Commit 2cced7bd authored by Robert Schmidt's avatar Robert Schmidt

Merge remote-tracking branch 'origin/optim-rotate_cpx' into integration_2022_wk26

parents b7e026fd df1cffbc
......@@ -197,8 +197,8 @@ check_warnings() {
#argument:
# $1: log file
check_errors() {
#we look for 'warning:' in the compilation log file
error_count=`grep "error:" "$1" | wc -l`
#we look for 'error:' in the compilation log file
error_count=`grep -c "error:" "$1"`
if [ $error_count -gt 0 ]; then
echo_error "ERROR: $error_count error. See $1"
fi
......
......@@ -88,7 +88,7 @@ int32_t lte_ul_channel_estimation(LTE_DL_FRAME_PARMS *frame_parms,
}
uint16_t N_rb_alloc = ulsch->harq_processes[harq_pid]->nb_rb;
int32_t tmp_estimates[N_rb_alloc*12] __attribute__((aligned(16)));
int32_t tmp_estimates[N_rb_alloc*12] __attribute__((aligned(32)));
Msc_RS = N_rb_alloc*12;
cyclic_shift = (frame_parms->pusch_config_common.ul_ReferenceSignalsPUSCH.cyclicShift +
ulsch->harq_processes[harq_pid]->n_DMRS2 +
......@@ -334,14 +334,14 @@ int32_t lte_ul_channel_estimation(LTE_DL_FRAME_PARMS *frame_parms,
current_phase2 = cmin(abs(current_phase2),127);
// msg("sym: %d, current_phase1: %d, ru: %d + j%d, current_phase2: %d, ru: %d + j%d\n",k,current_phase1,ru1[2*current_phase1],ru1[2*current_phase1+1],current_phase2,ru2[2*current_phase2],ru2[2*current_phase2+1]);
// rotate channel estimates by estimated phase
rotate_cpx_vector((int16_t *) ul_ch1,
&ru1[2*current_phase1],
(int16_t *) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],
rotate_cpx_vector((c16_t *) ul_ch1,
(c16_t *)&ru1[2*current_phase1],
(c16_t *) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],
Msc_RS,
15);
rotate_cpx_vector((int16_t *) ul_ch2,
&ru2[2*current_phase2],
(int16_t *) &tmp_estimates[0],
rotate_cpx_vector((c16_t *) ul_ch2,
(c16_t *)&ru2[2*current_phase2],
(c16_t *) tmp_estimates,
Msc_RS,
15);
// Combine the two rotated estimates
......@@ -657,14 +657,14 @@ int32_t lte_ul_channel_estimation_RRU(LTE_DL_FRAME_PARMS *frame_parms,
current_phase2 = cmin(abs(current_phase2),127);
// msg("sym: %d, current_phase1: %d, ru: %d + j%d, current_phase2: %d, ru: %d + j%d\n",k,current_phase1,ru1[2*current_phase1],ru1[2*current_phase1+1],current_phase2,ru2[2*current_phase2],ru2[2*current_phase2+1]);
// rotate channel estimates by estimated phase
rotate_cpx_vector((int16_t *) ul_ch1,
&ru1[2*current_phase1],
(int16_t *) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],
rotate_cpx_vector((c16_t *) ul_ch1,
(c16_t *) &ru1[2*current_phase1],
(c16_t *) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],
Msc_RS,
15);
rotate_cpx_vector((int16_t *) ul_ch2,
&ru2[2*current_phase2],
(int16_t *) &tmp_estimates[0],
rotate_cpx_vector((c16_t *) ul_ch2,
(c16_t *) &ru2[2*current_phase2],
(c16_t *) &tmp_estimates[0],
Msc_RS,
15);
// Combine the two rotated estimates
......
......@@ -618,20 +618,20 @@ void init_symbol_rotation(NR_DL_FRAME_PARMS *fp) {
double f0 = f[ll];
double Ncpm1 = Ncp0;
int16_t *symbol_rotation = fp->symbol_rotation[ll];
c16_t *symbol_rotation = fp->symbol_rotation[ll];
double tl = 0;
double poff = 2 * M_PI * ((Ncp0 * Tc)) * f0;
double exp_re = cos(poff);
double exp_im = sin(-poff);
symbol_rotation[0] = (int16_t)floor(exp_re * 32767);
symbol_rotation[1] = (int16_t)floor(exp_im * 32767);
symbol_rotation[0].r = (int16_t)floor(exp_re * 32767);
symbol_rotation[0].i = (int16_t)floor(exp_im * 32767);
LOG_I(PHY, "Doing symbol rotation calculation for gNB TX/RX, f0 %f Hz, Nsymb %d\n", f0, nsymb);
LOG_I(PHY, "Symbol rotation %d/%d => (%d,%d)\n",
0,
nsymb,
symbol_rotation[0],
symbol_rotation[1]);
symbol_rotation[0].r,
symbol_rotation[0].i);
for (int l = 1; l < nsymb; l++) {
......@@ -646,15 +646,15 @@ void init_symbol_rotation(NR_DL_FRAME_PARMS *fp) {
poff = 2 * M_PI * (tl + (Ncp * Tc)) * f0;
exp_re = cos(poff);
exp_im = sin(-poff);
symbol_rotation[l<<1] = (int16_t)floor(exp_re * 32767);
symbol_rotation[1 + (l<<1)] = (int16_t)floor(exp_im * 32767);
symbol_rotation[l].r = (int16_t)floor(exp_re * 32767);
symbol_rotation[l].i = (int16_t)floor(exp_im * 32767);
LOG_I(PHY, "Symbol rotation %d/%d => tl %f (%d,%d) (%f)\n",
l,
nsymb,
tl,
symbol_rotation[l<<1],
symbol_rotation[1 + (l<<1)],
symbol_rotation[l].r,
symbol_rotation[l].i,
(poff / 2 / M_PI) - floor(poff / 2 / M_PI));
Ncpm1 = Ncp;
......@@ -670,13 +670,13 @@ void init_timeshift_rotation(NR_DL_FRAME_PARMS *fp)
double poff = -i * 2.0 * M_PI * sample_offset / fp->ofdm_symbol_size;
double exp_re = cos(poff);
double exp_im = sin(-poff);
fp->timeshift_symbol_rotation[i*2] = (int16_t)round(exp_re * 32767);
fp->timeshift_symbol_rotation[i*2+1] = (int16_t)round(exp_im * 32767);
fp->timeshift_symbol_rotation[i].r = (int16_t)round(exp_re * 32767);
fp->timeshift_symbol_rotation[i].i = (int16_t)round(exp_im * 32767);
if (i < 10)
LOG_I(PHY,"Timeshift symbol rotation %d => (%d,%d) %f\n",i,
fp->timeshift_symbol_rotation[i*2],
fp->timeshift_symbol_rotation[i*2+1],
fp->timeshift_symbol_rotation[i].r,
fp->timeshift_symbol_rotation[i].i,
poff);
}
}
......
......@@ -348,7 +348,7 @@ void apply_nr_rotation(NR_DL_FRAME_PARMS *fp,
int length) {
int symb_offset = (slot%fp->slots_per_subframe)*fp->symbols_per_slot;
int16_t *symbol_rotation = fp->symbol_rotation[0];
c16_t *symbol_rotation = fp->symbol_rotation[0];
for (int sidx=0;sidx<nsymb;sidx++) {
......@@ -357,12 +357,12 @@ void apply_nr_rotation(NR_DL_FRAME_PARMS *fp,
slot,
sidx + first_symbol + symb_offset,
length,
symbol_rotation[2 * (sidx + first_symbol + symb_offset)],
symbol_rotation[1 + 2 * (sidx + first_symbol + symb_offset)]);
symbol_rotation[sidx + first_symbol + symb_offset].r,
symbol_rotation[sidx + first_symbol + symb_offset].i);
rotate_cpx_vector(trxdata + (sidx * length * 2),
&symbol_rotation[2 * (sidx + first_symbol + symb_offset)],
trxdata + (sidx * length * 2),
rotate_cpx_vector(((c16_t*) trxdata) + sidx * length,
symbol_rotation + sidx + first_symbol + symb_offset,
((c16_t*) trxdata) + sidx * length,
length,
15);
}
......
......@@ -98,25 +98,25 @@ int nr_slot_fep(PHY_VARS_NR_UE *ue,
stop_meas(&ue->rx_dft_stats);
int symb_offset = (Ns%frame_parms->slots_per_subframe)*frame_parms->symbols_per_slot;
int32_t rot2 = ((uint32_t*)frame_parms->symbol_rotation[0])[symbol+symb_offset];
((int16_t*)&rot2)[1]=-((int16_t*)&rot2)[1];
c16_t rot2 = frame_parms->symbol_rotation[0][symbol+symb_offset];
rot2.i=-rot2.i;
#ifdef DEBUG_FEP
// if (ue->frame <100)
printf("slot_fep: slot %d, symbol %d rx_offset %u, rotation symbol %d %d.%d\n", Ns,symbol, rx_offset,
symbol+symb_offset,((int16_t*)&rot2)[0],((int16_t*)&rot2)[1]);
symbol+symb_offset,rot2.r,rot2.i);
#endif
rotate_cpx_vector((int16_t *)&common_vars->common_vars_rx_data_per_thread[proc->thread_id].rxdataF[aa][frame_parms->ofdm_symbol_size*symbol],
(int16_t*)&rot2,
(int16_t *)&common_vars->common_vars_rx_data_per_thread[proc->thread_id].rxdataF[aa][frame_parms->ofdm_symbol_size*symbol],
rotate_cpx_vector((c16_t *)&common_vars->common_vars_rx_data_per_thread[proc->thread_id].rxdataF[aa][frame_parms->ofdm_symbol_size*symbol],
&rot2,
(c16_t *)&common_vars->common_vars_rx_data_per_thread[proc->thread_id].rxdataF[aa][frame_parms->ofdm_symbol_size*symbol],
frame_parms->ofdm_symbol_size,
15);
int16_t *shift_rot = frame_parms->timeshift_symbol_rotation;
c16_t *shift_rot = frame_parms->timeshift_symbol_rotation;
multadd_cpx_vector((int16_t *)&common_vars->common_vars_rx_data_per_thread[proc->thread_id].rxdataF[aa][frame_parms->ofdm_symbol_size*symbol],
shift_rot,
(int16_t *)shift_rot,
(int16_t *)&common_vars->common_vars_rx_data_per_thread[proc->thread_id].rxdataF[aa][frame_parms->ofdm_symbol_size*symbol],
1,
frame_parms->ofdm_symbol_size,
......@@ -214,18 +214,18 @@ int nr_slot_fep_init_sync(PHY_VARS_NR_UE *ue,
stop_meas(&ue->rx_dft_stats);
int symb_offset = (Ns%frame_parms->slots_per_subframe)*frame_parms->symbols_per_slot;
int32_t rot2 = ((uint32_t*)frame_parms->symbol_rotation[0])[symbol + symb_offset];
((int16_t*)&rot2)[1]=-((int16_t*)&rot2)[1];
c16_t rot2 = frame_parms->symbol_rotation[0][symbol + symb_offset];
rot2.i=-rot2.i;
#ifdef DEBUG_FEP
// if (ue->frame <100)
printf("slot_fep: slot %d, symbol %d rx_offset %u, rotation symbol %d %d.%d\n", Ns,symbol, rx_offset,
symbol+symb_offset,((int16_t*)&rot2)[0],((int16_t*)&rot2)[1]);
symbol+symb_offset,rot2.r,rot2.i);
#endif
rotate_cpx_vector((int16_t *)&common_vars->common_vars_rx_data_per_thread[proc->thread_id].rxdataF[aa][frame_parms->ofdm_symbol_size*symbol],
(int16_t*)&rot2,
(int16_t *)&common_vars->common_vars_rx_data_per_thread[proc->thread_id].rxdataF[aa][frame_parms->ofdm_symbol_size*symbol],
rotate_cpx_vector((c16_t *)&common_vars->common_vars_rx_data_per_thread[proc->thread_id].rxdataF[aa][frame_parms->ofdm_symbol_size*symbol],
&rot2,
(c16_t *)&common_vars->common_vars_rx_data_per_thread[proc->thread_id].rxdataF[aa][frame_parms->ofdm_symbol_size*symbol],
frame_parms->ofdm_symbol_size,
15);
}
......@@ -310,19 +310,19 @@ void apply_nr_rotation_ul(NR_DL_FRAME_PARMS *frame_parms,
for (int symbol=first_symbol;symbol<nsymb;symbol++) {
uint32_t rot2 = ((uint32_t*)frame_parms->symbol_rotation[1])[symbol + symb_offset];
((int16_t*)&rot2)[1]=-((int16_t*)&rot2)[1];
LOG_D(PHY,"slot %d, symb_offset %d rotating by %d.%d\n",slot,symb_offset,((int16_t*)&rot2)[0],((int16_t*)&rot2)[1]);
rotate_cpx_vector((int16_t *)&rxdataF[soffset+(frame_parms->ofdm_symbol_size*symbol)],
(int16_t*)&rot2,
(int16_t *)&rxdataF[soffset+(frame_parms->ofdm_symbol_size*symbol)],
c16_t rot2 = frame_parms->symbol_rotation[1][symbol + symb_offset];
rot2.i=-rot2.i;
LOG_D(PHY,"slot %d, symb_offset %d rotating by %d.%d\n",slot,symb_offset,rot2.r,rot2.i);
rotate_cpx_vector((c16_t *)&rxdataF[soffset+(frame_parms->ofdm_symbol_size*symbol)],
&rot2,
(c16_t *)&rxdataF[soffset+(frame_parms->ofdm_symbol_size*symbol)],
length,
15);
int16_t *shift_rot = frame_parms->timeshift_symbol_rotation;
c16_t *shift_rot = frame_parms->timeshift_symbol_rotation;
multadd_cpx_vector((int16_t *)&rxdataF[soffset+(frame_parms->ofdm_symbol_size*symbol)],
shift_rot,
(int16_t *)shift_rot,
(int16_t *)&rxdataF[soffset+(frame_parms->ofdm_symbol_size*symbol)],
1,
length,
......
......@@ -854,7 +854,6 @@ void nr_pusch_ptrs_processing(PHY_VARS_gNB *gNB,
uint32_t nb_re_pusch)
{
//#define DEBUG_UL_PTRS 1
int16_t *phase_per_symbol = NULL;
int32_t *ptrs_re_symbol = NULL;
int8_t ret = 0;
......@@ -871,20 +870,20 @@ void nr_pusch_ptrs_processing(PHY_VARS_gNB *gNB,
uint8_t *ptrsReOffset = &rel15_ul->pusch_ptrs.ptrs_ports_list[0].ptrs_re_offset;
/* loop over antennas */
for (int aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
phase_per_symbol = (int16_t*)gNB->pusch_vars[ulsch_id]->ptrs_phase_per_slot[aarx];
c16_t *phase_per_symbol = (c16_t*)gNB->pusch_vars[ulsch_id]->ptrs_phase_per_slot[aarx];
ptrs_re_symbol = &gNB->pusch_vars[ulsch_id]->ptrs_re_per_slot;
*ptrs_re_symbol = 0;
phase_per_symbol[(2*symbol)+1] = 0; // Imag
phase_per_symbol[symbol].i = 0;
/* set DMRS estimates to 0 angle with magnitude 1 */
if(is_dmrs_symbol(symbol,*dmrsSymbPos)) {
/* set DMRS real estimation to 32767 */
phase_per_symbol[2*symbol]=(int16_t)((1<<15)-1); // 32767
phase_per_symbol[symbol].r=INT16_MAX; // 32767
#ifdef DEBUG_UL_PTRS
printf("[PHY][PTRS]: DMRS Symbol %d -> %4d + j*%4d\n", symbol, phase_per_symbol[2*symbol],phase_per_symbol[(2*symbol)+1]);
printf("[PHY][PTRS]: DMRS Symbol %d -> %4d + j*%4d\n", symbol, phase_per_symbol[symbol].r,phase_per_symbol[symbol].i);
#endif
}
else {// real ptrs value is set to 0
phase_per_symbol[2*symbol] = 0; // Real
phase_per_symbol[symbol].r = 0;
}
if(symbol == *startSymbIndex) {
......@@ -909,7 +908,7 @@ void nr_pusch_ptrs_processing(PHY_VARS_gNB *gNB,
symbol,frame_parms->ofdm_symbol_size,
(int16_t*)&gNB->pusch_vars[ulsch_id]->rxdataF_comp[aarx][(symbol * nb_re_pusch)],
gNB->nr_gold_pusch_dmrs[rel15_ul->scid][nr_tti_rx][symbol],
&phase_per_symbol[2* symbol],
(int16_t*)&phase_per_symbol[symbol],
ptrs_re_symbol);
}
/* For last OFDM symbol at each antenna perform interpolation and compensation for the slot*/
......@@ -919,7 +918,7 @@ void nr_pusch_ptrs_processing(PHY_VARS_gNB *gNB,
/*------------------------------------------------------------------------------------------------------- */
/* If L-PTRS is > 0 then we need interpolation */
if(*L_ptrs > 0) {
ret = nr_ptrs_process_slot(*dmrsSymbPos, *ptrsSymbPos, phase_per_symbol, *startSymbIndex, *nbSymb);
ret = nr_ptrs_process_slot(*dmrsSymbPos, *ptrsSymbPos, (int16_t*)phase_per_symbol, *startSymbIndex, *nbSymb);
if(ret != 0) {
LOG_W(PHY,"[PTRS] Compensation is skipped due to error in PTRS slot processing !!\n");
}
......@@ -938,11 +937,11 @@ void nr_pusch_ptrs_processing(PHY_VARS_gNB *gNB,
/* Skip rotation if the slot processing is wrong */
if((!is_dmrs_symbol(i,*dmrsSymbPos)) && (ret == 0)) {
#ifdef DEBUG_UL_PTRS
printf("[PHY][UL][PTRS]: Rotate Symbol %2d with %d + j* %d\n", i, phase_per_symbol[2* i],phase_per_symbol[(2* i) +1]);
printf("[PHY][UL][PTRS]: Rotate Symbol %2d with %d + j* %d\n", i, phase_per_symbol[i].r,phase_per_symbol[i].i);
#endif
rotate_cpx_vector((int16_t*)&gNB->pusch_vars[ulsch_id]->rxdataF_comp[aarx][(i * rel15_ul->rb_size * NR_NB_SC_PER_RB)],
&phase_per_symbol[2* i],
(int16_t*)&gNB->pusch_vars[ulsch_id]->rxdataF_comp[aarx][(i * rel15_ul->rb_size * NR_NB_SC_PER_RB)],
rotate_cpx_vector((c16_t*)&gNB->pusch_vars[ulsch_id]->rxdataF_comp[aarx][(i * rel15_ul->rb_size * NR_NB_SC_PER_RB)],
&phase_per_symbol[i],
(c16_t*)&gNB->pusch_vars[ulsch_id]->rxdataF_comp[aarx][(i * rel15_ul->rb_size * NR_NB_SC_PER_RB)],
((*nb_rb) * NR_NB_SC_PER_RB), 15);
}// if not DMRS Symbol
}// symbol loop
......
......@@ -1657,7 +1657,6 @@ void nr_pdsch_ptrs_processing(PHY_VARS_NR_UE *ue,
RX_type_t rx_type)
{
//#define DEBUG_DL_PTRS 1
int16_t *phase_per_symbol = NULL;
int32_t *ptrs_re_symbol = NULL;
int8_t ret = 0;
/* harq specific variables */
......@@ -1701,20 +1700,20 @@ void nr_pdsch_ptrs_processing(PHY_VARS_NR_UE *ue,
}
/* loop over antennas */
for (int aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
phase_per_symbol = (int16_t*)pdsch_vars[gNB_id]->ptrs_phase_per_slot[aarx];
c16_t *phase_per_symbol = (c16_t*)pdsch_vars[gNB_id]->ptrs_phase_per_slot[aarx];
ptrs_re_symbol = (int32_t*)pdsch_vars[gNB_id]->ptrs_re_per_slot[aarx];
ptrs_re_symbol[symbol] = 0;
phase_per_symbol[(2*symbol)+1] = 0; // Imag
phase_per_symbol[symbol].i = 0; // Imag
/* set DMRS estimates to 0 angle with magnitude 1 */
if(is_dmrs_symbol(symbol,*dmrsSymbPos)) {
/* set DMRS real estimation to 32767 */
phase_per_symbol[2*symbol]=(int16_t)((1<<15)-1); // 32767
phase_per_symbol[symbol].r=INT16_MAX; // 32767
#ifdef DEBUG_DL_PTRS
printf("[PHY][PTRS]: DMRS Symbol %d -> %4d + j*%4d\n", symbol, phase_per_symbol[2*symbol],phase_per_symbol[(2*symbol)+1]);
printf("[PHY][PTRS]: DMRS Symbol %d -> %4d + j*%4d\n", symbol, phase_per_symbol[symbol].r,phase_per_symbol[symbol].i);
#endif
}
else { // real ptrs value is set to 0
phase_per_symbol[2*symbol] = 0; // Real
phase_per_symbol[symbol].r = 0; // Real
}
if(dlsch0_harq->status == ACTIVE) {
......@@ -1740,7 +1739,7 @@ void nr_pdsch_ptrs_processing(PHY_VARS_NR_UE *ue,
symbol,frame_parms->ofdm_symbol_size,
(int16_t*)&pdsch_vars[gNB_id]->rxdataF_comp0[aarx][(symbol * nb_re_pdsch)],
ue->nr_gold_pdsch[gNB_id][nr_slot_rx][symbol][0],
&phase_per_symbol[2* symbol],
(int16_t*)&phase_per_symbol[symbol],
&ptrs_re_symbol[symbol]);
}
}// HARQ 0
......@@ -1752,7 +1751,7 @@ void nr_pdsch_ptrs_processing(PHY_VARS_NR_UE *ue,
/*------------------------------------------------------------------------------------------------------- */
/* If L-PTRS is > 0 then we need interpolation */
if(*L_ptrs > 0) {
ret = nr_ptrs_process_slot(*dmrsSymbPos, *ptrsSymbPos, phase_per_symbol, *startSymbIndex, *nbSymb);
ret = nr_ptrs_process_slot(*dmrsSymbPos, *ptrsSymbPos, (int16_t*)phase_per_symbol, *startSymbIndex, *nbSymb);
if(ret != 0) {
LOG_W(PHY,"[PTRS] Compensation is skipped due to error in PTRS slot processing !!\n");
}
......@@ -1771,11 +1770,11 @@ void nr_pdsch_ptrs_processing(PHY_VARS_NR_UE *ue,
/* Skip rotation if the slot processing is wrong */
if((!is_dmrs_symbol(i,*dmrsSymbPos)) && (ret == 0)) {
#ifdef DEBUG_DL_PTRS
printf("[PHY][DL][PTRS]: Rotate Symbol %2d with %d + j* %d\n", i, phase_per_symbol[2* i],phase_per_symbol[(2* i) +1]);
printf("[PHY][DL][PTRS]: Rotate Symbol %2d with %d + j* %d\n", i, phase_per_symbol[i].r,phase_per_symbol[i].i);
#endif
rotate_cpx_vector((int16_t*)&pdsch_vars[gNB_id]->rxdataF_comp0[aarx][(i * (*nb_rb) * NR_NB_SC_PER_RB)],
&phase_per_symbol[2* i],
(int16_t*)&pdsch_vars[gNB_id]->rxdataF_comp0[aarx][(i * (*nb_rb) * NR_NB_SC_PER_RB)],
rotate_cpx_vector((c16_t*)&pdsch_vars[gNB_id]->rxdataF_comp0[aarx][(i * (*nb_rb) * NR_NB_SC_PER_RB)],
&phase_per_symbol[i],
(c16_t*)&pdsch_vars[gNB_id]->rxdataF_comp0[aarx][(i * (*nb_rb) * NR_NB_SC_PER_RB)],
((*nb_rb) * NR_NB_SC_PER_RB), 15);
}// if not DMRS Symbol
}// symbol loop
......
......@@ -597,17 +597,15 @@ uint8_t nr_ue_pusch_common_procedures(PHY_VARS_NR_UE *UE,
int symb_offset = (slot%frame_parms->slots_per_subframe)*frame_parms->symbols_per_slot;
for(ap = 0; ap < n_antenna_ports; ap++) {
for (int s=0;s<NR_NUMBER_OF_SYMBOLS_PER_SLOT;s++){
LOG_D(PHY,"In %s: rotating txdataF symbol %d (%d) => (%d.%d)\n",
__FUNCTION__,
c16_t rot=((c16_t*)frame_parms->symbol_rotation[1])[s + symb_offset];
LOG_D(PHY,"rotating txdataF symbol %d (%d) => (%d.%d)\n",
s,
s + symb_offset,
frame_parms->symbol_rotation[1][2 * (s + symb_offset)],
frame_parms->symbol_rotation[1][1 + (2 * (s + symb_offset))]);
rot.r, rot.i);
rotate_cpx_vector((int16_t *)&txdataF[ap][frame_parms->ofdm_symbol_size * s],
&frame_parms->symbol_rotation[1][2 * (s + symb_offset)],
(int16_t *)&txdataF[ap][frame_parms->ofdm_symbol_size * s],
rotate_cpx_vector((c16_t *)&txdataF[ap][frame_parms->ofdm_symbol_size * s],
&rot,
(c16_t *)&txdataF[ap][frame_parms->ofdm_symbol_size * s],
frame_parms->ofdm_symbol_size,
15);
}
......
......@@ -144,207 +144,10 @@ void multadd_real_four_symbols_vector_complex_scalar(int16_t *x,
_m_empty();
}
/*
int rotate_cpx_vector(int16_t *x,
int16_t *alpha,
int16_t *y,
uint32_t N,
uint16_t output_shift,
uint8_t format)
{
// Multiply elementwise two complex vectors of N elements
// x - input 1 in the format |Re0 Im0 Re0 Im0|,......,|Re(N-1) Im(N-1) Re(N-1) Im(N-1)|
// We assume x1 with a dynamic of 15 bit maximum
//
// alpha - input 2 in the format |Re0 Im0|
// We assume x2 with a dynamic of 15 bit maximum
//
// y - output in the format |Re0 Im0 Re0 Im0|,......,|Re(N-1) Im(N-1) Re(N-1) Im(N-1)|
//
// N - the size f the vectors (this function does N cpx mpy. WARNING: N>=4;
//
// output_shift - shift at output to return in Q1.15
// format - 0 means alpha is in shuffled format, 1 means x is in shuffled format
uint32_t i; // loop counter
register __m128i m0,m1;
__m128i *x_128;
__m128i *y_128;
shift = _mm_cvtsi32_si128(output_shift);
x_128 = (__m128i *)&x[0];
if (format==0) { // alpha is in shuffled format for complex multiply
((int16_t *)&alpha_128)[0] = alpha[0];
((int16_t *)&alpha_128)[1] = -alpha[1];
((int16_t *)&alpha_128)[2] = alpha[1];
((int16_t *)&alpha_128)[3] = alpha[0];
((int16_t *)&alpha_128)[4] = alpha[0];
((int16_t *)&alpha_128)[5] = -alpha[1];
((int16_t *)&alpha_128)[6] = alpha[1];
((int16_t *)&alpha_128)[7] = alpha[0];
} else { // input is in shuffled format for complex multiply
((int16_t *)&alpha_128)[0] = alpha[0];
((int16_t *)&alpha_128)[1] = alpha[1];
((int16_t *)&alpha_128)[2] = alpha[0];
((int16_t *)&alpha_128)[3] = alpha[1];
((int16_t *)&alpha_128)[4] = alpha[0];
((int16_t *)&alpha_128)[5] = alpha[1];
((int16_t *)&alpha_128)[6] = alpha[0];
((int16_t *)&alpha_128)[7] = alpha[1];
}
y_128 = (__m128i *)&y[0];
// _mm_empty();
// return(0);
// we compute 4 cpx multiply for each loop
for(i=0; i<(N>>3); i++) {
m0 = _mm_madd_epi16(x_128[0],alpha_128); //pmaddwd_r2r(mm1,mm0); // 1- compute x1[0]*x2[0]
m0 = _mm_sra_epi32(m0,shift); // 1- shift right by shift in order to compensate for the input amplitude
m1=m0;
m0 = _mm_packs_epi32(m1,m0); // 1- pack in a 128 bit register [re im re im]
y_128[0] = _mm_unpacklo_epi32(m0,m0); // 1- pack in a 128 bit register [re im re im]
m0 = _mm_madd_epi16(x_128[1],alpha_128); //pmaddwd_r2r(mm1,mm0); // 1- compute x1[0]*x2[0]
m0 = _mm_sra_epi32(m0,shift); // 1- shift right by shift in order to compensate for the input amplitude
m1 = m0;
m1 = _mm_packs_epi32(m1,m0); // 1- pack in a 128 bit register [re im re im]
y_128[1] = _mm_unpacklo_epi32(m1,m1); // 1- pack in a 128 bit register [re im re im]
m0 = _mm_madd_epi16(x_128[2],alpha_128); //pmaddwd_r2r(mm1,mm0); // 1- compute x1[0]*x2[0]
m0 = _mm_sra_epi32(m0,shift); // 1- shift right by shift in order to compensate for the input amplitude
m1 = m0;
m1 = _mm_packs_epi32(m1,m0); // 1- pack in a 128 bit register [re im re im]
y_128[2] = _mm_unpacklo_epi32(m1,m1); // 1- pack in a 128 bit register [re im re im]
m0 = _mm_madd_epi16(x_128[3],alpha_128); //pmaddwd_r2r(mm1,mm0); // 1- compute x1[0]*x2[0]
m0 = _mm_sra_epi32(m0,shift); // 1- shift right by shift in order to compensate for the input amplitude
m1 = m0;
m1 = _mm_packs_epi32(m1,m0); // 1- pack in a 128 bit register [re im re im]
y_128[3] = _mm_unpacklo_epi32(m1,m1); // 1- pack in a 128 bit register [re im re im]
if (format==1) { // Put output in proper format (Re,-Im,Im,Re), shuffle = (0,1,3,2) = 0x1e
y_128[0] = _mm_shufflelo_epi16(y_128[0],0x1e);
y_128[0] = _mm_shufflehi_epi16(y_128[0],0x1e);
((int16_t*)&y_128[0])[1] = -((int16_t*)&y_128[0])[1];
((int16_t*)&y_128[0])[5] = -((int16_t*)&y_128[0])[5];
y_128[1] = _mm_shufflelo_epi16(y_128[1],0x1e);
y_128[1] = _mm_shufflehi_epi16(y_128[1],0x1e);
((int16_t*)&y_128[1])[1] = -((int16_t*)&y_128[1])[1];
((int16_t*)&y_128[1])[5] = -((int16_t*)&y_128[1])[5];
y_128[2] = _mm_shufflelo_epi16(y_128[2],0x1e);
y_128[2] = _mm_shufflehi_epi16(y_128[2],0x1e);
((int16_t*)&y_128[2])[1] = -((int16_t*)&y_128[2])[1];
((int16_t*)&y_128[2])[5] = -((int16_t*)&y_128[2])[5];
y_128[3] = _mm_shufflelo_epi16(y_128[3],0x1e);
y_128[3] = _mm_shufflehi_epi16(y_128[3],0x1e);
((int16_t*)&y_128[3])[1] = -((int16_t*)&y_128[3])[1];
((int16_t*)&y_128[3])[5] = -((int16_t*)&y_128[3])[5];
}
x_128+=4;
y_128 +=4;
}
_mm_empty();
_m_empty();
return(0);
}
int rotate_cpx_vector2(int16_t *x,
int16_t *alpha,
int16_t *y,
uint32_t N,
uint16_t output_shift,
uint8_t format)
{
// Multiply elementwise two complex vectors of N elements
// x - input 1 in the format |Re0 Im0 Re0 Im0|,......,|Re(N-1) Im(N-1) Re(N-1) Im(N-1)|
// We assume x1 with a dynamic of 15 bit maximum
//
// alpha - input 2 in the format |Re0 Im0|
// We assume x2 with a dynamic of 15 bit maximum
//
// y - output in the format |Re0 Im0 Re0 Im0|,......,|Re(N-1) Im(N-1) Re(N-1) Im(N-1)|
//
// N - the size f the vectors (this function does N cpx mpy. WARNING: N>=4;
//
// log2_amp - increase the output amplitude by a factor 2^log2_amp (default is 0)
// WARNING: log2_amp>0 can cause overflow!!
uint32_t i; // loop counter
register __m128i m0,m1;
__m128i *x_128;
__m128i *y_128;
shift = _mm_cvtsi32_si128(output_shift);
x_128 = (__m128i *)&x[0];
if (format==0) { // alpha is in shuffled format for complex multiply
((int16_t *)&alpha_128)[0] = alpha[0];
((int16_t *)&alpha_128)[1] = -alpha[1];
((int16_t *)&alpha_128)[2] = alpha[1];
((int16_t *)&alpha_128)[3] = alpha[0];
((int16_t *)&alpha_128)[4] = alpha[0];
((int16_t *)&alpha_128)[5] = -alpha[1];
((int16_t *)&alpha_128)[6] = alpha[1];
((int16_t *)&alpha_128)[7] = alpha[0];
} else { // input is in shuffled format for complex multiply
((int16_t *)&alpha_128)[0] = alpha[0];
((int16_t *)&alpha_128)[1] = alpha[1];
((int16_t *)&alpha_128)[2] = alpha[0];
((int16_t *)&alpha_128)[3] = alpha[1];
((int16_t *)&alpha_128)[4] = alpha[0];
((int16_t *)&alpha_128)[5] = alpha[1];
((int16_t *)&alpha_128)[6] = alpha[0];
((int16_t *)&alpha_128)[7] = alpha[1];
}
y_128 = (__m128i *)&y[0];
// we compute 4 cpx multiply for each loop
for(i=0; i<(N>>1); i++) {
m0 = _mm_madd_epi16(x_128[i],alpha_128); //pmaddwd_r2r(mm1,mm0); // 1- compute x1[0]*x2[0]
m0 = _mm_sra_epi32(m0,shift); // 1- shift right by shift in order to compensate for the input amplitude
m1=m0;
m1 = _mm_packs_epi32(m1,m0); // 1- pack in a 128 bit register [re im re im]
y_128[i] = _mm_unpacklo_epi32(m1,m1); // 1- pack in a 128 bit register [re im re im]
if (format==1) { // Put output in proper format (Re,-Im,Im,Re), shuffle = (0,1,3,2) = 0x1e
y_128[i] = _mm_shufflelo_epi16(y_128[i],0x1e);
y_128[i] = _mm_shufflehi_epi16(y_128[i],0x1e);
((int16_t*)&y_128[i])[1] = -((int16_t*)&y_128[i])[1];
((int16_t*)&y_128[i])[5] = -((int16_t*)&y_128[i])[5];
}
}
_mm_empty();
_m_empty();
return(0);
}
*/
int rotate_cpx_vector(int16_t *x,
int16_t *alpha,
int16_t *y,
#ifdef __AVX2__
void rotate_cpx_vector(c16_t *x,
c16_t *alpha,
c16_t *y,
uint32_t N,
uint16_t output_shift)
{
......@@ -372,28 +175,28 @@ int rotate_cpx_vector(int16_t *x,
__m128i shift = _mm_cvtsi32_si128(output_shift);
register simd_q15_t m0,m1,m2,m3;
((int16_t *)&alpha_128)[0] = alpha[0];
((int16_t *)&alpha_128)[1] = -alpha[1];
((int16_t *)&alpha_128)[2] = alpha[1];
((int16_t *)&alpha_128)[3] = alpha[0];
((int16_t *)&alpha_128)[4] = alpha[0];
((int16_t *)&alpha_128)[5] = -alpha[1];
((int16_t *)&alpha_128)[6] = alpha[1];
((int16_t *)&alpha_128)[7] = alpha[0];
((int16_t *)&alpha_128)[0] = alpha->r;
((int16_t *)&alpha_128)[1] = -alpha->i;
((int16_t *)&alpha_128)[2] = alpha->i;
((int16_t *)&alpha_128)[3] = alpha->r;
((int16_t *)&alpha_128)[4] = alpha->r;
((int16_t *)&alpha_128)[5] = -alpha->i;
((int16_t *)&alpha_128)[6] = alpha->i;
((int16_t *)&alpha_128)[7] = alpha->r;
#elif defined(__arm__)
int32x4_t shift;
int32x4_t ab_re0,ab_re1,ab_im0,ab_im1,re32,im32;
int16_t reflip[8] __attribute__((aligned(16))) = {1,-1,1,-1,1,-1,1,-1};
int32x4x2_t xtmp;
((int16_t *)&alpha_128)[0] = alpha[0];
((int16_t *)&alpha_128)[1] = alpha[1];
((int16_t *)&alpha_128)[2] = alpha[0];
((int16_t *)&alpha_128)[3] = alpha[1];
((int16_t *)&alpha_128)[4] = alpha[0];
((int16_t *)&alpha_128)[5] = alpha[1];
((int16_t *)&alpha_128)[6] = alpha[0];
((int16_t *)&alpha_128)[7] = alpha[1];
((int16_t *)&alpha_128)[0] = alpha->r;
((int16_t *)&alpha_128)[1] = alpha->i;
((int16_t *)&alpha_128)[2] = alpha->r;
((int16_t *)&alpha_128)[3] = alpha->i;
((int16_t *)&alpha_128)[4] = alpha->r;
((int16_t *)&alpha_128)[5] = alpha->i;
((int16_t *)&alpha_128)[6] = alpha->r;
((int16_t *)&alpha_128)[7] = alpha->i;
int16x8_t bflip = vrev32q_s16(alpha_128);
int16x8_t bconj = vmulq_s16(alpha_128,*(int16x8_t *)reflip);
shift = vdupq_n_s32(-output_shift);
......@@ -439,9 +242,9 @@ int rotate_cpx_vector(int16_t *x,
_mm_empty();
_m_empty();
return(0);
return;
}
#endif
/*
int mult_vector32_scalar(int16_t *x1,
int x2,
......@@ -536,7 +339,7 @@ main ()
int16_t input[256] __attribute__((aligned(16)));
int16_t input2[256] __attribute__((aligned(16)));
int16_t output[256] __attribute__((aligned(16)));
int16_t alpha[2];
c16_t alpha;
int i;
......@@ -574,8 +377,8 @@ main ()
input2[14] = 1000;
input2[15] = 2000;
alpha[0]=32767;
alpha[1]=0;
alpha->r=32767;
alpha->i=0;
//mult_cpx_vector(input,input2,output,L,0);
rotate_cpx_vector_norep(input,alpha,input,L,15);
......
......@@ -37,6 +37,7 @@ extern "C" {
#include <stdint.h>
#include <assert.h>
#include "PHY/sse_intrin.h"
#include "common/utils/assertions.h"
#define CEILIDIV(a,b) ((a+b-1)/b)
#define ROUNDIDIV(a,b) (((a<<1)+b)/(b<<1))
......@@ -104,15 +105,6 @@ void multadd_complex_vector_real_scalar(int16_t *x,
uint8_t zero_flag,
uint32_t N);
int rotate_cpx_vector(int16_t *x,
int16_t *alpha,
int16_t *y,
uint32_t N,
uint16_t output_shift);
/*!\fn void init_fft(uint16_t size,uint8_t logsize,uint16_t *rev)
\brief Initialize the FFT engine for a given size
@param size Size of the FFT
......@@ -461,7 +453,7 @@ idft_size_idx_t get_idft(int ofdm_symbol_size)
}
/*!\fn int32_t rotate_cpx_vector(int16_t *x,int16_t *alpha,int16_t *y,uint32_t N,uint16_t output_shift)
/*!\fn int32_t rotate_cpx_vector(c16_t *x,c16_t *alpha,c16_t *y,uint32_t N,uint16_t output_shift)
This function performs componentwise multiplication of a vector with a complex scalar.
@param x Vector input (Q1.15) in the format |Re0 Im0|,......,|Re(N-1) Im(N-1)|
@param alpha Scalar input (Q1.15) in the format |Re0 Im0|
......@@ -471,9 +463,9 @@ This function performs componentwise multiplication of a vector with a complex s
The function implemented is : \f$\mathbf{y} = \alpha\mathbf{x}\f$
*/
int32_t rotate_cpx_vector(int16_t *x,
int16_t *alpha,
int16_t *y,
void rotate_cpx_vector(c16_t *x,
c16_t *alpha,
c16_t *y,
uint32_t N,
uint16_t output_shift);
......
......@@ -359,10 +359,10 @@ struct NR_DL_FRAME_PARMS {
lte_prefix_type_t Ncp;
/// sequence which is computed based on carrier frequency and numerology to rotate/derotate each OFDM symbol according to Section 5.3 in 38.211
/// First dimension is for the direction of the link (0 DL, 1 UL)
int16_t symbol_rotation[2][224*2];
c16_t symbol_rotation[2][224];
/// sequence used to compensate the phase rotation due to timeshifted OFDM symbols
/// First dimenstion is for different CP lengths
int16_t timeshift_symbol_rotation[4096*2] __attribute__ ((aligned (16)));
c16_t timeshift_symbol_rotation[4096*2] __attribute__ ((aligned (16)));
/// shift of pilot position in one RB
uint8_t nushift;
/// SRS configuration from TS 38.331 RRC
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment