This function performs optimized componentwise multiplication of two Q1.15 vectors. The output IS ADDED TO y. WARNING: make sure that output_shift is set to the right value, so that the result of the multiplication has the comma at the same place as y.
@param x1 Input 1 in the format |Re0 Im0 Re0 Im0|,......,|Re(N-1) Im(N-1) Re(N-1) Im(N-1)|
//cmult_vv.c
@param x2 Input 2 in the format |Re0 -Im0 Im0 Re0|,......,|Re(N-1) -Im(N-1) Im(N-1) Re(N-1)|
/*!
@param y Output in the format |Re0 Im0 Re0 Im0|,......,|Re(N-1) Im(N-1) Re(N-1) Im(N-1)|
Multiply elementwise the complex conjugate of x1 with x2.
@param N Length of Vector WARNING: N>=4
@param x1 - input 1 in the format |Re0 Im0 Re1 Im1|,......,|Re(N-2) Im(N-2) Re(N-1) Im(N-1)|
@param output_shift Number of bits to shift output down to Q1.15 (should be 15 for Q1.15 inputs) WARNING: log2_amp>0 can cause overflow!!
We assume x1 with a dinamic of 15 bit maximum
@param x2 - input 2 in the format |Re0 Im0 Re1 Im1|,......,|Re(N-2) Im(N-2) Re(N-1) Im(N-1)|
The function implemented is : \f$\mathbf{y} += \mathbf{x_1}\odot\mathbf{x_2}\f$
We assume x2 with a dinamic of 14 bit maximum
@param y - output in the format |Re0 Im0 Re1 Im1|,......,|Re(N-2) Im(N-2) Re(N-1) Im(N-1)|
@param N - the size f the vectors (this function does N cpx mpy. WARNING: N>=4;
@param output_shift - shift to be applied to generate output
This function performs optimized componentwise multiplication of the vector x1 with the conjugate of the vector x2. The output IS ADDED TO y. WARNING: make sure that output_shift is set to the right value, so that the result of the multiplication has the comma at the same place as y.
@param x1 Input 1 in the format |Re0 Im0 Re0 Im0|,......,|Re(N-1) Im(N-1) Re(N-1) Im(N-1)|
@param x2 Input 2 in the format |Re0 Im0 Re0 Im0|,......,|Re(N-1) Im(N-1) Re(N-1) Im(N-1)|
@param y Output in the format |Re0 Im0 Re0 Im0|,......,|Re(N-1) Im(N-1) Re(N-1) Im(N-1)|
@param N Length of Vector (complex samples) WARNING: N>=4
@param output_shift Number of bits to shift output down to Q1.15 (should be 15 for Q1.15 inputs) WARNING: log2_amp>0 can cause overflow!!
@param sign +1..add, -1..substract
The function implemented is : \f$\mathbf{y} = \mathbf{y} + \mathbf{x_1}\odot\mathbf{x_2}^*\f$
This function performs optimized componentwise matrix multiplication of the 2x2 matrices x1 with the 2x2 matrices x2. The output IS ADDED TO y (i.e. make sure y is initilized correctly). WARNING: make sure that output_shift is set to the right value, so that the result of the multiplication has the comma at the same place as y.
@param x1 Input 1 in the format |Re0 Im0 Re0 Im0|,......,|Re(N-1) Im(N-1) Re(N-1) Im(N-1)|
@param x2 Input 2 in the format |Re0 Im0 Re0 Im0|,......,|Re(N-1) Im(N-1) Re(N-1) Im(N-1)|
@param y Output in the format |Re0 Im0 Re0 Im0|,......,|Re(N-1) Im(N-1) Re(N-1) Im(N-1)|
@param N Length of Vector (complex samples) WARNING: N>=4
@param output_shift Number of bits to shift output down to Q1.15 (should be 15 for Q1.15 inputs) WARNING: log2_amp>0 can cause overflow!!
@param hermitian if !=0 the hermitian transpose is returned (i.e. A^H*B instead of A*B^H)
This function performs optimized componentwise matrix-vector multiplication of the 2x2 matrices x1 with the 2x1 vectors x2. The output IS ADDED TO y (i.e. make sure y is initilized correctly). WARNING: make sure that output_shift is set to the right value, so that the result of the multiplication has the comma at the same place as y.
@param x1 Input 1 in the format |Re0 Im0 Re0 Im0|,......,|Re(N-1) Im(N-1) Re(N-1) Im(N-1)|
@param x2 Input 2 in the format |Re0 -Im0 Im0 Re0|,......,|Re(N-1) -Im(N-1) Im(N-1) Re(N-1)|
@param y Output in the format |Re0 Im0 Re0 Im0|,......,|Re(N-1) Im(N-1) Re(N-1) Im(N-1)| WARNING: y must be different for x2
@param N Length of Vector (complex samples) WARNING: N>=4
@param output_shift Number of bits to shift output down to Q1.15 (should be 15 for Q1.15 inputs) WARNING: log2_amp>0 can cause overflow!!