.cppreference.com/w/cpp/concept/DefaultConstructible).
The value is converted by calling the @ref json_serializer<ValueType>
`from_json()` method.
@since version 1.0.0
The function is equivalent to executing
@code {.cpp}
return JSONSerializer<ValueTypeCV>::from_json(*this);
@endcode
This overloads is chosen if:
- @a ValueType is not @ref basic_json and
- @ref json_serializer<ValueType> has a `from_json()` method of the form
`ValueType from_json(const @ref basic_json&)`
@note If @ref json_serializer<ValueType> has both overloads of
`from_json()`, this one is chosen.
@tparam ValueTypeCV the provided value type
@tparam ValueType the returned value type
@return copy of the JSON value, converted to @a ValueType
@throw what @ref json_serializer<ValueType> `from_json()` method throws
@since version 2.1.0
*/
template<typename ValueType, typename std::enable_if<
not std::is_pointer<ValueType>::value, int>::type = 0>
ValueType get() const
template <
typename ValueTypeCV,
typename ValueType = detail::uncvref_t<ValueTypeCV>,
detail::enable_if_t<not std::is_same<basic_json_t, ValueType>::value and
detail::has_non_default_from_json<basic_json_t,
ValueType>::value, int> = 0 >
ValueType get() const noexcept(noexcept(
JSONSerializer<ValueTypeCV>::from_json(std::declval<const basic_json_t&>())))
{
return get_impl(static_cast<ValueType*>(nullptr));
static_assert(not std::is_reference<ValueTypeCV>::value,
"get() cannot be used with reference types, you might want to use get_ref()");
return JSONSerializer<ValueTypeCV>::from_json(*this);
}
/*!
......@@ -5528,7 +5837,7 @@ class basic_json
/// @}
public:
//////////////////////////////////////////
// lexicographical comparison operators //
//////////////////////////////////////////
......@@ -5536,40 +5845,6 @@ class basic_json
/// @name lexicographical comparison operators
/// @{
private:
/*!
@brief comparison operator for JSON types
Returns an ordering that is similar to Python:
- order: null < boolean < number < object < array < string
- furthermore, each type is not smaller than itself
@since version 1.0.0
*/
friend bool operator<(const value_t lhs, const value_t rhs) noexcept
{
static constexpr std::array<uint8_t, 8> order = {{
0, // null
3, // object
4, // array
5, // string
1, // boolean
2, // integer
2, // unsigned
2, // float
}
};
// discarded values are not comparable
if (lhs == value_t::discarded or rhs == value_t::discarded)
{
return false;
}
return order[static_cast<std::size_t>(lhs)] < order[static_cast<std::size_t>(rhs)];
}
public:
/*!
@brief comparison: equal
......@@ -7782,11 +8057,12 @@ class basic_json
@complexity Constant.
@liveexample{The following code exemplifies `type_name()` for all JSON
types.,typename}
types.,type_name}
@since version 1.0.0
*/
std::string type_name() const
{
{
switch (m_type)
{
......@@ -7806,6 +8082,7 @@ class basic_json
return "number";
}
}
}
private:
/*!
......@@ -8155,6 +8432,11 @@ class basic_json
class primitive_iterator_t
{
public:
difference_type get_value() const noexcept
{
return m_it;
}
/// set iterator to a defined beginning
void set_begin() noexcept
{
......@@ -8179,16 +8461,87 @@ class basic_json
return (m_it == end_value);
}
/// return reference to the value to change and compare
operator difference_type& () noexcept
friend constexpr bool operator==(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
{
return m_it;
return lhs.m_it == rhs.m_it;
}
/// return value to compare
constexpr operator difference_type () const noexcept
friend constexpr bool operator!=(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
{
return m_it;
return !(lhs == rhs);
}
friend constexpr bool operator<(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
{
return lhs.m_it < rhs.m_it;
}
friend constexpr bool operator<=(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
{
return lhs.m_it <= rhs.m_it;
}
friend constexpr bool operator>(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
{
return lhs.m_it > rhs.m_it;
}
friend constexpr bool operator>=(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
{
return lhs.m_it >= rhs.m_it;
}
primitive_iterator_t operator+(difference_type i)
{
auto result = *this;
result += i;
return result;
}
friend constexpr difference_type operator-(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
{
return lhs.m_it - rhs.m_it;
}
friend std::ostream& operator<<(std::ostream& os, primitive_iterator_t it)
{
return os << it.m_it;
}
primitive_iterator_t& operator++()
{
++m_it;
return *this;
}
primitive_iterator_t& operator++(int)
{
m_it++;
return *this;
}
primitive_iterator_t& operator--()
{
--m_it;
return *this;
}
primitive_iterator_t& operator--(int)
{
m_it--;
return *this;
}
primitive_iterator_t& operator+=(difference_type n)
{
m_it += n;
return *this;
}
primitive_iterator_t& operator-=(difference_type n)
{
m_it -= n;
return *this;
}
private:
......@@ -8893,7 +9246,7 @@ class basic_json
default:
{
if (m_it.primitive_iterator == -n)
if (m_it.primitive_iterator.get_value() == -n)
{
return *m_object;
}
......@@ -9722,7 +10075,7 @@ class basic_json
for (; curptr < m_cursor; curptr++)
{
// quickly skip tests if a digit
if (*curptr < '0' || *curptr > '9')
if (*curptr < '0' or* curptr > '9')
{
if (*curptr == '.')
{
......@@ -10696,6 +11049,18 @@ class basic_json
}
private:
friend bool operator==(json_pointer const& lhs,
json_pointer const& rhs) noexcept
{
return lhs.reference_tokens == rhs.reference_tokens;
}
friend bool operator!=(json_pointer const& lhs,
json_pointer const& rhs) noexcept
{
return !(lhs == rhs);
}
/// the reference tokens
std::vector<std::string> reference_tokens {};
};
......@@ -11356,7 +11721,6 @@ class basic_json
/// @}
};
/////////////
// presets //
/////////////
......
......@@ -29,12 +29,14 @@ add_executable(${JSON_UNITTEST_TARGET_NAME}
"src/unit-meta.cpp"
"src/unit-modifiers.cpp"
"src/unit-msgpack.cpp"
"src/unit-noexcept.cpp"
"src/unit-pointer_access.cpp"
"src/unit-readme.cpp"
"src/unit-reference_access.cpp"
"src/unit-regression.cpp"
"src/unit-serialization.cpp"
"src/unit-testsuites.cpp"
"src/unit-udt.cpp"
"src/unit-unicode.cpp"
)
......
......@@ -91,7 +91,7 @@ TEST_CASE("const_iterator class")
json j(json::value_t::null);
json::const_iterator it(&j);
it.set_begin();
CHECK(it == j.cbegin());
CHECK((it == j.cbegin()));
}
SECTION("object")
......@@ -99,7 +99,7 @@ TEST_CASE("const_iterator class")
json j(json::value_t::object);
json::const_iterator it(&j);
it.set_begin();
CHECK(it == j.cbegin());
CHECK((it == j.cbegin()));
}
SECTION("array")
......@@ -107,7 +107,7 @@ TEST_CASE("const_iterator class")
json j(json::value_t::array);
json::const_iterator it(&j);
it.set_begin();
CHECK(it == j.cbegin());
CHECK((it == j.cbegin()));
}
}
......@@ -118,7 +118,7 @@ TEST_CASE("const_iterator class")
json j(json::value_t::null);
json::const_iterator it(&j);
it.set_end();
CHECK(it == j.cend());
CHECK((it == j.cend()));
}
SECTION("object")
......@@ -126,7 +126,7 @@ TEST_CASE("const_iterator class")
json j(json::value_t::object);
json::const_iterator it(&j);
it.set_end();
CHECK(it == j.cend());
CHECK((it == j.cend()));
}
SECTION("array")
......@@ -134,7 +134,7 @@ TEST_CASE("const_iterator class")
json j(json::value_t::array);
json::const_iterator it(&j);
it.set_end();
CHECK(it == j.cend());
CHECK((it == j.cend()));
}
}
}
......@@ -220,48 +220,48 @@ TEST_CASE("const_iterator class")
{
json j(json::value_t::null);
json::const_iterator it = j.cbegin();
CHECK(it.m_it.primitive_iterator == 1);
CHECK((it.m_it.primitive_iterator.m_it == 1));
it++;
CHECK((it.m_it.primitive_iterator != 0 and it.m_it.primitive_iterator != 1));
CHECK((it.m_it.primitive_iterator.m_it != 0 and it.m_it.primitive_iterator.m_it != 1));
}
SECTION("number")
{
json j(17);
json::const_iterator it = j.cbegin();
CHECK(it.m_it.primitive_iterator == 0);
CHECK((it.m_it.primitive_iterator.m_it == 0));
it++;
CHECK(it.m_it.primitive_iterator == 1);
CHECK((it.m_it.primitive_iterator.m_it == 1));
it++;
CHECK((it.m_it.primitive_iterator != 0 and it.m_it.primitive_iterator != 1));
CHECK((it.m_it.primitive_iterator.m_it != 0 and it.m_it.primitive_iterator.m_it != 1));
}
SECTION("object")
{
json j({{"foo", "bar"}});
json::const_iterator it = j.cbegin();
CHECK(it.m_it.object_iterator == it.m_object->m_value.object->begin());
CHECK((it.m_it.object_iterator == it.m_object->m_value.object->begin()));
it++;
CHECK(it.m_it.object_iterator == it.m_object->m_value.object->end());
CHECK((it.m_it.object_iterator == it.m_object->m_value.object->end()));
}
SECTION("array")
{
json j({1, 2, 3, 4});
json::const_iterator it = j.cbegin();
CHECK(it.m_it.array_iterator == it.m_object->m_value.array->begin());
CHECK((it.m_it.array_iterator == it.m_object->m_value.array->begin()));
it++;
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->end()));
it++;
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->end()));
it++;
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->end()));
it++;
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator == it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator == it.m_object->m_value.array->end()));
}
}
......@@ -271,48 +271,48 @@ TEST_CASE("const_iterator class")
{
json j(json::value_t::null);
json::const_iterator it = j.cbegin();
CHECK(it.m_it.primitive_iterator == 1);
CHECK((it.m_it.primitive_iterator.m_it == 1));
++it;
CHECK((it.m_it.primitive_iterator != 0 and it.m_it.primitive_iterator != 1));
CHECK((it.m_it.primitive_iterator.m_it != 0 and it.m_it.primitive_iterator.m_it != 1));
}
SECTION("number")
{
json j(17);
json::const_iterator it = j.cbegin();
CHECK(it.m_it.primitive_iterator == 0);
CHECK((it.m_it.primitive_iterator.m_it == 0));
++it;
CHECK(it.m_it.primitive_iterator == 1);
CHECK((it.m_it.primitive_iterator.m_it == 1));
++it;
CHECK((it.m_it.primitive_iterator != 0 and it.m_it.primitive_iterator != 1));
CHECK((it.m_it.primitive_iterator.m_it != 0 and it.m_it.primitive_iterator.m_it != 1));
}
SECTION("object")
{
json j({{"foo", "bar"}});
json::const_iterator it = j.cbegin();
CHECK(it.m_it.object_iterator == it.m_object->m_value.object->begin());
CHECK((it.m_it.object_iterator == it.m_object->m_value.object->begin()));
++it;
CHECK(it.m_it.object_iterator == it.m_object->m_value.object->end());
CHECK((it.m_it.object_iterator == it.m_object->m_value.object->end()));
}
SECTION("array")
{
json j({1, 2, 3, 4});
json::const_iterator it = j.cbegin();
CHECK(it.m_it.array_iterator == it.m_object->m_value.array->begin());
CHECK((it.m_it.array_iterator == it.m_object->m_value.array->begin()));
++it;
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->end()));
++it;
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->end()));
++it;
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->end()));
++it;
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator == it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator == it.m_object->m_value.array->end()));
}
}
......@@ -322,46 +322,46 @@ TEST_CASE("const_iterator class")
{
json j(json::value_t::null);
json::const_iterator it = j.cend();
CHECK(it.m_it.primitive_iterator == 1);
CHECK((it.m_it.primitive_iterator.m_it == 1));
}
SECTION("number")
{
json j(17);
json::const_iterator it = j.cend();
CHECK(it.m_it.primitive_iterator == 1);
CHECK((it.m_it.primitive_iterator.m_it == 1));
it--;
CHECK(it.m_it.primitive_iterator == 0);
CHECK((it.m_it.primitive_iterator.m_it == 0));
it--;
CHECK((it.m_it.primitive_iterator != 0 and it.m_it.primitive_iterator != 1));
CHECK((it.m_it.primitive_iterator.m_it != 0 and it.m_it.primitive_iterator.m_it != 1));
}
SECTION("object")
{
json j({{"foo", "bar"}});
json::const_iterator it = j.cend();
CHECK(it.m_it.object_iterator == it.m_object->m_value.object->end());
CHECK((it.m_it.object_iterator == it.m_object->m_value.object->end()));
it--;
CHECK(it.m_it.object_iterator == it.m_object->m_value.object->begin());
CHECK((it.m_it.object_iterator == it.m_object->m_value.object->begin()));
}
SECTION("array")
{
json j({1, 2, 3, 4});
json::const_iterator it = j.cend();
CHECK(it.m_it.array_iterator == it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator == it.m_object->m_value.array->end()));
it--;
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->end()));
it--;
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->end()));
it--;
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->end()));
it--;
CHECK(it.m_it.array_iterator == it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator == it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->end()));
}
}
......@@ -371,46 +371,46 @@ TEST_CASE("const_iterator class")
{
json j(json::value_t::null);
json::const_iterator it = j.cend();
CHECK(it.m_it.primitive_iterator == 1);
CHECK((it.m_it.primitive_iterator.m_it == 1));
}
SECTION("number")
{
json j(17);
json::const_iterator it = j.cend();
CHECK(it.m_it.primitive_iterator == 1);
CHECK((it.m_it.primitive_iterator.m_it == 1));
--it;
CHECK(it.m_it.primitive_iterator == 0);
CHECK((it.m_it.primitive_iterator.m_it == 0));
--it;
CHECK((it.m_it.primitive_iterator != 0 and it.m_it.primitive_iterator != 1));
CHECK((it.m_it.primitive_iterator.m_it != 0 and it.m_it.primitive_iterator.m_it != 1));
}
SECTION("object")
{
json j({{"foo", "bar"}});
json::const_iterator it = j.cend();
CHECK(it.m_it.object_iterator == it.m_object->m_value.object->end());
CHECK((it.m_it.object_iterator == it.m_object->m_value.object->end()));
--it;
CHECK(it.m_it.object_iterator == it.m_object->m_value.object->begin());
CHECK((it.m_it.object_iterator == it.m_object->m_value.object->begin()));
}
SECTION("array")
{
json j({1, 2, 3, 4});
json::const_iterator it = j.cend();
CHECK(it.m_it.array_iterator == it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator == it.m_object->m_value.array->end()));
--it;
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->end()));
--it;
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->end()));
--it;
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->end()));
--it;
CHECK(it.m_it.array_iterator == it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator == it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->end()));
}
}
}
......
......@@ -75,7 +75,7 @@ TEST_CASE("iterator class")
json j(json::value_t::null);
json::iterator it(&j);
it.set_begin();
CHECK(it == j.begin());
CHECK((it == j.begin()));
}
SECTION("object")
......@@ -83,7 +83,7 @@ TEST_CASE("iterator class")
json j(json::value_t::object);
json::iterator it(&j);
it.set_begin();
CHECK(it == j.begin());
CHECK((it == j.begin()));
}
SECTION("array")
......@@ -91,7 +91,7 @@ TEST_CASE("iterator class")
json j(json::value_t::array);
json::iterator it(&j);
it.set_begin();
CHECK(it == j.begin());
CHECK((it == j.begin()));
}
}
......@@ -102,7 +102,7 @@ TEST_CASE("iterator class")
json j(json::value_t::null);
json::iterator it(&j);
it.set_end();
CHECK(it == j.end());
CHECK((it == j.end()));
}
SECTION("object")
......@@ -110,7 +110,7 @@ TEST_CASE("iterator class")
json j(json::value_t::object);
json::iterator it(&j);
it.set_end();
CHECK(it == j.end());
CHECK((it == j.end()));
}
SECTION("array")
......@@ -118,7 +118,7 @@ TEST_CASE("iterator class")
json j(json::value_t::array);
json::iterator it(&j);
it.set_end();
CHECK(it == j.end());
CHECK((it == j.end()));
}
}
}
......@@ -204,48 +204,48 @@ TEST_CASE("iterator class")
{
json j(json::value_t::null);
json::iterator it = j.begin();
CHECK(it.m_it.primitive_iterator == 1);
CHECK((it.m_it.primitive_iterator.m_it == 1));
it++;
CHECK((it.m_it.primitive_iterator != 0 and it.m_it.primitive_iterator != 1));
CHECK((it.m_it.primitive_iterator.m_it != 0 and it.m_it.primitive_iterator.m_it != 1));
}
SECTION("number")
{
json j(17);
json::iterator it = j.begin();
CHECK(it.m_it.primitive_iterator == 0);
CHECK((it.m_it.primitive_iterator.m_it == 0));
it++;
CHECK(it.m_it.primitive_iterator == 1);
CHECK((it.m_it.primitive_iterator.m_it == 1));
it++;
CHECK((it.m_it.primitive_iterator != 0 and it.m_it.primitive_iterator != 1));
CHECK((it.m_it.primitive_iterator.m_it != 0 and it.m_it.primitive_iterator.m_it != 1));
}
SECTION("object")
{
json j({{"foo", "bar"}});
json::iterator it = j.begin();
CHECK(it.m_it.object_iterator == it.m_object->m_value.object->begin());
CHECK((it.m_it.object_iterator == it.m_object->m_value.object->begin()));
it++;
CHECK(it.m_it.object_iterator == it.m_object->m_value.object->end());
CHECK((it.m_it.object_iterator == it.m_object->m_value.object->end()));
}
SECTION("array")
{
json j({1, 2, 3, 4});
json::iterator it = j.begin();
CHECK(it.m_it.array_iterator == it.m_object->m_value.array->begin());
CHECK((it.m_it.array_iterator == it.m_object->m_value.array->begin()));
it++;
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->end()));
it++;
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->end()));
it++;
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->end()));
it++;
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator == it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator == it.m_object->m_value.array->end()));
}
}
......@@ -255,48 +255,48 @@ TEST_CASE("iterator class")
{
json j(json::value_t::null);
json::iterator it = j.begin();
CHECK(it.m_it.primitive_iterator == 1);
CHECK((it.m_it.primitive_iterator.m_it == 1));
++it;
CHECK((it.m_it.primitive_iterator != 0 and it.m_it.primitive_iterator != 1));
CHECK((it.m_it.primitive_iterator.m_it != 0 and it.m_it.primitive_iterator.m_it != 1));
}
SECTION("number")
{
json j(17);
json::iterator it = j.begin();
CHECK(it.m_it.primitive_iterator == 0);
CHECK((it.m_it.primitive_iterator.m_it == 0));
++it;
CHECK(it.m_it.primitive_iterator == 1);
CHECK((it.m_it.primitive_iterator.m_it == 1));
++it;
CHECK((it.m_it.primitive_iterator != 0 and it.m_it.primitive_iterator != 1));
CHECK((it.m_it.primitive_iterator.m_it != 0 and it.m_it.primitive_iterator.m_it != 1));
}
SECTION("object")
{
json j({{"foo", "bar"}});
json::iterator it = j.begin();
CHECK(it.m_it.object_iterator == it.m_object->m_value.object->begin());
CHECK((it.m_it.object_iterator == it.m_object->m_value.object->begin()));
++it;
CHECK(it.m_it.object_iterator == it.m_object->m_value.object->end());
CHECK((it.m_it.object_iterator == it.m_object->m_value.object->end()));
}
SECTION("array")
{
json j({1, 2, 3, 4});
json::iterator it = j.begin();
CHECK(it.m_it.array_iterator == it.m_object->m_value.array->begin());
CHECK((it.m_it.array_iterator == it.m_object->m_value.array->begin()));
++it;
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->end()));
++it;
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->end()));
++it;
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->end()));
++it;
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator == it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator == it.m_object->m_value.array->end()));
}
}
......@@ -306,46 +306,46 @@ TEST_CASE("iterator class")
{
json j(json::value_t::null);
json::iterator it = j.end();
CHECK(it.m_it.primitive_iterator == 1);
CHECK((it.m_it.primitive_iterator.m_it == 1));
}
SECTION("number")
{
json j(17);
json::iterator it = j.end();
CHECK(it.m_it.primitive_iterator == 1);
CHECK((it.m_it.primitive_iterator.m_it == 1));
it--;
CHECK(it.m_it.primitive_iterator == 0);
CHECK((it.m_it.primitive_iterator.m_it == 0));
it--;
CHECK((it.m_it.primitive_iterator != 0 and it.m_it.primitive_iterator != 1));
CHECK((it.m_it.primitive_iterator.m_it != 0 and it.m_it.primitive_iterator.m_it != 1));
}
SECTION("object")
{
json j({{"foo", "bar"}});
json::iterator it = j.end();
CHECK(it.m_it.object_iterator == it.m_object->m_value.object->end());
CHECK((it.m_it.object_iterator == it.m_object->m_value.object->end()));
it--;
CHECK(it.m_it.object_iterator == it.m_object->m_value.object->begin());
CHECK((it.m_it.object_iterator == it.m_object->m_value.object->begin()));
}
SECTION("array")
{
json j({1, 2, 3, 4});
json::iterator it = j.end();
CHECK(it.m_it.array_iterator == it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator == it.m_object->m_value.array->end()));
it--;
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->end()));
it--;
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->end()));
it--;
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->end()));
it--;
CHECK(it.m_it.array_iterator == it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator == it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->end()));
}
}
......@@ -355,46 +355,46 @@ TEST_CASE("iterator class")
{
json j(json::value_t::null);
json::iterator it = j.end();
CHECK(it.m_it.primitive_iterator == 1);
CHECK((it.m_it.primitive_iterator.m_it == 1));
}
SECTION("number")
{
json j(17);
json::iterator it = j.end();
CHECK(it.m_it.primitive_iterator == 1);
CHECK((it.m_it.primitive_iterator.m_it == 1));
--it;
CHECK(it.m_it.primitive_iterator == 0);
CHECK((it.m_it.primitive_iterator.m_it == 0));
--it;
CHECK((it.m_it.primitive_iterator != 0 and it.m_it.primitive_iterator != 1));
CHECK((it.m_it.primitive_iterator.m_it != 0 and it.m_it.primitive_iterator.m_it != 1));
}
SECTION("object")
{
json j({{"foo", "bar"}});
json::iterator it = j.end();
CHECK(it.m_it.object_iterator == it.m_object->m_value.object->end());
CHECK((it.m_it.object_iterator == it.m_object->m_value.object->end()));
--it;
CHECK(it.m_it.object_iterator == it.m_object->m_value.object->begin());
CHECK((it.m_it.object_iterator == it.m_object->m_value.object->begin()));
}
SECTION("array")
{
json j({1, 2, 3, 4});
json::iterator it = j.end();
CHECK(it.m_it.array_iterator == it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator == it.m_object->m_value.array->end()));
--it;
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->end()));
--it;
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->end()));
--it;
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->end()));
--it;
CHECK(it.m_it.array_iterator == it.m_object->m_value.array->begin());
CHECK(it.m_it.array_iterator != it.m_object->m_value.array->end());
CHECK((it.m_it.array_iterator == it.m_object->m_value.array->begin()));
CHECK((it.m_it.array_iterator != it.m_object->m_value.array->end()));
}
}
}
......
......@@ -38,86 +38,86 @@ TEST_CASE("lexer class")
{
SECTION("structural characters")
{
CHECK(json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("["),
1).scan() == json::lexer::token_type::begin_array);
CHECK(json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("]"),
1).scan() == json::lexer::token_type::end_array);
CHECK(json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("{"),
1).scan() == json::lexer::token_type::begin_object);
CHECK(json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("}"),
1).scan() == json::lexer::token_type::end_object);
CHECK(json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>(","),
1).scan() == json::lexer::token_type::value_separator);
CHECK(json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>(":"),
1).scan() == json::lexer::token_type::name_separator);
CHECK((json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("["),
1).scan() == json::lexer::token_type::begin_array));
CHECK((json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("]"),
1).scan() == json::lexer::token_type::end_array));
CHECK((json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("{"),
1).scan() == json::lexer::token_type::begin_object));
CHECK((json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("}"),
1).scan() == json::lexer::token_type::end_object));
CHECK((json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>(","),
1).scan() == json::lexer::token_type::value_separator));
CHECK((json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>(":"),
1).scan() == json::lexer::token_type::name_separator));
}
SECTION("literal names")
{
CHECK(json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("null"),
4).scan() == json::lexer::token_type::literal_null);
CHECK(json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("true"),
4).scan() == json::lexer::token_type::literal_true);
CHECK(json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("false"),
5).scan() == json::lexer::token_type::literal_false);
CHECK((json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("null"),
4).scan() == json::lexer::token_type::literal_null));
CHECK((json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("true"),
4).scan() == json::lexer::token_type::literal_true));
CHECK((json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("false"),
5).scan() == json::lexer::token_type::literal_false));
}
SECTION("numbers")
{
CHECK(json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("0"),
1).scan() == json::lexer::token_type::value_number);
CHECK(json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("1"),
1).scan() == json::lexer::token_type::value_number);
CHECK(json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("2"),
1).scan() == json::lexer::token_type::value_number);
CHECK(json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("3"),
1).scan() == json::lexer::token_type::value_number);
CHECK(json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("4"),
1).scan() == json::lexer::token_type::value_number);
CHECK(json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("5"),
1).scan() == json::lexer::token_type::value_number);
CHECK(json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("6"),
1).scan() == json::lexer::token_type::value_number);
CHECK(json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("7"),
1).scan() == json::lexer::token_type::value_number);
CHECK(json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("8"),
1).scan() == json::lexer::token_type::value_number);
CHECK(json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("9"),
1).scan() == json::lexer::token_type::value_number);
CHECK((json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("0"),
1).scan() == json::lexer::token_type::value_number));
CHECK((json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("1"),
1).scan() == json::lexer::token_type::value_number));
CHECK((json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("2"),
1).scan() == json::lexer::token_type::value_number));
CHECK((json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("3"),
1).scan() == json::lexer::token_type::value_number));
CHECK((json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("4"),
1).scan() == json::lexer::token_type::value_number));
CHECK((json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("5"),
1).scan() == json::lexer::token_type::value_number));
CHECK((json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("6"),
1).scan() == json::lexer::token_type::value_number));
CHECK((json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("7"),
1).scan() == json::lexer::token_type::value_number));
CHECK((json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("8"),
1).scan() == json::lexer::token_type::value_number));
CHECK((json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("9"),
1).scan() == json::lexer::token_type::value_number));
}
SECTION("whitespace")
{
// result is end_of_input, because not token is following
CHECK(json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>(" "),
1).scan() == json::lexer::token_type::end_of_input);
CHECK(json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("\t"),
1).scan() == json::lexer::token_type::end_of_input);
CHECK(json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("\n"),
1).scan() == json::lexer::token_type::end_of_input);
CHECK(json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("\r"),
1).scan() == json::lexer::token_type::end_of_input);
CHECK(json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>(" \t\n\r\n\t "),
7).scan() == json::lexer::token_type::end_of_input);
CHECK((json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>(" "),
1).scan() == json::lexer::token_type::end_of_input));
CHECK((json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("\t"),
1).scan() == json::lexer::token_type::end_of_input));
CHECK((json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("\n"),
1).scan() == json::lexer::token_type::end_of_input));
CHECK((json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>("\r"),
1).scan() == json::lexer::token_type::end_of_input));
CHECK((json::lexer(reinterpret_cast<const json::lexer::lexer_char_t*>(" \t\n\r\n\t "),
7).scan() == json::lexer::token_type::end_of_input));
}
}
SECTION("token_type_name")
{
CHECK(json::lexer::token_type_name(json::lexer::token_type::uninitialized) == "<uninitialized>");
CHECK(json::lexer::token_type_name(json::lexer::token_type::literal_true) == "true literal");
CHECK(json::lexer::token_type_name(json::lexer::token_type::literal_false) == "false literal");
CHECK(json::lexer::token_type_name(json::lexer::token_type::literal_null) == "null literal");
CHECK(json::lexer::token_type_name(json::lexer::token_type::value_string) == "string literal");
CHECK(json::lexer::token_type_name(json::lexer::token_type::value_number) == "number literal");
CHECK(json::lexer::token_type_name(json::lexer::token_type::begin_array) == "'['");
CHECK(json::lexer::token_type_name(json::lexer::token_type::begin_object) == "'{'");
CHECK(json::lexer::token_type_name(json::lexer::token_type::end_array) == "']'");
CHECK(json::lexer::token_type_name(json::lexer::token_type::end_object) == "'}'");
CHECK(json::lexer::token_type_name(json::lexer::token_type::name_separator) == "':'");
CHECK(json::lexer::token_type_name(json::lexer::token_type::value_separator) == "','");
CHECK(json::lexer::token_type_name(json::lexer::token_type::parse_error) == "<parse error>");
CHECK(json::lexer::token_type_name(json::lexer::token_type::end_of_input) == "end of input");
CHECK((json::lexer::token_type_name(json::lexer::token_type::uninitialized) == "<uninitialized>"));
CHECK((json::lexer::token_type_name(json::lexer::token_type::literal_true) == "true literal"));
CHECK((json::lexer::token_type_name(json::lexer::token_type::literal_false) == "false literal"));
CHECK((json::lexer::token_type_name(json::lexer::token_type::literal_null) == "null literal"));
CHECK((json::lexer::token_type_name(json::lexer::token_type::value_string) == "string literal"));
CHECK((json::lexer::token_type_name(json::lexer::token_type::value_number) == "number literal"));
CHECK((json::lexer::token_type_name(json::lexer::token_type::begin_array) == "'['"));
CHECK((json::lexer::token_type_name(json::lexer::token_type::begin_object) == "'{'"));
CHECK((json::lexer::token_type_name(json::lexer::token_type::end_array) == "']'"));
CHECK((json::lexer::token_type_name(json::lexer::token_type::end_object) == "'}'"));
CHECK((json::lexer::token_type_name(json::lexer::token_type::name_separator) == "':'"));
CHECK((json::lexer::token_type_name(json::lexer::token_type::value_separator) == "','"));
CHECK((json::lexer::token_type_name(json::lexer::token_type::parse_error) == "<parse error>"));
CHECK((json::lexer::token_type_name(json::lexer::token_type::end_of_input) == "end of input"));
}
SECTION("parse errors on first character")
......@@ -150,7 +150,7 @@ TEST_CASE("lexer class")
case ('8'):
case ('9'):
{
CHECK(res != json::lexer::token_type::parse_error);
CHECK((res != json::lexer::token_type::parse_error));
break;
}
......@@ -160,14 +160,14 @@ TEST_CASE("lexer class")
case ('\n'):
case ('\r'):
{
CHECK(res == json::lexer::token_type::end_of_input);
CHECK((res == json::lexer::token_type::end_of_input));
break;
}
// anything else is not expected
default:
{
CHECK(res == json::lexer::token_type::parse_error);
CHECK((res == json::lexer::token_type::parse_error));
break;
}
}
......
......@@ -160,12 +160,30 @@ TEST_CASE("value conversion")
{
std::forward_list<json> a = j.get<std::forward_list<json>>();
CHECK(json(a) == j);
CHECK_THROWS_AS(json(json::value_t::null).get<std::forward_list<json>>(), std::logic_error);
CHECK_THROWS_WITH(json(json::value_t::null).get<std::forward_list<json>>(),
"type must be array, but is null");
}
SECTION("std::vector<json>")
{
std::vector<json> a = j.get<std::vector<json>>();
CHECK(json(a) == j);
CHECK_THROWS_AS(json(json::value_t::null).get<std::vector<json>>(), std::logic_error);
CHECK_THROWS_WITH(json(json::value_t::null).get<std::vector<json>>(),
"type must be array, but is null");
#if not defined(JSON_NOEXCEPTION)
SECTION("reserve is called on containers that supports it")
{
// making the call to from_json throw in order to check capacity
std::vector<float> v;
CHECK_THROWS_AS(nlohmann::from_json(j, v), std::logic_error);
CHECK(v.capacity() == j.size());
}
#endif
}
SECTION("std::deque<json>")
......@@ -184,6 +202,8 @@ TEST_CASE("value conversion")
CHECK_THROWS_AS(json(json::value_t::number_unsigned).get<json::array_t>(), std::logic_error);
CHECK_THROWS_AS(json(json::value_t::number_float).get<json::array_t>(), std::logic_error);
CHECK_THROWS_WITH(json(json::value_t::object).get<std::vector<int>>(),
"type must be array, but is object");
CHECK_THROWS_WITH(json(json::value_t::null).get<json::array_t>(),
"type must be array, but is null");
CHECK_THROWS_WITH(json(json::value_t::object).get<json::array_t>(),
......@@ -1004,6 +1024,8 @@ TEST_CASE("value conversion")
CHECK_THROWS_AS((json().get<std::vector<json>>()), std::logic_error);
CHECK_THROWS_AS((json().get<std::list<json>>()), std::logic_error);
// does type really must be an array? or it rather must not be null?
// that's what I thought when other test like this one broke
CHECK_THROWS_WITH((json().get<std::list<int>>()), "type must be array, but is null");
CHECK_THROWS_WITH((json().get<std::vector<int>>()), "type must be array, but is null");
CHECK_THROWS_WITH((json().get<std::vector<json>>()), "type must be array, but is null");
......
#include "catch.hpp"
#include "json.hpp"
using nlohmann::json;
enum test
{
};
struct pod {};
struct pod_bis {};
void to_json(json&, pod) noexcept;
void to_json(json&, pod_bis);
void from_json(const json&, pod) noexcept;
void from_json(const json&, pod_bis);
static json j;
static_assert(noexcept(json{}), "");
static_assert(noexcept(nlohmann::to_json(j, 2)), "");
static_assert(noexcept(nlohmann::to_json(j, 2.5)), "");
static_assert(noexcept(nlohmann::to_json(j, true)), "");
static_assert(noexcept(nlohmann::to_json(j, test{})), "");
static_assert(noexcept(nlohmann::to_json(j, pod{})), "");
static_assert(not noexcept(nlohmann::to_json(j, pod_bis{})), "");
static_assert(noexcept(json(2)), "");
static_assert(noexcept(json(test{})), "");
static_assert(noexcept(json(pod{})), "");
static_assert(noexcept(j.get<pod>()), "");
static_assert(not noexcept(j.get<pod_bis>()), "");
static_assert(noexcept(json(pod{})), "");
......@@ -63,10 +63,18 @@ TEST_CASE("regression tests")
SECTION("pull request #71 - handle enum type")
{
enum { t = 0 };
enum { t = 0, u = 1};
json j = json::array();
j.push_back(t);
// maybe this is not the place to test this?
json j2 = u;
auto anon_enum_value = j2.get<decltype(u)>();
CHECK(u == anon_enum_value);
static_assert(std::is_same<decltype(anon_enum_value), decltype(u)>::value, "");
j.push_back(json::object(
{
{"game_type", t}
......
/*
__ _____ _____ _____
__| | __| | | | JSON for Modern C++ (test suite)
| | |__ | | | | | | version 2.0.7
|_____|_____|_____|_|___| https://github.com/nlohmann/json
Licensed under the MIT License <http://opensource.org/licenses/MIT>.
Copyright (c) 2013-2016 Niels Lohmann <http://nlohmann.me>.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include <array>
#include <map>
#include <string>
#include <memory>
#include "catch.hpp"
#include "json.hpp"
using nlohmann::json;
namespace udt
{
enum class country
{
china,
france,
russia
};
struct age
{
int m_val;
};
struct name
{
std::string m_val;
};
struct address
{
std::string m_val;
};
struct person
{
age m_age;
name m_name;
country m_country;
};
struct contact
{
person m_person;
address m_address;
};
struct contact_book
{
name m_book_name;
std::vector<contact> m_contacts;
};
}
// to_json methods
namespace udt
{
// templates because of the custom_json tests (see below)
template <typename BasicJsonType>
void to_json(BasicJsonType& j, age a)
{
j = a.m_val;
}
template <typename BasicJsonType>
void to_json(BasicJsonType& j, const name& n)
{
j = n.m_val;
}
template <typename BasicJsonType>
void to_json(BasicJsonType& j, country c)
{
switch (c)
{
case country::china:
j = u8"中华人民共和国";
return;
case country::france:
j = "France";
return;
case country::russia:
j = u8"Российская Федерация";
return;
}
}
template <typename BasicJsonType>
void to_json(BasicJsonType& j, const person& p)
{
j = BasicJsonType{{"age", p.m_age}, {"name", p.m_name}, {"country", p.m_country}};
}
void to_json(nlohmann::json& j, const address& a)
{
j = a.m_val;
}
void to_json(nlohmann::json& j, const contact& c)
{
j = json{{"person", c.m_person}, {"address", c.m_address}};
}
void to_json(nlohmann::json& j, const contact_book& cb)
{
j = json{{"name", cb.m_book_name}, {"contacts", cb.m_contacts}};
}
// operators
bool operator==(age lhs, age rhs)
{
return lhs.m_val == rhs.m_val;
}
bool operator==(const address& lhs, const address& rhs)
{
return lhs.m_val == rhs.m_val;
}
bool operator==(const name& lhs, const name& rhs)
{
return lhs.m_val == rhs.m_val;
}
bool operator==(const person& lhs, const person& rhs)
{
return std::tie(lhs.m_name, lhs.m_age) == std::tie(rhs.m_name, rhs.m_age);
}
bool operator==(const contact& lhs, const contact& rhs)
{
return std::tie(lhs.m_person, lhs.m_address) ==
std::tie(rhs.m_person, rhs.m_address);
}
bool operator==(const contact_book& lhs, const contact_book& rhs)
{
return std::tie(lhs.m_book_name, lhs.m_contacts) ==
std::tie(rhs.m_book_name, rhs.m_contacts);
}
}
// from_json methods
namespace udt
{
template <typename BasicJsonType>
void from_json(const BasicJsonType& j, age& a)
{
a.m_val = j.template get<int>();
}
template <typename BasicJsonType>
void from_json(const BasicJsonType& j, name& n)
{
n.m_val = j.template get<std::string>();
}
template <typename BasicJsonType>
void from_json(const BasicJsonType& j, country& c)
{
const auto str = j.template get<std::string>();
static const std::map<std::string, country> m =
{
{u8"中华人民共和国", country::china},
{"France", country::france},
{"Российская Федерация", country::russia}
};
const auto it = m.find(str);
// TODO test exceptions
c = it->second;
}
template <typename BasicJsonType>
void from_json(const BasicJsonType& j, person& p)
{
p.m_age = j["age"].template get<age>();
p.m_name = j["name"].template get<name>();
p.m_country = j["country"].template get<country>();
}
void from_json(const nlohmann::json& j, address& a)
{
a.m_val = j.get<std::string>();
}
void from_json(const nlohmann::json& j, contact& c)
{
c.m_person = j["person"].get<person>();
c.m_address = j["address"].get<address>();
}
void from_json(const nlohmann::json& j, contact_book& cb)
{
cb.m_book_name = j["name"].get<name>();
cb.m_contacts = j["contacts"].get<std::vector<contact>>();
}
}
TEST_CASE("basic usage", "[udt]")
{
// a bit narcissic maybe :) ?
const udt::age a
{
23
};
const udt::name n{"theo"};
const udt::country c{udt::country::france};
const udt::person sfinae_addict{a, n, c};
const udt::person senior_programmer{{42}, {u8"王芳"}, udt::country::china};
const udt::address addr{"Paris"};
const udt::contact cpp_programmer{sfinae_addict, addr};
const udt::contact_book book{{"C++"}, {cpp_programmer, {senior_programmer, addr}}};
SECTION("conversion to json via free-functions")
{
CHECK(json(a) == json(23));
CHECK(json(n) == json("theo"));
CHECK(json(c) == json("France"));
CHECK(json(sfinae_addict) == R"({"name":"theo", "age":23, "country":"France"})"_json);
CHECK(json("Paris") == json(addr));
CHECK(json(cpp_programmer) ==
R"({"person" : {"age":23, "name":"theo", "country":"France"}, "address":"Paris"})"_json);
CHECK(
json(book) ==
u8R"({"name":"C++", "contacts" : [{"person" : {"age":23, "name":"theo", "country":"France"}, "address":"Paris"}, {"person" : {"age":42, "country":"中华人民共和国", "name":"王芳"}, "address":"Paris"}]})"_json);
}
SECTION("conversion from json via free-functions")
{
const auto big_json =
u8R"({"name":"C++", "contacts" : [{"person" : {"age":23, "name":"theo", "country":"France"}, "address":"Paris"}, {"person" : {"age":42, "country":"中华人民共和国", "name":"王芳"}, "address":"Paris"}]})"_json;
SECTION("via explicit calls to get")
{
const auto parsed_book = big_json.get<udt::contact_book>();
const auto book_name = big_json["name"].get<udt::name>();
const auto contacts =
big_json["contacts"].get<std::vector<udt::contact>>();
const auto contact_json = big_json["contacts"].at(0);
const auto contact = contact_json.get<udt::contact>();
const auto person = contact_json["person"].get<udt::person>();
const auto address = contact_json["address"].get<udt::address>();
const auto age = contact_json["person"]["age"].get<udt::age>();
const auto country =
contact_json["person"]["country"].get<udt::country>();
const auto name = contact_json["person"]["name"].get<udt::name>();
CHECK(age == a);
CHECK(name == n);
CHECK(country == c);
CHECK(address == addr);
CHECK(person == sfinae_addict);
CHECK(contact == cpp_programmer);
CHECK(contacts == book.m_contacts);
CHECK(book_name == udt::name{"C++"});
CHECK(book == parsed_book);
}
SECTION("implicit conversions")
{
const udt::contact_book parsed_book = big_json;
const udt::name book_name = big_json["name"];
const std::vector<udt::contact> contacts = big_json["contacts"];
const auto contact_json = big_json["contacts"].at(0);
const udt::contact contact = contact_json;
const udt::person person = contact_json["person"];
const udt::address address = contact_json["address"];
const udt::age age = contact_json["person"]["age"];
const udt::country country = contact_json["person"]["country"];
const udt::name name = contact_json["person"]["name"];
CHECK(age == a);
CHECK(name == n);
CHECK(country == c);
CHECK(address == addr);
CHECK(person == sfinae_addict);
CHECK(contact == cpp_programmer);
CHECK(contacts == book.m_contacts);
CHECK(book_name == udt::name{"C++"});
CHECK(book == parsed_book);
}
}
}
namespace udt
{
struct legacy_type
{
std::string number;
};
}
namespace nlohmann
{
template <typename T>
struct adl_serializer<std::shared_ptr<T>>
{
static void to_json(json& j, const std::shared_ptr<T>& opt)
{
if (opt)
{
j = *opt;
}
else
{
j = nullptr;
}
}
static void from_json(const json& j, std::shared_ptr<T>& opt)
{
if (j.is_null())
{
opt = nullptr;
}
else
{
opt.reset(new T(j.get<T>()));
}
}
};
template <>
struct adl_serializer<udt::legacy_type>
{
static void to_json(json& j, const udt::legacy_type& l)
{
j = std::stoi(l.number);
}
static void from_json(const json& j, udt::legacy_type& l)
{
l.number = std::to_string(j.get<int>());
}
};
}
TEST_CASE("adl_serializer specialization", "[udt]")
{
SECTION("partial specialization")
{
SECTION("to_json")
{
std::shared_ptr<udt::person> optPerson;
json j = optPerson;
CHECK(j.is_null());
optPerson.reset(new udt::person{{42}, {"John Doe"}, udt::country::russia});
j = optPerson;
CHECK_FALSE(j.is_null());
CHECK(j.get<udt::person>() == *optPerson);
}
SECTION("from_json")
{
auto person = udt::person{{42}, {"John Doe"}, udt::country::russia};
json j = person;
auto optPerson = j.get<std::shared_ptr<udt::person>>();
REQUIRE(optPerson);
CHECK(*optPerson == person);
j = nullptr;
optPerson = j.get<std::shared_ptr<udt::person>>();
CHECK(!optPerson);
}
}
SECTION("total specialization")
{
SECTION("to_json")
{
udt::legacy_type lt{"4242"};
json j = lt;
CHECK(j.get<int>() == 4242);
}
SECTION("from_json")
{
json j = 4242;
auto lt = j.get<udt::legacy_type>();
CHECK(lt.number == "4242");
}
}
}
namespace nlohmann
{
template <>
struct adl_serializer<std::vector<float>>
{
using type = std::vector<float>;
static void to_json(json& j, const type&)
{
j = "hijacked!";
}
static void from_json(const json&, type& opt)
{
opt = {42.0, 42.0, 42.0};
}
// preferred version
static type from_json(const json&)
{
return {4.0, 5.0, 6.0};
}
};
}
TEST_CASE("even supported types can be specialized", "[udt]")
{
json j = std::vector<float> {1.0, 2.0, 3.0};
CHECK(j.dump() == R"("hijacked!")");
auto f = j.get<std::vector<float>>();
// the single argument from_json method is preferred
CHECK((f == std::vector<float> {4.0, 5.0, 6.0}));
}
namespace nlohmann
{
template <typename T>
struct adl_serializer<std::unique_ptr<T>>
{
static void to_json(json& j, const std::unique_ptr<T>& opt)
{
if (opt)
{
j = *opt;
}
else
{
j = nullptr;
}
}
// this is the overload needed for non-copyable types,
static std::unique_ptr<T> from_json(const json& j)
{
if (j.is_null())
{
return nullptr;
}
else
{
return std::unique_ptr<T>(new T(j.get<T>()));
}
}
};
}
TEST_CASE("Non-copyable types", "[udt]")
{
SECTION("to_json")
{
std::unique_ptr<udt::person> optPerson;
json j = optPerson;
CHECK(j.is_null());
optPerson.reset(new udt::person{{42}, {"John Doe"}, udt::country::russia});
j = optPerson;
CHECK_FALSE(j.is_null());
CHECK(j.get<udt::person>() == *optPerson);
}
SECTION("from_json")
{
auto person = udt::person{{42}, {"John Doe"}, udt::country::russia};
json j = person;
auto optPerson = j.get<std::unique_ptr<udt::person>>();
REQUIRE(optPerson);
CHECK(*optPerson == person);
j = nullptr;
optPerson = j.get<std::unique_ptr<udt::person>>();
CHECK(!optPerson);
}
}
// custom serializer - advanced usage
// pack structs that are pod-types (but not scalar types)
// relies on adl for any other type
template <typename T, typename = void>
struct pod_serializer
{
// use adl for non-pods, or scalar types
template <
typename BasicJsonType, typename U = T,
typename std::enable_if <
not(std::is_pod<U>::value and std::is_class<U>::value), int >::type = 0 >
static void from_json(const BasicJsonType& j, U& t)
{
using nlohmann::from_json;
from_json(j, t);
}
// special behaviour for pods
template <typename BasicJsonType, typename U = T,
typename std::enable_if<
std::is_pod<U>::value and std::is_class<U>::value, int>::type = 0>
static void from_json(const BasicJsonType& j, U& t)
{
std::uint64_t value;
// TODO The following block is no longer relevant in this serializer, make another one that shows the issue
// the problem arises only when one from_json method is defined without any constraint
//
// Why cannot we simply use: j.get<std::uint64_t>() ?
// Well, with the current experiment, the get method looks for a from_json
// function, which we are currently defining!
// This would end up in a stack overflow. Calling nlohmann::from_json is a
// workaround (is it?).
// I shall find a good way to avoid this once all constructors are converted
// to free methods
//
// In short, constructing a json by constructor calls to_json
// calling get calls from_json, for now, we cannot do this in custom
// serializers
nlohmann::from_json(j, value);
auto bytes = static_cast<char*>(static_cast<void*>(&value));
std::memcpy(&t, bytes, sizeof(value));
}
template <
typename BasicJsonType, typename U = T,
typename std::enable_if <
not(std::is_pod<U>::value and std::is_class<U>::value), int >::type = 0 >
static void to_json(BasicJsonType& j, const T& t)
{
using nlohmann::to_json;
to_json(j, t);
}
template <typename BasicJsonType, typename U = T,
typename std::enable_if<
std::is_pod<U>::value and std::is_class<U>::value, int>::type = 0>
static void to_json(BasicJsonType& j, const T& t) noexcept
{
auto bytes = static_cast< const unsigned char*>(static_cast<const void*>(&t));
std::uint64_t value = bytes[0];
for (auto i = 1; i < 8; ++i)
value |= std::uint64_t{bytes[i]} << 8 * i;
nlohmann::to_json(j, value);
}
};
namespace udt
{
struct small_pod
{
int begin;
char middle;
short end;
};
struct non_pod
{
std::string s;
};
template <typename BasicJsonType>
void to_json(BasicJsonType& j, const non_pod& np)
{
j = np.s;
}
template <typename BasicJsonType>
void from_json(const BasicJsonType& j, non_pod& np)
{
np.s = j.template get<std::string>();
}
bool operator==(small_pod lhs, small_pod rhs) noexcept
{
return std::tie(lhs.begin, lhs.middle, lhs.end) ==
std::tie(rhs.begin, rhs.middle, rhs.end);
}
bool operator==(const non_pod& lhs, const non_pod& rhs) noexcept
{
return lhs.s == rhs.s;
}
std::ostream& operator<<(std::ostream& os, small_pod l)
{
return os << "begin: " << l.begin << ", middle: " << l.middle << ", end: " << l.end;
}
}
TEST_CASE("custom serializer for pods", "[udt]")
{
using custom_json =
nlohmann::basic_json<std::map, std::vector, std::string, bool,
std::int64_t, std::uint64_t, double, std::allocator,
pod_serializer>;
auto p = udt::small_pod{42, '/', 42};
custom_json j = p;
auto p2 = j.get<udt::small_pod>();
CHECK(p == p2);
auto np = udt::non_pod{{"non-pod"}};
custom_json j2 = np;
auto np2 = j2.get<udt::non_pod>();
CHECK(np == np2);
}
template <typename T, typename>
struct another_adl_serializer;
using custom_json = nlohmann::basic_json<std::map, std::vector, std::string, bool, std::int64_t, std::uint64_t, double, std::allocator, another_adl_serializer>;
template <typename T, typename>
struct another_adl_serializer
{
static void from_json(const custom_json& j, T& t)
{
using nlohmann::from_json;
from_json(j, t);
}
static void to_json(custom_json& j, const T& t)
{
using nlohmann::to_json;
to_json(j, t);
}
};
TEST_CASE("custom serializer that does adl by default", "[udt]")
{
using json = nlohmann::json;
auto me = udt::person{{23}, {"theo"}, udt::country::france};
json j = me;
custom_json cj = me;
CHECK(j.dump() == cj.dump());
CHECK(me == j.get<udt::person>());
CHECK(me == cj.get<udt::person>());
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment