Commit bedc5bea authored by Laurent THOMAS's avatar Laurent THOMAS

remove a gcc warning while making the code a bit simpler

parent d26f0b91
......@@ -104,263 +104,320 @@ nfapi_nr_pm_list_t init_DL_MIMO_codebook(gNB_MAC_INST *gNB, nr_pdsch_AntennaPort
nfapi_nr_pm_pdu_t *pmi_pdu = malloc16(mat.num_pm_idx * sizeof(*pmi_pdu));
AssertFatal(pmi_pdu != NULL, "out of memory\n");
mat.pmi_pdu = pmi_pdu;
AssertFatal(num_antenna_ports < 16, "Max number of antenna ports supported is currently 16\n");
// Generation of codebook Type1 with codebookMode 1 (num_antenna_ports < 16)
if (num_antenna_ports < 16) {
//Generate DFT vertical beams
//ll: index of a vertical beams vector (represented by i1_1 in TS 38.214)
const int max_l = N1 * O1 + (K1 - 1) * O1;
double complex v[max_l][N1];
for (int ll = 0; ll < max_l; ll++) { //i1_1
for (int nn = 0; nn < N1; nn++) {
v[ll][nn] = cexp(I * (2 * M_PI * nn * ll) / (N1 * O1));
LOG_D(PHY,"v[%d][%d] = %f +j %f\n", ll, nn, creal(v[ll][nn]), cimag(v[ll][nn]));
}
}
//Generate DFT Horizontal beams
//mm: index of a Horizontal beams vector (represented by i1_2 in TS 38.214)
const int max_m = N2 * O2 + (K2 - 1) * O2;
double complex u[max_m][N2];
for (int mm = 0; mm < max_m; mm++) { //i1_2
for (int nn = 0; nn < N2; nn++) {
u[mm][nn] = cexp(I * (2 * M_PI * nn * mm) / (N2 * O2));
LOG_D(PHY,"u[%d][%d] = %f +j %f\n", mm, nn, creal(u[mm][nn]), cimag(u[mm][nn]));
}
// Generate DFT vertical beams
// ll: index of a vertical beams vector (represented by i1_1 in TS 38.214)
const int max_l = N1 * O1 + (K1 - 1) * O1;
double complex v[max_l][N1];
for (int ll = 0; ll < max_l; ll++) { // i1_1
for (int nn = 0; nn < N1; nn++) {
v[ll][nn] = cexp(I * (2 * M_PI * nn * ll) / (N1 * O1));
LOG_D(PHY, "v[%d][%d] = %f +j %f\n", ll, nn, creal(v[ll][nn]), cimag(v[ll][nn]));
}
//Generate co-phasing angles
//i_2: index of a co-phasing vector
//i1_1, i1_2, and i_2 are reported from UEs
double complex theta_n[4];
for (int nn = 0; nn < 4; nn++) {
theta_n[nn] = cexp(I * M_PI * nn / 2);
LOG_D(PHY,"theta_n[%d] = %f +j %f\n", nn, creal(theta_n[nn]), cimag(theta_n[nn]));
}
// Generate DFT Horizontal beams
// mm: index of a Horizontal beams vector (represented by i1_2 in TS 38.214)
const int max_m = N2 * O2 + (K2 - 1) * O2;
double complex u[max_m][N2];
for (int mm = 0; mm < max_m; mm++) { // i1_2
for (int nn = 0; nn < N2; nn++) {
u[mm][nn] = cexp(I * (2 * M_PI * nn * mm) / (N2 * O2));
LOG_D(PHY, "u[%d][%d] = %f +j %f\n", mm, nn, creal(u[mm][nn]), cimag(u[mm][nn]));
}
//Kronecker product v_lm
double complex v_lm[max_l][max_m][N2 * N1];
//v_ll_mm_codebook denotes the elements of a precoding matrix W_i1,1_i_1,2
for(int ll = 0; ll < max_l; ll++) { //i_1_1
for (int mm = 0; mm < max_m; mm++) { //i_1_2
for (int nn1 = 0; nn1 < N1; nn1++) {
for (int nn2 = 0; nn2 < N2; nn2++) {
v_lm[ll][mm][nn1 * N2 + nn2] = v[ll][nn1] * u[mm][nn2];
LOG_D(PHY,"v_lm[%d][%d][%d] = %f +j %f\n",ll, mm, nn1 * N2 + nn2, creal(v_lm[ll][mm][nn1*N2+nn2]), cimag(v_lm[ll][mm][nn1*N2+nn2]));
}
}
// Generate co-phasing angles
// i_2: index of a co-phasing vector
// i1_1, i1_2, and i_2 are reported from UEs
double complex theta_n[4];
for (int nn = 0; nn < 4; nn++) {
theta_n[nn] = cexp(I * M_PI * nn / 2);
LOG_D(PHY, "theta_n[%d] = %f +j %f\n", nn, creal(theta_n[nn]), cimag(theta_n[nn]));
}
// Kronecker product v_lm
double complex v_lm[max_l][max_m][N2 * N1];
// v_ll_mm_codebook denotes the elements of a precoding matrix W_i1,1_i_1,2
for (int ll = 0; ll < max_l; ll++) { // i_1_1
for (int mm = 0; mm < max_m; mm++) { // i_1_2
for (int nn1 = 0; nn1 < N1; nn1++) {
for (int nn2 = 0; nn2 < N2; nn2++) {
v_lm[ll][mm][nn1 * N2 + nn2] = v[ll][nn1] * u[mm][nn2];
LOG_D(PHY,
"v_lm[%d][%d][%d] = %f +j %f\n",
ll,
mm,
nn1 * N2 + nn2,
creal(v_lm[ll][mm][nn1 * N2 + nn2]),
cimag(v_lm[ll][mm][nn1 * N2 + nn2]));
}
}
}
}
double complex res_code;
//Table 5.2.2.2.1-5:
int pmiq = 0;
//Codebook for 1-layer CSI reporting using antenna ports 3000 to 2999+PCSI-RS
for(int ll = 0; ll < N1 * O1; ll++) { //i_1_1
for (int mm = 0; mm < N2 * O2; mm++) { //i_1_2
for (int nn = 0; nn < 4; nn++) {
pmiq = ll * N2 * O2 * 4 + mm * 4 + nn;
pmi_pdu[pmiq].pm_idx = pmiq + 1; // index 0 is the identity matrix
pmi_pdu[pmiq].numLayers = 1;
pmi_pdu[pmiq].num_ant_ports = num_antenna_ports;
LOG_D(PHY, "layer 1 Codebook pmiq = %d\n", pmiq);
for (int len = 0; len < N1 * N2; len++) {
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[0][len];
res_code = sqrt( 1 /(double)num_antenna_ports) * v_lm[ll][mm][len];
c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY, "1 Layer Precoding Matrix[0][pmi %d][antPort %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq, len, creal(res_code), cimag(res_code), weights->precoder_weight_Re, weights->precoder_weight_Im);
}
double complex res_code;
// Table 5.2.2.2.1-5:
int pmiq = 0;
// Codebook for 1-layer CSI reporting using antenna ports 3000 to 2999+PCSI-RS
for (int ll = 0; ll < N1 * O1; ll++) { // i_1_1
for (int mm = 0; mm < N2 * O2; mm++) { // i_1_2
for (int nn = 0; nn < 4; nn++) {
pmiq = ll * N2 * O2 * 4 + mm * 4 + nn;
pmi_pdu[pmiq].pm_idx = pmiq + 1; // index 0 is the identity matrix
pmi_pdu[pmiq].numLayers = 1;
pmi_pdu[pmiq].num_ant_ports = num_antenna_ports;
LOG_D(PHY, "layer 1 Codebook pmiq = %d\n", pmiq);
for (int len = 0; len < N1 * N2; len++) {
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[0][len];
res_code = sqrt(1 / (double)num_antenna_ports) * v_lm[ll][mm][len];
c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY,
"1 Layer Precoding Matrix[0][pmi %d][antPort %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq,
len,
creal(res_code),
cimag(res_code),
weights->precoder_weight_Re,
weights->precoder_weight_Im);
}
for(int len = N1 * N2; len < 2 * N1 * N2; len++) {
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[0][len];
res_code = sqrt(1 / (double)num_antenna_ports) * theta_n[nn] * v_lm[ll][mm][len-N1*N2];
c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY, "1 Layer Precoding Matrix[0][pmi %d][antPort %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq, len, creal(res_code), cimag(res_code), weights->precoder_weight_Re, weights->precoder_weight_Im);
}
for (int len = N1 * N2; len < 2 * N1 * N2; len++) {
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[0][len];
res_code = sqrt(1 / (double)num_antenna_ports) * theta_n[nn] * v_lm[ll][mm][len - N1 * N2];
c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY,
"1 Layer Precoding Matrix[0][pmi %d][antPort %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq,
len,
creal(res_code),
cimag(res_code),
weights->precoder_weight_Re,
weights->precoder_weight_Im);
}
}
}
int llc = 0;
int mmc = 0;
double complex phase_sign = 0;
//Table 5.2.2.2.1-6:
//Codebook for 2-layer CSI reporting using antenna ports 3000 to 2999+PCSI-RS
//Compute the code book size for generating 2 layers out of Tx antenna ports
//pmi=1,...,pmi_size, we construct
for(int ll = 0; ll < N1 * O1; ll++) { //i_1_1
for (int mm = 0; mm < N2 * O2; mm++) { // i_1_2
for(int k1 = 0; k1 < K1; k1++) {
for (int k2 = 0; k2 < K2; k2++) {
for (int nn = 0; nn < 2; nn++) { // i_2
pmiq ++;
pmi_pdu[pmiq].pm_idx = pmiq + 1; // index 0 is the identity matrix
pmi_pdu[pmiq].numLayers = 2;
pmi_pdu[pmiq].num_ant_ports = num_antenna_ports;
LOG_D(PHY, "layer 2 Codebook pmiq = %d\n", pmiq);
for(int j_col = 0; j_col < 2; j_col++) {
if (j_col == 0) {
llc = ll;
mmc = mm;
phase_sign = 1;
}
if (j_col == 1) {
llc = ll + k1 * O1;
mmc = mm + k2 * O2;
phase_sign = -1;
}
for (int i_rows = 0; i_rows < N1 * N2; i_rows++) {
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows];
res_code = sqrt(1 / (double)(2 * num_antenna_ports)) * v_lm[llc][mmc][i_rows];
c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY, "2 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq, i_rows, j_col, creal(res_code), cimag(res_code), weights->precoder_weight_Re, weights->precoder_weight_Im);
}
for (int i_rows = N1 * N2; i_rows < 2 * N1 * N2; i_rows++) {
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows];
res_code = sqrt(1 / (double)(2 * num_antenna_ports)) * (phase_sign) * theta_n[nn] * v_lm[llc][mmc][i_rows - N1 * N2];
c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY, "2 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq, i_rows, j_col, creal(res_code), cimag(res_code), weights->precoder_weight_Re, weights->precoder_weight_Im);
}
}
int llc = 0;
int mmc = 0;
double complex phase_sign = 0;
// Table 5.2.2.2.1-6:
// Codebook for 2-layer CSI reporting using antenna ports 3000 to 2999+PCSI-RS
// Compute the code book size for generating 2 layers out of Tx antenna ports
// pmi=1,...,pmi_size, we construct
for (int ll = 0; ll < N1 * O1; ll++) { // i_1_1
for (int mm = 0; mm < N2 * O2; mm++) { // i_1_2
for (int k1 = 0; k1 < K1; k1++) {
for (int k2 = 0; k2 < K2; k2++) {
for (int nn = 0; nn < 2; nn++) { // i_2
pmiq++;
pmi_pdu[pmiq].pm_idx = pmiq + 1; // index 0 is the identity matrix
pmi_pdu[pmiq].numLayers = 2;
pmi_pdu[pmiq].num_ant_ports = num_antenna_ports;
LOG_D(PHY, "layer 2 Codebook pmiq = %d\n", pmiq);
for (int j_col = 0; j_col < 2; j_col++) {
if (j_col == 0) {
llc = ll;
mmc = mm;
phase_sign = 1;
}
if (j_col == 1) {
llc = ll + k1 * O1;
mmc = mm + k2 * O2;
phase_sign = -1;
}
for (int i_rows = 0; i_rows < N1 * N2; i_rows++) {
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows];
res_code = sqrt(1 / (double)(2 * num_antenna_ports)) * v_lm[llc][mmc][i_rows];
c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY,
"2 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq,
i_rows,
j_col,
creal(res_code),
cimag(res_code),
weights->precoder_weight_Re,
weights->precoder_weight_Im);
}
for (int i_rows = N1 * N2; i_rows < 2 * N1 * N2; i_rows++) {
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows];
res_code = sqrt(1 / (double)(2 * num_antenna_ports)) * (phase_sign)*theta_n[nn] * v_lm[llc][mmc][i_rows - N1 * N2];
c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY,
"2 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq,
i_rows,
j_col,
creal(res_code),
cimag(res_code),
weights->precoder_weight_Re,
weights->precoder_weight_Im);
}
}
}
}
}
}
}
if(max_mimo_layers < 3)
return mat;
//Table 5.2.2.2.1-7:
//Codebook for 3-layer CSI reporting using antenna ports 3000 to 2999+PCSI-RS
//pmi=1,...,pmi_size are computed as follows
for(int ll = 0; ll < N1 * O1; ll++) { //i_1_1
for (int mm = 0; mm < N2 * O2; mm++) { // i_1_2
for(int k1 = 0; k1 < K1; k1++) {
for (int k2 = 0; k2 < K2; k2++) {
for (int nn = 0; nn < 2; nn++) { // i_2
pmiq ++;
pmi_pdu[pmiq].pm_idx = pmiq + 1; // index 0 is the identity matrix
pmi_pdu[pmiq].numLayers = 3;
pmi_pdu[pmiq].num_ant_ports = num_antenna_ports;
LOG_D(PHY, "layer 3 Codebook pmiq = %d\n",pmiq);
for(int j_col = 0; j_col < 3; j_col++) {
if (j_col == 0) {
llc = ll;
mmc = mm;
phase_sign = 1;
}
if (j_col==1) {
llc = ll + k1 * O1;
mmc = mm + k2 * O2;
phase_sign = 1;
}
if (j_col==2) {
llc = ll;
mmc = mm;
phase_sign = -1;
}
for (int i_rows = 0; i_rows < N1 * N2; i_rows++) {
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows];
res_code = sqrt(1 / (double)(3 * num_antenna_ports)) * v_lm[llc][mmc][i_rows];
c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY, "3 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq, i_rows, j_col, creal(res_code), cimag(res_code), weights->precoder_weight_Re, weights->precoder_weight_Im);
}
for (int i_rows = N1 * N2; i_rows < 2 * N1 * N2; i_rows++) {
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows];
res_code=sqrt(1 / (double)(3 * num_antenna_ports)) * (phase_sign) * theta_n[nn] * v_lm[llc][mmc][i_rows - N1 * N2];
c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY, "3 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq, i_rows, j_col, creal(res_code), cimag(res_code), weights->precoder_weight_Re, weights->precoder_weight_Im);
}
if (max_mimo_layers < 3)
return mat;
// Table 5.2.2.2.1-7:
// Codebook for 3-layer CSI reporting using antenna ports 3000 to 2999+PCSI-RS
// pmi=1,...,pmi_size are computed as follows
for (int ll = 0; ll < N1 * O1; ll++) { // i_1_1
for (int mm = 0; mm < N2 * O2; mm++) { // i_1_2
for (int k1 = 0; k1 < K1; k1++) {
for (int k2 = 0; k2 < K2; k2++) {
for (int nn = 0; nn < 2; nn++) { // i_2
pmiq++;
pmi_pdu[pmiq].pm_idx = pmiq + 1; // index 0 is the identity matrix
pmi_pdu[pmiq].numLayers = 3;
pmi_pdu[pmiq].num_ant_ports = num_antenna_ports;
LOG_D(PHY, "layer 3 Codebook pmiq = %d\n", pmiq);
for (int j_col = 0; j_col < 3; j_col++) {
if (j_col == 0) {
llc = ll;
mmc = mm;
phase_sign = 1;
}
if (j_col == 1) {
llc = ll + k1 * O1;
mmc = mm + k2 * O2;
phase_sign = 1;
}
if (j_col == 2) {
llc = ll;
mmc = mm;
phase_sign = -1;
}
for (int i_rows = 0; i_rows < N1 * N2; i_rows++) {
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows];
res_code = sqrt(1 / (double)(3 * num_antenna_ports)) * v_lm[llc][mmc][i_rows];
c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY,
"3 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq,
i_rows,
j_col,
creal(res_code),
cimag(res_code),
weights->precoder_weight_Re,
weights->precoder_weight_Im);
}
for (int i_rows = N1 * N2; i_rows < 2 * N1 * N2; i_rows++) {
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows];
res_code = sqrt(1 / (double)(3 * num_antenna_ports)) * (phase_sign)*theta_n[nn] * v_lm[llc][mmc][i_rows - N1 * N2];
c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY,
"3 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq,
i_rows,
j_col,
creal(res_code),
cimag(res_code),
weights->precoder_weight_Re,
weights->precoder_weight_Im);
}
}
}
}
}
}
}
if (max_mimo_layers < 4)
return mat;
if(max_mimo_layers < 4)
return mat;
//Table 5.2.2.2.1-8:
//Codebook for 4-layer CSI reporting using antenna ports 3000 to 2999+PCSI-RS
for(int ll = 0; ll < N1 * O1; ll++) { //i_1_1
for (int mm = 0; mm < N2 * O2; mm++) { // i_1_2
for(int k1 = 0; k1 < K1; k1++) {
for (int k2 = 0; k2 < K2; k2++) {
for (int nn = 0; nn < 2; nn++) { // i_2
pmiq ++;
pmi_pdu[pmiq].pm_idx = pmiq + 1; // index 0 is the identity matrix
pmi_pdu[pmiq].numLayers = 4;
pmi_pdu[pmiq].num_ant_ports = num_antenna_ports;
LOG_D(PHY, "layer 4 pmiq = %d\n", pmiq);
for(int j_col = 0; j_col < 4; j_col++) {
if (j_col == 0) {
llc = ll;
mmc = mm;
phase_sign = 1;
}
if (j_col == 1) {
llc = ll + k1 * O1;
mmc = mm + k2 * O2;
phase_sign = 1;
}
if (j_col == 2) {
llc = ll;
mmc = mm;
phase_sign = -1;
}
if (j_col == 3) {
llc = ll + k1 * O1;
mmc = mm + k2 * O2;
phase_sign = -1;
}
for (int i_rows = 0; i_rows < N1 * N2; i_rows++) {
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows];
res_code=sqrt(1 / (double)(4 * num_antenna_ports)) * v_lm[llc][mmc][i_rows];
c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY, "4 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq, i_rows, j_col, creal(res_code), cimag(res_code), weights->precoder_weight_Re, weights->precoder_weight_Im);
}
for (int i_rows = N1 * N2; i_rows < 2 * N1 * N2; i_rows++) {
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows];
res_code=sqrt(1 / (double)(4 * num_antenna_ports)) * (phase_sign) * theta_n[nn] * v_lm[llc][mmc][i_rows - N1 * N2];
c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY, "4 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq, i_rows, j_col, creal(res_code), cimag(res_code), weights->precoder_weight_Re, weights->precoder_weight_Im);
}
// Table 5.2.2.2.1-8:
// Codebook for 4-layer CSI reporting using antenna ports 3000 to 2999+PCSI-RS
for (int ll = 0; ll < N1 * O1; ll++) { // i_1_1
for (int mm = 0; mm < N2 * O2; mm++) { // i_1_2
for (int k1 = 0; k1 < K1; k1++) {
for (int k2 = 0; k2 < K2; k2++) {
for (int nn = 0; nn < 2; nn++) { // i_2
pmiq++;
pmi_pdu[pmiq].pm_idx = pmiq + 1; // index 0 is the identity matrix
pmi_pdu[pmiq].numLayers = 4;
pmi_pdu[pmiq].num_ant_ports = num_antenna_ports;
LOG_D(PHY, "layer 4 pmiq = %d\n", pmiq);
for (int j_col = 0; j_col < 4; j_col++) {
if (j_col == 0) {
llc = ll;
mmc = mm;
phase_sign = 1;
}
if (j_col == 1) {
llc = ll + k1 * O1;
mmc = mm + k2 * O2;
phase_sign = 1;
}
if (j_col == 2) {
llc = ll;
mmc = mm;
phase_sign = -1;
}
if (j_col == 3) {
llc = ll + k1 * O1;
mmc = mm + k2 * O2;
phase_sign = -1;
}
for (int i_rows = 0; i_rows < N1 * N2; i_rows++) {
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows];
res_code = sqrt(1 / (double)(4 * num_antenna_ports)) * v_lm[llc][mmc][i_rows];
c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY,
"4 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq,
i_rows,
j_col,
creal(res_code),
cimag(res_code),
weights->precoder_weight_Re,
weights->precoder_weight_Im);
}
for (int i_rows = N1 * N2; i_rows < 2 * N1 * N2; i_rows++) {
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows];
res_code = sqrt(1 / (double)(4 * num_antenna_ports)) * (phase_sign)*theta_n[nn] * v_lm[llc][mmc][i_rows - N1 * N2];
c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY,
"4 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq,
i_rows,
j_col,
creal(res_code),
cimag(res_code),
weights->precoder_weight_Re,
weights->precoder_weight_Im);
}
}
}
}
}
}
return mat;
}
else
AssertFatal(false, "Max number of antenna ports supported is currently 16\n");
return mat;
}
static void process_rlcBearerConfig(struct NR_CellGroupConfig__rlc_BearerToAddModList *rlc_bearer2add_list,
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment