/* * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The OpenAirInterface Software Alliance licenses this file to You under * the OAI Public License, Version 1.0 (the "License"); you may not use this file * except in compliance with the License. * You may obtain a copy of the License at * * http://www.openairinterface.org/?page_id=698 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *------------------------------------------------------------------------------- * For more information about the OpenAirInterface (OAI) Software Alliance: * contact@openairinterface.org */ /*! \file lte-ue.c * \brief threads and support functions for real-time LTE UE target * \author R. Knopp, F. Kaltenberger, Navid Nikaein * \date 2015 * \version 0.1 * \company Eurecom * \email: knopp@eurecom.fr,florian.kaltenberger@eurecom.fr, navid.nikaein@eurecom.fr * \note * \warning */ #define _GNU_SOURCE #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <string.h> #include <sys/ioctl.h> #include <sys/types.h> #include <sys/mman.h> #include <sys/stat.h> #include <fcntl.h> #include <sched.h> #include <linux/sched.h> #include <signal.h> #include <execinfo.h> #include <getopt.h> #include <syscall.h> #include <sys/sysinfo.h> #include "rt_wrapper.h" #include "assertions.h" #include "PHY/types.h" #include "PHY/defs.h" #ifdef OPENAIR2 #include "LAYER2/MAC/defs.h" #include "RRC/LITE/extern.h" #endif #include "PHY_INTERFACE/extern.h" #undef MALLOC //there are two conflicting definitions, so we better make sure we don't use it at all //#undef FRAME_LENGTH_COMPLEX_SAMPLES //there are two conflicting definitions, so we better make sure we don't use it at all #include "../../ARCH/COMMON/common_lib.h" #include "PHY/extern.h" #include "SCHED/extern.h" #include "LAYER2/MAC/extern.h" #include "LAYER2/MAC/proto.h" #include "UTIL/LOG/log_extern.h" #include "UTIL/OTG/otg_tx.h" #include "UTIL/OTG/otg_externs.h" #include "UTIL/MATH/oml.h" #include "UTIL/LOG/vcd_signal_dumper.h" #include "UTIL/OPT/opt.h" #define DEBUG_REALTIME 1 #if DEBUG_REALTIME typedef struct latency_stat { uint64_t counter; uint64_t stat1100; uint64_t stat1200; uint64_t stat1500; uint64_t stat2000; uint64_t stat3000; } latency_stat_t; static inline void saif_meas(int frame_rx) { static latency_stat_t __thread latency_stat; static struct timespec __thread last= {0}; struct timespec now; clock_gettime(CLOCK_MONOTONIC_RAW, &now); if ( last.tv_sec ) { uint64_t diffTime = ((uint64_t)now.tv_sec *1000 *1000 *1000 + now.tv_nsec) - ((uint64_t)last.tv_sec *1000 *1000 *1000 + last.tv_nsec); diffTime/=1000; latency_stat.counter++; if ( diffTime >= 1100 ) { if (diffTime < 1200 ) latency_stat.stat1100++; else if ( diffTime < 1500 ) latency_stat.stat1200++; else if ( diffTime < 2000 ) latency_stat.stat1500++; else if ( diffTime < 3000 ) latency_stat.stat2000++; else latency_stat.stat3000++; } if ( diffTime>=1100 || latency_stat.counter%20000==0 ) { time_t current=time(NULL); LOG_W(HW, "%.2f delay=%llu Period stats %2.6f%% below 100µs\ncumul of events: 1100=%ld 1200=%ld 1500=%ld 2000=%ld >3000=%ld - (frame_rx=%d) - %s", now.tv_sec+(double)now.tv_nsec/1e9, diffTime, (latency_stat.counter-latency_stat.stat1100-latency_stat.stat1200- latency_stat.stat1500-latency_stat.stat2000-latency_stat.stat3000)/ (float)latency_stat.counter *100, latency_stat.stat1100, latency_stat.stat1200, latency_stat.stat1500, latency_stat.stat2000, latency_stat.stat3000, frame_rx, ctime(¤t)); fflush(stdout); } } last=now; } typedef struct m { unsigned long long iterations; unsigned long long sum; unsigned long long maxArray[11]; } Meas; void printMeas(char * txt, Meas *M, int period) { if (M->iterations%period == 0 ) { char txt2[512]; sprintf(txt2,"%s avg=%llu, iterations=%llu, max=%llu/%llu/%llu/%llu/%llu/%llu/%llu/%llu/%llu/%llu\n", txt, M->sum/M->iterations,M->iterations, M->maxArray[1],M->maxArray[2], M->maxArray[3],M->maxArray[4], M->maxArray[5], M->maxArray[6],M->maxArray[7], M->maxArray[8],M->maxArray[9],M->maxArray[10]); LOG_W(PHY,txt2); } } int cmpint(const void* a, const void* b) { unsigned long long* aa=(unsigned long long*)a; unsigned long long* bb=(unsigned long long*)b; return (int)(*aa-*bb); } void updateTimes(unsigned long long start, Meas *M, int period, char * txt) { unsigned long long end=rdtsc(); long long diff=(end-start)/(cpuf*1000); M->maxArray[0]=diff; M->sum+=diff; M->iterations++; qsort(M->maxArray, 11, sizeof(unsigned long long), cmpint); printMeas(txt,M,period); } #else #define check(a) do {} while (0) #define saif_meas(a) do {} while (0) #define update_max_times(a,b) do {} while (0) #define print_meas(a,b) do {} while (0) #endif /* End of Changed by SYRTEM */ #define FRAME_PERIOD 100000000ULL #define DAQ_PERIOD 66667ULL typedef enum { pss=0, pbch=1, si=2 } sync_mode_t; void init_UE_threads(int nb_inst); void *UE_thread(void *arg); void init_UE(int nb_inst); extern pthread_cond_t sync_cond; extern pthread_mutex_t sync_mutex; extern int sync_var; extern openair0_config_t openair0_cfg[MAX_CARDS]; extern uint32_t downlink_frequency[MAX_NUM_CCs][4]; extern int32_t uplink_frequency_offset[MAX_NUM_CCs][4]; extern int oai_exit; int32_t **rxdata; int32_t **txdata; //extern unsigned int tx_forward_nsamps; //extern int tx_delay; extern int rx_input_level_dBm; extern uint8_t exit_missed_slots; extern uint64_t num_missed_slots; // counter for the number of missed slots extern void exit_fun(const char* s); #define KHz (1000UL) #define MHz (1000 * KHz) typedef struct eutra_band_s { int16_t band; uint32_t ul_min; uint32_t ul_max; uint32_t dl_min; uint32_t dl_max; lte_frame_type_t frame_type; } eutra_band_t; typedef struct band_info_s { int nbands; eutra_band_t band_info[100]; } band_info_t; band_info_t bands_to_scan; static const eutra_band_t eutra_bands[] = { { 1, 1920 * MHz, 1980 * MHz, 2110 * MHz, 2170 * MHz, FDD}, { 2, 1850 * MHz, 1910 * MHz, 1930 * MHz, 1990 * MHz, FDD}, { 3, 1710 * MHz, 1785 * MHz, 1805 * MHz, 1880 * MHz, FDD}, { 4, 1710 * MHz, 1755 * MHz, 2110 * MHz, 2155 * MHz, FDD}, { 5, 824 * MHz, 849 * MHz, 869 * MHz, 894 * MHz, FDD}, { 6, 830 * MHz, 840 * MHz, 875 * MHz, 885 * MHz, FDD}, { 7, 2500 * MHz, 2570 * MHz, 2620 * MHz, 2690 * MHz, FDD}, { 8, 880 * MHz, 915 * MHz, 925 * MHz, 960 * MHz, FDD}, { 9, 1749900 * KHz, 1784900 * KHz, 1844900 * KHz, 1879900 * KHz, FDD}, {10, 1710 * MHz, 1770 * MHz, 2110 * MHz, 2170 * MHz, FDD}, {11, 1427900 * KHz, 1452900 * KHz, 1475900 * KHz, 1500900 * KHz, FDD}, {12, 698 * MHz, 716 * MHz, 728 * MHz, 746 * MHz, FDD}, {13, 777 * MHz, 787 * MHz, 746 * MHz, 756 * MHz, FDD}, {14, 788 * MHz, 798 * MHz, 758 * MHz, 768 * MHz, FDD}, {17, 704 * MHz, 716 * MHz, 734 * MHz, 746 * MHz, FDD}, {20, 832 * MHz, 862 * MHz, 791 * MHz, 821 * MHz, FDD}, {22, 3510 * MHz, 3590 * MHz, 3410 * MHz, 3490 * MHz, FDD}, {33, 1900 * MHz, 1920 * MHz, 1900 * MHz, 1920 * MHz, TDD}, {34, 2010 * MHz, 2025 * MHz, 2010 * MHz, 2025 * MHz, TDD}, {35, 1850 * MHz, 1910 * MHz, 1850 * MHz, 1910 * MHz, TDD}, {36, 1930 * MHz, 1990 * MHz, 1930 * MHz, 1990 * MHz, TDD}, {37, 1910 * MHz, 1930 * MHz, 1910 * MHz, 1930 * MHz, TDD}, {38, 2570 * MHz, 2620 * MHz, 2570 * MHz, 2630 * MHz, TDD}, {39, 1880 * MHz, 1920 * MHz, 1880 * MHz, 1920 * MHz, TDD}, {40, 2300 * MHz, 2400 * MHz, 2300 * MHz, 2400 * MHz, TDD}, {41, 2496 * MHz, 2690 * MHz, 2496 * MHz, 2690 * MHz, TDD}, {42, 3400 * MHz, 3600 * MHz, 3400 * MHz, 3600 * MHz, TDD}, {43, 3600 * MHz, 3800 * MHz, 3600 * MHz, 3800 * MHz, TDD}, {44, 703 * MHz, 803 * MHz, 703 * MHz, 803 * MHz, TDD}, }; pthread_t main_ue_thread; pthread_attr_t attr_UE_thread; struct sched_param sched_param_UE_thread; void init_thread(int sched_runtime, int sched_deadline, int sched_fifo, cpu_set_t *cpuset, char * name) { #ifdef DEADLINE_SCHEDULER if (sched_runtime!=0) { struct sched_attr attr= {0}; attr.size = sizeof(attr); // This creates a .5 ms reservation attr.sched_policy = SCHED_DEADLINE; attr.sched_runtime = sched_runtime; attr.sched_deadline = sched_deadline; attr.sched_period = 0; AssertFatal(sched_setattr(0, &attr, 0) == 0, "[SCHED] main eNB thread: sched_setattr failed %s \n",perror(errno)); LOG_I(HW,"[SCHED][eNB] eNB main deadline thread %lu started on CPU %d\n", (unsigned long)gettid(), sched_getcpu()); } #else if (cpuset!=NULL) AssertFatal( 0 == pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), cpuset), ""); struct sched_param sp; sp.sched_priority = sched_fifo; AssertFatal(pthread_setschedparam(pthread_self(),SCHED_FIFO,&sp)==0, "Can't set thread priority, Are you root?\n"); #endif // Lock memory from swapping. This is a process wide call (not constraint to this thread). mlockall(MCL_CURRENT | MCL_FUTURE); pthread_setname_np( pthread_self(), name ); // LTS: this sync stuff should be wrong printf("waiting for sync (%s)\n",name); pthread_mutex_lock(&sync_mutex); printf("Locked sync_mutex, waiting (%s)\n",name); while (sync_var<0) pthread_cond_wait(&sync_cond, &sync_mutex); pthread_mutex_unlock(&sync_mutex); printf("starting %s\n",name); } void init_UE(int nb_inst) { PHY_VARS_UE *UE; for (int inst=0; inst<nb_inst; inst++) { printf("Intializing UE Threads for instance %d ...\n",inst); init_UE_threads(inst); sleep(1); UE = PHY_vars_UE_g[inst][0]; AssertFatal(0== openair0_device_load(&(UE->rfdevice), &openair0_cfg[0]), ""); UE->rfdevice.host_type = BBU_HOST; // UE->rfdevice.type = NONE_DEV; AssertFatal(0 == pthread_create(&UE->proc.pthread_ue, &UE->proc.attr_ue, UE_thread, NULL), ""); pthread_setname_np( UE->proc.pthread_ue, "main UE" ); } printf("UE threads created\n"); #ifdef USE_MME while (start_UE == 0) { sleep(1); } #endif } /*! * \brief This is the UE synchronize thread. * It performs band scanning and synchonization. * \param arg is a pointer to a \ref PHY_VARS_UE structure. * \returns a pointer to an int. The storage is not on the heap and must not be freed. */ static void *UE_thread_synch(void *arg) { static int __thread UE_thread_synch_retval; int i, hw_slot_offset; PHY_VARS_UE *UE = (PHY_VARS_UE*) arg; int current_band = 0; int current_offset = 0; sync_mode_t sync_mode = pbch; int CC_id = UE->CC_id; int ind; int found; int freq_offset=0; UE->is_synchronized = 0; printf("UE_thread_sync in with PHY_vars_UE %p\n",arg); printf("waiting for sync (UE_thread_synch) \n"); #ifndef DEADLINE_SCHEDULER int policy, s, j; struct sched_param sparam; char cpu_affinity[1024]; cpu_set_t cpuset; /* Set affinity mask to include CPUs 1 to MAX_CPUS */ /* CPU 0 is reserved for UHD threads */ CPU_ZERO(&cpuset); #ifdef CPU_AFFINITY if (get_nprocs() >2) { for (j = 1; j < get_nprocs(); j++) CPU_SET(j, &cpuset); s = pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset); if (s != 0) { perror( "pthread_setaffinity_np"); exit_fun("Error setting processor affinity"); } } #endif /* Check the actual affinity mask assigned to the thread */ s = pthread_getaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset); if (s != 0) { perror( "pthread_getaffinity_np"); exit_fun("Error getting processor affinity "); } memset(cpu_affinity, 0 , sizeof(cpu_affinity)); for (j = 0; j < CPU_SETSIZE; j++) if (CPU_ISSET(j, &cpuset)) { char temp[1024]; sprintf(temp, " CPU_%d ", j); strcat(cpu_affinity, temp); } memset(&sparam, 0 , sizeof (sparam)); sparam.sched_priority = sched_get_priority_max(SCHED_FIFO)-1; policy = SCHED_FIFO ; s = pthread_setschedparam(pthread_self(), policy, &sparam); if (s != 0) { perror("pthread_setschedparam : "); exit_fun("Error setting thread priority"); } s = pthread_getschedparam(pthread_self(), &policy, &sparam); if (s != 0) { perror("pthread_getschedparam : "); exit_fun("Error getting thread priority"); } LOG_I( HW, "[SCHED][UE] Started UE synch thread on CPU %d TID %ld , sched_policy = %s, priority = %d, CPU Affinity = %s \n", (int)sched_getcpu(), gettid(), (policy == SCHED_FIFO) ? "SCHED_FIFO" : (policy == SCHED_RR) ? "SCHED_RR" : (policy == SCHED_OTHER) ? "SCHED_OTHER" : "???", (int) sparam.sched_priority, cpu_affinity); #endif printf("starting UE synch thread (IC %d)\n",UE->proc.instance_cnt_synch); ind = 0; found = 0; if (UE->UE_scan == 0) { do { current_band = eutra_bands[ind].band; printf( "Scanning band %d, dl_min %"PRIu32", ul_min %"PRIu32"\n", current_band, eutra_bands[ind].dl_min,eutra_bands[ind].ul_min); if ((eutra_bands[ind].dl_min <= downlink_frequency[0][0]) && (eutra_bands[ind].dl_max >= downlink_frequency[0][0])) { for (i=0; i<4; i++) uplink_frequency_offset[CC_id][i] = eutra_bands[ind].ul_min - eutra_bands[ind].dl_min; found = 1; break; } ind++; } while (ind < sizeof(eutra_bands) / sizeof(eutra_bands[0])); if (found == 0) { exit_fun("Can't find EUTRA band for frequency"); return &UE_thread_synch_retval; } LOG_I( PHY, "[SCHED][UE] Check absolute frequency DL %"PRIu32", UL %"PRIu32" (oai_exit %d, rx_num_channels %d)\n", downlink_frequency[0][0], downlink_frequency[0][0]+uplink_frequency_offset[0][0],oai_exit, openair0_cfg[0].rx_num_channels); for (i=0; i<openair0_cfg[UE->rf_map.card].rx_num_channels; i++) { openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i]; openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i]+uplink_frequency_offset[CC_id][i]; openair0_cfg[UE->rf_map.card].autocal[UE->rf_map.chain+i] = 1; if (uplink_frequency_offset[CC_id][i] != 0) // openair0_cfg[UE->rf_map.card].duplex_mode = duplex_mode_FDD; else //FDD openair0_cfg[UE->rf_map.card].duplex_mode = duplex_mode_TDD; } sync_mode = pbch; } else if (UE->UE_scan == 1) { current_band=0; for (i=0; i<openair0_cfg[UE->rf_map.card].rx_num_channels; i++) { downlink_frequency[UE->rf_map.card][UE->rf_map.chain+i] = bands_to_scan.band_info[CC_id].dl_min; uplink_frequency_offset[UE->rf_map.card][UE->rf_map.chain+i] = bands_to_scan.band_info[CC_id].ul_min-bands_to_scan.band_info[CC_id].dl_min; openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i]; openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i]+uplink_frequency_offset[CC_id][i]; openair0_cfg[UE->rf_map.card].rx_gain[UE->rf_map.chain+i] = UE->rx_total_gain_dB; } } pthread_mutex_lock(&sync_mutex); printf("Locked sync_mutex, waiting (UE_sync_thread)\n"); while (sync_var<0) pthread_cond_wait(&sync_cond, &sync_mutex); pthread_mutex_unlock(&sync_mutex); printf("Started device, unlocked sync_mutex (UE_sync_thread)\n"); if (UE->rfdevice.trx_start_func(&UE->rfdevice) != 0 ) { LOG_E(HW,"Could not start the device\n"); oai_exit=1; } while (oai_exit==0) { if (pthread_mutex_lock(&UE->proc.mutex_synch) != 0) { LOG_E( PHY, "[SCHED][UE] error locking mutex for UE initial synch thread\n" ); exit_fun("noting to add"); return &UE_thread_synch_retval; } while (UE->proc.instance_cnt_synch < 0) { // the thread waits here most of the time pthread_cond_wait( &UE->proc.cond_synch, &UE->proc.mutex_synch ); } if (pthread_mutex_unlock(&UE->proc.mutex_synch) != 0) { LOG_E( PHY, "[SCHED][eNB] error unlocking mutex for UE Initial Synch thread\n" ); exit_fun("nothing to add"); return &UE_thread_synch_retval; } VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_THREAD_SYNCH, 1 ); switch (sync_mode) { case pss: LOG_I(PHY,"[SCHED][UE] Scanning band %d (%d), freq %u\n",bands_to_scan.band_info[current_band].band, current_band,bands_to_scan.band_info[current_band].dl_min+current_offset); lte_sync_timefreq(UE,current_band,bands_to_scan.band_info[current_band].dl_min+current_offset); current_offset += 20000000; // increase by 20 MHz if (current_offset > bands_to_scan.band_info[current_band].dl_max-bands_to_scan.band_info[current_band].dl_min) { current_band++; current_offset=0; } if (current_band==bands_to_scan.nbands) { current_band=0; oai_exit=1; } for (i=0; i<openair0_cfg[UE->rf_map.card].rx_num_channels; i++) { downlink_frequency[UE->rf_map.card][UE->rf_map.chain+i] = bands_to_scan.band_info[current_band].dl_min+current_offset; uplink_frequency_offset[UE->rf_map.card][UE->rf_map.chain+i] = bands_to_scan.band_info[current_band].ul_min-bands_to_scan.band_info[0].dl_min + current_offset; openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i]; openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i]+uplink_frequency_offset[CC_id][i]; openair0_cfg[UE->rf_map.card].rx_gain[UE->rf_map.chain+i] = UE->rx_total_gain_dB; if (UE->UE_scan_carrier) { openair0_cfg[UE->rf_map.card].autocal[UE->rf_map.chain+i] = 1; } } break; case pbch: LOG_I(PHY,"[UE thread Synch] Running Initial Synch (mode %d)\n",UE->mode); if (initial_sync( UE, UE->mode ) == 0) { hw_slot_offset = (UE->rx_offset<<1) / UE->frame_parms.samples_per_tti; LOG_I( HW, "Got synch: hw_slot_offset %d, carrier off %d Hz, rxgain %d (DL %u, UL %u), UE_scan_carrier %d\n", hw_slot_offset, freq_offset, UE->rx_total_gain_dB, downlink_frequency[0][0]+freq_offset, downlink_frequency[0][0]+uplink_frequency_offset[0][0]+freq_offset, UE->UE_scan_carrier ); if (UE->UE_scan_carrier == 1) { UE->UE_scan_carrier = 0; // rerun with new cell parameters and frequency-offset for (i=0; i<openair0_cfg[UE->rf_map.card].rx_num_channels; i++) { openair0_cfg[UE->rf_map.card].rx_gain[UE->rf_map.chain+i] = UE->rx_total_gain_dB;//-USRP_GAIN_OFFSET; openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] -= UE->common_vars.freq_offset; openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i] = openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i]+uplink_frequency_offset[CC_id][i]; downlink_frequency[CC_id][i] = openair0_cfg[CC_id].rx_freq[i]; freq_offset=0; } // reconfigure for potentially different bandwidth switch(UE->frame_parms.N_RB_DL) { case 6: openair0_cfg[UE->rf_map.card].sample_rate =1.92e6; openair0_cfg[UE->rf_map.card].rx_bw =.96e6; openair0_cfg[UE->rf_map.card].tx_bw =.96e6; // openair0_cfg[0].rx_gain[0] -= 12; break; case 25: openair0_cfg[UE->rf_map.card].sample_rate =7.68e6; openair0_cfg[UE->rf_map.card].rx_bw =2.5e6; openair0_cfg[UE->rf_map.card].tx_bw =2.5e6; // openair0_cfg[0].rx_gain[0] -= 6; break; case 50: openair0_cfg[UE->rf_map.card].sample_rate =15.36e6; openair0_cfg[UE->rf_map.card].rx_bw =5.0e6; openair0_cfg[UE->rf_map.card].tx_bw =5.0e6; // openair0_cfg[0].rx_gain[0] -= 3; break; case 100: openair0_cfg[UE->rf_map.card].sample_rate=30.72e6; openair0_cfg[UE->rf_map.card].rx_bw=10.0e6; openair0_cfg[UE->rf_map.card].tx_bw=10.0e6; // openair0_cfg[0].rx_gain[0] -= 0; break; } UE->rfdevice.trx_set_freq_func(&UE->rfdevice,&openair0_cfg[0],0); //UE->rfdevice.trx_set_gains_func(&openair0,&openair0_cfg[0]); UE->rfdevice.trx_stop_func(&UE->rfdevice); sleep(1); init_frame_parms(&UE->frame_parms,1); if (UE->rfdevice.trx_start_func(&UE->rfdevice) != 0 ) { LOG_E(HW,"Could not start the device\n"); oai_exit=1; } } else { UE->is_synchronized = 1; if( UE->mode == rx_dump_frame ) { FILE *fd; if ((UE->proc.proc_rxtx[0].frame_rx&1) == 0) { // this guarantees SIB1 is present if ((fd = fopen("rxsig_frame0.dat","w")) != NULL) { fwrite((void*)&UE->common_vars.rxdata[0][0], sizeof(int32_t), 10*UE->frame_parms.samples_per_tti, fd); LOG_I(PHY,"Dummping Frame ... bye bye \n"); fclose(fd); exit(0); } else { LOG_E(PHY,"Cannot open file for writing\n"); exit(0); } } else { UE->is_synchronized = 0; } } } } else { // initial sync failed // calculate new offset and try again if (UE->UE_scan_carrier == 1) { if (freq_offset >= 0) { freq_offset += 100; freq_offset *= -1; } else { freq_offset *= -1; } if (abs(freq_offset) > 7500) { LOG_I( PHY, "[initial_sync] No cell synchronization found, abandoning\n" ); FILE *fd; if ((fd = fopen("rxsig_frame0.dat","w"))!=NULL) { fwrite((void*)&UE->common_vars.rxdata[0][0], sizeof(int32_t), 10*UE->frame_parms.samples_per_tti, fd); LOG_I(PHY,"Dummping Frame ... bye bye \n"); fclose(fd); exit(0); } mac_xface->macphy_exit("No cell synchronization found, abandoning"); return &UE_thread_synch_retval; // not reached } } else { } LOG_I( PHY, "[initial_sync] trying carrier off %d Hz, rxgain %d (DL %u, UL %u)\n", freq_offset, UE->rx_total_gain_dB, downlink_frequency[0][0]+freq_offset, downlink_frequency[0][0]+uplink_frequency_offset[0][0]+freq_offset ); for (i=0; i<openair0_cfg[UE->rf_map.card].rx_num_channels; i++) { openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i]+freq_offset; openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i]+uplink_frequency_offset[CC_id][i]+freq_offset; openair0_cfg[UE->rf_map.card].rx_gain[UE->rf_map.chain+i] = UE->rx_total_gain_dB;//-USRP_GAIN_OFFSET; if (UE->UE_scan_carrier==1) { openair0_cfg[UE->rf_map.card].autocal[UE->rf_map.chain+i] = 1; } } UE->rfdevice.trx_set_freq_func(&UE->rfdevice,&openair0_cfg[0],0); }// initial_sync=0 break; case si: default: break; } if (pthread_mutex_lock(&UE->proc.mutex_synch) != 0) { LOG_E( PHY, "[SCHED][UE] error locking mutex for UE synch\n" ); exit_fun("noting to add"); return &UE_thread_synch_retval; } // indicate readiness UE->proc.instance_cnt_synch--; if (pthread_mutex_unlock(&UE->proc.mutex_synch) != 0) { LOG_E( PHY, "[SCHED][UE] error unlocking mutex for UE synch\n" ); exit_fun("noting to add"); return &UE_thread_synch_retval; } VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_THREAD_SYNCH, 0 ); } // while !oai_exit return &UE_thread_synch_retval; } /*! * \brief This is the UE thread for RX subframe n and TX subframe n+4. * This thread performs the phy_procedures_UE_RX() on every received slot. * then, if TX is enabled it performs TX for n+4. * \param arg is a pointer to a \ref PHY_VARS_UE structure. * \returns a pointer to an int. The storage is not on the heap and must not be freed. */ static void *UE_thread_rxn_txnp4(void *arg) { static __thread int UE_thread_rxtx_retval; UE_rxtx_proc_t *proc = (UE_rxtx_proc_t *)arg; int ret; PHY_VARS_UE *UE=PHY_vars_UE_g[0][proc->CC_id]; static long long __thread instance_cnt_rxtx=-1; proc->subframe_rx=proc->sub_frame_start; char threadName[256]= {0}; sprintf(threadName,"UE_thread_rxn_txnp4_%d",proc->sub_frame_start); cpu_set_t cpuset; CPU_ZERO(&cpuset); CPU_SET(proc->sub_frame_start+1, &cpuset); init_thread(900000,1000000 , 40, &cpuset,//sched_get_priority_max(SCHED_FIFO)-1, threadName); while (!oai_exit) { // Wait Rx data to process are available AssertFatal(pthread_mutex_lock(&proc->mutex_rxtx) ==0,""); pthread_cond_wait( &proc->cond_rxtx, &proc->mutex_rxtx ); if ( (instance_cnt_rxtx+proc->sub_frame_step)%10 != proc->subframe_rx && instance_cnt_rxtx!=-1 ) LOG_W(PHY,"REAL TIME NOT MATCHED: missed a sub-frame: expecting %d, got %d\n", (instance_cnt_rxtx+proc->sub_frame_step)%10, proc->subframe_rx); instance_cnt_rxtx=proc->subframe_rx; AssertFatal(pthread_mutex_unlock(&proc->mutex_rxtx) ==0,""); static __thread Meas t2= {0}, t3= {0}; unsigned long long current=rdtsc(); updateTimes(proc->gotIQs, &t2, 10000, "saif: Delay to wake up UE_Thread_Rx (case 2)"); // Process Rx data for one sub-frame lte_subframe_t sf_type = subframe_select( &UE->frame_parms, proc->subframe_rx); if ((sf_type == SF_DL) || (UE->frame_parms.frame_type == FDD) || (sf_type == SF_S)) { if (UE->frame_parms.frame_type == TDD) { LOG_D(PHY, "%s,TDD%d,%s: calling UE_RX\n", threadName, UE->frame_parms.tdd_config, (sf_type==SF_DL? "SF_DL" : (sf_type==SF_UL? "SF_UL" : (sf_type==SF_S ? "SF_S" : "UNKNOWN_SF_TYPE")))); } else { LOG_D(PHY, "%s,%s,%s: calling UE_RX\n", threadName, (UE->frame_parms.frame_type==FDD? "FDD": (UE->frame_parms.frame_type==TDD? "TDD":"UNKNOWN_DUPLEX_MODE")), (sf_type==SF_DL? "SF_DL" : (sf_type==SF_UL? "SF_UL" : (sf_type==SF_S ? "SF_S" : "UNKNOWN_SF_TYPE")))); } phy_procedures_UE_RX( UE, proc, 0, 0, UE->mode, no_relay, NULL ); } if (UE->mac_enabled==1) { ret = mac_xface->ue_scheduler(UE->Mod_id, proc->frame_rx, proc->subframe_rx, proc->frame_tx, proc->subframe_tx, subframe_select(&UE->frame_parms,proc->subframe_tx), 0, 0/*FIXME CC_id*/); if ( ret != CONNECTION_OK) { char *txt; switch (ret) { case CONNECTION_LOST: txt="RRC Connection lost, returning to PRACH"; break; case PHY_RESYNCH: txt="RRC Connection lost, trying to resynch"; break; case RESYNCH: txt="return to PRACH and perform a contention-free access"; break; default: txt="UNKNOWN RETURN CODE"; }; LOG_E( PHY, "[UE %"PRIu8"] Frame %"PRIu32", subframe %u %s\n", UE->Mod_id, proc->frame_rx, proc->subframe_tx,txt ); } } // Prepare the future Tx data if ((subframe_select( &UE->frame_parms, proc->subframe_tx) == SF_UL) || (UE->frame_parms.frame_type == FDD) ) if (UE->mode != loop_through_memory) phy_procedures_UE_TX(UE,proc,0,0,UE->mode,no_relay); if ((subframe_select( &UE->frame_parms, proc->subframe_tx) == SF_S) && (UE->frame_parms.frame_type == TDD)) if (UE->mode != loop_through_memory) phy_procedures_UE_S_TX(UE,0,0,no_relay); updateTimes(current, &t3, 10000, "saif: Delay to process sub-frame (case 3)"); } // thread finished return &UE_thread_rxtx_retval; } #define RX_OFF_MAX 10 #define RX_OFF_MIN 5 #define RX_OFF_MID ((RX_OFF_MAX+RX_OFF_MIN)/2) /*! * \brief This is the main UE thread. * This thread controls the other three UE threads: * - UE_thread_rxn_txnp4 (even subframes) * - UE_thread_rxn_txnp4 (odd subframes) * - UE_thread_synch * \param arg unused * \returns a pointer to an int. The storage is not on the heap and must not be freed. */ void *UE_thread(void *arg) { PHY_VARS_UE *UE = PHY_vars_UE_g[0][0]; // int tx_enabled = 0; int dummy_rx[UE->frame_parms.nb_antennas_rx][UE->frame_parms.samples_per_tti] __attribute__((aligned(32))); openair0_timestamp timestamp,timestamp1; void* rxp[NB_ANTENNAS_RX], *txp[NB_ANTENNAS_TX]; int start_rx_stream = 0; int i; cpu_set_t cpuset; CPU_ZERO(&cpuset); CPU_SET(3, &cpuset); init_thread(100000, 500000, 40, &cpuset, //sched_get_priority_max(SCHED_FIFO), "main UE"); #ifdef NAS_UE MessageDef *message_p; message_p = itti_alloc_new_message(TASK_NAS_UE, INITIALIZE_MESSAGE); itti_send_msg_to_task (TASK_NAS_UE, INSTANCE_DEFAULT, message_p); #endif int sub_frame=-1; int cumulated_shift=0; while (!oai_exit) { if (UE->is_synchronized == 0) { AssertFatal ( 0== pthread_mutex_lock(&UE->proc.mutex_synch), ""); int instance_cnt_synch = UE->proc.instance_cnt_synch; AssertFatal ( 0== pthread_mutex_unlock(&UE->proc.mutex_synch), ""); if (instance_cnt_synch < 0) { // we can invoke the synch // grab 10 ms of signal and wakeup synch thread for (int i=0; i<UE->frame_parms.nb_antennas_rx; i++) rxp[i] = (void*)&rxdata[i][0]; if (UE->mode != loop_through_memory) AssertFatal( UE->frame_parms.samples_per_tti*10 == UE->rfdevice.trx_read_func(&UE->rfdevice, ×tamp, rxp, UE->frame_parms.samples_per_tti*10, UE->frame_parms.nb_antennas_rx), ""); instance_cnt_synch = ++UE->proc.instance_cnt_synch; if (instance_cnt_synch == 0) { AssertFatal( 0 == pthread_cond_signal(&UE->proc.cond_synch), ""); } else { LOG_E( PHY, "[SCHED][UE] UE sync thread busy!!\n" ); exit_fun("nothing to add"); } } // else { // grab 10 ms of signal into dummy buffer if (UE->mode != loop_through_memory) { for (int i=0; i<UE->frame_parms.nb_antennas_rx; i++) rxp[i] = (void*)&dummy_rx[i][0]; for (int sf=0; sf<10; sf++) { // printf("Reading dummy sf %d\n",sf); AssertFatal ( UE->frame_parms.samples_per_tti == UE->rfdevice.trx_read_func(&UE->rfdevice, ×tamp, rxp, UE->frame_parms.samples_per_tti, UE->frame_parms.nb_antennas_rx), ""); } } } } // UE->is_synchronized==0 else { if (start_rx_stream==0) { start_rx_stream=1; if (UE->mode != loop_through_memory) { if (UE->no_timing_correction==0) { LOG_I(PHY,"Resynchronizing RX by %d samples (mode = %d)\n",UE->rx_offset,UE->mode); AssertFatal(UE->rx_offset == UE->rfdevice.trx_read_func(&UE->rfdevice, ×tamp, (void**)rxdata, UE->rx_offset, UE->frame_parms.nb_antennas_rx),""); } UE->rx_offset=0; UE->proc.proc_rxtx[0].frame_rx++; UE->proc.proc_rxtx[1].frame_rx++; // read in first symbol AssertFatal (UE->frame_parms.ofdm_symbol_size+UE->frame_parms.nb_prefix_samples0 == UE->rfdevice.trx_read_func(&UE->rfdevice, ×tamp, (void**)rxdata, UE->frame_parms.ofdm_symbol_size+UE->frame_parms.nb_prefix_samples0, UE->frame_parms.nb_antennas_rx),""); slot_fep(UE,0, 0, 0, 0, 0); } //UE->mode != loop_through_memory else rt_sleep_ns(1000*1000); } else { sub_frame++; sub_frame%=10; UE_rxtx_proc_t *proc = &UE->proc.proc_rxtx[sub_frame&1]; if (UE->mode != loop_through_memory) { for (i=0; i<UE->frame_parms.nb_antennas_rx; i++) rxp[i] = (void*)&rxdata[i][UE->frame_parms.ofdm_symbol_size+ UE->frame_parms.nb_prefix_samples0+ sub_frame*UE->frame_parms.samples_per_tti]; for (i=0; i<UE->frame_parms.nb_antennas_tx; i++) txp[i] = (void*)&UE->common_vars.txdata[i][((sub_frame+2)%10)*UE->frame_parms.samples_per_tti]; int readBlockSize, writeBlockSize; if (sub_frame<9) { readBlockSize=UE->frame_parms.samples_per_tti; writeBlockSize=UE->frame_parms.samples_per_tti; } else { int rx_off_diff; if ( UE->rx_offset< 5*UE->frame_parms.samples_per_tti ) rx_off_diff = -UE->rx_offset; else // moving to the left so drop rx_off_diff samples rx_off_diff = 10*UE->frame_parms.samples_per_tti - RX_OFF_MIN - UE->rx_offset; cumulated_shift+=rx_off_diff; if ( rx_off_diff > 10 ) LOG_E (PHY,"HUGE shift %d, cumul %d\n", rx_off_diff, cumulated_shift); static __thread int printed_cumul=0; if ( abs(cumulated_shift/1000) > printed_cumul ) { LOG_W(PHY,"Shifted for 1000 samples: cumul %d\n", cumulated_shift); printed_cumul=abs(cumulated_shift/1000); } readBlockSize=UE->frame_parms.samples_per_tti- UE->frame_parms.ofdm_symbol_size- UE->frame_parms.nb_prefix_samples0; writeBlockSize=UE->frame_parms.samples_per_tti - rx_off_diff; } AssertFatal(readBlockSize == UE->rfdevice.trx_read_func(&UE->rfdevice, ×tamp, rxp, readBlockSize, UE->frame_parms.nb_antennas_rx),""); AssertFatal( writeBlockSize == UE->rfdevice.trx_write_func(&UE->rfdevice, timestamp+ (2*UE->frame_parms.samples_per_tti) - UE->frame_parms.ofdm_symbol_size-UE->frame_parms.nb_prefix_samples0 - openair0_cfg[0].tx_sample_advance, txp, writeBlockSize, UE->frame_parms.nb_antennas_tx, 1),""); if( sub_frame==9) { // read in first symbol of next frame and adjust for timing drift int first_symbols=writeBlockSize-readBlockSize; if ( first_symbols > 0 ) AssertFatal(first_symbols == UE->rfdevice.trx_read_func(&UE->rfdevice, ×tamp1, (void**)rxdata, first_symbols, UE->frame_parms.nb_antennas_rx),""); if ( first_symbols <0 ) LOG_E(PHY,"can't compensate: diff =%d\n", first_symbols); } unsigned long long gotIQs=rdtsc(); // operate on thread sf mod 2 AssertFatal(pthread_mutex_lock(&proc->mutex_rxtx) ==0,""); if(sub_frame == 0) { UE->proc.proc_rxtx[0].frame_rx++; UE->proc.proc_rxtx[1].frame_rx++; } UE->proc.proc_rxtx[0].gotIQs=gotIQs; UE->proc.proc_rxtx[1].gotIQs=gotIQs; proc->subframe_rx=sub_frame; proc->subframe_tx=(sub_frame+4)%10; proc->frame_tx = proc->frame_rx + (proc->subframe_rx>5?1:0); proc->timestamp_tx = timestamp+ (4*UE->frame_parms.samples_per_tti)- UE->frame_parms.ofdm_symbol_size-UE->frame_parms.nb_prefix_samples0; AssertFatal (pthread_cond_signal(&proc->cond_rxtx) ==0 ,""); AssertFatal(pthread_mutex_unlock(&proc->mutex_rxtx) ==0,""); static __thread Meas t1= {0}; static unsigned long long lastTime=0; if ( lastTime != 0 ) updateTimes(lastTime, &t1, 20000, "saif: Delay between two IQ acquisitions (case 1)"); lastTime=rdtsc(); saif_meas(proc->frame_rx); } else { printf("Processing subframe %d",proc->subframe_rx); getchar(); } } // start_rx_stream==1 } // UE->is_synchronized==1 } // while !oai_exit return NULL; } /*! * \brief Initialize the UE theads. * Creates the UE threads: * - UE_thread_rxtx0 * - UE_thread_rxtx1 * - UE_thread_synch * and the locking between them. */ void init_UE_threads(int inst) { PHY_VARS_UE *UE; UE = PHY_vars_UE_g[inst][0]; pthread_attr_init (&UE->proc.attr_ue); pthread_attr_setstacksize(&UE->proc.attr_ue,8192);//5*PTHREAD_STACK_MIN); // the threads are not yet active, therefore access is allowed without locking int nb_threads=2; for (int i=0; i<nb_threads; i++) { pthread_mutex_init(&UE->proc.proc_rxtx[i].mutex_rxtx,NULL); pthread_cond_init(&UE->proc.proc_rxtx[i].cond_rxtx,NULL); UE->proc.proc_rxtx[i].sub_frame_start=i; UE->proc.proc_rxtx[i].sub_frame_step=nb_threads; pthread_create(&UE->proc.proc_rxtx[i].pthread_rxtx,NULL,UE_thread_rxn_txnp4,(void*)&UE->proc.proc_rxtx[i]); } pthread_mutex_init(&UE->proc.mutex_synch,NULL); pthread_cond_init(&UE->proc.cond_synch,NULL); pthread_create(&UE->proc.pthread_synch,NULL,UE_thread_synch,(void*)UE); } #ifdef OPENAIR2 void fill_ue_band_info(void) { UE_EUTRA_Capability_t *UE_EUTRA_Capability = UE_rrc_inst[0].UECap->UE_EUTRA_Capability; int i,j; bands_to_scan.nbands = UE_EUTRA_Capability->rf_Parameters.supportedBandListEUTRA.list.count; for (i=0; i<bands_to_scan.nbands; i++) { for (j=0; j<sizeof (eutra_bands) / sizeof (eutra_bands[0]); j++) if (eutra_bands[j].band == UE_EUTRA_Capability->rf_Parameters.supportedBandListEUTRA.list.array[i]->bandEUTRA) { memcpy(&bands_to_scan.band_info[i], &eutra_bands[j], sizeof(eutra_band_t)); printf("Band %d (%lu) : DL %u..%u Hz, UL %u..%u Hz, Duplex %s \n", bands_to_scan.band_info[i].band, UE_EUTRA_Capability->rf_Parameters.supportedBandListEUTRA.list.array[i]->bandEUTRA, bands_to_scan.band_info[i].dl_min, bands_to_scan.band_info[i].dl_max, bands_to_scan.band_info[i].ul_min, bands_to_scan.band_info[i].ul_max, (bands_to_scan.band_info[i].frame_type==FDD) ? "FDD" : "TDD"); break; } } } #endif int setup_ue_buffers(PHY_VARS_UE **phy_vars_ue, openair0_config_t *openair0_cfg) { int i, CC_id; LTE_DL_FRAME_PARMS *frame_parms; openair0_rf_map *rf_map; for (CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) { rf_map = &phy_vars_ue[CC_id]->rf_map; AssertFatal( phy_vars_ue[CC_id] !=0, ""); frame_parms = &(phy_vars_ue[CC_id]->frame_parms); // replace RX signal buffers with mmaped HW versions rxdata = (int32_t**)malloc16( frame_parms->nb_antennas_rx*sizeof(int32_t*) ); txdata = (int32_t**)malloc16( frame_parms->nb_antennas_tx*sizeof(int32_t*) ); for (i=0; i<frame_parms->nb_antennas_rx; i++) { LOG_I(PHY, "Mapping UE CC_id %d, rx_ant %d, freq %u on card %d, chain %d\n", CC_id, i, downlink_frequency[CC_id][i], rf_map->card, rf_map->chain+i ); free( phy_vars_ue[CC_id]->common_vars.rxdata[i] ); rxdata[i] = (int32_t*)malloc16_clear( 307200*sizeof(int32_t) ); phy_vars_ue[CC_id]->common_vars.rxdata[i] = rxdata[i]; // what about the "-N_TA_offset" ? // N_TA offset for TDD } for (i=0; i<frame_parms->nb_antennas_tx; i++) { LOG_I(PHY, "Mapping UE CC_id %d, tx_ant %d, freq %u on card %d, chain %d\n", CC_id, i, downlink_frequency[CC_id][i], rf_map->card, rf_map->chain+i ); free( phy_vars_ue[CC_id]->common_vars.txdata[i] ); txdata[i] = (int32_t*)malloc16_clear( 307200*sizeof(int32_t) ); phy_vars_ue[CC_id]->common_vars.txdata[i] = txdata[i]; } // rxdata[x] points now to the same memory region as phy_vars_ue[CC_id]->common_vars.rxdata[x] // txdata[x] points now to the same memory region as phy_vars_ue[CC_id]->common_vars.txdata[x] // be careful when releasing memory! // because no "release_ue_buffers"-function is available, at least rxdata and txdata memory will leak (only some bytes) } return 0; }