Commit bedc5bea authored by Laurent THOMAS's avatar Laurent THOMAS

remove a gcc warning while making the code a bit simpler

parent d26f0b91
...@@ -104,263 +104,320 @@ nfapi_nr_pm_list_t init_DL_MIMO_codebook(gNB_MAC_INST *gNB, nr_pdsch_AntennaPort ...@@ -104,263 +104,320 @@ nfapi_nr_pm_list_t init_DL_MIMO_codebook(gNB_MAC_INST *gNB, nr_pdsch_AntennaPort
nfapi_nr_pm_pdu_t *pmi_pdu = malloc16(mat.num_pm_idx * sizeof(*pmi_pdu)); nfapi_nr_pm_pdu_t *pmi_pdu = malloc16(mat.num_pm_idx * sizeof(*pmi_pdu));
AssertFatal(pmi_pdu != NULL, "out of memory\n"); AssertFatal(pmi_pdu != NULL, "out of memory\n");
mat.pmi_pdu = pmi_pdu; mat.pmi_pdu = pmi_pdu;
AssertFatal(num_antenna_ports < 16, "Max number of antenna ports supported is currently 16\n");
// Generation of codebook Type1 with codebookMode 1 (num_antenna_ports < 16) // Generation of codebook Type1 with codebookMode 1 (num_antenna_ports < 16)
if (num_antenna_ports < 16) { // Generate DFT vertical beams
//Generate DFT vertical beams // ll: index of a vertical beams vector (represented by i1_1 in TS 38.214)
//ll: index of a vertical beams vector (represented by i1_1 in TS 38.214) const int max_l = N1 * O1 + (K1 - 1) * O1;
const int max_l = N1 * O1 + (K1 - 1) * O1; double complex v[max_l][N1];
double complex v[max_l][N1]; for (int ll = 0; ll < max_l; ll++) { // i1_1
for (int ll = 0; ll < max_l; ll++) { //i1_1 for (int nn = 0; nn < N1; nn++) {
for (int nn = 0; nn < N1; nn++) { v[ll][nn] = cexp(I * (2 * M_PI * nn * ll) / (N1 * O1));
v[ll][nn] = cexp(I * (2 * M_PI * nn * ll) / (N1 * O1)); LOG_D(PHY, "v[%d][%d] = %f +j %f\n", ll, nn, creal(v[ll][nn]), cimag(v[ll][nn]));
LOG_D(PHY,"v[%d][%d] = %f +j %f\n", ll, nn, creal(v[ll][nn]), cimag(v[ll][nn]));
}
}
//Generate DFT Horizontal beams
//mm: index of a Horizontal beams vector (represented by i1_2 in TS 38.214)
const int max_m = N2 * O2 + (K2 - 1) * O2;
double complex u[max_m][N2];
for (int mm = 0; mm < max_m; mm++) { //i1_2
for (int nn = 0; nn < N2; nn++) {
u[mm][nn] = cexp(I * (2 * M_PI * nn * mm) / (N2 * O2));
LOG_D(PHY,"u[%d][%d] = %f +j %f\n", mm, nn, creal(u[mm][nn]), cimag(u[mm][nn]));
}
} }
//Generate co-phasing angles }
//i_2: index of a co-phasing vector // Generate DFT Horizontal beams
//i1_1, i1_2, and i_2 are reported from UEs // mm: index of a Horizontal beams vector (represented by i1_2 in TS 38.214)
double complex theta_n[4]; const int max_m = N2 * O2 + (K2 - 1) * O2;
for (int nn = 0; nn < 4; nn++) { double complex u[max_m][N2];
theta_n[nn] = cexp(I * M_PI * nn / 2); for (int mm = 0; mm < max_m; mm++) { // i1_2
LOG_D(PHY,"theta_n[%d] = %f +j %f\n", nn, creal(theta_n[nn]), cimag(theta_n[nn])); for (int nn = 0; nn < N2; nn++) {
u[mm][nn] = cexp(I * (2 * M_PI * nn * mm) / (N2 * O2));
LOG_D(PHY, "u[%d][%d] = %f +j %f\n", mm, nn, creal(u[mm][nn]), cimag(u[mm][nn]));
} }
//Kronecker product v_lm }
double complex v_lm[max_l][max_m][N2 * N1]; // Generate co-phasing angles
//v_ll_mm_codebook denotes the elements of a precoding matrix W_i1,1_i_1,2 // i_2: index of a co-phasing vector
for(int ll = 0; ll < max_l; ll++) { //i_1_1 // i1_1, i1_2, and i_2 are reported from UEs
for (int mm = 0; mm < max_m; mm++) { //i_1_2 double complex theta_n[4];
for (int nn1 = 0; nn1 < N1; nn1++) { for (int nn = 0; nn < 4; nn++) {
for (int nn2 = 0; nn2 < N2; nn2++) { theta_n[nn] = cexp(I * M_PI * nn / 2);
v_lm[ll][mm][nn1 * N2 + nn2] = v[ll][nn1] * u[mm][nn2]; LOG_D(PHY, "theta_n[%d] = %f +j %f\n", nn, creal(theta_n[nn]), cimag(theta_n[nn]));
LOG_D(PHY,"v_lm[%d][%d][%d] = %f +j %f\n",ll, mm, nn1 * N2 + nn2, creal(v_lm[ll][mm][nn1*N2+nn2]), cimag(v_lm[ll][mm][nn1*N2+nn2])); }
} // Kronecker product v_lm
double complex v_lm[max_l][max_m][N2 * N1];
// v_ll_mm_codebook denotes the elements of a precoding matrix W_i1,1_i_1,2
for (int ll = 0; ll < max_l; ll++) { // i_1_1
for (int mm = 0; mm < max_m; mm++) { // i_1_2
for (int nn1 = 0; nn1 < N1; nn1++) {
for (int nn2 = 0; nn2 < N2; nn2++) {
v_lm[ll][mm][nn1 * N2 + nn2] = v[ll][nn1] * u[mm][nn2];
LOG_D(PHY,
"v_lm[%d][%d][%d] = %f +j %f\n",
ll,
mm,
nn1 * N2 + nn2,
creal(v_lm[ll][mm][nn1 * N2 + nn2]),
cimag(v_lm[ll][mm][nn1 * N2 + nn2]));
} }
} }
} }
}
double complex res_code; double complex res_code;
//Table 5.2.2.2.1-5: // Table 5.2.2.2.1-5:
int pmiq = 0; int pmiq = 0;
//Codebook for 1-layer CSI reporting using antenna ports 3000 to 2999+PCSI-RS // Codebook for 1-layer CSI reporting using antenna ports 3000 to 2999+PCSI-RS
for(int ll = 0; ll < N1 * O1; ll++) { //i_1_1 for (int ll = 0; ll < N1 * O1; ll++) { // i_1_1
for (int mm = 0; mm < N2 * O2; mm++) { //i_1_2 for (int mm = 0; mm < N2 * O2; mm++) { // i_1_2
for (int nn = 0; nn < 4; nn++) { for (int nn = 0; nn < 4; nn++) {
pmiq = ll * N2 * O2 * 4 + mm * 4 + nn; pmiq = ll * N2 * O2 * 4 + mm * 4 + nn;
pmi_pdu[pmiq].pm_idx = pmiq + 1; // index 0 is the identity matrix pmi_pdu[pmiq].pm_idx = pmiq + 1; // index 0 is the identity matrix
pmi_pdu[pmiq].numLayers = 1; pmi_pdu[pmiq].numLayers = 1;
pmi_pdu[pmiq].num_ant_ports = num_antenna_ports; pmi_pdu[pmiq].num_ant_ports = num_antenna_ports;
LOG_D(PHY, "layer 1 Codebook pmiq = %d\n", pmiq); LOG_D(PHY, "layer 1 Codebook pmiq = %d\n", pmiq);
for (int len = 0; len < N1 * N2; len++) { for (int len = 0; len < N1 * N2; len++) {
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[0][len]; nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[0][len];
res_code = sqrt( 1 /(double)num_antenna_ports) * v_lm[ll][mm][len]; res_code = sqrt(1 / (double)num_antenna_ports) * v_lm[ll][mm][len];
c16_t precoder_weight = convert_precoder_weight(res_code); c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r; weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i; weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY, "1 Layer Precoding Matrix[0][pmi %d][antPort %d]= %f+j %f -> Fixed Point %d+j %d \n", LOG_D(PHY,
pmiq, len, creal(res_code), cimag(res_code), weights->precoder_weight_Re, weights->precoder_weight_Im); "1 Layer Precoding Matrix[0][pmi %d][antPort %d]= %f+j %f -> Fixed Point %d+j %d \n",
} pmiq,
len,
creal(res_code),
cimag(res_code),
weights->precoder_weight_Re,
weights->precoder_weight_Im);
}
for(int len = N1 * N2; len < 2 * N1 * N2; len++) { for (int len = N1 * N2; len < 2 * N1 * N2; len++) {
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[0][len]; nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[0][len];
res_code = sqrt(1 / (double)num_antenna_ports) * theta_n[nn] * v_lm[ll][mm][len-N1*N2]; res_code = sqrt(1 / (double)num_antenna_ports) * theta_n[nn] * v_lm[ll][mm][len - N1 * N2];
c16_t precoder_weight = convert_precoder_weight(res_code); c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r; weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i; weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY, "1 Layer Precoding Matrix[0][pmi %d][antPort %d]= %f+j %f -> Fixed Point %d+j %d \n", LOG_D(PHY,
pmiq, len, creal(res_code), cimag(res_code), weights->precoder_weight_Re, weights->precoder_weight_Im); "1 Layer Precoding Matrix[0][pmi %d][antPort %d]= %f+j %f -> Fixed Point %d+j %d \n",
} pmiq,
len,
creal(res_code),
cimag(res_code),
weights->precoder_weight_Re,
weights->precoder_weight_Im);
} }
} }
} }
int llc = 0; }
int mmc = 0; int llc = 0;
double complex phase_sign = 0; int mmc = 0;
//Table 5.2.2.2.1-6: double complex phase_sign = 0;
//Codebook for 2-layer CSI reporting using antenna ports 3000 to 2999+PCSI-RS // Table 5.2.2.2.1-6:
//Compute the code book size for generating 2 layers out of Tx antenna ports // Codebook for 2-layer CSI reporting using antenna ports 3000 to 2999+PCSI-RS
// Compute the code book size for generating 2 layers out of Tx antenna ports
//pmi=1,...,pmi_size, we construct
for(int ll = 0; ll < N1 * O1; ll++) { //i_1_1 // pmi=1,...,pmi_size, we construct
for (int mm = 0; mm < N2 * O2; mm++) { // i_1_2 for (int ll = 0; ll < N1 * O1; ll++) { // i_1_1
for(int k1 = 0; k1 < K1; k1++) { for (int mm = 0; mm < N2 * O2; mm++) { // i_1_2
for (int k2 = 0; k2 < K2; k2++) { for (int k1 = 0; k1 < K1; k1++) {
for (int nn = 0; nn < 2; nn++) { // i_2 for (int k2 = 0; k2 < K2; k2++) {
pmiq ++; for (int nn = 0; nn < 2; nn++) { // i_2
pmi_pdu[pmiq].pm_idx = pmiq + 1; // index 0 is the identity matrix pmiq++;
pmi_pdu[pmiq].numLayers = 2; pmi_pdu[pmiq].pm_idx = pmiq + 1; // index 0 is the identity matrix
pmi_pdu[pmiq].num_ant_ports = num_antenna_ports; pmi_pdu[pmiq].numLayers = 2;
LOG_D(PHY, "layer 2 Codebook pmiq = %d\n", pmiq); pmi_pdu[pmiq].num_ant_ports = num_antenna_ports;
for(int j_col = 0; j_col < 2; j_col++) { LOG_D(PHY, "layer 2 Codebook pmiq = %d\n", pmiq);
if (j_col == 0) { for (int j_col = 0; j_col < 2; j_col++) {
llc = ll; if (j_col == 0) {
mmc = mm; llc = ll;
phase_sign = 1; mmc = mm;
} phase_sign = 1;
if (j_col == 1) { }
llc = ll + k1 * O1; if (j_col == 1) {
mmc = mm + k2 * O2; llc = ll + k1 * O1;
phase_sign = -1; mmc = mm + k2 * O2;
} phase_sign = -1;
for (int i_rows = 0; i_rows < N1 * N2; i_rows++) { }
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows]; for (int i_rows = 0; i_rows < N1 * N2; i_rows++) {
res_code = sqrt(1 / (double)(2 * num_antenna_ports)) * v_lm[llc][mmc][i_rows]; nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows];
c16_t precoder_weight = convert_precoder_weight(res_code); res_code = sqrt(1 / (double)(2 * num_antenna_ports)) * v_lm[llc][mmc][i_rows];
weights->precoder_weight_Re = precoder_weight.r; c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Im = precoder_weight.i; weights->precoder_weight_Re = precoder_weight.r;
LOG_D(PHY, "2 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n", weights->precoder_weight_Im = precoder_weight.i;
pmiq, i_rows, j_col, creal(res_code), cimag(res_code), weights->precoder_weight_Re, weights->precoder_weight_Im); LOG_D(PHY,
} "2 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
for (int i_rows = N1 * N2; i_rows < 2 * N1 * N2; i_rows++) { pmiq,
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows]; i_rows,
res_code = sqrt(1 / (double)(2 * num_antenna_ports)) * (phase_sign) * theta_n[nn] * v_lm[llc][mmc][i_rows - N1 * N2]; j_col,
c16_t precoder_weight = convert_precoder_weight(res_code); creal(res_code),
weights->precoder_weight_Re = precoder_weight.r; cimag(res_code),
weights->precoder_weight_Im = precoder_weight.i; weights->precoder_weight_Re,
LOG_D(PHY, "2 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n", weights->precoder_weight_Im);
pmiq, i_rows, j_col, creal(res_code), cimag(res_code), weights->precoder_weight_Re, weights->precoder_weight_Im); }
} for (int i_rows = N1 * N2; i_rows < 2 * N1 * N2; i_rows++) {
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows];
res_code = sqrt(1 / (double)(2 * num_antenna_ports)) * (phase_sign)*theta_n[nn] * v_lm[llc][mmc][i_rows - N1 * N2];
c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY,
"2 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq,
i_rows,
j_col,
creal(res_code),
cimag(res_code),
weights->precoder_weight_Re,
weights->precoder_weight_Im);
} }
} }
} }
} }
} }
} }
}
if(max_mimo_layers < 3) if (max_mimo_layers < 3)
return mat; return mat;
//Table 5.2.2.2.1-7: // Table 5.2.2.2.1-7:
//Codebook for 3-layer CSI reporting using antenna ports 3000 to 2999+PCSI-RS // Codebook for 3-layer CSI reporting using antenna ports 3000 to 2999+PCSI-RS
//pmi=1,...,pmi_size are computed as follows // pmi=1,...,pmi_size are computed as follows
for(int ll = 0; ll < N1 * O1; ll++) { //i_1_1 for (int ll = 0; ll < N1 * O1; ll++) { // i_1_1
for (int mm = 0; mm < N2 * O2; mm++) { // i_1_2 for (int mm = 0; mm < N2 * O2; mm++) { // i_1_2
for(int k1 = 0; k1 < K1; k1++) { for (int k1 = 0; k1 < K1; k1++) {
for (int k2 = 0; k2 < K2; k2++) { for (int k2 = 0; k2 < K2; k2++) {
for (int nn = 0; nn < 2; nn++) { // i_2 for (int nn = 0; nn < 2; nn++) { // i_2
pmiq ++; pmiq++;
pmi_pdu[pmiq].pm_idx = pmiq + 1; // index 0 is the identity matrix pmi_pdu[pmiq].pm_idx = pmiq + 1; // index 0 is the identity matrix
pmi_pdu[pmiq].numLayers = 3; pmi_pdu[pmiq].numLayers = 3;
pmi_pdu[pmiq].num_ant_ports = num_antenna_ports; pmi_pdu[pmiq].num_ant_ports = num_antenna_ports;
LOG_D(PHY, "layer 3 Codebook pmiq = %d\n",pmiq); LOG_D(PHY, "layer 3 Codebook pmiq = %d\n", pmiq);
for(int j_col = 0; j_col < 3; j_col++) { for (int j_col = 0; j_col < 3; j_col++) {
if (j_col == 0) { if (j_col == 0) {
llc = ll; llc = ll;
mmc = mm; mmc = mm;
phase_sign = 1; phase_sign = 1;
} }
if (j_col==1) { if (j_col == 1) {
llc = ll + k1 * O1; llc = ll + k1 * O1;
mmc = mm + k2 * O2; mmc = mm + k2 * O2;
phase_sign = 1; phase_sign = 1;
} }
if (j_col==2) { if (j_col == 2) {
llc = ll; llc = ll;
mmc = mm; mmc = mm;
phase_sign = -1; phase_sign = -1;
} }
for (int i_rows = 0; i_rows < N1 * N2; i_rows++) { for (int i_rows = 0; i_rows < N1 * N2; i_rows++) {
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows]; nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows];
res_code = sqrt(1 / (double)(3 * num_antenna_ports)) * v_lm[llc][mmc][i_rows]; res_code = sqrt(1 / (double)(3 * num_antenna_ports)) * v_lm[llc][mmc][i_rows];
c16_t precoder_weight = convert_precoder_weight(res_code); c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r; weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i; weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY, "3 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n", LOG_D(PHY,
pmiq, i_rows, j_col, creal(res_code), cimag(res_code), weights->precoder_weight_Re, weights->precoder_weight_Im); "3 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
} pmiq,
for (int i_rows = N1 * N2; i_rows < 2 * N1 * N2; i_rows++) { i_rows,
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows]; j_col,
res_code=sqrt(1 / (double)(3 * num_antenna_ports)) * (phase_sign) * theta_n[nn] * v_lm[llc][mmc][i_rows - N1 * N2]; creal(res_code),
c16_t precoder_weight = convert_precoder_weight(res_code); cimag(res_code),
weights->precoder_weight_Re = precoder_weight.r; weights->precoder_weight_Re,
weights->precoder_weight_Im = precoder_weight.i; weights->precoder_weight_Im);
LOG_D(PHY, "3 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n", }
pmiq, i_rows, j_col, creal(res_code), cimag(res_code), weights->precoder_weight_Re, weights->precoder_weight_Im); for (int i_rows = N1 * N2; i_rows < 2 * N1 * N2; i_rows++) {
} nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows];
res_code = sqrt(1 / (double)(3 * num_antenna_ports)) * (phase_sign)*theta_n[nn] * v_lm[llc][mmc][i_rows - N1 * N2];
c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY,
"3 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq,
i_rows,
j_col,
creal(res_code),
cimag(res_code),
weights->precoder_weight_Re,
weights->precoder_weight_Im);
} }
} }
} }
} }
} }
} }
}
if (max_mimo_layers < 4)
return mat;
if(max_mimo_layers < 4) // Table 5.2.2.2.1-8:
return mat; // Codebook for 4-layer CSI reporting using antenna ports 3000 to 2999+PCSI-RS
//Table 5.2.2.2.1-8: for (int ll = 0; ll < N1 * O1; ll++) { // i_1_1
//Codebook for 4-layer CSI reporting using antenna ports 3000 to 2999+PCSI-RS for (int mm = 0; mm < N2 * O2; mm++) { // i_1_2
for (int k1 = 0; k1 < K1; k1++) {
for(int ll = 0; ll < N1 * O1; ll++) { //i_1_1 for (int k2 = 0; k2 < K2; k2++) {
for (int mm = 0; mm < N2 * O2; mm++) { // i_1_2 for (int nn = 0; nn < 2; nn++) { // i_2
for(int k1 = 0; k1 < K1; k1++) { pmiq++;
for (int k2 = 0; k2 < K2; k2++) { pmi_pdu[pmiq].pm_idx = pmiq + 1; // index 0 is the identity matrix
for (int nn = 0; nn < 2; nn++) { // i_2 pmi_pdu[pmiq].numLayers = 4;
pmiq ++; pmi_pdu[pmiq].num_ant_ports = num_antenna_ports;
pmi_pdu[pmiq].pm_idx = pmiq + 1; // index 0 is the identity matrix LOG_D(PHY, "layer 4 pmiq = %d\n", pmiq);
pmi_pdu[pmiq].numLayers = 4; for (int j_col = 0; j_col < 4; j_col++) {
pmi_pdu[pmiq].num_ant_ports = num_antenna_ports; if (j_col == 0) {
LOG_D(PHY, "layer 4 pmiq = %d\n", pmiq); llc = ll;
for(int j_col = 0; j_col < 4; j_col++) { mmc = mm;
if (j_col == 0) { phase_sign = 1;
llc = ll; }
mmc = mm; if (j_col == 1) {
phase_sign = 1; llc = ll + k1 * O1;
} mmc = mm + k2 * O2;
if (j_col == 1) { phase_sign = 1;
llc = ll + k1 * O1; }
mmc = mm + k2 * O2; if (j_col == 2) {
phase_sign = 1; llc = ll;
} mmc = mm;
if (j_col == 2) { phase_sign = -1;
llc = ll; }
mmc = mm; if (j_col == 3) {
phase_sign = -1; llc = ll + k1 * O1;
} mmc = mm + k2 * O2;
if (j_col == 3) { phase_sign = -1;
llc = ll + k1 * O1; }
mmc = mm + k2 * O2; for (int i_rows = 0; i_rows < N1 * N2; i_rows++) {
phase_sign = -1; nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows];
} res_code = sqrt(1 / (double)(4 * num_antenna_ports)) * v_lm[llc][mmc][i_rows];
for (int i_rows = 0; i_rows < N1 * N2; i_rows++) { c16_t precoder_weight = convert_precoder_weight(res_code);
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows]; weights->precoder_weight_Re = precoder_weight.r;
res_code=sqrt(1 / (double)(4 * num_antenna_ports)) * v_lm[llc][mmc][i_rows]; weights->precoder_weight_Im = precoder_weight.i;
c16_t precoder_weight = convert_precoder_weight(res_code); LOG_D(PHY,
weights->precoder_weight_Re = precoder_weight.r; "4 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
weights->precoder_weight_Im = precoder_weight.i; pmiq,
LOG_D(PHY, "4 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n", i_rows,
pmiq, i_rows, j_col, creal(res_code), cimag(res_code), weights->precoder_weight_Re, weights->precoder_weight_Im); j_col,
} creal(res_code),
for (int i_rows = N1 * N2; i_rows < 2 * N1 * N2; i_rows++) { cimag(res_code),
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows]; weights->precoder_weight_Re,
res_code=sqrt(1 / (double)(4 * num_antenna_ports)) * (phase_sign) * theta_n[nn] * v_lm[llc][mmc][i_rows - N1 * N2]; weights->precoder_weight_Im);
c16_t precoder_weight = convert_precoder_weight(res_code); }
weights->precoder_weight_Re = precoder_weight.r; for (int i_rows = N1 * N2; i_rows < 2 * N1 * N2; i_rows++) {
weights->precoder_weight_Im = precoder_weight.i; nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows];
LOG_D(PHY, "4 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n", res_code = sqrt(1 / (double)(4 * num_antenna_ports)) * (phase_sign)*theta_n[nn] * v_lm[llc][mmc][i_rows - N1 * N2];
pmiq, i_rows, j_col, creal(res_code), cimag(res_code), weights->precoder_weight_Re, weights->precoder_weight_Im); c16_t precoder_weight = convert_precoder_weight(res_code);
} weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY,
"4 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq,
i_rows,
j_col,
creal(res_code),
cimag(res_code),
weights->precoder_weight_Re,
weights->precoder_weight_Im);
} }
} }
} }
} }
} }
} }
return mat;
} }
else return mat;
AssertFatal(false, "Max number of antenna ports supported is currently 16\n");
} }
static void process_rlcBearerConfig(struct NR_CellGroupConfig__rlc_BearerToAddModList *rlc_bearer2add_list, static void process_rlcBearerConfig(struct NR_CellGroupConfig__rlc_BearerToAddModList *rlc_bearer2add_list,
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment