Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
O
OpenXG UE
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Michael Black
OpenXG UE
Commits
6c58ee31
Commit
6c58ee31
authored
Aug 12, 2014
by
Byiringi
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
git-svn-id:
http://svn.eurecom.fr/openair4G/trunk@5706
818b1a75-f10b-46b9-bf7c-635c3b92a50f
parent
ed62ee79
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
239 additions
and
144 deletions
+239
-144
targets/PROJECTS/CORRIDOR/log_read.m
targets/PROJECTS/CORRIDOR/log_read.m
+239
-144
No files found.
targets/PROJECTS/CORRIDOR/log_read.m
View file @
6c58ee31
...
...
@@ -128,32 +128,28 @@ for idx=1:length(d1)
%% rssi(dBm) versus distance (log scale)
% We will plot the rssi versus the distance with the data before the passing of the train, and with the data after the passingof the train
% We will plot the rssi versus the distance. We separate the data
% before and after the passing of the train for run 3 and run 4 because
% all the antennas are poiting at the same direction
% we heuristically determine a starting point and a ending point for the linear fitting
if
idx
==
1
distance_before_break1_start
=
0.4
;
%in km
distance_before_break1_end
=
7.5
;
distance_before_break2_start
=
0.4
;
distance_before_break2_end
=
7.5
;
distance_break1_start
=
0.4
;
%in km
distance_break1_end
=
7.5
;
distance_break2_start
=
0.4
;
distance_break2_end
=
7.5
;
distance_after_break1_start
=
0.9
;
%in km
distance_after_break1_end
=
4.5
;
distance_after_break2_start
=
0.9
;
distance_after_break2_end
=
4.5
;
end
if
idx
==
2
distance_before_break1_start
=
0.8
;
%in km
distance_before_break1_end
=
4.5
;
distance_before_break2_start
=
0.8
;
distance_before_break2_end
=
4.5
;
distance_break1_start
=
0.8
;
%in km
distance_break1_end
=
4.5
;
distance_break2_start
=
0.8
;
distance_break2_end
=
4.5
;
distance_after_break1_start
=
0.5
;
%in km
distance_after_break1_end
=
7.5
;
distance_after_break2_start
=
0.5
;
distance_after_break2_end
=
7.5
;
end
if
idx
==
3
...
...
@@ -180,147 +176,246 @@ for idx=1:length(d1)
distance_after_break2_end
=
8
;
end
% indexes of the starting and ending points with the data before the passing of the
% train
index_break1_before_start
=
1
;
index_break2_before_start
=
1
;
index_break1_before_end
=
1
;
index_break2_before_end
=
1
;
% indexes of the starting and ending points with the data after the passing of the
% train
index_break1_after_start
=
I_RSSI_max1
;
index_break2_after_start
=
I_RSSI_max2
;
index_break1_after_end
=
I_RSSI_max1
;
index_break2_after_end
=
I_RSSI_max2
;
%starting points
while
(
index_break1_before_start
<
length
(
new_distances1
))
&&
(
new_distances1
(
index_break1_before_start
)
>
distance_before_break1_start
)
index_break1_before_start
=
index_break1_before_start
+
1
;
end
while
(
index_break2_before_start
<
length
(
new_distances2
))
&&
(
new_distances2
(
index_break2_before_start
)
>
distance_before_break2_start
)
index_break2_before_start
=
index_break2_before_start
+
1
;
end
%ending points
while
(
index_break1_before_end
<
length
(
new_distances1
))
&&
(
new_distances1
(
index_break1_before_end
)
>
distance_before_break1_end
)
index_break1_before_end
=
index_break1_before_end
+
1
;
end
while
(
index_break2_before_end
<
length
(
new_distances2
))
&&
(
new_distances2
(
index_break2_before_end
)
>
distance_before_break2_end
)
index_break2_before_end
=
index_break2_before_end
+
1
;
end
%starting points
while
(
index_break1_after_start
<
length
(
new_distances1
))
&&
(
new_distances1
(
index_break1_after_start
)
<
distance_after_break1_start
)
index_break1_after_start
=
index_break1_after_start
+
1
;
end
while
(
index_break2_after_start
<
length
(
new_distances2
))
&&
(
new_distances2
(
index_break2_after_start
)
<
distance_after_break2_start
)
index_break2_after_start
=
index_break2_after_start
+
1
;
if
idx
==
1
||
idx
==
2
% indexes of the starting and ending points
index_break1_start
=
1
;
index_break2_start
=
1
;
index_break1_end
=
1
;
index_break2_end
=
1
;
end
%ending points
while
(
index_break1_after_end
<
length
(
new_distances1
))
&&
(
new_distances1
(
index_break1_after_end
)
<
distance_after_break1_end
)
index_break1_after_end
=
index_break1_after_end
+
1
;
end
while
(
index_break2_after_end
<
length
(
new_distances2
))
&&
(
new_distances2
(
index_break2_after_end
)
<
distance_after_break2_end
)
index_break2_after_end
=
index_break2_after_end
+
1
;
if
idx
==
3
||
idx
==
4
% indexes of the starting and ending points with the data before the passing of the
% train
index_break1_before_start
=
1
;
index_break2_before_start
=
1
;
index_break1_before_end
=
1
;
index_break2_before_end
=
1
;
% indexes of the starting and ending points with the data after the passing of the
% train
index_break1_after_start
=
I_RSSI_max1
;
index_break2_after_start
=
I_RSSI_max2
;
index_break1_after_end
=
I_RSSI_max1
;
index_break2_after_end
=
I_RSSI_max2
;
end
if
idx
==
1
||
idx
==
2
%starting points
while
(
index_break1_start
<
length
(
new_distances1
))
&&
(
new_distances1
(
index_break1_start
)
>
distance_break1_start
)
index_break1_start
=
index_break1_start
+
1
;
end
while
(
index_break2_start
<
length
(
new_distances2
))
&&
(
new_distances2
(
index_break2_start
)
>
distance_break2_start
)
index_break2_start
=
index_break2_start
+
1
;
end
%ending points
while
(
index_break1_end
<
length
(
new_distances1
))
&&
(
new_distances1
(
index_break1_end
)
>
distance_break1_end
)
index_break1_end
=
index_break1_end
+
1
;
end
while
(
index_break2_end
<
length
(
new_distances2
))
&&
(
new_distances2
(
index_break2_end
)
>
distance_break2_end
)
index_break2_end
=
index_break2_end
+
1
;
end
end
if
idx
==
3
||
idx
==
4
%starting points
while
(
index_break1_before_start
<
length
(
new_distances1
))
&&
(
new_distances1
(
index_break1_before_start
)
>
distance_before_break1_start
)
index_break1_before_start
=
index_break1_before_start
+
1
;
end
while
(
index_break2_before_start
<
length
(
new_distances2
))
&&
(
new_distances2
(
index_break2_before_start
)
>
distance_before_break2_start
)
index_break2_before_start
=
index_break2_before_start
+
1
;
end
%ending points
while
(
index_break1_before_end
<
length
(
new_distances1
))
&&
(
new_distances1
(
index_break1_before_end
)
>
distance_before_break1_end
)
index_break1_before_end
=
index_break1_before_end
+
1
;
end
while
(
index_break2_before_end
<
length
(
new_distances2
))
&&
(
new_distances2
(
index_break2_before_end
)
>
distance_before_break2_end
)
index_break2_before_end
=
index_break2_before_end
+
1
;
end
%starting points
while
(
index_break1_after_start
<
length
(
new_distances1
))
&&
(
new_distances1
(
index_break1_after_start
)
<
distance_after_break1_start
)
index_break1_after_start
=
index_break1_after_start
+
1
;
end
while
(
index_break2_after_start
<
length
(
new_distances2
))
&&
(
new_distances2
(
index_break2_after_start
)
<
distance_after_break2_start
)
index_break2_after_start
=
index_break2_after_start
+
1
;
end
%ending points
while
(
index_break1_after_end
<
length
(
new_distances1
))
&&
(
new_distances1
(
index_break1_after_end
)
<
distance_after_break1_end
)
index_break1_after_end
=
index_break1_after_end
+
1
;
end
while
(
index_break2_after_end
<
length
(
new_distances2
))
&&
(
new_distances2
(
index_break2_after_end
)
<
distance_after_break2_end
)
index_break2_after_end
=
index_break2_after_end
+
1
;
end
end
figure
(
idx
*
10
+
3
)
subplot
(
2
,
1
,
1
)
hold
off
linearCoef1_before
=
polyfit
(
10
*
log10
(
new_distances1
(
index_break1_before_end
:
index_break1_before_start
)),
data1
{
idx
}(
index_break1_before_end
:
index_break1_before_start
,
13
),
1
);
linearFit1_before
=
polyval
(
linearCoef1_before
,
10
*
log10
(
new_distances1
(
index_break1_before_end
:
index_break1_before_start
)));
semilogx
(
new_distances1
(
1
:
I_RSSI_max1
),
data1
{
idx
}(
1
:
I_RSSI_max1
,
13
),
'rx'
,
new_distances1
(
index_break1_before_end
:
index_break1_before_start
),
linearFit1_before
,
'r-'
)
display
(
sprintf
(
'Run %d :slope UHF before: %f'
,
idx
,
linearCoef1_before
(
1
)))
hold
on
linearCoef2_before
=
polyfit
(
10
*
log10
(
new_distances2
(
index_break2_before_end
:
index_break2_before_start
)),
data2
{
idx
}(
index_break2_before_end
:
index_break2_before_start
,
13
),
1
);
linearFit2_before
=
polyval
(
linearCoef2_before
,
10
*
log10
(
new_distances2
(
index_break2_before_end
:
index_break2_before_start
)));
semilogx
(
new_distances2
(
1
:
I_RSSI_max2
),
data2
{
idx
}(
1
:
I_RSSI_max2
,
13
),
'bx'
,
new_distances2
(
index_break2_before_end
:
index_break2_before_start
),
linearFit2_before
,
'b-'
)
display
(
sprintf
(
'Run %d :slope 2.6GHz before: %f'
,
idx
,
linearCoef2_before
(
1
)))
title
(
sprintf
(
'Run %d: With the data before the passing of the train'
,
idx
))
legend
(
'UHF'
,
'UHF:linear fitting'
,
'2.6GHz card 1'
,
'2.6GHz card 1:linear fitting'
);
xlabel
(
'distance [km]'
)
ylabel
(
'RSSI [dBm]'
)
subplot
(
2
,
1
,
2
)
hold
off
linearCoef1_after
=
polyfit
(
10
*
log10
(
new_distances1
(
index_break1_after_start
:
index_break1_after_end
)),
data1
{
idx
}(
index_break1_after_start
:
index_break1_after_end
,
13
),
1
);
linearFit1_after
=
polyval
(
linearCoef1_after
,
10
*
log10
(
new_distances1
(
index_break1_after_start
:
index_break1_after_end
)));
semilogx
(
new_distances1
(
I_RSSI_max1
:
end
),
data1
{
idx
}(
I_RSSI_max1
:
end
,
13
),
'rx'
,
new_distances1
(
index_break1_after_start
:
index_break1_after_end
),
linearFit1_after
,
'r-'
)
display
(
sprintf
(
'Run %d :slope UHF after: %f'
,
idx
,
linearCoef1_after
(
1
)))
hold
on
linearCoef2_after
=
polyfit
(
10
*
log10
(
new_distances2
(
index_break2_after_start
:
index_break2_after_end
)),
data2
{
idx
}(
index_break2_after_start
:
index_break2_after_end
,
13
),
1
);
linearFit2_after
=
polyval
(
linearCoef2_after
,
10
*
log10
(
new_distances2
(
index_break2_after_start
:
index_break2_after_end
)));
semilogx
(
new_distances2
(
I_RSSI_max2
:
end
),
data2
{
idx
}(
I_RSSI_max2
:
end
,
13
),
'bx'
,
new_distances2
(
index_break2_after_start
:
index_break2_after_end
),
linearFit2_after
,
'b-'
)
display
(
sprintf
(
'Run %d :slope 2.6GHz after: %f'
,
idx
,
linearCoef2_after
(
1
)))
title
(
sprintf
(
'Run %d: With the data after the passing of the train'
,
idx
))
legend
(
'UHF'
,
'UHF:linear fitting'
,
'2.6GHz card 1'
,
'2.6GHz card 1:linear fitting'
);
xlabel
(
'distance [km]'
)
ylabel
(
'RSSI [dBm]'
)
% Zoom on the linear fitting
figure
(
idx
*
10
+
4
)
subplot
(
2
,
1
,
1
)
hold
off
linearCoef1_before
=
polyfit
(
10
*
log10
(
new_distances1
(
index_break1_before_end
:
index_break1_before_start
)),
data1
{
idx
}(
index_break1_before_end
:
index_break1_before_start
,
13
),
1
);
linearFit1_before
=
polyval
(
linearCoef1_before
,
10
*
log10
(
new_distances1
(
index_break1_before_end
:
index_break1_before_start
)));
semilogx
(
new_distances1
(
index_break1_before_end
:
index_break1_before_start
),
data1
{
idx
}(
index_break1_before_end
:
index_break1_before_start
,
13
),
'rx'
,
new_distances1
(
index_break1_before_end
:
index_break1_before_start
),
linearFit1_before
,
'r-'
)
%display(sprintf('Run %d :slope UHF before: %f',idx,linearCoef1_before(1)))
hold
on
linearCoef2_before
=
polyfit
(
10
*
log10
(
new_distances2
(
index_break2_before_end
:
index_break2_before_start
)),
data2
{
idx
}(
index_break2_before_end
:
index_break2_before_start
,
13
),
1
);
linearFit2_before
=
polyval
(
linearCoef2_before
,
10
*
log10
(
new_distances2
(
index_break2_before_end
:
index_break2_before_start
)));
semilogx
(
new_distances2
(
index_break2_before_end
:
index_break2_before_start
),
data2
{
idx
}(
index_break2_before_end
:
index_break2_before_start
,
13
),
'bx'
,
new_distances2
(
index_break2_before_end
:
index_break2_before_start
),
linearFit2_before
,
'b-'
)
%display(sprintf('Run %d :slope 2.6GHz before: %f',idx,linearCoef2_before(1)))
title
(
sprintf
(
'Run %d: With the data before the passing of the train'
,
idx
))
legend
(
'UHF'
,
'UHF:linear fitting'
,
'2.6GHz card 1'
,
'2.6GHz card 1:linear fitting'
);
xlabel
(
'distance [km]'
)
ylabel
(
'RSSI [dBm]'
)
subplot
(
2
,
1
,
2
)
hold
off
if
idx
==
1
||
idx
==
2
figure
(
idx
*
10
+
3
)
hold
off
linearCoef1
=
polyfit
(
10
*
log10
(
new_distances1
(
index_break1_end
:
index_break1_start
)),
data1
{
idx
}(
index_break1_end
:
index_break1_start
,
13
),
1
);
linearFit1
=
polyval
(
linearCoef1
,
10
*
log10
(
new_distances1
(
index_break1_end
:
index_break1_start
)));
semilogx
(
new_distances1
(
1
:
I_RSSI_max1
),
data1
{
idx
}(
1
:
I_RSSI_max1
,
13
),
'rx'
,
new_distances1
(
index_break1_end
:
index_break1_start
),
linearFit1
,
'r-'
)
display
(
sprintf
(
'Run %d :slope UHF : %f'
,
idx
,
linearCoef1
(
1
)))
hold
on
linearCoef2
=
polyfit
(
10
*
log10
(
new_distances2
(
index_break2_end
:
index_break2_start
)),
data2
{
idx
}(
index_break2_end
:
index_break2_start
,
13
),
1
);
linearFit2
=
polyval
(
linearCoef2
,
10
*
log10
(
new_distances2
(
index_break2_end
:
index_break2_start
)));
semilogx
(
new_distances2
(
1
:
I_RSSI_max2
),
data2
{
idx
}(
1
:
I_RSSI_max2
,
13
),
'bx'
,
new_distances2
(
index_break2_end
:
index_break2_start
),
linearFit2
,
'b-'
)
display
(
sprintf
(
'Run %d :slope 2.6GHz : %f'
,
idx
,
linearCoef2
(
1
)))
title
(
sprintf
(
'Run %d: With the data the passing of the train'
,
idx
))
legend
(
'UHF'
,
'UHF:linear fitting'
,
'2.6GHz card 1'
,
'2.6GHz card 1:linear fitting'
);
xlabel
(
'distance [km]'
)
ylabel
(
'RSSI [dBm]'
)
% Zoom on the linear fitting
figure
(
idx
*
10
+
4
)
hold
off
linearCoef1
=
polyfit
(
10
*
log10
(
new_distances1
(
index_break1_end
:
index_break1_start
)),
data1
{
idx
}(
index_break1_end
:
index_break1_start
,
13
),
1
);
linearFit1
=
polyval
(
linearCoef1
,
10
*
log10
(
new_distances1
(
index_break1_end
:
index_break1_start
)));
semilogx
(
new_distances1
(
index_break1_end
:
index_break1_start
),
data1
{
idx
}(
index_break1_end
:
index_break1_start
,
13
),
'rx'
,
new_distances1
(
index_break1_end
:
index_break1_start
),
linearFit1
,
'r-'
)
%display(sprintf('Run %d :slope UHF : %f',idx,linearCoef1(1)))
hold
on
linearCoef2
=
polyfit
(
10
*
log10
(
new_distances2
(
index_break2_end
:
index_break2_start
)),
data2
{
idx
}(
index_break2_end
:
index_break2_start
,
13
),
1
);
linearFit2
=
polyval
(
linearCoef2
,
10
*
log10
(
new_distances2
(
index_break2_end
:
index_break2_start
)));
semilogx
(
new_distances2
(
index_break2_end
:
index_break2_start
),
data2
{
idx
}(
index_break2_end
:
index_break2_start
,
13
),
'bx'
,
new_distances2
(
index_break2_end
:
index_break2_start
),
linearFit2
,
'b-'
)
%display(sprintf('Run %d :slope 2.6GHz : %f',idx,linearCoef2(1)))
title
(
sprintf
(
'Run %d: '
,
idx
))
legend
(
'UHF'
,
'UHF:linear fitting'
,
'2.6GHz card 1'
,
'2.6GHz card 1:linear fitting'
);
xlabel
(
'distance [km]'
)
ylabel
(
'RSSI [dBm]'
)
end
linearCoef1_after
=
polyfit
(
10
*
log10
(
new_distances1
(
index_break1_after_start
:
index_break1_after_end
)),
data1
{
idx
}(
index_break1_after_start
:
index_break1_after_end
,
13
),
1
);
linearFit1_after
=
polyval
(
linearCoef1_after
,
10
*
log10
(
new_distances1
(
index_break1_after_start
:
index_break1_after_end
)));
semilogx
(
new_distances1
(
index_break1_after_start
:
index_break1_after_end
),
data1
{
idx
}(
index_break1_after_start
:
index_break1_after_end
,
13
),
'rx'
,
new_distances1
(
index_break1_after_start
:
index_break1_after_end
),
linearFit1_after
,
'r-'
)
%display(sprintf('Run %d :slope UHF after: %f',idx,linearCoef1_after(1)))
hold
on
linearCoef2_after
=
polyfit
(
10
*
log10
(
new_distances2
(
index_break2_after_start
:
index_break2_after_end
)),
data2
{
idx
}(
index_break2_after_start
:
index_break2_after_end
,
13
),
1
);
linearFit2_after
=
polyval
(
linearCoef2_after
,
10
*
log10
(
new_distances2
(
index_break2_after_start
:
index_break2_after_end
)));
semilogx
(
new_distances2
(
index_break2_after_start
:
index_break2_after_end
),
data2
{
idx
}(
index_break2_after_start
:
index_break2_after_end
,
13
),
'bx'
,
new_distances2
(
index_break2_after_start
:
index_break2_after_end
),
linearFit2_after
,
'b-'
)
%display(sprintf('Run %d :slope 2.6GHz after: %f',idx,linearCoef2_after(1)))
title
(
sprintf
(
'Run %d: With the data after the passing of the train'
,
idx
))
legend
(
'UHF'
,
'UHF:linear fitting'
,
'2.6GHz card 1'
,
'2.6GHz card 1:linear fitting'
);
xlabel
(
'distance [km]'
)
ylabel
(
'RSSI [dBm]'
)
if
idx
==
3
||
idx
==
4
figure
(
idx
*
10
+
3
)
subplot
(
2
,
1
,
1
)
hold
off
linearCoef1_before
=
polyfit
(
10
*
log10
(
new_distances1
(
index_break1_before_end
:
index_break1_before_start
)),
data1
{
idx
}(
index_break1_before_end
:
index_break1_before_start
,
13
),
1
);
linearFit1_before
=
polyval
(
linearCoef1_before
,
10
*
log10
(
new_distances1
(
index_break1_before_end
:
index_break1_before_start
)));
semilogx
(
new_distances1
(
1
:
I_RSSI_max1
),
data1
{
idx
}(
1
:
I_RSSI_max1
,
13
),
'rx'
,
new_distances1
(
index_break1_before_end
:
index_break1_before_start
),
linearFit1_before
,
'r-'
)
display
(
sprintf
(
'Run %d :slope UHF before: %f'
,
idx
,
linearCoef1_before
(
1
)))
hold
on
linearCoef2_before
=
polyfit
(
10
*
log10
(
new_distances2
(
index_break2_before_end
:
index_break2_before_start
)),
data2
{
idx
}(
index_break2_before_end
:
index_break2_before_start
,
13
),
1
);
linearFit2_before
=
polyval
(
linearCoef2_before
,
10
*
log10
(
new_distances2
(
index_break2_before_end
:
index_break2_before_start
)));
semilogx
(
new_distances2
(
1
:
I_RSSI_max2
),
data2
{
idx
}(
1
:
I_RSSI_max2
,
13
),
'bx'
,
new_distances2
(
index_break2_before_end
:
index_break2_before_start
),
linearFit2_before
,
'b-'
)
display
(
sprintf
(
'Run %d :slope 2.6GHz before: %f'
,
idx
,
linearCoef2_before
(
1
)))
title
(
sprintf
(
'Run %d: With the data before the passing of the train'
,
idx
))
legend
(
'UHF'
,
'UHF:linear fitting'
,
'2.6GHz card 1'
,
'2.6GHz card 1:linear fitting'
);
xlabel
(
'distance [km]'
)
ylabel
(
'RSSI [dBm]'
)
subplot
(
2
,
1
,
2
)
hold
off
linearCoef1_after
=
polyfit
(
10
*
log10
(
new_distances1
(
index_break1_after_start
:
index_break1_after_end
)),
data1
{
idx
}(
index_break1_after_start
:
index_break1_after_end
,
13
),
1
);
linearFit1_after
=
polyval
(
linearCoef1_after
,
10
*
log10
(
new_distances1
(
index_break1_after_start
:
index_break1_after_end
)));
semilogx
(
new_distances1
(
I_RSSI_max1
:
end
),
data1
{
idx
}(
I_RSSI_max1
:
end
,
13
),
'rx'
,
new_distances1
(
index_break1_after_start
:
index_break1_after_end
),
linearFit1_after
,
'r-'
)
display
(
sprintf
(
'Run %d :slope UHF after: %f'
,
idx
,
linearCoef1_after
(
1
)))
hold
on
linearCoef2_after
=
polyfit
(
10
*
log10
(
new_distances2
(
index_break2_after_start
:
index_break2_after_end
)),
data2
{
idx
}(
index_break2_after_start
:
index_break2_after_end
,
13
),
1
);
linearFit2_after
=
polyval
(
linearCoef2_after
,
10
*
log10
(
new_distances2
(
index_break2_after_start
:
index_break2_after_end
)));
semilogx
(
new_distances2
(
I_RSSI_max2
:
end
),
data2
{
idx
}(
I_RSSI_max2
:
end
,
13
),
'bx'
,
new_distances2
(
index_break2_after_start
:
index_break2_after_end
),
linearFit2_after
,
'b-'
)
display
(
sprintf
(
'Run %d :slope 2.6GHz after: %f'
,
idx
,
linearCoef2_after
(
1
)))
title
(
sprintf
(
'Run %d: With the data after the passing of the train'
,
idx
))
legend
(
'UHF'
,
'UHF:linear fitting'
,
'2.6GHz card 1'
,
'2.6GHz card 1:linear fitting'
);
xlabel
(
'distance [km]'
)
ylabel
(
'RSSI [dBm]'
)
% Zoom on the linear fitting
figure
(
idx
*
10
+
4
)
subplot
(
2
,
1
,
1
)
hold
off
linearCoef1_before
=
polyfit
(
10
*
log10
(
new_distances1
(
index_break1_before_end
:
index_break1_before_start
)),
data1
{
idx
}(
index_break1_before_end
:
index_break1_before_start
,
13
),
1
);
linearFit1_before
=
polyval
(
linearCoef1_before
,
10
*
log10
(
new_distances1
(
index_break1_before_end
:
index_break1_before_start
)));
semilogx
(
new_distances1
(
index_break1_before_end
:
index_break1_before_start
),
data1
{
idx
}(
index_break1_before_end
:
index_break1_before_start
,
13
),
'rx'
,
new_distances1
(
index_break1_before_end
:
index_break1_before_start
),
linearFit1_before
,
'r-'
)
%display(sprintf('Run %d :slope UHF before: %f',idx,linearCoef1_before(1)))
hold
on
linearCoef2_before
=
polyfit
(
10
*
log10
(
new_distances2
(
index_break2_before_end
:
index_break2_before_start
)),
data2
{
idx
}(
index_break2_before_end
:
index_break2_before_start
,
13
),
1
);
linearFit2_before
=
polyval
(
linearCoef2_before
,
10
*
log10
(
new_distances2
(
index_break2_before_end
:
index_break2_before_start
)));
semilogx
(
new_distances2
(
index_break2_before_end
:
index_break2_before_start
),
data2
{
idx
}(
index_break2_before_end
:
index_break2_before_start
,
13
),
'bx'
,
new_distances2
(
index_break2_before_end
:
index_break2_before_start
),
linearFit2_before
,
'b-'
)
%display(sprintf('Run %d :slope 2.6GHz before: %f',idx,linearCoef2_before(1)))
title
(
sprintf
(
'Run %d: With the data before the passing of the train'
,
idx
))
legend
(
'UHF'
,
'UHF:linear fitting'
,
'2.6GHz card 1'
,
'2.6GHz card 1:linear fitting'
);
xlabel
(
'distance [km]'
)
ylabel
(
'RSSI [dBm]'
)
subplot
(
2
,
1
,
2
)
hold
off
linearCoef1_after
=
polyfit
(
10
*
log10
(
new_distances1
(
index_break1_after_start
:
index_break1_after_end
)),
data1
{
idx
}(
index_break1_after_start
:
index_break1_after_end
,
13
),
1
);
linearFit1_after
=
polyval
(
linearCoef1_after
,
10
*
log10
(
new_distances1
(
index_break1_after_start
:
index_break1_after_end
)));
semilogx
(
new_distances1
(
index_break1_after_start
:
index_break1_after_end
),
data1
{
idx
}(
index_break1_after_start
:
index_break1_after_end
,
13
),
'rx'
,
new_distances1
(
index_break1_after_start
:
index_break1_after_end
),
linearFit1_after
,
'r-'
)
%display(sprintf('Run %d :slope UHF after: %f',idx,linearCoef1_after(1)))
hold
on
linearCoef2_after
=
polyfit
(
10
*
log10
(
new_distances2
(
index_break2_after_start
:
index_break2_after_end
)),
data2
{
idx
}(
index_break2_after_start
:
index_break2_after_end
,
13
),
1
);
linearFit2_after
=
polyval
(
linearCoef2_after
,
10
*
log10
(
new_distances2
(
index_break2_after_start
:
index_break2_after_end
)));
semilogx
(
new_distances2
(
index_break2_after_start
:
index_break2_after_end
),
data2
{
idx
}(
index_break2_after_start
:
index_break2_after_end
,
13
),
'bx'
,
new_distances2
(
index_break2_after_start
:
index_break2_after_end
),
linearFit2_after
,
'b-'
)
%display(sprintf('Run %d :slope 2.6GHz after: %f',idx,linearCoef2_after(1)))
title
(
sprintf
(
'Run %d: With the data after the passing of the train'
,
idx
))
legend
(
'UHF'
,
'UHF:linear fitting'
,
'2.6GHz card 1'
,
'2.6GHz card 1:linear fitting'
);
xlabel
(
'distance [km]'
)
ylabel
(
'RSSI [dBm]'
)
end
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment