Commit eadcba95 authored by gabrielC's avatar gabrielC

Merge branch 'develop-realtime-lts' into develop_integration_w07

Conflicts:
	targets/RT/USER/lte-enb.c
	targets/RT/USER/lte-softmodem.c
	targets/RT/USER/lte-ue.c
parents 10a50563 be0541aa
......@@ -1664,18 +1664,6 @@ endif()
message ("NETTLE VERSION_INSTALLED = ${NETTLE_VERSION}")
string(REGEX REPLACE "([0-9]+).*" "\\1" NETTLE_VERSION_MAJOR ${NETTLE_VERSION})
string(REGEX REPLACE "[0-9]+\\.([0-9]+).*" "\\1" NETTLE_VERSION_MINOR ${NETTLE_VERSION})
message ("NETTLE_VERSION_MAJOR = ${NETTLE_VERSION_MAJOR}")
message ("NETTLE_VERSION_MINOR = ${NETTLE_VERSION_MINOR}")
if ("${NETTLE_VERSION_MAJOR}" STREQUAL "" OR "${NETTLE_VERSION_MINOR}" STREQUAL "")
message( FATAL_ERROR "The nettle version not detected properly. Try to run build_oai -I again" )
endif()
add_definitions("-DNETTLE_VERSION_MAJOR=${NETTLE_VERSION_MAJOR}")
add_definitions("-DNETTLE_VERSION_MINOR=${NETTLE_VERSION_MINOR}")
pkg_search_module(XPM xpm)
if(NOT ${XPM_FOUND})
message("PACKAGE xpm not found: some targets will fail")
......
......@@ -65,7 +65,7 @@ _Assert_(cOND, _Assert_Exit_, #vALUE1 ": %" PRIdMAX "\n" #vALUE2 ": %" PRIdMAX "
(intmax_t)vALUE1, (intmax_t)vALUE2, (intmax_t)vALUE3)
#define DevCheck4(cOND, vALUE1, vALUE2, vALUE3, vALUE4) \
_Assert_(cOND, _Assert_Exit_, #vALUE1": %"PRIdMAX"\n"#vALUE2": %"PRIdMAX"\n"#vALUE3": %"PRIdMAX"\n"#vALUE4": %"PRIdMAX"\n\n", \
_Assert_(cOND, _Assert_Exit_, #vALUE1": %" PRIdMAX "\n" #vALUE2 ": %" PRIdMAX "\n" #vALUE3 ": %" PRIdMAX "\n" #vALUE4 ": %" PRIdMAX "\n\n", \
(intmax_t)vALUE1, (intmax_t)vALUE2, (intmax_t)vALUE3, (intmax_t)vALUE4)
#define DevParam(vALUE1, vALUE2, vALUE3) DevCheck(0, vALUE1, vALUE2, vALUE3)
......
......@@ -40,6 +40,8 @@
#include "SCHED/defs.h"
#include "defs.h"
#include "UTIL/LOG/vcd_signal_dumper.h"
#include "UTIL/LOG/log.h"
#include <syscall.h>
//#define DEBUG_DLSCH_CODING
//#define DEBUG_DLSCH_FREE 1
......@@ -347,6 +349,8 @@ int dlsch_encoding_2threads0(te_params *tep) {
extern int oai_exit;
void *te_thread(void *param) {
pthread_setname_np( pthread_self(),"te processing");
LOG_I(PHY,"thread te created id=%ld", syscall(__NR_gettid));
eNB_proc_t *proc = &((te_params *)param)->eNB->proc;
while (!oai_exit) {
......
......@@ -418,6 +418,7 @@ int ulsch_decoding_data_2thread0(td_params* tdp) {
extern int oai_exit;
void *td_thread(void *param) {
pthread_setname_np( pthread_self(), "td processing");
PHY_VARS_eNB *eNB = ((td_params*)param)->eNB;
eNB_proc_t *proc = &eNB->proc;
......
......@@ -32,6 +32,7 @@
#ifndef __PHY_DEFS__H__
#define __PHY_DEFS__H__
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
......@@ -391,6 +392,9 @@ typedef struct {
pthread_mutex_t mutex_rxtx;
/// scheduling parameters for RXn-TXnp4 thread
struct sched_param sched_param_rxtx;
int sub_frame_start;
int sub_frame_step;
unsigned long long gotIQs;
} UE_rxtx_proc_t;
/// Context data structure for eNB subframe processing
......
......@@ -2603,6 +2603,7 @@ extern int oai_exit;
static void *fep_thread(void *param) {
pthread_setname_np( pthread_self(), "UEfep");
PHY_VARS_eNB *eNB = (PHY_VARS_eNB *)param;
eNB_proc_t *proc = &eNB->proc;
while (!oai_exit) {
......
......@@ -264,7 +264,7 @@ typedef struct protocol_ctxt_s {
(Ctxt_Pp)->subframe = sUBfRAME; \
PROTOCOL_CTXT_COMPUTE_MODULE_ID(Ctxt_Pp)
#define PROTOCOL_CTXT_FMT "[FRAME %05u][%s][MOD %02u][RNTI %"PRIx16"]"
#define PROTOCOL_CTXT_FMT "[FRAME %05u][%s][MOD %02u][RNTI %" PRIx16 "]"
#define PROTOCOL_CTXT_ARGS(CTXT_Pp) \
(CTXT_Pp)->frame, \
((CTXT_Pp)->enb_flag == ENB_FLAG_YES) ? "eNB":" UE", \
......
......@@ -43,6 +43,13 @@
#include <sys/stat.h>
#include <fcntl.h>
#include <stdarg.h>
#include <time.h>
#include <stdint.h>
#include <inttypes.h>
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include <pthread.h>
#else
#include "rtai_fifos.h"
#endif
......@@ -76,117 +83,20 @@ extern "C" {
* @ingroup _macro
* @brief LOG defines 9 levels of messages for users. Importance of these levels decrease gradually from 0 to 8
* @{*/
#ifndef LOG_EMERG
# define LOG_EMERG 0 /*!< \brief system is unusable */
#endif
#ifndef LOG_ALERT
# define LOG_ALERT 1 /*!< \brief action must be taken immediately */
#endif
#ifndef LOG_CRIT
# define LOG_CRIT 2 /*!< \brief critical conditions */
#endif
#ifndef LOG_ERR
# define LOG_ERR 3 /*!< \brief error conditions */
#endif
#ifndef LOG_WARNING
# define LOG_WARNING 4 /*!< \brief warning conditions */
#endif
#ifndef LOG_NOTICE
# define LOG_NOTICE 5 /*!< \brief normal but significant condition */
#endif
#ifndef LOG_INFO
# define LOG_INFO 6 /*!< \brief informational */
#endif
#ifndef LOG_DEBUG
# define LOG_DEBUG 7 /*!< \brief debug-level messages */
#endif
#ifndef LOG_FILE
# define LOG_FILE 8 /*!< \brief message sequence chart -level */
#endif
#ifndef LOG_TRACE
# define LOG_TRACE 9 /*!< \brief trace-level messages */
#endif
#define NUM_LOG_LEVEL 10 /*!< \brief the number of message levels users have with LOG */
/* @}*/
/** @defgroup _logIt logIt function
* @ingroup _macro
* @brief Macro used to call tr_log_full_ex with file, function and line information
* @{*/
#ifdef USER_MODE
//#define logIt(component, level, format, args...) do {logRecord(__FILE__, __FUNCTION__, __LINE__, component, level, format, ##args);} while(0);
#ifdef LOG_NO_THREAD
#define logIt(component, level, format, args...) logRecord_mt(__FILE__, __FUNCTION__, __LINE__, component, level, format, ##args)
#else //default
#define logIt(component, level, format, args...) logRecord(__FILE__, __FUNCTION__, __LINE__, component, level, format, ##args)
#endif
#else
#ifdef LOG_NO_THREAD
#define logIt(component, level, format, args...) logRecord_mt(NULL, __FUNCTION__, __LINE__, component, level, format, ##args)
#else // default
#define logIt(component, level, format, args...) logRecord(NULL, __FUNCTION__, __LINE__, component, level, format, ##args)
#endif
#endif
/* @}*/
/** @defgroup _debugging debugging macros
* @ingroup _macro
* @brief Macro used to call logIt function with different message levels
* @{*/
// debugging macros
#ifdef USER_MODE
# if T_TRACER
# include "T.h"
# define LOG_I(c, x...) T(T_LEGACY_ ## c ## _INFO, T_PRINTF(x))
# define LOG_W(c, x...) T(T_LEGACY_ ## c ## _WARNING, T_PRINTF(x))
# define LOG_E(c, x...) T(T_LEGACY_ ## c ## _ERROR, T_PRINTF(x))
# define LOG_D(c, x...) T(T_LEGACY_ ## c ## _DEBUG, T_PRINTF(x))
# define LOG_T(c, x...) T(T_LEGACY_ ## c ## _TRACE, T_PRINTF(x))
# define LOG_G(c, x...) /* */
# define LOG_A(c, x...) /* */
# define LOG_C(c, x...) /* */
# define LOG_N(c, x...) /* */
# define LOG_F(c, x...) /* */
# else /* T_TRACER */
# define LOG_G(c, x...) logIt(c, LOG_EMERG, x)
# define LOG_A(c, x...) logIt(c, LOG_ALERT, x)
# define LOG_C(c, x...) logIt(c, LOG_CRIT, x)
# define LOG_E(c, x...) logIt(c, LOG_ERR, x)
# define LOG_W(c, x...) logIt(c, LOG_WARNING, x)
# define LOG_N(c, x...) logIt(c, LOG_NOTICE, x)
# define LOG_I(c, x...) logIt(c, LOG_INFO, x)
# define LOG_D(c, x...) logIt(c, LOG_DEBUG, x)
# define LOG_F(c, x...) logIt(c, LOG_FILE, x) // log to a file, useful for the MSC chart generation
# define LOG_T(c, x...) logIt(c, LOG_TRACE, x)
# endif /* T_TRACER */
#else /* USER_MODE */
# define LOG_G(c, x...) printk(x)
# define LOG_A(c, x...) printk(x)
# define LOG_C(c, x...) printk(x)
# define LOG_E(c, x...) printk(x)
# define LOG_W(c, x...) printk(x)
# define LOG_N(c, x...) printk(x)
# define LOG_I(c, x...) printk(x)
# define LOG_D(c, x...) printk(x)
# define LOG_T(c, x...) printk(x)
#endif
/* @}*/
/** @defgroup _useful_functions useful functions in LOG
* @ingroup _macro
* @brief Macro of some useful functions defined by LOG
* @{*/
#define LOG_ENTER(c) do {LOG_T(c, "Entering\n");}while(0) /*!< \brief Macro to log a message with severity DEBUG when entering a function */
#define LOG_EXIT(c) do {LOG_T(c,"Exiting\n"); return;}while(0) /*!< \brief Macro to log a message with severity TRACE when exiting a function */
#define LOG_RETURN(c,x) do {uint32_t __rv;__rv=(unsigned int)(x);LOG_T(c,"Returning %08x\n", __rv);return((typeof(x))__rv);}while(0) /*!< \brief Macro to log a function exit, including integer value, then to return a value to the calling function */
/* @}*/
/** @defgroup _log_format Defined log format
* @ingroup _macro
* @brief Macro of log formats defined by LOG
......@@ -334,7 +244,6 @@ typedef struct LOG_params {
int len;
} LOG_params;
#if defined(ENABLE_ITTI)
typedef enum log_instance_type_e {
LOG_INSTANCE_UNKNOWN,
......@@ -344,11 +253,203 @@ typedef enum log_instance_type_e {
void log_set_instance_type (log_instance_type_t instance);
#endif
int logInit (void);
/*--- INCLUDES ---------------------------------------------------------------*/
# include "log_if.h"
/*----------------------------------------------------------------------------*/
int logInit (void);
void logRecord_mt(const char *file, const char *func, int line,int comp, int level, const char *format, ...);
void logRecord(const char *file, const char *func, int line,int comp, int level, const char *format, ...);
int set_comp_log(int component, int level, int verbosity, int interval);
int set_log(int component, int level, int interval);
void set_glog(int level, int verbosity);
void set_log_syslog(int enable);
void set_log_onlinelog(int enable);
void set_log_filelog(int enable);
void set_component_filelog(int comp);
int map_str_to_int(mapping *map, const char *str);
char *map_int_to_str(mapping *map, int val);
void logClean (void);
int is_newline( char *str, int size);
void *log_thread_function(void * list);
/** @defgroup _logIt logIt function
* @ingroup _macro
* @brief Macro used to call tr_log_full_ex with file, function and line information
* @{*/
#ifdef USER_MODE
//#define logIt(component, level, format, args...) do {logRecord(__FILE__, __FUNCTION__, __LINE__, component, level, format, ##args);} while(0);
#ifdef LOG_NO_THREAD
#define logIt(component, level, format, args...) logRecord_mt(__FILE__, __FUNCTION__, __LINE__, component, level, format, ##args)
#else //default
#define logIt(component, level, format, args...) logRecord(__FILE__, __FUNCTION__, __LINE__, component, level, format, ##args)
#endif
#else
#ifdef LOG_NO_THREAD
#define logIt(component, level, format, args...) logRecord_mt(NULL, __FUNCTION__, __LINE__, component, level, format, ##args)
#else // default
#define logIt(component, level, format, args...) logRecord(NULL, __FUNCTION__, __LINE__, component, level, format, ##args)
#endif
#endif
/* @}*/
/** @defgroup _debugging debugging macros
* @ingroup _macro
* @brief Macro used to call logIt function with different message levels
* @{*/
// debugging macros
#ifdef USER_MODE
# if T_TRACER
# include "T.h"
# define LOG_I(c, x...) T(T_LEGACY_ ## c ## _INFO, T_PRINTF(x))
# define LOG_W(c, x...) T(T_LEGACY_ ## c ## _WARNING, T_PRINTF(x))
# define LOG_E(c, x...) T(T_LEGACY_ ## c ## _ERROR, T_PRINTF(x))
# define LOG_D(c, x...) T(T_LEGACY_ ## c ## _DEBUG, T_PRINTF(x))
# define LOG_T(c, x...) T(T_LEGACY_ ## c ## _TRACE, T_PRINTF(x))
# define LOG_G(c, x...) /* */
# define LOG_A(c, x...) /* */
# define LOG_C(c, x...) /* */
# define LOG_N(c, x...) /* */
# define LOG_F(c, x...) /* */
# else /* T_TRACER */
# define LOG_G(c, x...) logIt(c, LOG_EMERG, x)
# define LOG_A(c, x...) logIt(c, LOG_ALERT, x)
# define LOG_C(c, x...) logIt(c, LOG_CRIT, x)
# define LOG_E(c, x...) logIt(c, LOG_ERR, x)
# define LOG_W(c, x...) logIt(c, LOG_WARNING, x)
# define LOG_N(c, x...) logIt(c, LOG_NOTICE, x)
# define LOG_I(c, x...) logIt(c, LOG_INFO, x)
# define LOG_D(c, x...) logIt(c, LOG_DEBUG, x)
# define LOG_F(c, x...) logIt(c, LOG_FILE, x) // log to a file, useful for the MSC chart generation
# define LOG_T(c, x...) logIt(c, LOG_TRACE, x)
# endif /* T_TRACER */
#else /* USER_MODE */
# define LOG_G(c, x...) printk(x)
# define LOG_A(c, x...) printk(x)
# define LOG_C(c, x...) printk(x)
# define LOG_E(c, x...) printk(x)
# define LOG_W(c, x...) printk(x)
# define LOG_N(c, x...) printk(x)
# define LOG_I(c, x...) printk(x)
# define LOG_D(c, x...) printk(x)
# define LOG_T(c, x...) printk(x)
#endif
/* @}*/
/** @defgroup _useful_functions useful functions in LOG
* @ingroup _macro
* @brief Macro of some useful functions defined by LOG
* @{*/
#define LOG_ENTER(c) do {LOG_T(c, "Entering\n");}while(0) /*!< \brief Macro to log a message with severity DEBUG when entering a function */
#define LOG_EXIT(c) do {LOG_T(c,"Exiting\n"); return;}while(0) /*!< \brief Macro to log a message with severity TRACE when exiting a function */
#define LOG_RETURN(c,x) do {uint32_t __rv;__rv=(unsigned int)(x);LOG_T(c,"Returning %08x\n", __rv);return((typeof(x))__rv);}while(0) /*!< \brief Macro to log a function exit, including integer value, then to return a value to the calling function */
/* @}*/
static __inline__ uint64_t rdtsc(void) {
uint64_t a, d;
__asm__ volatile ("rdtsc" : "=a" (a), "=d" (d));
return (d<<32) | a;
}
#define DEBUG_REALTIME 1
#if DEBUG_REALTIME
extern double cpuf;
static inline uint64_t checkTCPU(int timeout, char * file, int line) {
static uint64_t __thread lastCPUTime=0;
static uint64_t __thread last=0;
uint64_t cur=rdtsc();
struct timespec CPUt;
clock_gettime(CLOCK_THREAD_CPUTIME_ID, &CPUt);
uint64_t CPUTime=CPUt.tv_sec*1000*1000+CPUt.tv_nsec/1000;
double microCycles=(double)(cpuf*1000);
int duration=(int)((cur-last)/microCycles);
if ( last!=0 && duration > timeout ) {
//struct timespec ts;
//clock_gettime(CLOCK_MONOTONIC, &ts);
printf("%s:%d lte-ue delay %d (exceed %d), CPU for this period: %lld\n", file, line,
duration, timeout, (long long)CPUTime-lastCPUTime );
}
last=cur;
lastCPUTime=CPUTime;
return cur;
}
static inline unsigned long long checkT(int timeout, char * file, int line) {
static unsigned long long __thread last=0;
unsigned long long cur=rdtsc();
int microCycles=(int)(cpuf*1000);
int duration=(int)((cur-last)/microCycles);
if ( last!=0 && duration > timeout )
printf("%s:%d lte-ue delay %d (exceed %d)\n", file, line,
duration, timeout);
last=cur;
return cur;
}
typedef struct m {
uint64_t iterations;
uint64_t sum;
uint64_t maxArray[11];
} Meas;
static inline void printMeas(char * txt, Meas *M, int period) {
if (M->iterations%period == 0 ) {
char txt2[512];
sprintf(txt2,"%s avg=%" PRIu64 " iterations=%" PRIu64 " max=%"
PRIu64 ":%" PRIu64 ":%" PRIu64 ":%" PRIu64 ":%" PRIu64 ":%" PRIu64 ":%" PRIu64 ":%" PRIu64 ":%" PRIu64 ":%" PRIu64 "\n",
txt,
M->sum/M->iterations,
M->iterations,
M->maxArray[1],M->maxArray[2], M->maxArray[3],M->maxArray[4], M->maxArray[5],
M->maxArray[6],M->maxArray[7], M->maxArray[8],M->maxArray[9],M->maxArray[10]);
LOG_W(PHY,txt2);
}
}
static inline int cmpint(const void* a, const void* b) {
uint64_t* aa=(uint64_t*)a;
uint64_t* bb=(uint64_t*)b;
return (int)(*aa-*bb);
}
static inline void updateTimes(uint64_t start, Meas *M, int period, char * txt) {
if (start!=0) {
uint64_t end=rdtsc();
long long diff=(end-start)/(cpuf*1000);
M->maxArray[0]=diff;
M->sum+=diff;
M->iterations++;
qsort(M->maxArray, 11, sizeof(uint64_t), cmpint);
printMeas(txt,M,period);
}
}
#define check(a) do { checkT(a,__FILE__,__LINE__); } while (0)
#define checkcpu(a) do { checkTCPU(a,__FILE__,__LINE__); } while (0)
#define initRefTimes(a) static __thread Meas a= {0}
#define pickTime(a) uint64_t a=rdtsc()
#define readTime(a) a
#define initStaticTime(a) static __thread uint64_t a={0}
#define pickStaticTime(a) do { a=rdtsc(); } while (0)
#else
#define check(a) do {} while (0)
#define checkcpu(a) do {} while (0)
#define initRefTimes(a) do {} while (0)
#define initStaticTime(a) do {} while (0)
#define pickTime(a) do {} while (0)
#define readTime(a) 0
#define pickStaticTime(a) do {} while (0)
#define updateTimes(a,b,c,d) do {} while (0)
#define printMeas(a,b,c) do {} while (0)
#endif
#ifdef __cplusplus
}
#endif
......
......@@ -27,59 +27,8 @@
* \warning This component can be runned only in user-space
* @ingroup routing
*/
#ifndef __LOG_IF_H__
# define __LOG_IF_H__
/*--- INCLUDES ---------------------------------------------------------------*/
# include "log.h"
/*----------------------------------------------------------------------------*/
#ifdef __cplusplus
extern "C" {
#endif
# ifdef COMPONENT_LOG
# ifdef COMPONENT_LOG_IF
# define private_log_if(x) x
# define friend_log_if(x) x
# define public_log_if(x) x
# else
# define private_log_if(x)
# define friend_log_if(x) extern x
# define public_log_if(x) extern x
# endif
# else
# define private_log_if(x)
# define friend_log_if(x)
# define public_log_if(x) extern x
# endif
/** @defgroup _log_if Interfaces of LOG
* @{*/
//public_log_if( log_t *g_log;)
public_log_if( int logInit (void);)
public_log_if( void logRecord_mt(const char *file, const char *func, int line,int comp, int level, const char *format, ...) __attribute__ ((format (printf, 6, 7)));)
public_log_if( void logRecord(const char *file, const char *func, int line,int comp, int level, const char *format, ...) __attribute__ ((format (printf, 6, 7)));)
public_log_if( int set_comp_log(int component, int level, int verbosity, int interval);)
public_log_if( int set_log(int component, int level, int interval);)
public_log_if( void set_glog(int level, int verbosity);)
public_log_if( void set_log_syslog(int enable);)
public_log_if( void set_log_onlinelog(int enable);)
public_log_if( void set_log_filelog(int enable);)
public_log_if( void set_component_filelog(int comp);)
public_log_if( int map_str_to_int(mapping *map, const char *str);)
public_log_if( char *map_int_to_str(mapping *map, int val);)
public_log_if( void logClean (void); )
public_log_if( int is_newline( char *str, int size);)
public_log_if( void *log_thread_function(void * list);)
/* @}*/
#ifdef __cplusplus
}
#endif
#endif
// LTS: kept this file for compatibility
// this file was probably a trial to separate internal functions and external ones
// but it has never been finished, most source code include directly log.h (not log_if.h)
#include "log.h"
......@@ -27,6 +27,7 @@
#include <nettle/nettle-meta.h>
#include <nettle/aes.h>
#include <nettle/ctr.h>
#include <nettle/bignum.h>
#include "UTIL/LOG/log.h"
......@@ -191,7 +192,7 @@ int stream_encrypt_eea2(stream_cipher_t *stream_cipher, uint8_t **out)
}
#endif
#if NETTLE_VERSION_MAJOR < 3
#if !defined(NETTLE_VERSION_MAJOR) || NETTLE_VERSION_MAJOR < 3
nettle_aes128.set_encrypt_key(ctx, stream_cipher->key_length,
stream_cipher->key);
#else
......
......@@ -224,6 +224,7 @@ static void *_nas_user_mngr(void *args)
{
LOG_FUNC_IN;
pthread_setname_np( pthread_self(), "nas_user_mngr");
int exit_loop = FALSE;
int *fd = (int *) args;
......
......@@ -27,6 +27,7 @@
#include <nettle/nettle-meta.h>
#include <nettle/aes.h>
#include <nettle/ctr.h>
#include <nettle/bignum.h>
#include "assertions.h"
#include "conversions.h"
......@@ -78,7 +79,7 @@ int nas_stream_encrypt_eea2(nas_stream_cipher_t *stream_cipher, uint8_t *out)
}
#endif
#if NETTLE_VERSION_MAJOR < 3
#if !defined(NETTLE_VERSION_MAJOR) || NETTLE_VERSION_MAJOR < 3
nettle_aes128.set_encrypt_key(ctx, stream_cipher->key_length,
stream_cipher->key);
#else
......
......@@ -31,6 +31,7 @@
#include <nettle/nettle-meta.h>
#include <nettle/aes.h>
#include <nettle/ctr.h>
#include <nettle/bignum.h>
static
void test_uncipher_ctr(const struct nettle_cipher *cipher, const uint8_t *key,
......@@ -41,7 +42,7 @@ void test_uncipher_ctr(const struct nettle_cipher *cipher, const uint8_t *key,
uint8_t *data = malloc(length);
uint8_t *ctr = malloc(cipher->block_size);
#if NETTLE_VERSION_MAJOR < 3
#if !defined(NETTLE_VERSION_MAJOR) || NETTLE_VERSION_MAJOR < 3
cipher->set_encrypt_key(ctx, key_length, key);
#else
cipher->set_encrypt_key(ctx, key);
......
......@@ -40,6 +40,8 @@
#include <time.h>
#include "UTIL/LOG/log_extern.h"
#include "common_lib.h"
#include "assertions.h"
#ifdef __SSE4_1__
# include <smmintrin.h>
#endif
......@@ -57,15 +59,13 @@
*/
/*! \brief USRP Configuration */
typedef struct
{
typedef struct {
// --------------------------------
// variables for USRP configuration
// --------------------------------
//! USRP device pointer
uhd::usrp::multi_usrp::sptr usrp;
//uhd::usrp::multi_usrp::sptr rx_usrp;
//create a send streamer and a receive streamer
//! USRP TX Stream
......@@ -78,47 +78,32 @@ typedef struct
//! USRP RX Metadata
uhd::rx_metadata_t rx_md;
//! USRP Timestamp Information
uhd::time_spec_t tm_spec;
//setup variables and allocate buffer
//! USRP Metadata
uhd::async_metadata_t async_md;
//! Sampling rate
double sample_rate;
//! time offset between transmiter timestamp and receiver timestamp;
double tdiff;
//! TX forward samples. We use usrp_time_offset to get this value
int tx_forward_nsamps; //166 for 20Mhz
// --------------------------------
// Debug and output control
// --------------------------------
//! Number of underflows
int num_underflows;
//! Number of overflows
int num_overflows;
//! Number of sequential errors
int num_seq_errors;
//! tx count
int64_t tx_count;
//! rx count
int64_t rx_count;
//! timestamp of RX packet
openair0_timestamp rx_timestamp;
} usrp_state_t;
/*! \brief Called to start the USRP transceiver. Return 0 if OK, < 0 if error
@param device pointer to the device structure specific to the RF hardware target
*/
static int trx_usrp_start(openair0_device *device)
{
static int trx_usrp_start(openair0_device *device) {
usrp_state_t *s = (usrp_state_t*)device->priv;
// init recv and send streaming
......@@ -132,22 +117,18 @@ static int trx_usrp_start(openair0_device *device)
s->tx_md.start_of_burst = true;
s->tx_md.end_of_burst = false;
s->rx_count = 0;
s->tx_count = 0;
s->rx_timestamp = 0;
return 0;
}
/*! \brief Terminate operation of the USRP transceiver -- free all associated resources
* \param device the hardware to use
*/
static void trx_usrp_end(openair0_device *device)
{
static void trx_usrp_end(openair0_device *device) {
usrp_state_t *s = (usrp_state_t*)device->priv;
s->rx_stream->issue_stream_cmd(uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS);
//send a mini EOB packet
s->tx_md.end_of_burst = true;
s->tx_stream->send("", 0, s->tx_md);
......@@ -163,18 +144,12 @@ static void trx_usrp_end(openair0_device *device)
@param antenna_id index of the antenna if the device has multiple anteannas
@param flags flags must be set to TRUE if timestamp parameter needs to be applied
*/
static int trx_usrp_write(openair0_device *device, openair0_timestamp timestamp, void **buff, int nsamps, int cc, int flags)
{
static long long int loop=0;
static long time_min=0, time_max=0, time_avg=0;
struct timespec tp_start, tp_end;
long time_diff;
clock_gettime(CLOCK_MONOTONIC_RAW, &tp_start);
int ret=0, ret_i=0;
static int trx_usrp_write(openair0_device *device, openair0_timestamp timestamp, void **buff, int nsamps, int cc, int flags) {
int ret=0;
usrp_state_t *s = (usrp_state_t*)device->priv;
s->tx_md.time_spec = uhd::time_spec_t::from_ticks(timestamp, s->sample_rate);
s->tx_md.has_time_spec = flags;
if(flags>0)
......@@ -185,50 +160,30 @@ static int trx_usrp_write(openair0_device *device, openair0_timestamp timestamp,
if (flags == 2) { // start of burst
s->tx_md.start_of_burst = true;
s->tx_md.end_of_burst = false;
}
else if (flags == 3) { // end of burst
} else if (flags == 3) { // end of burst
s->tx_md.start_of_burst = false;
s->tx_md.end_of_burst = true;
}
else if (flags == 4) { // start and end
} else if (flags == 4) { // start and end
s->tx_md.start_of_burst = true;
s->tx_md.end_of_burst = true;
}
else if (flags==1) { // middle of burst
} else if (flags==1) { // middle of burst
s->tx_md.start_of_burst = false;
s->tx_md.end_of_burst = false;
}
if (cc>1) {
std::vector<void *> buff_ptrs;
for (int i=0;i<cc;i++) buff_ptrs.push_back(buff[i]);
for (int i=0; i<cc; i++)
buff_ptrs.push_back(buff[i]);
ret = (int)s->tx_stream->send(buff_ptrs, nsamps, s->tx_md,1e-3);
}
else
} else
ret = (int)s->tx_stream->send(buff[0], nsamps, s->tx_md,1e-3);
if (ret != nsamps) {
printf("[xmit] tx samples %d != %d\n",ret,nsamps);
}
clock_gettime(CLOCK_MONOTONIC_RAW, &tp_end);
time_diff = (tp_end.tv_sec - tp_start.tv_sec) *1E09 + (tp_end.tv_nsec - tp_start.tv_nsec);
if (time_min==0 ||loop==1 || time_min > time_diff)
time_min=time_diff;
if (time_max==0 ||loop==1 || time_max < time_diff)
time_max=time_diff;
if (time_avg ==0 ||loop==1)
time_avg= time_diff;
else
time_avg=(time_diff+time_avg) /2.0;
if (ret != nsamps)
LOG_E(PHY,"[xmit] tx samples %d != %d\n",ret,nsamps);
/* //prints statics of uhd every 10 seconds
if ( loop % (10 * ((int)device->openair0_cfg[0].sample_rate /(int)nsamps )) ==0)
LOG_I(HW,"usrp_write: min(ns)=%d, max(ns)=%d, avg(ns)=%d\n", (int)time_min, (int)time_max,(int)time_avg);
*/
loop++;
return ret;
}
......@@ -243,13 +198,7 @@ static int trx_usrp_write(openair0_device *device, openair0_timestamp timestamp,
* \param antenna_id Index of antenna for which to receive samples
* \returns the number of sample read
*/
static int trx_usrp_read(openair0_device *device, openair0_timestamp *ptimestamp, void **buff, int nsamps, int cc)
{
static long long int loop=0;
static long time_min=0, time_max=0, time_avg=0;
struct timespec tp_start, tp_end;
long time_diff;
clock_gettime(CLOCK_MONOTONIC_RAW, &tp_start);
static int trx_usrp_read(openair0_device *device, openair0_timestamp *ptimestamp, void **buff, int nsamps, int cc) {
usrp_state_t *s = (usrp_state_t*)device->priv;
int samples_received=0,i,j;
int nsamps2; // aligned to upper 32 or 16 byte boundary
......@@ -266,21 +215,24 @@ static int trx_usrp_read(openair0_device *device, openair0_timestamp *ptimestamp
int16x8_t buff_tmp[2][nsamps2];
#endif
if (device->type == USRP_B200_DEV) {
if (cc>1) {
// receive multiple channels (e.g. RF A and RF B)
std::vector<void *> buff_ptrs;
for (int i=0;i<cc;i++) buff_ptrs.push_back(buff_tmp[i]);
for (int i=0; i<cc; i++) buff_ptrs.push_back(buff_tmp[i]);
samples_received = s->rx_stream->recv(buff_ptrs, nsamps, s->rx_md);
} else {
// receive a single channel (e.g. from connector RF A)
samples_received = s->rx_stream->recv(buff_tmp[0], nsamps, s->rx_md);
samples_received=0;
while (samples_received != nsamps) {
samples_received += s->rx_stream->recv(buff_tmp[0]+samples_received,
nsamps-samples_received, s->rx_md);
if (s->rx_md.error_code!=uhd::rx_metadata_t::ERROR_CODE_NONE)
break;
}
}
// bring RX data into 12 LSBs for softmodem RX
for (int i=0;i<cc;i++) {
for (int i=0; i<cc; i++) {
for (int j=0; j<nsamps2; j++) {
#if defined(__x86_64__) || defined(__i386__)
#ifdef __AVX2__
......@@ -298,74 +250,30 @@ static int trx_usrp_read(openair0_device *device, openair0_timestamp *ptimestamp
// receive multiple channels (e.g. RF A and RF B)
std::vector<void *> buff_ptrs;
for (int i=0;i<cc;i++) buff_ptrs.push_back(buff[i]);
for (int i=0; i<cc; i++) buff_ptrs.push_back(buff[i]);
samples_received = s->rx_stream->recv(buff_ptrs, nsamps, s->rx_md);
} else {
// receive a single channel (e.g. from connector RF A)
samples_received = s->rx_stream->recv(buff[0], nsamps, s->rx_md);
}
}
if (samples_received < nsamps)
LOG_E(PHY,"[recv] received %d samples out of %d\n",samples_received,nsamps);
if (samples_received < nsamps) {
printf("[recv] received %d samples out of %d\n",samples_received,nsamps);
}
if ( s->rx_md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE)
LOG_E(PHY,s->rx_md.to_pp_string(true).c_str());
//handle the error code
switch(s->rx_md.error_code){
case uhd::rx_metadata_t::ERROR_CODE_NONE:
break;
case uhd::rx_metadata_t::ERROR_CODE_OVERFLOW:
printf("[recv] USRP RX OVERFLOW!\n");
s->num_overflows++;
break;
case uhd::rx_metadata_t::ERROR_CODE_TIMEOUT:
printf("[recv] USRP RX TIMEOUT!\n");
break;
default:
printf("[recv] Unexpected error on RX, Error code: 0x%x\n",s->rx_md.error_code);
break;
}
s->rx_count += nsamps;
s->rx_timestamp = s->rx_md.time_spec.to_ticks(s->sample_rate);
*ptimestamp = s->rx_timestamp;
clock_gettime(CLOCK_MONOTONIC_RAW, &tp_end);
time_diff = (tp_end.tv_sec - tp_start.tv_sec) *1E09 + (tp_end.tv_nsec - tp_start.tv_nsec);
if (time_min==0 ||loop==1 || time_min > time_diff)
time_min=time_diff;
if (time_max==0 ||loop==1 || time_max < time_diff)
time_max=time_diff;
if (time_avg ==0 ||loop==1)
time_avg= time_diff;
else
time_avg=(time_diff+time_avg) /2.0;
/*
//prints statics of uhd every 10 seconds
if ( loop % (10 * ((int)device->openair0_cfg[0].sample_rate /(int)nsamps )) ==0)
LOG_I(HW,"usrp_read: min(ns)=%d, max(ns)=%d, avg(ns)=%d\n", (int)time_min, (int)time_max,(int)time_avg);
loop++;*/
return samples_received;
}
/*! \brief Get current timestamp of USRP
* \param device the hardware to use
*/
openair0_timestamp get_usrp_time(openair0_device *device)
{
usrp_state_t *s = (usrp_state_t*)device->priv;
return s->usrp->get_time_now().to_ticks(s->sample_rate);
}
/*! \brief Compares two variables within precision
* \param a first variable
* \param b second variable
*/
static bool is_equal(double a, double b)
{
static bool is_equal(double a, double b) {
return std::fabs(a-b) < std::numeric_limits<double>::epsilon();
}
......@@ -438,13 +346,14 @@ int trx_usrp_set_gains(openair0_device* device,
::uhd::gain_range_t gain_range = s->usrp->get_rx_gain_range(0);
// limit to maximum gain
if (openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0] > gain_range.stop()) {
printf("RX Gain 0 too high, reduce by %f dB\n",
LOG_E(PHY,"RX Gain 0 too high, reduce by %f dB\n",
openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0] - gain_range.stop());
exit(-1);
}
s->usrp->set_rx_gain(openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0]);
printf("Setting USRP RX gain to %f (rx_gain %f,gain_range.stop() %f)\n", openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0],openair0_cfg[0].rx_gain[0],gain_range.stop());
LOG_I(PHY,"Setting USRP RX gain to %f (rx_gain %f,gain_range.stop() %f)\n",
openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0],
openair0_cfg[0].rx_gain[0],gain_range.stop());
return(0);
}
......@@ -463,7 +372,8 @@ rx_gain_calib_table_t calib_table_b210[] = {
{2300000000.0,50.0},
{1880000000.0,53.0},
{816000000.0,58.0},
{-1,0}};
{-1,0}
};
/*! \brief USRPB210 RX calibration table */
rx_gain_calib_table_t calib_table_b210_38[] = {
......@@ -472,7 +382,8 @@ rx_gain_calib_table_t calib_table_b210_38[] = {
{2300000000.0,51.0},
{1880000000.0,53.0},
{816000000.0,57.0},
{-1,0}};
{-1,0}
};
/*! \brief USRPx310 RX calibration table */
rx_gain_calib_table_t calib_table_x310[] = {
......@@ -481,7 +392,8 @@ rx_gain_calib_table_t calib_table_x310[] = {
{2300000000.0,81.0},
{1880000000.0,82.0},
{816000000.0,85.0},
{-1,0}};
{-1,0}
};
/*! \brief Set RX gain offset
* \param openair0_cfg RF frontend parameters set by application
......@@ -513,14 +425,14 @@ void set_rx_gain_offset(openair0_config_t *openair0_cfg, int chain_index,int bw_
gain_adj=12.0;
break;
default:
printf("unknown sampling rate %d\n",(int)openair0_cfg[0].sample_rate);
LOG_E(PHY,"unknown sampling rate %d\n",(int)openair0_cfg[0].sample_rate);
exit(-1);
break;
}
}
while (openair0_cfg->rx_gain_calib_table[i].freq>0) {
diff = fabs(openair0_cfg->rx_freq[chain_index] - openair0_cfg->rx_gain_calib_table[i].freq);
printf("cal %d: freq %f, offset %f, diff %f\n",
LOG_I(PHY,"cal %d: freq %f, offset %f, diff %f\n",
i,
openair0_cfg->rx_gain_calib_table[i].freq,
openair0_cfg->rx_gain_calib_table[i].offset,diff);
......@@ -530,7 +442,6 @@ void set_rx_gain_offset(openair0_config_t *openair0_cfg, int chain_index,int bw_
}
i++;
}
}
/*! \brief print the USRP statistics
......@@ -538,55 +449,40 @@ void set_rx_gain_offset(openair0_config_t *openair0_cfg, int chain_index,int bw_
* \returns 0 on success
*/
int trx_usrp_get_stats(openair0_device* device) {
return(0);
}
/*! \brief Reset the USRP statistics
* \param device the hardware to use
* \returns 0 on success
*/
* \param device the hardware to use
* \returns 0 on success
*/
int trx_usrp_reset_stats(openair0_device* device) {
return(0);
}
extern "C" {
/*! \brief Initialize Openair USRP target. It returns 0 if OK
* \param device the hardware to use
* \param openair0_cfg RF frontend parameters set by application
*/
/*! \brief Initialize Openair USRP target. It returns 0 if OK
* \param device the hardware to use
* \param openair0_cfg RF frontend parameters set by application
*/
int device_init(openair0_device* device, openair0_config_t *openair0_cfg) {
uhd::set_thread_priority_safe(1.0);
usrp_state_t *s = (usrp_state_t*)malloc(sizeof(usrp_state_t));
memset(s, 0, sizeof(usrp_state_t));
usrp_state_t *s = (usrp_state_t*)calloc(sizeof(usrp_state_t),1);
// Initialize USRP device
device->openair0_cfg = openair0_cfg;
std::string args = "type=b200";
uhd::device_addrs_t device_adds = uhd::device::find(args);
size_t i;
int vers=0,subvers=0,subsubvers=0;
int bw_gain_adjust=0;
sscanf(uhd::get_version_string().c_str(),"%d.%d.%d",&vers,&subvers,&subsubvers);
LOG_I(PHY,"Checking for USRPs : UHD %s (%d.%d.%d)\n",
uhd::get_version_string().c_str(),vers,subvers,subsubvers);
printf("Checking for USRPs : UHD %s (%d.%d.%d)\n",uhd::get_version_string().c_str(),vers,subvers,subsubvers);
if(device_adds.size() == 0)
{
if(device_adds.size() == 0) {
double usrp_master_clock = 184.32e6;
std::string args = "type=x300";
// workaround for an api problem, master clock has to be set with the constructor not via set_master_clock_rate
......@@ -594,22 +490,16 @@ extern "C" {
// args += ",num_send_frames=256,num_recv_frames=256, send_frame_size=4096, recv_frame_size=4096";
// args += ",num_send_frames=256,num_recv_frames=256, send_frame_size=4096, recv_frame_size=4096";
uhd::device_addrs_t device_adds = uhd::device::find(args);
if(device_adds.size() == 0)
{
if(device_adds.size() == 0) {
std::cerr<<"No USRP Device Found. " << std::endl;
free(s);
return -1;
}
printf("Found USRP X300\n");
LOG_I(PHY,"Found USRP X300\n");
s->usrp = uhd::usrp::multi_usrp::make(args);
// s->usrp->set_rx_subdev_spec(rx_subdev);
// s->usrp->set_tx_subdev_spec(tx_subdev);
// lock mboard clocks
if (openair0_cfg[0].clock_source == internal)
s->usrp->set_clock_source("internal");
......@@ -652,13 +542,13 @@ extern "C" {
openair0_cfg[0].rx_bw = 1.25e6;
break;
default:
printf("Error: unknown sampling rate %f\n",openair0_cfg[0].sample_rate);
LOG_E(PHY,"Error: unknown sampling rate %f\n",openair0_cfg[0].sample_rate);
exit(-1);
break;
}
} else {
printf("Found USRP B200");
LOG_I(PHY,"Found USRP B200\n");
args += ",num_send_frames=256,num_recv_frames=256, send_frame_size=15360, recv_frame_size=15360" ;
s->usrp = uhd::usrp::multi_usrp::make(args);
......@@ -677,13 +567,10 @@ extern "C" {
s->usrp->set_clock_source("external");
device->type = USRP_B200_DEV;
if ((vers == 3) && (subvers == 9) && (subsubvers>=2)) {
openair0_cfg[0].rx_gain_calib_table = calib_table_b210;
bw_gain_adjust=0;
}
else {
} else {
openair0_cfg[0].rx_gain_calib_table = calib_table_b210_38;
bw_gain_adjust=1;
}
......@@ -725,7 +612,7 @@ extern "C" {
openair0_cfg[0].rx_bw = 20e6;
break;
default:
printf("Error: unknown sampling rate %f\n",openair0_cfg[0].sample_rate);
LOG_E(PHY,"Error: unknown sampling rate %f\n",openair0_cfg[0].sample_rate);
exit(-1);
break;
}
......@@ -737,104 +624,86 @@ extern "C" {
openair0_cfg[0].iq_txshift = 4;//shift
openair0_cfg[0].iq_rxrescale = 15;//rescale iqs
for(i=0;i<s->usrp->get_rx_num_channels();i++) {
for(int i=0; i<s->usrp->get_rx_num_channels(); i++) {
if (i<openair0_cfg[0].rx_num_channels) {
s->usrp->set_rx_rate(openair0_cfg[0].sample_rate,i);
//s->usrp->set_rx_bandwidth(openair0_cfg[0].rx_bw,i);
//printf("Setting rx freq/gain on channel %lu/%lu : BW %f (readback %f)\n",i,s->usrp->get_rx_num_channels(),openair0_cfg[0].rx_bw/1e6,s->usrp->get_rx_bandwidth(i)/1e6);
s->usrp->set_rx_freq(openair0_cfg[0].rx_freq[i],i);
set_rx_gain_offset(&openair0_cfg[0],i,bw_gain_adjust);
::uhd::gain_range_t gain_range = s->usrp->get_rx_gain_range(i);
// limit to maximum gain
if (openair0_cfg[0].rx_gain[i]-openair0_cfg[0].rx_gain_offset[i] > gain_range.stop()) {
printf("RX Gain %lu too high, lower by %f dB\n",i,openair0_cfg[0].rx_gain[i]-openair0_cfg[0].rx_gain_offset[i] - gain_range.stop());
exit(-1);
}
AssertFatal( openair0_cfg[0].rx_gain[i]-openair0_cfg[0].rx_gain_offset[i] <= gain_range.stop(),
"RX Gain too high, lower by %f dB\n",
openair0_cfg[0].rx_gain[i]-openair0_cfg[0].rx_gain_offset[i] - gain_range.stop());
s->usrp->set_rx_gain(openair0_cfg[0].rx_gain[i]-openair0_cfg[0].rx_gain_offset[i],i);
printf("RX Gain %lu %f (%f) => %f (max %f)\n",i,
LOG_I(PHY,"RX Gain %d %f (%f) => %f (max %f)\n",i,
openair0_cfg[0].rx_gain[i],openair0_cfg[0].rx_gain_offset[i],
openair0_cfg[0].rx_gain[i]-openair0_cfg[0].rx_gain_offset[i],gain_range.stop());
}
}
for(i=0;i<s->usrp->get_tx_num_channels();i++) {
for(int i=0; i<s->usrp->get_tx_num_channels(); i++) {
if (i<openair0_cfg[0].tx_num_channels) {
s->usrp->set_tx_rate(openair0_cfg[0].sample_rate,i);
//s->usrp->set_tx_bandwidth(openair0_cfg[0].tx_bw,i);
//printf("Setting tx freq/gain on channel %lu/%lu: BW %f (readback %f)\n",i,s->usrp->get_tx_num_channels(),openair0_cfg[0].tx_bw/1e6,s->usrp->get_tx_bandwidth(i)/1e6);
s->usrp->set_tx_freq(openair0_cfg[0].tx_freq[i],i);
s->usrp->set_tx_gain(openair0_cfg[0].tx_gain[i],i);
}
}
//s->usrp->set_clock_source("external");
//s->usrp->set_time_source("external");
// display USRP settings
std::cout << boost::format("Actual master clock: %fMHz...") % (s->usrp->get_master_clock_rate()/1e6) << std::endl;
LOG_I(PHY,"Actual master clock: %fMHz...\n",s->usrp->get_master_clock_rate()/1e6);
sleep(1);
// create tx & rx streamer
uhd::stream_args_t stream_args_rx("sc16", "sc16");
int samples=openair0_cfg[0].sample_rate;
samples/=24000;
// stream_args_rx.args["spp"] = str(boost::format("%d") % samples);
for (i = 0; i<openair0_cfg[0].rx_num_channels; i++)
int max=s->usrp->get_rx_stream(stream_args_rx)->get_max_num_samps();
samples/=10000;
LOG_I(PHY,"RF board max packet size %u, size for 100µs jitter %d \n", max, samples);
if ( samples < max )
stream_args_rx.args["spp"] = str(boost::format("%d") % samples );
LOG_I(PHY,"rx_max_num_samps %u\n",
s->usrp->get_rx_stream(stream_args_rx)->get_max_num_samps());
for (int i = 0; i<openair0_cfg[0].rx_num_channels; i++)
stream_args_rx.channels.push_back(i);
s->rx_stream = s->usrp->get_rx_stream(stream_args_rx);
std::cout << boost::format("rx_max_num_samps %u") % (s->rx_stream->get_max_num_samps()) << std::endl;
//openair0_cfg[0].samples_per_packet = s->rx_stream->get_max_num_samps();
uhd::stream_args_t stream_args_tx("sc16", "sc16");
//stream_args_tx.args["spp"] = str(boost::format("%d") % 2048);//(openair0_cfg[0].tx_num_channels*openair0_cfg[0].samples_per_packet));
for (i = 0; i<openair0_cfg[0].tx_num_channels; i++)
for (int i = 0; i<openair0_cfg[0].tx_num_channels; i++)
stream_args_tx.channels.push_back(i);
s->tx_stream = s->usrp->get_tx_stream(stream_args_tx);
std::cout << boost::format("tx_max_num_samps %u") % (s->tx_stream->get_max_num_samps()) << std::endl;
/* Setting TX/RX BW after streamers are created due to USRP calibration issue */
for(i=0;i<s->usrp->get_tx_num_channels();i++) {
if (i<openair0_cfg[0].tx_num_channels) {
for(int i=0; i<s->usrp->get_tx_num_channels() && i<openair0_cfg[0].tx_num_channels; i++)
s->usrp->set_tx_bandwidth(openair0_cfg[0].tx_bw,i);
printf("Setting tx freq/gain on channel %lu/%lu: BW %f (readback %f)\n",i,s->usrp->get_tx_num_channels(),openair0_cfg[0].tx_bw/1e6,s->usrp->get_tx_bandwidth(i)/1e6);
}
}
for(i=0;i<s->usrp->get_rx_num_channels();i++) {
if (i<openair0_cfg[0].rx_num_channels) {
for(int i=0; i<s->usrp->get_rx_num_channels() && i<openair0_cfg[0].rx_num_channels; i++)
s->usrp->set_rx_bandwidth(openair0_cfg[0].rx_bw,i);
printf("Setting rx freq/gain on channel %lu/%lu : BW %f (readback %f)\n",i,s->usrp->get_rx_num_channels(),openair0_cfg[0].rx_bw/1e6,s->usrp->get_rx_bandwidth(i)/1e6);
}
}
s->usrp->set_time_now(uhd::time_spec_t(0.0));
for (i=0;i<openair0_cfg[0].rx_num_channels;i++) {
if (i<openair0_cfg[0].rx_num_channels) {
printf("RX Channel %lu\n",i);
std::cout << boost::format("Actual RX sample rate: %fMSps...") % (s->usrp->get_rx_rate(i)/1e6) << std::endl;
std::cout << boost::format("Actual RX frequency: %fGHz...") % (s->usrp->get_rx_freq(i)/1e9) << std::endl;
std::cout << boost::format("Actual RX gain: %f...") % (s->usrp->get_rx_gain(i)) << std::endl;
std::cout << boost::format("Actual RX bandwidth: %fM...") % (s->usrp->get_rx_bandwidth(i)/1e6) << std::endl;
std::cout << boost::format("Actual RX antenna: %s...") % (s->usrp->get_rx_antenna(i)) << std::endl;
}
for (int i=0; i<openair0_cfg[0].rx_num_channels; i++) {
LOG_I(PHY,"RX Channel %d\n",i);
LOG_I(PHY," Actual RX sample rate: %fMSps...\n",s->usrp->get_rx_rate(i)/1e6);
LOG_I(PHY," Actual RX frequency: %fGHz...\n", s->usrp->get_rx_freq(i)/1e9);
LOG_I(PHY," Actual RX gain: %f...\n", s->usrp->get_rx_gain(i));
LOG_I(PHY," Actual RX bandwidth: %fM...\n", s->usrp->get_rx_bandwidth(i)/1e6);
LOG_I(PHY," Actual RX antenna: %s...\n", s->usrp->get_rx_antenna(i).c_str());
}
for (i=0;i<openair0_cfg[0].tx_num_channels;i++) {
if (i<openair0_cfg[0].tx_num_channels) {
printf("TX Channel %lu\n",i);
std::cout << std::endl<<boost::format("Actual TX sample rate: %fMSps...") % (s->usrp->get_tx_rate(i)/1e6) << std::endl;
std::cout << boost::format("Actual TX frequency: %fGHz...") % (s->usrp->get_tx_freq(i)/1e9) << std::endl;
std::cout << boost::format("Actual TX gain: %f...") % (s->usrp->get_tx_gain(i)) << std::endl;
std::cout << boost::format("Actual TX bandwidth: %fM...") % (s->usrp->get_tx_bandwidth(i)/1e6) << std::endl;
std::cout << boost::format("Actual TX antenna: %s...") % (s->usrp->get_tx_antenna(i)) << std::endl;
}
for (int i=0; i<openair0_cfg[0].tx_num_channels; i++) {
LOG_I(PHY,"TX Channel %d\n",i);
LOG_I(PHY," Actual TX sample rate: %fMSps...\n", s->usrp->get_tx_rate(i)/1e6);
LOG_I(PHY," Actual TX frequency: %fGHz...\n", s->usrp->get_tx_freq(i)/1e9);
LOG_I(PHY," Actual TX gain: %f...\n", s->usrp->get_tx_gain(i));
LOG_I(PHY," Actual TX bandwidth: %fM...\n", s->usrp->get_tx_bandwidth(i)/1e6);
LOG_I(PHY," Actual TX antenna: %s...\n", s->usrp->get_tx_antenna(i).c_str());
}
std::cout << boost::format("Device timestamp: %f...") % (s->usrp->get_time_now().get_real_secs()) << std::endl;
LOG_I(PHY,"Device timestamp: %f...\n", s->usrp->get_time_now().get_real_secs());
device->priv = s;
device->trx_start_func = trx_usrp_start;
......
......@@ -31,16 +31,16 @@ eNBs =
tdd_config_s = 0;
prefix_type = "NORMAL";
eutra_band = 7;
downlink_frequency = 2660000000L;
downlink_frequency = 2630000000L;
uplink_frequency_offset = -120000000;
Nid_cell = 0;
N_RB_DL = 25;
N_RB_DL = 50;
Nid_cell_mbsfn = 0;
nb_antenna_ports = 1;
nb_antennas_tx = 1;
nb_antennas_rx = 1;
tx_gain = 90;
rx_gain = 125;
rx_gain = 110;
prach_root = 0;
prach_config_index = 0;
prach_high_speed = "DISABLE";
......
......@@ -29,37 +29,13 @@
* \note
* \warning
*/
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sched.h>
#include <linux/sched.h>
#include <signal.h>
#include <execinfo.h>
#include <getopt.h>
#include <sys/sysinfo.h>
#include "lte-softmodem.h"
#include "T.h"
#include "rt_wrapper.h"
#undef MALLOC //there are two conflicting definitions, so we better make sure we don't use it at all
#include "assertions.h"
#include "msc.h"
#include "PHY/types.h"
#include "PHY/defs.h"
#undef MALLOC //there are two conflicting definitions, so we better make sure we don't use it at all
//#undef FRAME_LENGTH_COMPLEX_SAMPLES //there are two conflicting definitions, so we better make sure we don't use it at all
#include "../../ARCH/COMMON/common_lib.h"
#include "../../ARCH/ETHERNET/USERSPACE/LIB/if_defs.h"
//#undef FRAME_LENGTH_COMPLEX_SAMPLES //there are two conflicting definitions, so we better make sure we don't use it at all
......@@ -94,34 +70,13 @@ unsigned short config_frames[4] = {2,9,11,13};
#endif
#if defined(ENABLE_ITTI)
# include "intertask_interface_init.h"
# include "create_tasks.h"
# if defined(ENABLE_USE_MME)
# include "s1ap_eNB.h"
#ifdef PDCP_USE_NETLINK
# include "SIMULATION/ETH_TRANSPORT/proto.h"
extern int netlink_init(void);
#endif
# endif
#include "intertask_interface_init.h"
#include "create_tasks.h"
#endif
#ifdef XFORMS
#include "PHY/TOOLS/lte_phy_scope.h"
#include "stats.h"
#endif
// In lte-enb.c
extern int setup_eNB_buffers(PHY_VARS_eNB **phy_vars_eNB, openair0_config_t *openair0_cfg);
extern void init_eNB(eNB_func_t *, eNB_timing_t *,int,eth_params_t *,int,int);
extern void stop_eNB(int);
extern void kill_eNB_proc(void);
// In lte-ue.c
extern int setup_ue_buffers(PHY_VARS_UE **phy_vars_ue, openair0_config_t *openair0_cfg);
extern void fill_ue_band_info(void);
extern void init_UE(int);
#ifdef XFORMS
// current status is that every UE has a DL scope for a SINGLE eNB (eNB_id=0)
// at eNB 0, an UL scope for every UE
FD_lte_phy_scope_ue *form_ue[NUMBER_OF_UE_MAX];
......@@ -129,40 +84,24 @@ FD_lte_phy_scope_enb *form_enb[MAX_NUM_CCs][NUMBER_OF_UE_MAX];
FD_stats_form *form_stats=NULL,*form_stats_l2=NULL;
char title[255];
unsigned char scope_enb_num_ue = 2;
static pthread_t forms_thread; //xforms
#endif //XFORMS
pthread_cond_t sync_cond;
pthread_mutex_t sync_mutex;
int sync_var=-1; //!< protected by mutex \ref sync_mutex.
#ifdef XFORMS
static pthread_t forms_thread; //xforms
#endif
uint16_t runtime_phy_rx[29][6]; // SISO [MCS 0-28][RBs 0-5 : 6, 15, 25, 50, 75, 100]
uint16_t runtime_phy_tx[29][6]; // SISO [MCS 0-28][RBs 0-5 : 6, 15, 25, 50, 75, 100]
#if defined(ENABLE_ITTI)
volatile int start_eNB = 0;
volatile int start_UE = 0;
#endif
volatile int oai_exit = 0;
static clock_source_t clock_source = internal;
static wait_for_sync = 0;
static int wait_for_sync = 0;
static char UE_flag=0;
unsigned int mmapped_dma=0;
......@@ -225,7 +164,6 @@ int otg_enabled;
#endif
//int number_of_cards = 1;
static LTE_DL_FRAME_PARMS *frame_parms[MAX_NUM_CCs];
eNB_func_t node_function[MAX_NUM_CCs];
eNB_timing_t node_timing[MAX_NUM_CCs];
......@@ -237,9 +175,6 @@ uint32_t timing_advance = 0;
uint8_t exit_missed_slots=1;
uint64_t num_missed_slots=0; // counter for the number of missed slots
extern void reset_opp_meas(void);
extern void print_opp_meas(void);
int transmission_mode=1;
int16_t glog_level = LOG_INFO;
......@@ -270,12 +205,9 @@ int16_t osa_log_level = LOG_INFO;
int16_t osa_log_verbosity = LOG_MED;
#endif
char *rrh_UE_ip = "127.0.0.1";
int rrh_UE_port = 51000;
/* flag set by eNB conf file to specify if the radio head is local or remote (default option is local) */
uint8_t local_remote_radio = BBU_LOCAL_RADIO_HEAD;
/* struct for ethernet specific parameters given in eNB conf file */
......@@ -288,6 +220,7 @@ double cpuf;
char uecap_xer[1024],uecap_xer_in=0;
int oaisim_flag=0;
threads_t threads= {-1,-1,-1};
/* see file openair2/LAYER2/MAC/main.c for why abstraction_flag is needed
* this is very hackish - find a proper solution
......@@ -299,8 +232,7 @@ uint8_t abstraction_flag=0;
struct timespec min_diff_time = { .tv_sec = 0, .tv_nsec = 0 };
struct timespec max_diff_time = { .tv_sec = 0, .tv_nsec = 0 };
struct timespec clock_difftime(struct timespec start, struct timespec end)
{
struct timespec clock_difftime(struct timespec start, struct timespec end) {
struct timespec temp;
if ((end.tv_nsec-start.tv_nsec)<0) {
temp.tv_sec = end.tv_sec-start.tv_sec-1;
......@@ -312,8 +244,7 @@ struct timespec clock_difftime(struct timespec start, struct timespec end)
return temp;
}
void print_difftimes(void)
{
void print_difftimes(void) {
#ifdef DEBUG
printf("difftimes min = %lu ns ; max = %lu ns\n", min_diff_time.tv_nsec, max_diff_time.tv_nsec);
#else
......@@ -321,13 +252,18 @@ void print_difftimes(void)
#endif
}
void update_difftimes(struct timespec start, struct timespec end)
{
void update_difftimes(struct timespec start, struct timespec end) {
struct timespec diff_time = { .tv_sec = 0, .tv_nsec = 0 };
int changed = 0;
diff_time = clock_difftime(start, end);
if ((min_diff_time.tv_nsec == 0) || (diff_time.tv_nsec < min_diff_time.tv_nsec)) { min_diff_time.tv_nsec = diff_time.tv_nsec; changed = 1; }
if ((max_diff_time.tv_nsec == 0) || (diff_time.tv_nsec > max_diff_time.tv_nsec)) { max_diff_time.tv_nsec = diff_time.tv_nsec; changed = 1; }
if ((min_diff_time.tv_nsec == 0) || (diff_time.tv_nsec < min_diff_time.tv_nsec)) {
min_diff_time.tv_nsec = diff_time.tv_nsec;
changed = 1;
}
if ((max_diff_time.tv_nsec == 0) || (diff_time.tv_nsec > max_diff_time.tv_nsec)) {
max_diff_time.tv_nsec = diff_time.tv_nsec;
changed = 1;
}
#if 1
if (changed) print_difftimes();
#endif
......@@ -335,18 +271,15 @@ void update_difftimes(struct timespec start, struct timespec end)
/*------------------------------------------------------------------------*/
unsigned int build_rflocal(int txi, int txq, int rxi, int rxq)
{
unsigned int build_rflocal(int txi, int txq, int rxi, int rxq) {
return (txi + (txq<<6) + (rxi<<12) + (rxq<<18));
}
unsigned int build_rfdc(int dcoff_i_rxfe, int dcoff_q_rxfe)
{
unsigned int build_rfdc(int dcoff_i_rxfe, int dcoff_q_rxfe) {
return (dcoff_i_rxfe + (dcoff_q_rxfe<<8));
}
#if !defined(ENABLE_ITTI)
void signal_handler(int sig)
{
void signal_handler(int sig) {
void *array[10];
size_t size;
......@@ -421,8 +354,7 @@ void help (void) {
fflush(stdout);
}
void exit_fun(const char* s)
{
void exit_fun(const char* s) {
int CC_id;
if (s != NULL) {
......@@ -437,8 +369,7 @@ void exit_fun(const char* s)
PHY_vars_eNB_g[0][CC_id]->rfdevice.trx_end_func(&PHY_vars_eNB_g[0][CC_id]->rfdevice);
if (PHY_vars_eNB_g[0][CC_id]->ifdevice.trx_end_func)
PHY_vars_eNB_g[0][CC_id]->ifdevice.trx_end_func(&PHY_vars_eNB_g[0][CC_id]->ifdevice);
}
else {
} else {
if (PHY_vars_UE_g[0][CC_id]->rfdevice.trx_end_func)
PHY_vars_UE_g[0][CC_id]->rfdevice.trx_end_func(&PHY_vars_UE_g[0][CC_id]->rfdevice);
}
......@@ -454,8 +385,7 @@ void exit_fun(const char* s)
#ifdef XFORMS
void reset_stats(FL_OBJECT *button, long arg)
{
void reset_stats(FL_OBJECT *button, long arg) {
int i,j,k;
PHY_VARS_eNB *phy_vars_eNB = PHY_vars_eNB_g[0][0];
......@@ -485,8 +415,7 @@ void reset_stats(FL_OBJECT *button, long arg)
}
}
static void *scope_thread(void *arg)
{
static void *scope_thread(void *arg) {
char stats_buffer[16384];
# ifdef ENABLE_XFORMS_WRITE_STATS
FILE *UE_stats, *eNB_stats;
......@@ -586,8 +515,7 @@ static void *scope_thread(void *arg)
#if defined(ENABLE_ITTI)
void *l2l1_task(void *arg)
{
void *l2l1_task(void *arg) {
MessageDef *message_p = NULL;
int result;
......@@ -666,8 +594,7 @@ void *l2l1_task(void *arg)
static void get_options (int argc, char **argv)
{
static void get_options (int argc, char **argv) {
int c;
// char line[1000];
// int l;
......@@ -678,7 +605,6 @@ static void get_options (int argc, char **argv)
int CC_id;
const Enb_properties_array_t *enb_properties;
enum long_option_e {
......@@ -706,11 +632,15 @@ static void get_options (int argc, char **argv)
LONG_OPTION_EXTERNAL_CLOCK,
LONG_OPTION_WAIT_FOR_SYNC,
LONG_OPTION_SINGLE_THREAD_DISABLE,
LONG_OPTION_THREADIQ,
LONG_OPTION_THREADODDSUBFRAME,
LONG_OPTION_THREADEVENSUBFRAME,
#if T_TRACER
LONG_OPTION_T_PORT,
LONG_OPTION_T_NOWAIT,
LONG_OPTION_T_DONT_FORK,
#endif
};
static const struct option long_options[] = {
......@@ -737,6 +667,9 @@ static void get_options (int argc, char **argv)
{"external-clock", no_argument, NULL, LONG_OPTION_EXTERNAL_CLOCK},
{"wait-for-sync", no_argument, NULL, LONG_OPTION_WAIT_FOR_SYNC},
{"single-thread-disable", no_argument, NULL, LONG_OPTION_SINGLE_THREAD_DISABLE},
{"threadIQ", required_argument, NULL, LONG_OPTION_THREADIQ},
{"threadOddSubframe", required_argument, NULL, LONG_OPTION_THREADODDSUBFRAME},
{"threadEvenSubframe", required_argument, NULL, LONG_OPTION_THREADEVENSUBFRAME},
#if T_TRACER
{"T_port", required_argument, 0, LONG_OPTION_T_PORT},
{"T_nowait", no_argument, 0, LONG_OPTION_T_NOWAIT},
......@@ -858,6 +791,16 @@ static void get_options (int argc, char **argv)
wait_for_sync = 1;
break;
case LONG_OPTION_THREADIQ:
threads.iq=atoi(optarg);
break;
case LONG_OPTION_THREADODDSUBFRAME:
threads.odd=atoi(optarg);
break;
case LONG_OPTION_THREADEVENSUBFRAME:
threads.even=atoi(optarg);
break;
#if T_TRACER
case LONG_OPTION_T_PORT: {
extern int T_port;
......@@ -1318,8 +1261,7 @@ void init_openair0() {
openair0_cfg[card].samples_per_frame = 230400;
openair0_cfg[card].tx_bw = 10e6;
openair0_cfg[card].rx_bw = 10e6;
}
else {
} else {
openair0_cfg[card].sample_rate=30.72e6;
openair0_cfg[card].samples_per_frame = 307200;
openair0_cfg[card].tx_bw = 10e6;
......@@ -1342,6 +1284,9 @@ void init_openair0() {
openair0_cfg[card].rx_bw = 1.5e6;
}
if (frame_parms[0]->frame_type==TDD)
openair0_cfg[card].duplex_mode = duplex_mode_TDD;
else //FDD
......@@ -1404,8 +1349,7 @@ void init_openair0() {
}
}
int main( int argc, char **argv )
{
int main( int argc, char **argv ) {
int i,j,k,aa,re;
#if defined (XFORMS)
void *status;
......@@ -1514,7 +1458,7 @@ int main( int argc, char **argv )
VCD_SIGNAL_DUMPER_INIT("/tmp/openair_dump_eNB.vcd");
}
if (opp_enabled ==1){
if (opp_enabled ==1) {
reset_opp_meas();
}
cpuf=get_cpu_freq_GHz();
......@@ -1579,6 +1523,7 @@ int main( int argc, char **argv )
}
for (CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
//init prach for openair1 test
......@@ -1635,8 +1580,7 @@ int main( int argc, char **argv )
if (frame_parms[CC_id]->frame_type==FDD) {
UE[CC_id]->N_TA_offset = 0;
}
else {
} else {
if (frame_parms[CC_id]->N_RB_DL == 100)
UE[CC_id]->N_TA_offset = 624;
else if (frame_parms[CC_id]->N_RB_DL == 50)
......@@ -1660,7 +1604,7 @@ int main( int argc, char **argv )
PHY_vars_eNB_g[0][CC_id]->ue_ul_nb_rb=6;
PHY_vars_eNB_g[0][CC_id]->target_ue_ul_mcs=target_ul_mcs;
// initialization for phy-test
for (k=0;k<NUMBER_OF_UE_MAX;k++) {
for (k=0; k<NUMBER_OF_UE_MAX; k++) {
PHY_vars_eNB_g[0][CC_id]->transmission_mode[k] = transmission_mode;
if (transmission_mode==7)
lte_gold_ue_spec_port5(PHY_vars_eNB_g[0][CC_id]->lte_gold_uespec_port5_table[k],frame_parms[CC_id]->Nid_cell,0x1235+k);
......@@ -1695,8 +1639,7 @@ int main( int argc, char **argv )
if (frame_parms[CC_id]->frame_type==FDD) {
PHY_vars_eNB_g[0][CC_id]->N_TA_offset = 0;
}
else {
} else {
if (frame_parms[CC_id]->N_RB_DL == 100)
PHY_vars_eNB_g[0][CC_id]->N_TA_offset = 624;
else if (frame_parms[CC_id]->N_RB_DL == 50)
......@@ -1732,12 +1675,10 @@ int main( int argc, char **argv )
char cpu_affinity[1024];
CPU_ZERO(&cpuset);
#ifdef CPU_AFFINITY
if (get_nprocs() > 2)
{
if (get_nprocs() > 2) {
CPU_SET(0, &cpuset);
s = pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset);
if (s != 0)
{
if (s != 0) {
perror( "pthread_setaffinity_np");
exit_fun("Error setting processor affinity");
}
......@@ -1747,16 +1688,13 @@ int main( int argc, char **argv )
/* Check the actual affinity mask assigned to the thread */
s = pthread_getaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset);
if (s != 0)
{
if (s != 0) {
perror( "pthread_getaffinity_np");
exit_fun("Error getting processor affinity ");
}
memset(cpu_affinity, 0 , sizeof(cpu_affinity));
for (int j = 0; j < CPU_SETSIZE; j++)
{
if (CPU_ISSET(j, &cpuset))
{
for (int j = 0; j < CPU_SETSIZE; j++) {
if (CPU_ISSET(j, &cpuset)) {
char temp[1024];
sprintf(temp, " CPU_%d ", j);
strcat(cpu_affinity, temp);
......@@ -1778,8 +1716,7 @@ int main( int argc, char **argv )
0,// cba_group_active
0); // HO flag
mac_xface->macphy_exit = &exit_fun;
}
else if (node_function[0] == NGFI_RRU_IF4p5) { // Initialize PRACH in this case
} else if (node_function[0] == NGFI_RRU_IF4p5) { // Initialize PRACH in this case
}
......@@ -1884,8 +1821,7 @@ int main( int argc, char **argv )
PHY_vars_UE_g[0][CC_id]->rf_map.card=0;
PHY_vars_UE_g[0][CC_id]->rf_map.chain=CC_id+chain_offset;
}
}
else {
} else {
printf("Initializing eNB threads\n");
init_eNB(node_function,node_timing,1,eth_params,single_thread_flag,wait_for_sync);
......@@ -1900,7 +1836,7 @@ int main( int argc, char **argv )
// connect the TX/RX buffers
if (UE_flag==1) {
for (CC_id=0;CC_id<MAX_NUM_CCs; CC_id++) {
for (CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
#ifdef OAI_USRP
......@@ -2010,8 +1946,7 @@ int main( int argc, char **argv )
if (UE_flag==1) {
if (PHY_vars_UE_g[0][0]->rfdevice.trx_end_func)
PHY_vars_UE_g[0][0]->rfdevice.trx_end_func(&PHY_vars_UE_g[0][0]->rfdevice);
}
else {
} else {
for(CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
if (PHY_vars_eNB_g[0][CC_id]->rfdevice.trx_end_func)
PHY_vars_eNB_g[0][CC_id]->rfdevice.trx_end_func(&PHY_vars_eNB_g[0][CC_id]->rfdevice);
......
#ifndef LTE_SOFTMODEM_H
#define LTE_SOFTMODEM_H
#define _GNU_SOURCE
#include <execinfo.h>
#include <fcntl.h>
#include <getopt.h>
#include <linux/sched.h>
#include "rt_wrapper.h"
#include <sched.h>
#include <signal.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <syscall.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/sysinfo.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/sysinfo.h>
#include "rt_wrapper.h"
#include "../../ARCH/COMMON/common_lib.h"
#undef MALLOC
#include "assertions.h"
#include "msc.h"
#include "PHY/types.h"
#include "PHY/defs.h"
#include "SIMULATION/ETH_TRANSPORT/proto.h"
#if defined(ENABLE_ITTI)
#if defined(ENABLE_USE_MME)
#include "s1ap_eNB.h"
#ifdef PDCP_USE_NETLINK
#include "SIMULATION/ETH_TRANSPORT/proto.h"
#endif
#endif
#endif
extern pthread_cond_t sync_cond;
extern pthread_mutex_t sync_mutex;
extern int sync_var;
extern uint32_t downlink_frequency[MAX_NUM_CCs][4];
extern int32_t uplink_frequency_offset[MAX_NUM_CCs][4];
extern int rx_input_level_dBm;
extern uint8_t exit_missed_slots;
extern uint64_t num_missed_slots; // counter for the number of missed slots
extern int oaisim_flag;
extern volatile int oai_exit;
extern openair0_config_t openair0_cfg[MAX_CARDS];
extern pthread_cond_t sync_cond;
extern pthread_mutex_t sync_mutex;
extern int sync_var;
extern int transmission_mode;
extern double cpuf;
#if defined(ENABLE_ITTI)
extern volatile int start_eNB;
extern volatile int start_UE;
#endif
typedef struct threads_s {
int iq;
int odd;
int even;
} threads_t;
extern threads_t threads;
extern void exit_fun(const char* s);
// In lte-enb.c
extern int setup_eNB_buffers(PHY_VARS_eNB **phy_vars_eNB, openair0_config_t *openair0_cfg);
extern void init_eNB(eNB_func_t *, eNB_timing_t *,int,eth_params_t *,int,int);
extern void stop_eNB(int);
extern void kill_eNB_proc(int inst);
// In lte-ue.c
extern int setup_ue_buffers(PHY_VARS_UE **phy_vars_ue, openair0_config_t *openair0_cfg);
extern void fill_ue_band_info(void);
extern void init_UE(int);
extern void reset_opp_meas(void);
extern void print_opp_meas(void);
extern void init_fep_thread(PHY_VARS_eNB *, pthread_attr_t *);
extern void init_td_thread(PHY_VARS_eNB *, pthread_attr_t *);
extern void init_te_thread(PHY_VARS_eNB *, pthread_attr_t *);
#endif
......@@ -29,29 +29,10 @@
* \note
* \warning
*/
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sched.h>
#include <linux/sched.h>
#include <signal.h>
#include <execinfo.h>
#include <getopt.h>
#include <syscall.h>
#include <sys/sysinfo.h>
#include "lte-softmodem.h"
#include "rt_wrapper.h"
#include "assertions.h"
#include "PHY/types.h"
#include "PHY/defs.h"
#ifdef OPENAIR2
#include "LAYER2/MAC/defs.h"
#include "RRC/LITE/extern.h"
......@@ -61,8 +42,6 @@
#undef MALLOC //there are two conflicting definitions, so we better make sure we don't use it at all
//#undef FRAME_LENGTH_COMPLEX_SAMPLES //there are two conflicting definitions, so we better make sure we don't use it at all
#include "../../ARCH/COMMON/common_lib.h"
#include "PHY/extern.h"
#include "SCHED/extern.h"
#include "LAYER2/MAC/extern.h"
......@@ -79,6 +58,7 @@
#define FRAME_PERIOD 100000000ULL
#define DAQ_PERIOD 66667ULL
#define FIFO_PRIORITY 40
typedef enum {
pss=0,
......@@ -86,36 +66,15 @@ typedef enum {
si=2
} sync_mode_t;
void init_UE_threads(int nb_inst);
void init_UE_threads(PHY_VARS_UE *UE);
void *UE_thread(void *arg);
void init_UE(int nb_inst);
extern pthread_cond_t sync_cond;
extern pthread_mutex_t sync_mutex;
extern int sync_var;
extern openair0_config_t openair0_cfg[MAX_CARDS];
extern uint32_t downlink_frequency[MAX_NUM_CCs][4];
extern int32_t uplink_frequency_offset[MAX_NUM_CCs][4];
extern int oai_exit;
int32_t **rxdata;
int32_t **txdata;
//extern unsigned int tx_forward_nsamps;
//extern int tx_delay;
extern int rx_input_level_dBm;
extern uint8_t exit_missed_slots;
extern uint64_t num_missed_slots; // counter for the number of missed slots
extern int oaisim_flag;
extern void exit_fun(const char* s);
#define KHz (1000UL)
#define MHz (1000 * KHz)
#define MHz (1000*KHz)
typedef struct eutra_band_s {
int16_t band;
......@@ -169,49 +128,73 @@ pthread_t main_ue_thread;
pthread_attr_t attr_UE_thread;
struct sched_param sched_param_UE_thread;
void init_UE(int nb_inst) {
void init_thread(int sched_runtime, int sched_deadline, int sched_fifo, cpu_set_t *cpuset, char * name) {
int error_code;
int inst;
PHY_VARS_UE *UE;
int ret;
#ifdef DEADLINE_SCHEDULER
if (sched_runtime!=0) {
struct sched_attr attr= {0};
attr.size = sizeof(attr);
attr.sched_policy = SCHED_DEADLINE;
attr.sched_runtime = sched_runtime;
attr.sched_deadline = sched_deadline;
attr.sched_period = 0;
AssertFatal(sched_setattr(0, &attr, 0) == 0,
"[SCHED] %s thread: sched_setattr failed %s \n", name, perror(errno));
LOG_I(HW,"[SCHED][eNB] %s deadline thread %lu started on CPU %d\n",
name, (unsigned long)gettid(), sched_getcpu());
}
for (inst=0;inst<nb_inst;inst++) {
printf("Intializing UE Threads for instance %d ...\n",inst);
init_UE_threads(inst);
sleep(1);
UE = PHY_vars_UE_g[inst][0];
#else
if (CPU_COUNT(cpuset) > 0)
AssertFatal( 0 == pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), cpuset), "");
struct sched_param sp;
sp.sched_priority = sched_fifo;
AssertFatal(pthread_setschedparam(pthread_self(),SCHED_FIFO,&sp)==0,
"Can't set thread priority, Are you root?\n");
/* Check the actual affinity mask assigned to the thread */
cpu_set_t *cset=CPU_ALLOC(CPU_SETSIZE);
if (0 == pthread_getaffinity_np(pthread_self(), CPU_ALLOC_SIZE(CPU_SETSIZE), cset)) {
char txt[512]={0};
for (int j = 0; j < CPU_SETSIZE; j++)
if (CPU_ISSET(j, cset))
sprintf(txt+strlen(txt), " %d ", j);
printf("CPU Affinity of thread %s is %s\n", name, txt);
}
CPU_FREE(cset);
#endif
if (oaisim_flag == 0) {
ret = openair0_device_load(&(UE->rfdevice), &openair0_cfg[0]);
if (ret !=0){
exit_fun("Error loading device library");
}
}
UE->rfdevice.host_type = BBU_HOST;
// UE->rfdevice.type = NONE_DEV;
error_code = pthread_create(&UE->proc.pthread_ue, &UE->proc.attr_ue, UE_thread, UE);
// Lock memory from swapping. This is a process wide call (not constraint to this thread).
mlockall(MCL_CURRENT | MCL_FUTURE);
pthread_setname_np( pthread_self(), name );
if (error_code!= 0) {
LOG_D(HW,"[lte-softmodem.c] Could not allocate UE_thread, error %d\n",error_code);
return;
} else {
char name[128];
sprintf(name, "main UE %d", inst);
LOG_D(HW, "[lte-softmodem.c] Allocate UE_thread successful\n" );
pthread_setname_np(UE->proc.pthread_ue, name);
}
// LTS: this sync stuff should be wrong
printf("waiting for sync (%s)\n",name);
pthread_mutex_lock(&sync_mutex);
printf("Locked sync_mutex, waiting (%s)\n",name);
while (sync_var<0)
pthread_cond_wait(&sync_cond, &sync_mutex);
pthread_mutex_unlock(&sync_mutex);
printf("started %s as PID: %ld\n",name, gettid());
}
void init_UE(int nb_inst) {
for (long long inst=0; inst<nb_inst; inst++) {
// UE->rfdevice.type = NONE_DEV;
PHY_VARS_UE *UE = PHY_vars_UE_g[inst][0];
AssertFatal(0 == pthread_create(&UE->proc.pthread_ue,
&UE->proc.attr_ue,
UE_thread,
(void*)UE), "");
}
printf("UE threads created\n");
#if 0
#if defined(ENABLE_USE_MME)
extern volatile int start_UE;
printf("UE threads created by %ld\n", gettid());
#ifdef USE_MME
while (start_UE == 0) {
sleep(1);
}
#endif
#endif
}
/*!
......@@ -220,189 +203,78 @@ void init_UE(int nb_inst) {
* \param arg is a pointer to a \ref PHY_VARS_UE structure.
* \returns a pointer to an int. The storage is not on the heap and must not be freed.
*/
static void *UE_thread_synch(void *arg)
{
static int UE_thread_synch_retval;
static void *UE_thread_synch(void *arg) {
static int __thread UE_thread_synch_retval;
int i, hw_slot_offset;
PHY_VARS_UE *UE = (PHY_VARS_UE*) arg;
int current_band = 0;
int current_offset = 0;
sync_mode_t sync_mode = pbch;
int CC_id = UE->CC_id;
int ind;
int found;
int freq_offset=0;
UE->is_synchronized = 0;
printf("UE_thread_sync in with PHY_vars_UE %p\n",arg);
printf("waiting for sync (UE_thread_synch) \n");
#ifndef DEADLINE_SCHEDULER
int policy, s, j;
struct sched_param sparam;
char cpu_affinity[1024];
cpu_set_t cpuset;
/* Set affinity mask to include CPUs 1 to MAX_CPUS */
/* CPU 0 is reserved for UHD threads */
CPU_ZERO(&cpuset);
if ( threads.iq != -1 )
CPU_SET(threads.iq, &cpuset);
// this thread priority must be lower that the main acquisition thread
init_thread(100000, 500000, FIFO_PRIORITY-1, &cpuset,
"sync UE");
#ifdef CPU_AFFINITY
if (get_nprocs() >2)
{
for (j = 1; j < get_nprocs(); j++)
CPU_SET(j, &cpuset);
s = pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset);
if (s != 0)
{
perror( "pthread_setaffinity_np");
exit_fun("Error setting processor affinity");
}
}
#endif
/* Check the actual affinity mask assigned to the thread */
s = pthread_getaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset);
if (s != 0)
{
perror( "pthread_getaffinity_np");
exit_fun("Error getting processor affinity ");
}
memset(cpu_affinity, 0 , sizeof(cpu_affinity));
for (j = 0; j < CPU_SETSIZE; j++)
if (CPU_ISSET(j, &cpuset))
{
char temp[1024];
sprintf(temp, " CPU_%d ", j);
strcat(cpu_affinity, temp);
}
memset(&sparam, 0 , sizeof (sparam));
sparam.sched_priority = sched_get_priority_max(SCHED_FIFO)-1;
policy = SCHED_FIFO ;
s = pthread_setschedparam(pthread_self(), policy, &sparam);
if (s != 0)
{
perror("pthread_setschedparam : ");
exit_fun("Error setting thread priority");
}
s = pthread_getschedparam(pthread_self(), &policy, &sparam);
if (s != 0)
{
perror("pthread_getschedparam : ");
exit_fun("Error getting thread priority");
}
LOG_I( HW, "[SCHED][UE] Started UE synch thread on CPU %d TID %ld , sched_policy = %s, priority = %d, CPU Affinity = %s \n", (int)sched_getcpu(), gettid(),
(policy == SCHED_FIFO) ? "SCHED_FIFO" :
(policy == SCHED_RR) ? "SCHED_RR" :
(policy == SCHED_OTHER) ? "SCHED_OTHER" :
"???",
(int) sparam.sched_priority, cpu_affinity);
#endif
printf("starting UE synch thread (IC %d)\n",UE->proc.instance_cnt_synch);
ind = 0;
found = 0;
UE->is_synchronized = 0;
if (UE->UE_scan == 0) {
do {
int ind;
for ( ind=0;
ind < sizeof(eutra_bands) / sizeof(eutra_bands[0]);
ind++) {
current_band = eutra_bands[ind].band;
printf( "Scanning band %d, dl_min %"PRIu32", ul_min %"PRIu32"\n", current_band, eutra_bands[ind].dl_min,eutra_bands[ind].ul_min);
if ((eutra_bands[ind].dl_min <= downlink_frequency[0][0]) && (eutra_bands[ind].dl_max >= downlink_frequency[0][0])) {
LOG_D(PHY, "Scanning band %d, dl_min %"PRIu32", ul_min %"PRIu32"\n", current_band, eutra_bands[ind].dl_min,eutra_bands[ind].ul_min);
if ( eutra_bands[ind].dl_min <= downlink_frequency[0][0] && eutra_bands[ind].dl_max >= downlink_frequency[0][0] ) {
for (i=0; i<4; i++)
uplink_frequency_offset[CC_id][i] = eutra_bands[ind].ul_min - eutra_bands[ind].dl_min;
found = 1;
break;
}
ind++;
} while (ind < sizeof(eutra_bands) / sizeof(eutra_bands[0]));
if (found == 0) {
exit_fun("Can't find EUTRA band for frequency");
return &UE_thread_synch_retval;
}
AssertFatal( ind < sizeof(eutra_bands) / sizeof(eutra_bands[0]), "Can't find EUTRA band for frequency");
LOG_I( PHY, "[SCHED][UE] Check absolute frequency DL %"PRIu32", UL %"PRIu32" (oai_exit %d, rx_num_channels %d)\n",
downlink_frequency[0][0], downlink_frequency[0][0]+uplink_frequency_offset[0][0],
oai_exit, openair0_cfg[0].rx_num_channels);
LOG_I( PHY, "[SCHED][UE] Check absolute frequency DL %"PRIu32", UL %"PRIu32" (oai_exit %d, rx_num_channels %d)\n", downlink_frequency[0][0], downlink_frequency[0][0]+uplink_frequency_offset[0][0],oai_exit, openair0_cfg[0].rx_num_channels);
for (i=0;i<openair0_cfg[UE->rf_map.card].rx_num_channels;i++) {
for (i=0; i<openair0_cfg[UE->rf_map.card].rx_num_channels; i++) {
openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i];
openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i]+uplink_frequency_offset[CC_id][i];
openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i] =
downlink_frequency[CC_id][i]+uplink_frequency_offset[CC_id][i];
openair0_cfg[UE->rf_map.card].autocal[UE->rf_map.chain+i] = 1;
if (uplink_frequency_offset[CC_id][i] != 0) //
openair0_cfg[UE->rf_map.card].duplex_mode = duplex_mode_FDD;
else //FDD
openair0_cfg[UE->rf_map.card].duplex_mode = duplex_mode_TDD;
}
sync_mode = pbch;
} else if (UE->UE_scan == 1) {
} else {
current_band=0;
for (i=0; i<openair0_cfg[UE->rf_map.card].rx_num_channels; i++) {
downlink_frequency[UE->rf_map.card][UE->rf_map.chain+i] = bands_to_scan.band_info[CC_id].dl_min;
uplink_frequency_offset[UE->rf_map.card][UE->rf_map.chain+i] = bands_to_scan.band_info[CC_id].ul_min-bands_to_scan.band_info[CC_id].dl_min;
uplink_frequency_offset[UE->rf_map.card][UE->rf_map.chain+i] =
bands_to_scan.band_info[CC_id].ul_min-bands_to_scan.band_info[CC_id].dl_min;
openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i];
openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i]+uplink_frequency_offset[CC_id][i];
openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i] =
downlink_frequency[CC_id][i]+uplink_frequency_offset[CC_id][i];
openair0_cfg[UE->rf_map.card].rx_gain[UE->rf_map.chain+i] = UE->rx_total_gain_dB;
}
}
pthread_mutex_lock(&sync_mutex);
printf("Locked sync_mutex, waiting (UE_sync_thread)\n");
while (sync_var<0)
pthread_cond_wait(&sync_cond, &sync_mutex);
pthread_mutex_unlock(&sync_mutex);
printf("Started device, unlocked sync_mutex (UE_sync_thread)\n");
if (UE->rfdevice.trx_start_func(&UE->rfdevice) != 0 ) {
LOG_E(HW,"Could not start the device\n");
oai_exit=1;
}
AssertFatal(UE->rfdevice.trx_start_func(&UE->rfdevice) == 0, "Could not start the device\n");
while (oai_exit==0) {
if (pthread_mutex_lock(&UE->proc.mutex_synch) != 0) {
LOG_E( PHY, "[SCHED][UE] error locking mutex for UE initial synch thread\n" );
exit_fun("noting to add");
return &UE_thread_synch_retval;
}
while (UE->proc.instance_cnt_synch < 0) {
AssertFatal ( 0== pthread_mutex_lock(&UE->proc.mutex_synch), "");
while (UE->proc.instance_cnt_synch < 0)
// the thread waits here most of the time
pthread_cond_wait( &UE->proc.cond_synch, &UE->proc.mutex_synch );
}
if (pthread_mutex_unlock(&UE->proc.mutex_synch) != 0) {
LOG_E( PHY, "[SCHED][eNB] error unlocking mutex for UE Initial Synch thread\n" );
exit_fun("nothing to add");
return &UE_thread_synch_retval;
}
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_THREAD_SYNCH, 1 );
AssertFatal ( 0== pthread_mutex_unlock(&UE->proc.mutex_synch), "");
switch (sync_mode) {
case pss:
......@@ -450,21 +322,16 @@ static void *UE_thread_synch(void *arg)
UE->UE_scan_carrier );
if (UE->UE_scan_carrier == 1) {
UE->UE_scan_carrier = 0;
// rerun with new cell parameters and frequency-offset
for (i=0;i<openair0_cfg[UE->rf_map.card].rx_num_channels;i++) {
for (i=0; i<openair0_cfg[UE->rf_map.card].rx_num_channels; i++) {
openair0_cfg[UE->rf_map.card].rx_gain[UE->rf_map.chain+i] = UE->rx_total_gain_dB;//-USRP_GAIN_OFFSET;
if (freq_offset >= 0)
{
openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] += abs(UE->common_vars.freq_offset);
}
openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] += UE->common_vars.freq_offset;
else
{
openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] -= abs(UE->common_vars.freq_offset);
}
LOG_I(PHY," new cell parameters and frequency-offset %f freq_offset %d UE->common_vars.freq_offset %d \n", openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i], freq_offset, UE->common_vars.freq_offset);
openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i] = openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i]+uplink_frequency_offset[CC_id][i];
openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] -= UE->common_vars.freq_offset;
openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i] =
openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i]+uplink_frequency_offset[CC_id][i];
downlink_frequency[CC_id][i] = openair0_cfg[CC_id].rx_freq[i];
freq_offset=0;
}
......@@ -506,11 +373,12 @@ static void *UE_thread_synch(void *arg)
LOG_E(HW,"Could not start the device\n");
oai_exit=1;
}
}
else {
} else {
AssertFatal ( 0== pthread_mutex_lock(&UE->proc.mutex_synch), "");
UE->is_synchronized = 1;
AssertFatal ( 0== pthread_mutex_unlock(&UE->proc.mutex_synch), "");
if( UE->mode == rx_dump_frame ){
if( UE->mode == rx_dump_frame ) {
FILE *fd;
if ((UE->proc.proc_rxtx[0].frame_rx&1) == 0) { // this guarantees SIB1 is present
if ((fd = fopen("rxsig_frame0.dat","w")) != NULL) {
......@@ -521,14 +389,15 @@ static void *UE_thread_synch(void *arg)
LOG_I(PHY,"Dummping Frame ... bye bye \n");
fclose(fd);
exit(0);
}
else {
} else {
LOG_E(PHY,"Cannot open file for writing\n");
exit(0);
}
}
else {
} else {
AssertFatal ( 0== pthread_mutex_lock(&UE->proc.mutex_synch), "");
UE->is_synchronized = 0;
AssertFatal ( 0== pthread_mutex_unlock(&UE->proc.mutex_synch), "");
}
}
}
......@@ -536,12 +405,9 @@ static void *UE_thread_synch(void *arg)
// initial sync failed
// calculate new offset and try again
if (UE->UE_scan_carrier == 1) {
if (freq_offset >= 0) {
if (freq_offset >= 0)
freq_offset += 100;
freq_offset *= -1;
} else {
freq_offset *= -1;
}
if (abs(freq_offset) > 7500) {
LOG_I( PHY, "[initial_sync] No cell synchronization found, abandoning\n" );
......@@ -558,9 +424,6 @@ static void *UE_thread_synch(void *arg)
mac_xface->macphy_exit("No cell synchronization found, abandoning");
return &UE_thread_synch_retval; // not reached
}
}
else {
}
LOG_I( PHY, "[initial_sync] trying carrier off %d Hz, rxgain %d (DL %u, UL %u)\n",
freq_offset,
......@@ -571,40 +434,22 @@ static void *UE_thread_synch(void *arg)
for (i=0; i<openair0_cfg[UE->rf_map.card].rx_num_channels; i++) {
openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i]+freq_offset;
openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i]+uplink_frequency_offset[CC_id][i]+freq_offset;
openair0_cfg[UE->rf_map.card].rx_gain[UE->rf_map.chain+i] = UE->rx_total_gain_dB;//-USRP_GAIN_OFFSET;
if (UE->UE_scan_carrier==1) {
if (UE->UE_scan_carrier==1)
openair0_cfg[UE->rf_map.card].autocal[UE->rf_map.chain+i] = 1;
}
}
UE->rfdevice.trx_set_freq_func(&UE->rfdevice,&openair0_cfg[0],0);
}// initial_sync=0
break;
case si:
default:
break;
}
if (pthread_mutex_lock(&UE->proc.mutex_synch) != 0) {
LOG_E( PHY, "[SCHED][UE] error locking mutex for UE synch\n" );
exit_fun("noting to add");
return &UE_thread_synch_retval;
}
AssertFatal ( 0== pthread_mutex_lock(&UE->proc.mutex_synch), "");
// indicate readiness
UE->proc.instance_cnt_synch--;
if (pthread_mutex_unlock(&UE->proc.mutex_synch) != 0) {
LOG_E( PHY, "[SCHED][UE] error unlocking mutex for UE synch\n" );
exit_fun("noting to add");
return &UE_thread_synch_retval;
}
AssertFatal ( 0== pthread_mutex_unlock(&UE->proc.mutex_synch), "");
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_THREAD_SYNCH, 0 );
} // while !oai_exit
......@@ -613,14 +458,6 @@ static void *UE_thread_synch(void *arg)
}
/* this structure is used to pass both UE phy vars and
* proc to the function UE_thread_rxn_txnp4
*/
struct rx_tx_thread_data {
PHY_VARS_UE *UE;
UE_rxtx_proc_t *proc;
};
/*!
* \brief This is the UE thread for RX subframe n and TX subframe n+4.
......@@ -630,160 +467,42 @@ struct rx_tx_thread_data {
* \returns a pointer to an int. The storage is not on the heap and must not be freed.
*/
static void *UE_thread_rxn_txnp4(void *arg)
{
static int UE_thread_rxtx_retval;
struct rx_tx_thread_data *rtd = arg;
UE_rxtx_proc_t *proc = rtd->proc;
PHY_VARS_UE *UE = rtd->UE;
static void *UE_thread_rxn_txnp4(void *arg) {
static __thread int UE_thread_rxtx_retval;
UE_rxtx_proc_t *proc = (UE_rxtx_proc_t *)arg;
int ret;
proc->instance_cnt_rxtx=-1;
#ifdef DEADLINE_SCHEDULER
struct sched_attr attr;
unsigned int flags = 0;
attr.size = sizeof(attr);
attr.sched_flags = 0;
attr.sched_nice = 0;
attr.sched_priority = 0;
PHY_VARS_UE *UE=PHY_vars_UE_g[0][proc->CC_id];
// This creates a .5ms reservation every 1ms period
attr.sched_policy = SCHED_DEADLINE;
attr.sched_runtime = 900000; // each rx thread requires 1ms to finish its job
attr.sched_deadline = 1000000; // each rx thread will finish within 1ms
attr.sched_period = 1000000; // each rx thread has a period of 1ms from the starting point
if (sched_setattr(0, &attr, flags) < 0 ) {
perror("[SCHED] UE_thread_rxtx : sched_setattr failed\n");
return &UE_thread_rxtx_retval;
}
static long long __thread instance_cnt_rxtx=-1;
proc->subframe_rx=proc->sub_frame_start;
#else
int policy, s, j;
struct sched_param sparam;
char cpu_affinity[1024];
char threadname[256]= {0};
sprintf(threadname,"UE_proc_%d",proc->sub_frame_start);
cpu_set_t cpuset;
/* Set affinity mask to include CPUs 1 to MAX_CPUS */
/* CPU 0 is reserved for UHD threads */
CPU_ZERO(&cpuset);
#ifdef CPU_AFFINITY
if (get_nprocs() >2)
{
for (j = 1; j < get_nprocs(); j++)
CPU_SET(j, &cpuset);
s = pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset);
if (s != 0)
{
perror( "pthread_setaffinity_np");
exit_fun("Error setting processor affinity");
}
}
#endif
/* Check the actual affinity mask assigned to the thread */
s = pthread_getaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset);
if (s != 0)
{
perror( "pthread_getaffinity_np");
exit_fun("Error getting processor affinity ");
}
memset(cpu_affinity, 0 , sizeof(cpu_affinity));
for (j = 0; j < CPU_SETSIZE; j++)
if (CPU_ISSET(j, &cpuset))
{
char temp[1024];
sprintf(temp, " CPU_%d ", j);
strcat(cpu_affinity, temp);
}
memset(&sparam, 0 , sizeof (sparam));
sparam.sched_priority = sched_get_priority_max(SCHED_FIFO)-1;
policy = SCHED_FIFO ;
s = pthread_setschedparam(pthread_self(), policy, &sparam);
if (s != 0)
{
perror("pthread_setschedparam : ");
exit_fun("Error setting thread priority");
}
s = pthread_getschedparam(pthread_self(), &policy, &sparam);
if (s != 0)
{
perror("pthread_getschedparam : ");
exit_fun("Error getting thread priority");
}
LOG_I( HW, "[SCHED][UE] Started UE RX thread on CPU %d TID %ld , sched_policy = %s, priority = %d, CPU Affinity = %s \n", (int)sched_getcpu(), gettid(),
(policy == SCHED_FIFO) ? "SCHED_FIFO" :
(policy == SCHED_RR) ? "SCHED_RR" :
(policy == SCHED_OTHER) ? "SCHED_OTHER" :
"???",
(int) sparam.sched_priority, cpu_affinity);
#endif
// Lock memory from swapping. This is a process wide call (not constraint to this thread).
mlockall(MCL_CURRENT | MCL_FUTURE);
printf("waiting for sync (UE_thread_rxn_txnp4)\n");
pthread_mutex_lock(&sync_mutex);
printf("Locked sync_mutex, waiting (UE_thread_rxn_txnp4)\n");
while (sync_var<0)
pthread_cond_wait(&sync_cond, &sync_mutex);
#define THREAD_NAME_LEN 16
char threadname[THREAD_NAME_LEN];
ret = pthread_getname_np(proc->pthread_rxtx, threadname, THREAD_NAME_LEN);
if (ret != 0)
{
perror("pthread_getname_np : ");
exit_fun("Error getting thread name");
}
pthread_mutex_unlock(&sync_mutex);
printf("unlocked sync_mutex, waiting (UE_thread_rxtx)\n");
printf("Starting UE RXN_TXNP4 thread (%s)\n", threadname);
if ( (proc->sub_frame_start+1)%2 == 0 && threads.even != -1 )
CPU_SET(threads.even, &cpuset);
if ( (proc->sub_frame_start+1)%2 == 1 && threads.odd != -1 )
CPU_SET(threads.odd, &cpuset);
init_thread(900000,1000000 , FIFO_PRIORITY-1, &cpuset,
threadname);
while (!oai_exit) {
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_LOCK_MUTEX_RXTX_FOR_COND_WAIT0+(proc->proc_id), 1 );
if (pthread_mutex_lock(&proc->mutex_rxtx) != 0) {
LOG_E( PHY, "[SCHED][UE] error locking mutex for UE RXTX\n" );
exit_fun("nothing to add");
return &UE_thread_rxtx_retval;
}
while (proc->instance_cnt_rxtx < 0) {
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_WAIT_COND_RXTX0+(proc->proc_id), 1 );
// most of the time, the thread is waiting here
// Wait Rx data to process are available
AssertFatal(pthread_mutex_lock(&proc->mutex_rxtx) ==0,"");
pthread_cond_wait( &proc->cond_rxtx, &proc->mutex_rxtx );
}
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_WAIT_COND_RXTX0+(proc->proc_id), 0 );
if (pthread_mutex_unlock(&proc->mutex_rxtx) != 0) {
LOG_E( PHY, "[SCHED][UE] error unlocking mutex for UE RXn_TXnp4\n" );
exit_fun("nothing to add");
return &UE_thread_rxtx_retval;
}
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_LOCK_MUTEX_RXTX_FOR_COND_WAIT0+(proc->proc_id), 0 );
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_THREAD_RXTX0+(proc->proc_id), 1 );
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_SUBFRAME_NUMBER_RX0_UE+(proc->proc_id), proc->subframe_rx );
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_SUBFRAME_NUMBER_TX0_UE+(proc->proc_id), proc->subframe_tx );
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_FRAME_NUMBER_RX0_UE+(proc->proc_id), proc->frame_rx );
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_FRAME_NUMBER_TX0_UE+(proc->proc_id), proc->frame_tx );
if ( (instance_cnt_rxtx+proc->sub_frame_step)%10 != proc->subframe_rx && instance_cnt_rxtx!=-1 )
LOG_W(PHY,"REAL TIME NOT MATCHED: missed a sub-frame: expecting %lld, got %d\n",
(instance_cnt_rxtx+proc->sub_frame_step)%10, proc->subframe_rx);
instance_cnt_rxtx=proc->subframe_rx;
AssertFatal(pthread_mutex_unlock(&proc->mutex_rxtx) ==0,"");
initRefTimes(t2);
initRefTimes(t3);
pickTime(current);
updateTimes(proc->gotIQs, &t2, 10000, "Delay to wake up UE_Thread_Rx (case 2)");
// Process Rx data for one sub-frame
lte_subframe_t sf_type = subframe_select( &UE->frame_parms, proc->subframe_rx);
if ((sf_type == SF_DL) ||
(UE->frame_parms.frame_type == FDD) ||
......@@ -807,7 +526,6 @@ static void *UE_thread_rxn_txnp4(void *arg)
}
phy_procedures_UE_RX( UE, proc, 0, 0, UE->mode, no_relay, NULL );
}
if (UE->mac_enabled==1) {
ret = mac_xface->ue_scheduler(UE->Mod_id,
......@@ -818,72 +536,45 @@ static void *UE_thread_rxn_txnp4(void *arg)
subframe_select(&UE->frame_parms,proc->subframe_tx),
0,
0/*FIXME CC_id*/);
if (ret == CONNECTION_LOST) {
LOG_E( PHY, "[UE %"PRIu8"] Frame %"PRIu32", subframe %u RRC Connection lost, returning to PRACH\n",
UE->Mod_id, proc->frame_rx, proc->subframe_tx );
UE->UE_mode[0] = PRACH;
} else if (ret == PHY_RESYNCH) {
LOG_E( PHY, "[UE %"PRIu8"] Frame %"PRIu32", subframe %u RRC Connection lost, trying to resynch\n",
UE->Mod_id, proc->frame_rx, proc->subframe_tx );
UE->UE_mode[0] = RESYNCH;
} else if (ret == PHY_HO_PRACH) {
LOG_I( PHY, "[UE %"PRIu8"] Frame %"PRIu32", subframe %u, return to PRACH and perform a contention-free access\n",
UE->Mod_id, proc->frame_rx, proc->subframe_tx );
UE->UE_mode[0] = PRACH;
if ( ret != CONNECTION_OK) {
char *txt;
switch (ret) {
case CONNECTION_LOST:
txt="RRC Connection lost, returning to PRACH";
break;
case PHY_RESYNCH:
txt="RRC Connection lost, trying to resynch";
break;
case RESYNCH:
txt="return to PRACH and perform a contention-free access";
break;
default:
txt="UNKNOWN RETURN CODE";
};
LOG_E( PHY, "[UE %"PRIu8"] Frame %"PRIu32", subframe %u %s\n",
UE->Mod_id, proc->frame_rx, proc->subframe_tx,txt );
}
}
// Prepare the future Tx data
if ((subframe_select( &UE->frame_parms, proc->subframe_tx) == SF_UL) ||
(UE->frame_parms.frame_type == FDD) ) {
if (UE->mode != loop_through_memory) {
(UE->frame_parms.frame_type == FDD) )
if (UE->mode != loop_through_memory)
phy_procedures_UE_TX(UE,proc,0,0,UE->mode,no_relay);
}
}
if ((subframe_select( &UE->frame_parms, proc->subframe_tx) == SF_S) &&
(UE->frame_parms.frame_type == TDD)) {
if (UE->mode != loop_through_memory) {
if ((subframe_select( &UE->frame_parms, proc->subframe_tx) == SF_S) &&
(UE->frame_parms.frame_type == TDD))
if (UE->mode != loop_through_memory)
phy_procedures_UE_S_TX(UE,0,0,no_relay);
}
}
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_THREAD_RXTX0+(proc->proc_id), 0 );
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_LOCK_MUTEX_RXTX_FOR_CNT_DECREMENT0+(proc->proc_id), 1 );
if (pthread_mutex_lock(&proc->mutex_rxtx) != 0) {
LOG_E( PHY, "[SCHED][UE] error locking mutex for UE RXTX\n" );
exit_fun("noting to add");
return &UE_thread_rxtx_retval;
}
updateTimes(current, &t3, 10000, "Delay to process sub-frame (case 3)");
proc->instance_cnt_rxtx--;
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME(VCD_SIGNAL_DUMPER_VARIABLES_UE_INST_CNT_RX, proc->instance_cnt_rxtx);
if (pthread_mutex_unlock(&proc->mutex_rxtx) != 0) {
LOG_E( PHY, "[SCHED][UE] error unlocking mutex for UE RXTX\n" );
exit_fun("noting to add");
return &UE_thread_rxtx_retval;
}
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_LOCK_MUTEX_RXTX_FOR_CNT_DECREMENT0+(proc->proc_id), 0 );
}
// thread finished
free(arg);
// thread finished
return &UE_thread_rxtx_retval;
}
#define RX_OFF_MAX 23
#define RX_OFF_MIN 0
#define RX_OFF_MID ((RX_OFF_MAX+RX_OFF_MIN)/2)
/*!
* \brief This is the main UE thread.
* This thread controls the other three UE threads:
......@@ -896,145 +587,75 @@ static void *UE_thread_rxn_txnp4(void *arg)
void *UE_thread(void *arg) {
static int UE_thread_retval;
PHY_VARS_UE *UE = arg; //PHY_vars_UE_g[0][0];
PHY_VARS_UE *UE = (PHY_VARS_UE *) arg;
// int tx_enabled = 0;
uint32_t rxs=0,txs=0;
int dummy_rx[UE->frame_parms.nb_antennas_rx][UE->frame_parms.samples_per_tti] __attribute__((aligned(32)));
openair0_timestamp timestamp,timestamp1;
void* rxp[2], *txp[2];
#ifdef NAS_UE
MessageDef *message_p;
#endif
void* rxp[NB_ANTENNAS_RX], *txp[NB_ANTENNAS_TX];
int start_rx_stream = 0;
int rx_off_diff = 0;
int rx_correction_timer = 0;
int i;
#ifdef DEADLINE_SCHEDULER
struct sched_attr attr;
unsigned int flags = 0;
attr.size = sizeof(attr);
attr.sched_flags = 0;
attr.sched_nice = 0;
attr.sched_priority = 0;//sched_get_priority_max(SCHED_DEADLINE);
// This creates a .5 ms reservation
attr.sched_policy = SCHED_DEADLINE;
attr.sched_runtime = 100000;
attr.sched_deadline = 500000;
attr.sched_period = 500000;
if (sched_setattr(0, &attr, flags) < 0 ) {
perror("[SCHED] main eNB thread: sched_setattr failed\n");
exit_fun("Nothing to add");
return &UE_thread_retval;
}
LOG_I(HW,"[SCHED][eNB] eNB main deadline thread %lu started on CPU %d\n",
(unsigned long)gettid(), sched_getcpu());
#else
struct sched_param sp;
sp.sched_priority = sched_get_priority_max(SCHED_FIFO);
pthread_setschedparam(pthread_self(),SCHED_FIFO,&sp);
#endif
// Lock memory from swapping. This is a process wide call (not constraint to this thread).
mlockall(MCL_CURRENT | MCL_FUTURE);
printf("waiting for sync (UE_thread)\n");
pthread_mutex_lock(&sync_mutex);
printf("Locked sync_mutex, waiting (UE_thread)\n");
while (sync_var<0)
pthread_cond_wait(&sync_cond, &sync_mutex);
pthread_mutex_unlock(&sync_mutex);
printf("unlocked sync_mutex, waiting (UE_thread)\n");
printf("starting UE thread\n");
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
if ( threads.iq != -1 )
CPU_SET(threads.iq, &cpuset);
init_thread(100000, 500000, FIFO_PRIORITY, &cpuset,
"UHD Threads");
if (oaisim_flag == 0)
AssertFatal(0== openair0_device_load(&(UE->rfdevice), &openair0_cfg[0]), "");
UE->rfdevice.host_type = BBU_HOST;
pthread_setname_np( pthread_self(), "Main UE" );
init_UE_threads(UE);
#ifdef NAS_UE
MessageDef *message_p;
message_p = itti_alloc_new_message(TASK_NAS_UE, INITIALIZE_MESSAGE);
itti_send_msg_to_task (TASK_NAS_UE, UE->Mod_id + NB_eNB_INST, message_p);
itti_send_msg_to_task (TASK_NAS_UE, INSTANCE_DEFAULT, message_p);
#endif
int sub_frame=-1;
//int cumulated_shift=0;
while (!oai_exit) {
if (UE->is_synchronized == 0) {
if (pthread_mutex_lock(&UE->proc.mutex_synch) != 0) {
LOG_E( PHY, "[SCHED][UE] verror locking mutex for UE initial synch thread\n" );
exit_fun("nothing to add");
return &UE_thread_retval;
}
AssertFatal ( 0== pthread_mutex_lock(&UE->proc.mutex_synch), "");
int instance_cnt_synch = UE->proc.instance_cnt_synch;
int is_synchronized = UE->is_synchronized;
AssertFatal ( 0== pthread_mutex_unlock(&UE->proc.mutex_synch), "");
if (pthread_mutex_unlock(&UE->proc.mutex_synch) != 0) {
LOG_E( PHY, "[SCHED][UE] error unlocking mutex for UE initial synch thread\n" );
exit_fun("nothing to add");
return &UE_thread_retval;
}
if (is_synchronized == 0) {
if (instance_cnt_synch < 0) { // we can invoke the synch
// grab 10 ms of signal and wakeup synch thread
for (int i=0; i<UE->frame_parms.nb_antennas_rx; i++)
rxp[i] = (void*)&UE->common_vars.rxdata[i][0];
if (UE->mode != loop_through_memory) {
rxs = UE->rfdevice.trx_read_func(&UE->rfdevice,
if (UE->mode != loop_through_memory)
AssertFatal( UE->frame_parms.samples_per_tti*10 ==
UE->rfdevice.trx_read_func(&UE->rfdevice,
&timestamp,
rxp,
UE->frame_parms.samples_per_tti*10,
UE->frame_parms.nb_antennas_rx);
if (rxs!=UE->frame_parms.samples_per_tti*10) {
LOG_E(PHY, "problem in rx 1! expect #samples=%d but got only %d!\n", UE->frame_parms.samples_per_tti*10, rxs);
exit_fun("problem in rx 1");
return &UE_thread_retval;
}
}
UE->frame_parms.nb_antennas_rx), "");
AssertFatal ( 0== pthread_mutex_lock(&UE->proc.mutex_synch), "");
instance_cnt_synch = ++UE->proc.instance_cnt_synch;
AssertFatal ( 0== pthread_mutex_unlock(&UE->proc.mutex_synch), "");
if (instance_cnt_synch == 0) {
if (pthread_cond_signal(&UE->proc.cond_synch) != 0) {
LOG_E( PHY, "[SCHED][UE] ERROR pthread_cond_signal for UE sync thread\n" );
exit_fun("nothing to add");
return &UE_thread_retval;
}
AssertFatal( 0 == pthread_cond_signal(&UE->proc.cond_synch), "");
} else {
LOG_E( PHY, "[SCHED][UE] UE sync thread busy!!\n" );
exit_fun("nothing to add");
return &UE_thread_retval;
}
} //
else {
} else {
// grab 10 ms of signal into dummy buffer
if (UE->mode != loop_through_memory) {
for (int i=0; i<UE->frame_parms.nb_antennas_rx; i++)
rxp[i] = (void*)&dummy_rx[i][0];
for (int sf=0;sf<10;sf++) {
for (int sf=0; sf<10; sf++)
// printf("Reading dummy sf %d\n",sf);
rxs = UE->rfdevice.trx_read_func(&UE->rfdevice,
AssertFatal ( UE->frame_parms.samples_per_tti ==
UE->rfdevice.trx_read_func(&UE->rfdevice,
&timestamp,
rxp,
UE->frame_parms.samples_per_tti,
UE->frame_parms.nb_antennas_rx);
if (rxs!=UE->frame_parms.samples_per_tti){
LOG_E(PHY, "problem in rx 2! expect #samples=%d but got only %d!\n", UE->frame_parms.samples_per_tti, rxs);
exit_fun("problem in rx 2");
return &UE_thread_retval;
}
}
UE->frame_parms.nb_antennas_rx), "");
}
}
......@@ -1043,658 +664,128 @@ void *UE_thread(void *arg) {
if (start_rx_stream==0) {
start_rx_stream=1;
if (UE->mode != loop_through_memory) {
if (UE->no_timing_correction==0) {
LOG_I(PHY,"Resynchronizing RX by %d samples (mode = %d)\n",UE->rx_offset,UE->mode);
rxs = UE->rfdevice.trx_read_func(&UE->rfdevice,
AssertFatal(UE->rx_offset ==
UE->rfdevice.trx_read_func(&UE->rfdevice,
&timestamp,
(void**)UE->common_vars.rxdata,
UE->rx_offset,
UE->frame_parms.nb_antennas_rx);
if (rxs != UE->rx_offset) {
LOG_E(PHY, "problem in rx 3! expect #samples=%d but got only %d!\n", UE->rx_offset, rxs);
exit_fun("problem in rx 3!");
return &UE_thread_retval;
}
UE->frame_parms.nb_antennas_rx),"");
}
LOG_D(PHY,"Set rx_offset to 0 \n");
UE->rx_offset=0;
UE->proc.proc_rxtx[0].frame_rx++;
UE->proc.proc_rxtx[1].frame_rx++;
// read in first symbol
rxs = UE->rfdevice.trx_read_func(&UE->rfdevice,
AssertFatal (UE->frame_parms.ofdm_symbol_size+UE->frame_parms.nb_prefix_samples0 ==
UE->rfdevice.trx_read_func(&UE->rfdevice,
&timestamp,
(void**)UE->common_vars.rxdata,
UE->frame_parms.ofdm_symbol_size+UE->frame_parms.nb_prefix_samples0,
UE->frame_parms.nb_antennas_rx);
if (rxs != (UE->frame_parms.ofdm_symbol_size+UE->frame_parms.nb_prefix_samples0)) {
LOG_E(PHY, "problem in rx 4! expect #samples=%d but got only %d!\n", UE->frame_parms.ofdm_symbol_size+UE->frame_parms.nb_prefix_samples0, rxs);
exit_fun("problem in rx 4!");
return &UE_thread_retval;
}
slot_fep(UE,
0,
0,
0,
0,
0);
if (rxs != UE->frame_parms.ofdm_symbol_size+UE->frame_parms.nb_prefix_samples0) {
exit_fun("problem in rx");
return &UE_thread_retval;
}
UE->frame_parms.nb_antennas_rx),"");
slot_fep(UE,0, 0, 0, 0, 0);
} //UE->mode != loop_through_memory
else
rt_sleep_ns(1000000);
rt_sleep_ns(1000*1000);
}// start_rx_stream==0
else {
//UE->proc.proc_rxtx[0].frame_rx++;
//UE->proc.proc_rxtx[1].frame_rx++;
} else {
sub_frame++;
sub_frame%=10;
UE_rxtx_proc_t *proc = &UE->proc.proc_rxtx[sub_frame&1];
for (int sf=0;sf<10;sf++) {
for (i=0; i<UE->frame_parms.nb_antennas_rx; i++)
rxp[i] = (void*)&UE->common_vars.rxdata[i][UE->frame_parms.ofdm_symbol_size+UE->frame_parms.nb_prefix_samples0+(sf*UE->frame_parms.samples_per_tti)];
// grab signal for subframe
if (UE->mode != loop_through_memory) {
if (sf<9) {
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_READ, 1 );
rxs = UE->rfdevice.trx_read_func(&UE->rfdevice,
&timestamp,
rxp,
UE->frame_parms.samples_per_tti,
UE->frame_parms.nb_antennas_rx);
LOG_D(PHY,"grab signal for subframe %d offset %d Nbsamples %d \n", sf, UE->frame_parms.ofdm_symbol_size+UE->frame_parms.nb_prefix_samples0+(sf*UE->frame_parms.samples_per_tti),
UE->frame_parms.samples_per_tti);
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_READ, 0 );
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_UE0_TRX_READ_NS, rxs );
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_UE0_TRX_READ_NS_MISSING, UE->frame_parms.samples_per_tti - rxs);
if (rxs != UE->frame_parms.samples_per_tti) {
LOG_E(PHY, "problem in rx 5! expect #samples=%d but got only %d!\n", UE->frame_parms.samples_per_tti, rxs);
exit_fun("problem in rx 5!");
return &UE_thread_retval;
}
// prepare tx buffer pointers
for (i=0; i<UE->frame_parms.nb_antennas_rx; i++)
rxp[i] = (void*)&UE->common_vars.rxdata[i][UE->frame_parms.ofdm_symbol_size+
UE->frame_parms.nb_prefix_samples0+
sub_frame*UE->frame_parms.samples_per_tti];
for (i=0; i<UE->frame_parms.nb_antennas_tx; i++)
txp[i] = (void*)&UE->common_vars.txdata[i][((sf+2)%10)*UE->frame_parms.samples_per_tti];
txp[i] = (void*)&UE->common_vars.txdata[i][((sub_frame+2)%10)*UE->frame_parms.samples_per_tti];
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_WRITE, 1 );
txs = UE->rfdevice.trx_write_func(&UE->rfdevice,
timestamp+
(2*UE->frame_parms.samples_per_tti) -
UE->frame_parms.ofdm_symbol_size-UE->frame_parms.nb_prefix_samples0 -
openair0_cfg[0].tx_sample_advance,
txp,
UE->frame_parms.samples_per_tti,
UE->frame_parms.nb_antennas_tx,
1);
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_WRITE, 0 );
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_UE0_TRX_WRITE_NS, txs );
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_UE0_TRX_WRITE_NS_MISSING, UE->frame_parms.samples_per_tti - txs);
if (txs != UE->frame_parms.samples_per_tti) {
LOG_E(PHY,"TX : Timeout (sent %d/%d)\n",txs, UE->frame_parms.samples_per_tti);
exit_fun( "problem transmitting samples" );
}
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_UE0_TRX_WRITE_NS_MISSING, UE->frame_parms.samples_per_tti - txs);
int readBlockSize, writeBlockSize;
if (sub_frame<9) {
readBlockSize=UE->frame_parms.samples_per_tti;
writeBlockSize=UE->frame_parms.samples_per_tti;
} else {
if ( UE->rx_offset < 5*UE->frame_parms.samples_per_tti &&
UE->rx_offset > 0 )
UE->rx_offset_diff = -1 ;
if ( UE->rx_offset > 5*UE->frame_parms.samples_per_tti &&
UE->rx_offset < 10*UE->frame_parms.samples_per_tti )
UE->rx_offset_diff = 1;
LOG_D(PHY,"SET rx_off_diff to %d\n",UE->rx_offset_diff);
readBlockSize=UE->frame_parms.samples_per_tti -
UE->frame_parms.ofdm_symbol_size -
UE->frame_parms.nb_prefix_samples0 -
UE->rx_offset_diff;
writeBlockSize=UE->frame_parms.samples_per_tti -
UE->rx_offset_diff;
}
else {
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_READ_SF9, 1 );
rxs = UE->rfdevice.trx_read_func(&UE->rfdevice,
AssertFatal(readBlockSize ==
UE->rfdevice.trx_read_func(&UE->rfdevice,
&timestamp,
rxp,
UE->frame_parms.samples_per_tti-UE->frame_parms.ofdm_symbol_size-UE->frame_parms.nb_prefix_samples0,
UE->frame_parms.nb_antennas_rx);
LOG_D(PHY,"grab signal for subframe %d offset %d Nbsamples %d \n", sf, UE->frame_parms.ofdm_symbol_size+UE->frame_parms.nb_prefix_samples0+(sf*UE->frame_parms.samples_per_tti),
UE->frame_parms.samples_per_tti-UE->frame_parms.ofdm_symbol_size-UE->frame_parms.nb_prefix_samples0);
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_READ_SF9, 0 );
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_UE0_TRX_READ_NS, rxs );
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_UE0_TRX_READ_NS_MISSING, (UE->frame_parms.samples_per_tti-UE->frame_parms.ofdm_symbol_size-UE->frame_parms.nb_prefix_samples0) - rxs);
if (rxs != (UE->frame_parms.samples_per_tti-UE->frame_parms.ofdm_symbol_size-UE->frame_parms.nb_prefix_samples0)) {
LOG_E(PHY, "problem in rx 6! expect #samples=%d but got only %d!\n", UE->frame_parms.samples_per_tti-UE->frame_parms.ofdm_symbol_size-UE->frame_parms.nb_prefix_samples0, rxs);
exit_fun("problem in rx 6!");
return &UE_thread_retval;
}
// prepare tx buffer pointers
for (i=0; i<UE->frame_parms.nb_antennas_tx; i++)
txp[i] = (void*)&UE->common_vars.txdata[i][((sf+2)%10)*UE->frame_parms.samples_per_tti];
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_WRITE_SF9, 1 );
txs = UE->rfdevice.trx_write_func(&UE->rfdevice,
readBlockSize,
UE->frame_parms.nb_antennas_rx),"");
AssertFatal( writeBlockSize ==
UE->rfdevice.trx_write_func(&UE->rfdevice,
timestamp+
(2*UE->frame_parms.samples_per_tti) -
UE->frame_parms.ofdm_symbol_size-UE->frame_parms.nb_prefix_samples0 -
openair0_cfg[0].tx_sample_advance,
txp,
UE->frame_parms.samples_per_tti - rx_off_diff,
writeBlockSize,
UE->frame_parms.nb_antennas_tx,
1);
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_WRITE_SF9, 0 );
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_UE0_TRX_WRITE_NS, txs );
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_UE0_TRX_WRITE_NS_MISSING, (UE->frame_parms.samples_per_tti - rx_off_diff) - txs);
if (txs != UE->frame_parms.samples_per_tti - rx_off_diff) {
LOG_E(PHY,"TX : Timeout (sent %d/%d)\n",txs, UE->frame_parms.samples_per_tti-rx_off_diff);
exit_fun( "problem transmitting samples" );
}
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_READ_SF9, 1 );
1),"");
if( sub_frame==9) {
// read in first symbol of next frame and adjust for timing drift
for (i=0; i<UE->frame_parms.nb_antennas_rx; i++)
{
rxp[i] = (void*)&UE->common_vars.rxdata[i][0];
}
rxs = UE->rfdevice.trx_read_func(&UE->rfdevice,
&timestamp1,
rxp,
UE->frame_parms.nb_prefix_samples0 - rx_off_diff,
UE->frame_parms.nb_antennas_rx);
for (i=0; i<UE->frame_parms.nb_antennas_rx; i++)
{
rxp[i] = (void*)&UE->common_vars.rxdata[i][UE->frame_parms.nb_prefix_samples0];
}
rxs = UE->rfdevice.trx_read_func(&UE->rfdevice,
int first_symbols=writeBlockSize-readBlockSize;
if ( first_symbols > 0 )
AssertFatal(first_symbols ==
UE->rfdevice.trx_read_func(&UE->rfdevice,
&timestamp1,
rxp,
UE->frame_parms.ofdm_symbol_size,
UE->frame_parms.nb_antennas_rx);
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_READ_SF9, 0 );
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_UE0_TRX_READ_NS, rxs );
if (rxs != (UE->frame_parms.ofdm_symbol_size)) {
LOG_E(PHY, "problem in rx 7! expect #samples=%d but got only %d! rx_off_diff=%d\n", UE->frame_parms.ofdm_symbol_size+UE->frame_parms.nb_prefix_samples0 - rx_off_diff, rxs, rx_off_diff);
exit_fun("problem in rx 7!");
return &UE_thread_retval;
}
UE->rx_offset_diff = rx_off_diff;
LOG_D(PHY,"SET rx_off_diff to %d\n",UE->rx_offset_diff);
rx_off_diff = 0;
}
(void**)UE->common_vars.rxdata,
first_symbols,
UE->frame_parms.nb_antennas_rx),"");
if ( first_symbols <0 )
LOG_E(PHY,"can't compensate: diff =%d\n", first_symbols);
}
pickTime(gotIQs);
// operate on thread sf mod 2
uint8_t proc_select = sf&1;
UE_rxtx_proc_t *proc = &UE->proc.proc_rxtx[proc_select];
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_LOCK_MUTEX_RXTX_FOR_CNT_INCREMENT0+proc_select, 1 );
// lock mutex
if (pthread_mutex_lock(&proc->mutex_rxtx) != 0) {
LOG_E( PHY, "[SCHED][UE] error locking mutex for UE RX\n" );
exit_fun("nothing to add");
return &UE_thread_retval;
}
// increment instance count and change proc subframe/frame variables
int instance_cnt_rxtx = ++proc->instance_cnt_rxtx;
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME(VCD_SIGNAL_DUMPER_VARIABLES_UE_INST_CNT_RX, proc->instance_cnt_rxtx);
if(sf == 0)
{
AssertFatal(pthread_mutex_lock(&proc->mutex_rxtx) ==0,"");
if(sub_frame == 0) {
UE->proc.proc_rxtx[0].frame_rx++;
UE->proc.proc_rxtx[1].frame_rx++;
}
proc->subframe_rx=sf;
proc->subframe_tx=(sf+4)%10;
proc->frame_tx = proc->frame_rx + ((proc->subframe_rx>5)?1:0);
proc->timestamp_tx = timestamp+(4*UE->frame_parms.samples_per_tti)-UE->frame_parms.ofdm_symbol_size-UE->frame_parms.nb_prefix_samples0;
#if T_TRACER
T(T_UE_MASTER_TICK, T_INT(0), T_INT(proc->frame_rx%1024), T_INT(proc->subframe_rx));
#endif
/*
if (sf != (timestamp/UE->frame_parms.samples_per_tti)%10) {
LOG_E(PHY,"steady-state UE_thread error : frame_rx %d, subframe_rx %d, frame_tx %d, subframe_tx %d, rx subframe %d\n",proc->frame_rx,proc->subframe_rx,proc->frame_tx,proc->subframe_tx,(timestamp/UE->frame_parms.samples_per_tti)%10);
exit(-1);
}
*/
if (pthread_mutex_unlock(&proc->mutex_rxtx) != 0) {
LOG_E( PHY, "[SCHED][UE] error unlocking mutex for UE RX\n" );
exit_fun("nothing to add");
return &UE_thread_retval;
}
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_LOCK_MUTEX_RXTX_FOR_CNT_INCREMENT0+proc_select, 0 );
if (instance_cnt_rxtx == 0) {
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_SIGNAL_COND_RXTX0+proc_select, 1 );
if (pthread_cond_signal(&proc->cond_rxtx) != 0) {
LOG_E( PHY, "[SCHED][UE] ERROR pthread_cond_signal for UE RX thread\n" );
exit_fun("nothing to add");
return &UE_thread_retval;
}
LOG_D(PHY, "firing up rxtx_thread[%d] at subframe %d\n", proc_select, sf);
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_SIGNAL_COND_RXTX0+proc_select, 0 );
UE->proc.proc_rxtx[0].gotIQs=readTime(gotIQs);
UE->proc.proc_rxtx[1].gotIQs=readTime(gotIQs);
proc->subframe_rx=sub_frame;
proc->subframe_tx=(sub_frame+4)%10;
proc->frame_tx = proc->frame_rx + (proc->subframe_rx>5?1:0);
proc->timestamp_tx = timestamp+
(4*UE->frame_parms.samples_per_tti)-
UE->frame_parms.ofdm_symbol_size-UE->frame_parms.nb_prefix_samples0;
AssertFatal (pthread_cond_signal(&proc->cond_rxtx) ==0 ,"");
AssertFatal(pthread_mutex_unlock(&proc->mutex_rxtx) ==0,"");
initRefTimes(t1);
initStaticTime(lastTime);
updateTimes(lastTime, &t1, 20000, "Delay between two IQ acquisitions (case 1)");
pickStaticTime(lastTime);
} else {
LOG_E( PHY, "[SCHED][UE] UE RX thread busy (IC %d)!!\n", instance_cnt_rxtx);
if (instance_cnt_rxtx > 2) {
sleep(1);
exit_fun("instance_cnt_rxtx > 2");
return &UE_thread_retval;
}
}
if (UE->mode == loop_through_memory) {
printf("Processing subframe %d",proc->subframe_rx);
getchar();
}
}// for sf=0..10
uint8_t proc_select = 9&1;
UE_rxtx_proc_t *proc = &UE->proc.proc_rxtx[proc_select];
if (UE->no_timing_correction == 0) {
if ((UE->rx_offset<(5*UE->frame_parms.samples_per_tti)) &&
(UE->rx_offset > 0) &&
(rx_correction_timer == 0)) {
rx_off_diff = -1 ;
LOG_D(PHY,"AbsSubframe %d.%d UE->rx_offset %d > %d, diff %d\n",proc->frame_rx,proc->subframe_rx,UE->rx_offset,0,rx_off_diff);
rx_correction_timer = 5;
} else if ((UE->rx_offset>(5*UE->frame_parms.samples_per_tti)) &&
(UE->rx_offset < ((10*UE->frame_parms.samples_per_tti))) &&
(rx_correction_timer == 0)) { // moving to the left so drop rx_off_diff samples
rx_off_diff = 1;
LOG_D(PHY,"AbsSubframe %d.%d UE->rx_offset %d < %d, diff %d\n",proc->frame_rx,proc->subframe_rx,UE->rx_offset,10*UE->frame_parms.samples_per_tti,rx_off_diff);
rx_correction_timer = 5;
}
if (rx_correction_timer>0)
rx_correction_timer--;
}
} // start_rx_stream==1
} // UE->is_synchronized==1
} // while !oai_exit
return NULL;
} // UE_thread
/*
void *UE_thread_old(void *arg)
{
UNUSED(arg)
static int UE_thread_retval;
PHY_VARS_UE *UE = PHY_vars_UE_g[0][0];
int spp = openair0_cfg[0].samples_per_packet;
int slot=1, frame=0, hw_subframe=0, rxpos=0, txpos=openair0_cfg[0].tx_scheduling_advance;
#ifdef __AVX2__
int dummy[2][spp] __attribute__((aligned(32)));
#else
int dummy[2][spp] __attribute__((aligned(16)));
#endif
int dummy_dump = 0;
int tx_enabled = 0;
int start_rx_stream = 0;
int rx_off_diff = 0;
int rx_correction_timer = 0;
int first_rx = 0;
RTIME T0;
unsigned int rxs;
void* rxp[2];
openair0_timestamp timestamp;
#ifdef NAS_UE
MessageDef *message_p;
#endif
#ifdef DEADLINE_SCHEDULER
struct sched_attr attr;
unsigned int flags = 0;
attr.size = sizeof(attr);
attr.sched_flags = 0;
attr.sched_nice = 0;
attr.sched_priority = 0;//sched_get_priority_max(SCHED_DEADLINE);
// This creates a .5 ms reservation
attr.sched_policy = SCHED_DEADLINE;
attr.sched_runtime = 100000;
attr.sched_deadline = 500000;
attr.sched_period = 500000;
if (sched_setattr(0, &attr, flags) < 0 ) {
perror("[SCHED] main eNB thread: sched_setattr failed\n");
exit_fun("Nothing to add");
return &UE_thread_retval;
}
LOG_I(HW,"[SCHED][eNB] eNB main deadline thread %lu started on CPU %d\n",
(unsigned long)gettid(), sched_getcpu());
#else
struct sched_param sp;
sp.sched_priority = sched_get_priority_max(SCHED_FIFO);
pthread_setschedparam(pthread_self(),SCHED_FIFO,&sp);
#endif
// Lock memory from swapping. This is a process wide call (not constraint to this thread).
mlockall(MCL_CURRENT | MCL_FUTURE);
printf("waiting for sync (UE_thread)\n");
pthread_mutex_lock(&sync_mutex);
printf("Locked sync_mutex, waiting (UE_thread)\n");
while (sync_var<0)
pthread_cond_wait(&sync_cond, &sync_mutex);
pthread_mutex_unlock(&sync_mutex);
printf("unlocked sync_mutex, waiting (UE_thread)\n");
printf("starting UE thread\n");
#ifdef NAS_UE
message_p = itti_alloc_new_message(TASK_NAS_UE, INITIALIZE_MESSAGE);
itti_send_msg_to_task (TASK_NAS_UE, INSTANCE_DEFAULT, message_p);
#endif
T0 = rt_get_time_ns();
first_rx = 1;
rxpos=0;
while (!oai_exit) {
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_HW_SUBFRAME, hw_subframe );
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_HW_FRAME, frame );
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_DUMMY_DUMP, dummy_dump );
while (rxpos < (1+hw_subframe)*UE->frame_parms.samples_per_tti) {
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_READ, 1 );
#ifndef USRP_DEBUG
DevAssert( UE->frame_parms.nb_antennas_rx <= 2 );
void* rxp[2];
for (int i=0; i<UE->frame_parms.nb_antennas_rx; i++)
rxp[i] = (dummy_dump==0) ? (void*)&rxdata[i][rxpos] : (void*)dummy[i];
if (UE->mode != loop_through_memory) {
rxs = UE->rfdevice.trx_read_func(&UE->rfdevice,
&timestamp,
rxp,
spp - ((first_rx==1) ? rx_off_diff : 0),
UE->frame_parms.nb_antennas_rx);
if (rxs != (spp- ((first_rx==1) ? rx_off_diff : 0))) {
printf("rx error: asked %d got %d ",spp - ((first_rx==1) ? rx_off_diff : 0),rxs);
if (UE->is_synchronized == 1) {
exit_fun("problem in rx");
return &UE_thread_retval;
}
}
}
if (rx_off_diff !=0)
LOG_D(PHY,"frame %d, rx_offset %d, rx_off_diff %d\n",UE->frame_rx,UE->rx_offset,rx_off_diff);
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_READ, 0 );
// Transmit TX buffer based on timestamp from RX
if ((tx_enabled==1) && (UE->mode!=loop_through_memory)) {
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_WRITE, 1 );
DevAssert( UE->frame_parms.nb_antennas_tx <= 2 );
void* txp[2];
for (int i=0; i<UE->frame_parms.nb_antennas_tx; i++)
txp[i] = (void*)&txdata[i][txpos];
UE->rfdevice.trx_write_func(&openair0,
(timestamp+openair0_cfg[0].tx_scheduling_advance-openair0_cfg[0].tx_sample_advance),
txp,
spp - ((first_rx==1) ? rx_off_diff : 0),
UE->frame_parms.nb_antennas_tx,
1);
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_WRITE, 0 );
}
else if (UE->mode == loop_through_memory)
rt_sleep_ns(1000000);
#else
// define USRP_DEBUG is active
rt_sleep_ns(1000000);
#endif
rx_off_diff = 0;
first_rx = 0;
rxpos += spp;
txpos += spp;
if (txpos >= 10*PHY_vars_UE_g[0][0]->frame_parms.samples_per_tti)
txpos -= 10*PHY_vars_UE_g[0][0]->frame_parms.samples_per_tti;
}
if (rxpos >= 10*PHY_vars_UE_g[0][0]->frame_parms.samples_per_tti)
rxpos -= 10*PHY_vars_UE_g[0][0]->frame_parms.samples_per_tti;
if (UE->is_synchronized == 1) {
LOG_D( HW, "UE_thread: hw_frame %d, hw_subframe %d (time %lli)\n", frame, hw_subframe, rt_get_time_ns()-T0 );
if (start_rx_stream == 1) {
LOG_D(PHY,"Locking mutex_rx (IC %d)\n",UE->instance_cnt_rx);
if (pthread_mutex_lock(&UE->mutex_rx) != 0) {
LOG_E( PHY, "[SCHED][UE] error locking mutex for UE RX thread\n" );
exit_fun("nothing to add");
return &UE_thread_retval;
}
int instance_cnt_rx = ++UE->instance_cnt_rx;
LOG_D(PHY,"Unlocking mutex_rx (IC %d)\n",instance_cnt_rx);
if (pthread_mutex_unlock(&UE->mutex_rx) != 0) {
LOG_E( PHY, "[SCHED][UE] error unlocking mutex for UE RX thread\n" );
exit_fun("nothing to add");
return &UE_thread_retval;
}
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME(VCD_SIGNAL_DUMPER_VARIABLES_UE_INST_CNT_RX, instance_cnt_rx);
if (instance_cnt_rx == 0) {
LOG_D(HW,"signalling rx thread to wake up, hw_frame %d, hw_subframe %d (time %lli)\n", frame, hw_subframe, rt_get_time_ns()-T0 );
if (pthread_cond_signal(&UE->proc.cond_rx) != 0) {
LOG_E( PHY, "[SCHED][UE] ERROR pthread_cond_signal for UE RX thread\n" );
exit_fun("nothing to add");
return &UE_thread_retval;
}
LOG_D(HW,"signalled rx thread to wake up, hw_frame %d, hw_subframe %d (time %lli)\n", frame, hw_subframe, rt_get_time_ns()-T0 );
if (UE->mode == loop_through_memory) {
printf("Processing subframe %d",UE->slot_rx>>1);
getchar();
}
if (UE->mode == rx_calib_ue) {
if (frame == 10) {
LOG_D(PHY,
"[SCHED][UE] Found cell with N_RB_DL %"PRIu8", PHICH CONFIG (%d,%d), Nid_cell %"PRIu16", NB_ANTENNAS_TX %"PRIu8", frequency offset "PRIi32" Hz, RSSI (digital) %hu dB, measured Gain %d dB, total_rx_gain %"PRIu32" dB, USRP rx gain %f dB\n",
UE->frame_parms.N_RB_DL,
UE->frame_parms.phich_config_common.phich_duration,
UE->frame_parms.phich_config_common.phich_resource,
UE->frame_parms.Nid_cell,
UE->frame_parms.nb_antennas_tx_eNB,
UE->common_vars.freq_offset,
UE->measurements.rx_power_avg_dB[0],
UE->measurements.rx_power_avg_dB[0] - rx_input_level_dBm,
UE->rx_total_gain_dB,
openair0_cfg[0].rx_gain[0]
);
exit_fun("[HW][UE] UE in RX calibration mode, exiting");
return &UE_thread_retval;
}
}
} else {
LOG_E( PHY, "[SCHED][UE] UE RX thread busy (IC %d)!!\n", instance_cnt_rx);
if (instance_cnt_rx > 2) {
exit_fun("instance_cnt_rx > 1");
return &UE_thread_retval;
}
}
if ((tx_enabled==1)&&(UE->mode != loop_through_memory)) {
if (pthread_mutex_lock(&UE->mutex_tx) != 0) {
LOG_E( PHY, "[SCHED][UE] error locking mutex for UE TX thread\n" );
exit_fun("nothing to add");
return &UE_thread_retval;
}
int instance_cnt_tx = ++UE->instance_cnt_tx;
if (pthread_mutex_unlock(&UE->mutex_tx) != 0) {
LOG_E( PHY, "[SCHED][UE] error unlocking mutex for UE TX thread\n" );
exit_fun("nothing to add");
return &UE_thread_retval;
}
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME(VCD_SIGNAL_DUMPER_VARIABLES_UE_INST_CNT_TX, instance_cnt_tx);
if (instance_cnt_tx == 0) {
if (pthread_cond_signal(&UE->cond_tx) != 0) {
LOG_E( PHY, "[SCHED][UE] ERROR pthread_cond_signal for UE TX thread\n" );
exit_fun("nothing to add");
return &UE_thread_retval;
}
LOG_D(HW,"signalled tx thread to wake up, hw_frame %d, hw_subframe %d (time %lli)\n", frame, hw_subframe, rt_get_time_ns()-T0 );
} else {
LOG_E( PHY, "[SCHED][UE] UE TX thread busy (IC %d)!!\n" );
if (instance_cnt_tx>2) {
exit_fun("instance_cnt_tx > 1");
return &UE_thread_retval;
}
}
}
}
} else {
// we are not yet synchronized
if ((hw_subframe == 9) && (dummy_dump == 0)) {
// Wake up initial synch thread
if (pthread_mutex_lock(&UE->mutex_synch) != 0) {
LOG_E( PHY, "[SCHED][UE] error locking mutex for UE initial synch thread\n" );
exit_fun("nothing to add");
return &UE_thread_retval;
}
int instance_cnt_synch = ++UE->instance_cnt_synch;
if (pthread_mutex_unlock(&UE->mutex_synch) != 0) {
LOG_E( PHY, "[SCHED][UE] error unlocking mutex for UE initial synch thread\n" );
exit_fun("nothing to add");
return &UE_thread_retval;
}
dummy_dump = 1;
if (instance_cnt_synch == 0) {
if (pthread_cond_signal(&UE->cond_synch) != 0) {
LOG_E( PHY, "[SCHED][UE] ERROR pthread_cond_signal for UE sync thread\n" );
exit_fun("nothing to add");
return &UE_thread_retval;
}
} else {
LOG_E( PHY, "[SCHED][UE] UE sync thread busy!!\n" );
exit_fun("nothing to add");
return &UE_thread_retval;
}
}
}
hw_subframe++;
slot+=2;
if (hw_subframe==10) {
hw_subframe = 0;
first_rx = 1;
frame++;
slot = 1;
int fail = pthread_mutex_lock(&UE->mutex_synch);
int instance_cnt_synch = UE->instance_cnt_synch;
fail = fail || pthread_mutex_unlock(&UE->mutex_synch);
if (fail) {
LOG_E( PHY, "[SCHED][UE] error (un-)locking mutex for UE synch\n" );
exit_fun("noting to add");
return &UE_thread_retval;
}
if (instance_cnt_synch < 0) {
// the UE_thread_synch is ready
if (UE->is_synchronized == 1) {
rx_off_diff = 0;
LTE_DL_FRAME_PARMS *frame_parms = &UE->frame_parms; // for macro FRAME_LENGTH_COMPLEX_SAMPLES
// LOG_I(PHY,"UE->rx_offset %d\n",UE->rx_offset);
if ((UE->rx_offset > RX_OFF_MAX) && (start_rx_stream == 0)) {
start_rx_stream=1;
frame=0;
// dump ahead in time to start of frame
#ifndef USRP_DEBUG
if (UE->mode != loop_through_memory) {
LOG_I(PHY,"Resynchronizing RX by %d samples\n",UE->rx_offset);
rxs = UE->rfdevice.trx_read_func(&UE->rfdevice,
&timestamp,
(void**)rxdata,
UE->rx_offset,
UE->frame_parms.nb_antennas_rx);
if (rxs != UE->rx_offset) {
exit_fun("problem in rx");
return &UE_thread_retval;
}
UE->rx_offset=0;
tx_enabled = 1;
}
else
rt_sleep_ns(1000000);
#else
rt_sleep_ns(10000000);
#endif
} else if ((UE->rx_offset<(FRAME_LENGTH_COMPLEX_SAMPLES/2)) &&
(UE->rx_offset > RX_OFF_MIN) &&
(start_rx_stream==1) &&
(rx_correction_timer == 0)) {
rx_off_diff = -UE->rx_offset + RX_OFF_MIN;
LOG_D(PHY,"UE->rx_offset %d > %d, diff %d\n",UE->rx_offset,RX_OFF_MIN,rx_off_diff);
rx_correction_timer = 5;
} else if ((UE->rx_offset>(FRAME_LENGTH_COMPLEX_SAMPLES/2)) &&
(UE->rx_offset < (FRAME_LENGTH_COMPLEX_SAMPLES-RX_OFF_MIN)) &&
(start_rx_stream==1) &&
(rx_correction_timer == 0)) { // moving to the left so drop rx_off_diff samples
rx_off_diff = FRAME_LENGTH_COMPLEX_SAMPLES - RX_OFF_MIN - UE->rx_offset;
LOG_D(PHY,"UE->rx_offset %d < %d, diff %d\n",UE->rx_offset,FRAME_LENGTH_COMPLEX_SAMPLES-RX_OFF_MIN,rx_off_diff);
rx_correction_timer = 5;
}
if (rx_correction_timer>0)
rx_correction_timer--;
}
dummy_dump=0;
}
}
#if defined(ENABLE_ITTI)
itti_update_lte_time(frame, slot);
#endif
}
return &UE_thread_retval;
}
*/
/*!
* \brief Initialize the UE theads.
* Creates the UE threads:
......@@ -1703,57 +794,30 @@ void *UE_thread_old(void *arg)
* - UE_thread_synch
* and the locking between them.
*/
void init_UE_threads(int inst)
{
struct rx_tx_thread_data *rtd;
char name[128];
PHY_VARS_UE *UE;
UE = PHY_vars_UE_g[inst][0];
void init_UE_threads(PHY_VARS_UE *UE) {
pthread_attr_init (&UE->proc.attr_ue);
pthread_attr_setstacksize(&UE->proc.attr_ue,8192);//5*PTHREAD_STACK_MIN);
#ifndef LOWLATENCY
UE->proc.sched_param_ue.sched_priority = sched_get_priority_max(SCHED_FIFO);
pthread_attr_setschedparam(&UE->proc.attr_ue,&sched_param_UE_thread);
#endif
// the threads are not yet active, therefore access is allowed without locking
UE->proc.proc_rxtx[0].instance_cnt_rxtx = -1;
UE->proc.proc_rxtx[1].instance_cnt_rxtx = -1;
UE->proc.proc_rxtx[0].proc_id = 0;
UE->proc.proc_rxtx[1].proc_id = 1;
UE->proc.instance_cnt_synch = -1;
pthread_mutex_init(&UE->proc.proc_rxtx[0].mutex_rxtx,NULL);
pthread_mutex_init(&UE->proc.proc_rxtx[1].mutex_rxtx,NULL);
pthread_mutex_init(&UE->proc.mutex_synch,NULL);
pthread_cond_init(&UE->proc.proc_rxtx[0].cond_rxtx,NULL);
pthread_cond_init(&UE->proc.proc_rxtx[1].cond_rxtx,NULL);
pthread_cond_init(&UE->proc.cond_synch,NULL);
rtd = calloc(1, sizeof(struct rx_tx_thread_data));
if (rtd == NULL) abort();
rtd->UE = PHY_vars_UE_g[inst][UE->proc.proc_rxtx[0].CC_id];
rtd->proc = &UE->proc.proc_rxtx[0];
pthread_create(&UE->proc.proc_rxtx[0].pthread_rxtx,NULL,UE_thread_rxn_txnp4,rtd);//(void*)&UE->proc.proc_rxtx[0]);
sprintf(name, "rxn_txnp4_even UE %d", inst);
pthread_setname_np(UE->proc.proc_rxtx[0].pthread_rxtx, name);
rtd = calloc(1, sizeof(struct rx_tx_thread_data));
if (rtd == NULL) abort();
rtd->UE = PHY_vars_UE_g[inst][UE->proc.proc_rxtx[1].CC_id];
rtd->proc = &UE->proc.proc_rxtx[1];
pthread_create(&UE->proc.proc_rxtx[1].pthread_rxtx,NULL,UE_thread_rxn_txnp4,rtd);//(void*)&UE->proc.proc_rxtx[1]);
sprintf(name, "rxn_txnp4_odd UE %d", inst);
pthread_setname_np(UE->proc.proc_rxtx[1].pthread_rxtx, name);
// the threads are not yet active, therefore access is allowed without locking
int nb_threads=2;
for (int i=0; i<nb_threads; i++) {
pthread_mutex_init(&UE->proc.proc_rxtx[i].mutex_rxtx,NULL);
pthread_cond_init(&UE->proc.proc_rxtx[i].cond_rxtx,NULL);
UE->proc.proc_rxtx[i].sub_frame_start=i;
UE->proc.proc_rxtx[i].sub_frame_step=nb_threads;
pthread_create(&UE->proc.proc_rxtx[i].pthread_rxtx,NULL,UE_thread_rxn_txnp4,(void*)&UE->proc.proc_rxtx[i]);
}
pthread_create(&UE->proc.pthread_synch,NULL,UE_thread_synch,(void*)UE);
sprintf(name, "UE_thread_synch UE %d", inst);
pthread_setname_np(UE->proc.pthread_synch, name);
}
#ifdef OPENAIR2
void fill_ue_band_info(void)
{
void fill_ue_band_info(void) {
UE_EUTRA_Capability_t *UE_EUTRA_Capability = UE_rrc_inst[0].UECap->UE_EUTRA_Capability;
int i,j;
......@@ -1782,8 +846,7 @@ void fill_ue_band_info(void)
}
#endif
int setup_ue_buffers(PHY_VARS_UE **phy_vars_ue, openair0_config_t *openair0_cfg)
{
int setup_ue_buffers(PHY_VARS_UE **phy_vars_ue, openair0_config_t *openair0_cfg) {
int i, CC_id;
LTE_DL_FRAME_PARMS *frame_parms;
......@@ -1792,50 +855,34 @@ int setup_ue_buffers(PHY_VARS_UE **phy_vars_ue, openair0_config_t *openair0_cfg)
for (CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
rf_map = &phy_vars_ue[CC_id]->rf_map;
if (phy_vars_ue[CC_id]) {
AssertFatal( phy_vars_ue[CC_id] !=0, "");
frame_parms = &(phy_vars_ue[CC_id]->frame_parms);
} else {
printf("phy_vars_UE[%d] not initialized\n", CC_id);
return(-1);
}
/*
if (frame_parms->frame_type == TDD) {
if (frame_parms->N_RB_DL == 100)
N_TA_offset = 624;
else if (frame_parms->N_RB_DL == 50)
N_TA_offset = 624/2;
else if (frame_parms->N_RB_DL == 25)
N_TA_offset = 624/4;
}
*/
// replace RX signal buffers with mmaped HW versions
rxdata = (int32_t**)malloc16( frame_parms->nb_antennas_rx*sizeof(int32_t*) );
txdata = (int32_t**)malloc16( frame_parms->nb_antennas_tx*sizeof(int32_t*) );
for (i=0; i<frame_parms->nb_antennas_rx; i++) {
printf( "Mapping UE CC_id %d, rx_ant %d, freq %u on card %d, chain %d\n", CC_id, i, downlink_frequency[CC_id][i], rf_map->card, rf_map->chain+i );
LOG_I(PHY, "Mapping UE CC_id %d, rx_ant %d, freq %u on card %d, chain %d\n",
CC_id, i, downlink_frequency[CC_id][i], rf_map->card, rf_map->chain+i );
free( phy_vars_ue[CC_id]->common_vars.rxdata[i] );
rxdata[i] = (int32_t*)malloc16_clear( 307200*sizeof(int32_t) );
phy_vars_ue[CC_id]->common_vars.rxdata[i] = rxdata[i]; // what about the "-N_TA_offset" ? // N_TA offset for TDD
printf("rxdata[%d] : %p\n",i,rxdata[i]);
}
for (i=0; i<frame_parms->nb_antennas_tx; i++) {
printf( "Mapping UE CC_id %d, tx_ant %d, freq %u on card %d, chain %d\n", CC_id, i, downlink_frequency[CC_id][i], rf_map->card, rf_map->chain+i );
LOG_I(PHY, "Mapping UE CC_id %d, tx_ant %d, freq %u on card %d, chain %d\n",
CC_id, i, downlink_frequency[CC_id][i], rf_map->card, rf_map->chain+i );
free( phy_vars_ue[CC_id]->common_vars.txdata[i] );
txdata[i] = (int32_t*)malloc16_clear( 307200*sizeof(int32_t) );
phy_vars_ue[CC_id]->common_vars.txdata[i] = txdata[i];
printf("txdata[%d] : %p\n",i,txdata[i]);
}
// rxdata[x] points now to the same memory region as phy_vars_ue[CC_id]->common_vars.rxdata[x]
// txdata[x] points now to the same memory region as phy_vars_ue[CC_id]->common_vars.txdata[x]
// be careful when releasing memory!
// because no "release_ue_buffers"-function is available, at least rxdata and txdata memory will leak (only some bytes)
}
return 0;
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment