/******************************************************************************* Eurecom OpenAirInterface Copyright(c) 1999 - 2011 Eurecom This program is free software; you can redistribute it and/or modify it under the terms and conditions of the GNU General Public License, version 2, as published by the Free Software Foundation. This program is distributed in the hope it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. The full GNU General Public License is included in this distribution in the file called "COPYING". Contact Information Openair Admin: openair_admin@eurecom.fr Openair Tech : openair_tech@eurecom.fr Forums : http://forums.eurecom.fsr/openairinterface Address : Eurecom, 2229, route des crĂȘtes, 06560 Valbonne Sophia Antipolis, France *******************************************************************************/ /*! \file lte-softmodem.c * \brief main program to control HW and scheduling * \author R. Knopp, F. Kaltenberger * \date 2012 * \version 0.1 * \company Eurecom * \email: knopp@eurecom.fr,florian.kaltenberger@eurecom.fr * \note * \warning */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rt_wrapper.h" #ifdef EMOS #include #endif #include "PHY/types.h" #include "PHY/defs.h" #include "openair0_lib.h" #include "PHY/vars.h" #include "MAC_INTERFACE/vars.h" //#include "SCHED/defs.h" #include "SCHED/vars.h" #include "LAYER2/MAC/vars.h" #include "../../SIMU/USER/init_lte.h" #ifdef EMOS #include "SCHED/phy_procedures_emos.h" #endif #ifdef OPENAIR2 #include "LAYER2/MAC/defs.h" #include "LAYER2/MAC/vars.h" #ifndef CELLULAR #include "RRC/LITE/vars.h" #endif #include "PHY_INTERFACE/vars.h" #endif #ifdef SMBV #include "PHY/TOOLS/smbv.h" unsigned short config_frames[4] = {2,9,11,13}; #endif #include "UTIL/LOG/log_extern.h" #include "UTIL/OTG/otg.h" #include "UTIL/OTG/otg_vars.h" #include "UTIL/MATH/oml.h" #include "UTIL/LOG/vcd_signal_dumper.h" #ifdef XFORMS #include "PHY/TOOLS/lte_phy_scope.h" #include "stats.h" // current status is that every UE has a DL scope for a SINGLE eNB (eNB_id=0) // at eNB 0, an UL scope for every UE FD_lte_phy_scope_ue *form_ue[NUMBER_OF_UE_MAX]; FD_lte_phy_scope_enb *form_enb[NUMBER_OF_UE_MAX]; FD_stats_form *form_stats=NULL; char title[255]; unsigned char scope_enb_num_ue = 1; #endif //XFORMS #define FRAME_PERIOD 100000000ULL #define DAQ_PERIOD 66667ULL #undef MALLOC //there are two conflicting definitions, so we better make sure we don't use it at all #ifdef RTAI static SEM *mutex; //static CND *cond; static int thread0; static int thread1; //static int sync_thread; #else pthread_t thread0; pthread_t thread1; pthread_attr_t attr_dlsch_threads; struct sched_param sched_param_dlsch; #endif pthread_t thread2; //xforms pthread_t thread3; //emos /* static int instance_cnt=-1; //0 means worker is busy, -1 means its free int instance_cnt_ptr_kern,*instance_cnt_ptr_user; int pci_interface_ptr_kern; */ //extern unsigned int bigphys_top; //extern unsigned int mem_base; int card = 0; exmimo_config_t *p_exmimo_config; exmimo_id_t *p_exmimo_id; volatile unsigned int *DAQ_MBOX; int oai_exit = 0; //int time_offset[4] = {-138,-138,-138,-138}; //int time_offset[4] = {-145,-145,-145,-145}; int time_offset[4] = {0,0,0,0}; int fs4_test=0; char UE_flag=0; u8 eNB_id=0,UE_id=0; u32 carrier_freq[4]= {1907600000,1907600000,1907600000,1907600000}; struct timing_info_t { //unsigned int frame, hw_slot, last_slot, next_slot; RTIME time_min, time_max, time_avg, time_last, time_now; //unsigned int mbox0, mbox1, mbox2, mbox_target; unsigned int n_samples; } timing_info; extern s16* sync_corr_ue0; extern s16 prach_ifft[4][1024*2]; runmode_t mode; int rx_input_level_dBm; #ifdef XFORMS extern int otg_enabled; #else int otg_enabled; #endif int number_of_cards = 1; //int mbox_bounds[20] = {8,16,24,30,38,46,54,60,68,76,84,90,98,106,114,120,128,136,144, 0}; ///boundaries of slots in terms ob mbox counter rounded up to even numbers int mbox_bounds[20] = {6,14,22,28,36,44,52,58,66,74,82,88,96,104,112,118,126,134,142, 148}; ///boundaries of slots in terms ob mbox counter rounded up to even numbers int init_dlsch_threads(void); void cleanup_dlsch_threads(void); s32 init_rx_pdsch_thread(void); void cleanup_rx_pdsch_thread(void); int init_ulsch_threads(void); void cleanup_ulsch_threads(void); LTE_DL_FRAME_PARMS *frame_parms; void setup_ue_buffers(PHY_VARS_UE *phy_vars_ue, LTE_DL_FRAME_PARMS *frame_parms, int carrier); void setup_eNB_buffers(PHY_VARS_eNB *phy_vars_eNB, LTE_DL_FRAME_PARMS *frame_parms, int carrier); void test_config(int card, int ant, unsigned int rf_mode, int UE_flag); unsigned int build_rflocal(txi, txq, rxi, rxq) { return (txi + (txq<<6) + (rxi<<12) + (rxq<<18)); } unsigned int build_rfdc(int dcoff_i_rxfe, int dcoff_q_rxfe) { return (dcoff_i_rxfe + (dcoff_q_rxfe<<8)); } void signal_handler(int sig) { void *array[10]; size_t size; if (sig==SIGSEGV) { // get void*'s for all entries on the stack size = backtrace(array, 10); // print out all the frames to stderr fprintf(stderr, "Error: signal %d:\n", sig); backtrace_symbols_fd(array, size, 2); exit(-1); } else { oai_exit=1; } } void exit_fun(const char* s) { void *array[10]; size_t size; printf("Exiting: %s\n",s); oai_exit=1; //rt_sleep_ns(FRAME_PERIOD); //exit (-1); } #ifdef XFORMS void *scope_thread(void *arg) { s16 prach_corr[1024], i; char stats_buffer[16384]; //FILE *UE_stats, *eNB_stats; int len=0; struct sched_param sched_param; sched_param.sched_priority = sched_get_priority_min(SCHED_FIFO)+1; sched_setscheduler(0, SCHED_FIFO,&sched_param); printf("Scope thread has priority %d\n",sched_param.sched_priority); /* if (UE_flag==1) UE_stats = fopen("UE_stats.txt", "w"); else eNB_stats = fopen("eNB_stats.txt", "w"); */ while (!oai_exit) { if (UE_flag==1) { len = dump_ue_stats (PHY_vars_UE_g[0], stats_buffer, 0, mode,rx_input_level_dBm); fl_set_object_label(form_stats->stats_text, stats_buffer); //rewind (UE_stats); //fwrite (stats_buffer, 1, len, UE_stats); phy_scope_UE(form_ue[UE_id], PHY_vars_UE_g[UE_id], eNB_id, UE_id,7); } else { len = dump_eNB_stats (PHY_vars_eNB_g[0], stats_buffer, 0); fl_set_object_label(form_stats->stats_text, stats_buffer); //rewind (eNB_stats); //fwrite (stats_buffer, 1, len, eNB_stats); for(UE_id=0;UE_id=4 else if (gps_stream(gps_data, WATCH_ENABLE,NULL) != 0) #else else if (gps_query(gps_data, "w+x") != 0) #endif { //sprintf(tmptxt,"Error sending command to GPS, gps_data = %x", gps_data); printf("[EMOS] Error sending command to GPS\n"); //exit(-1); } else printf("[EMOS] Opened GPS, gps_data=%p\n"); if (UE_flag==0) channel_buffer_size = sizeof(fifo_dump_emos_eNB); else channel_buffer_size = sizeof(fifo_dump_emos_UE); // allocate memory for NO_FRAMES_DISK channes estimations fifo2file_buffer = malloc(NO_ESTIMATES_DISK*channel_buffer_size); fifo2file_ptr = fifo2file_buffer; if (fifo2file_buffer == NULL) { printf("[EMOS] Cound not allocate memory for fifo2file_buffer\n"); exit(EXIT_FAILURE); } if ((fifo = open(CHANSOUNDER_FIFO_DEV, O_RDONLY)) < 0) { fprintf(stderr, "[EMOS] Error opening the fifo\n"); exit(EXIT_FAILURE); } time(&starttime_tmp); localtime_r(&starttime_tmp,&starttime); snprintf(dumpfile_name,1024,"/tmp/%s_data_%d%02d%02d_%02d%02d%02d.EMOS", (UE_flag==0) ? "eNB" : "UE", 1900+starttime.tm_year, starttime.tm_mon+1, starttime.tm_mday, starttime.tm_hour, starttime.tm_min, starttime.tm_sec); dumpfile_id = fopen(dumpfile_name,"w"); if (dumpfile_id == NULL) { fprintf(stderr, "[EMOS] Error opening dumpfile %s\n",dumpfile_name); exit(EXIT_FAILURE); } printf("[EMOS] starting dump, channel_buffer_size=%d ...\n",channel_buffer_size); while (!oai_exit) { bytes = rtf_read_timed(fifo, fifo2file_ptr, channel_buffer_size,100); if (bytes==0) continue; /* if (UE_flag==0) printf("eNB: count %d, frame %d, read: %d bytes from the fifo\n",counter, ((fifo_dump_emos_eNB*)fifo2file_ptr)->frame_tx,bytes); else printf("UE: count %d, frame %d, read: %d bytes from the fifo\n",counter, ((fifo_dump_emos_UE*)fifo2file_ptr)->frame_rx,bytes); */ fifo2file_ptr += channel_buffer_size; counter ++; if (counter == NO_ESTIMATES_DISK) { //reset stuff fifo2file_ptr = fifo2file_buffer; counter = 0; //flush buffer to disk if (UE_flag==0) printf("[EMOS] eNB: count %d, frame %d, flushing buffer to disk\n", counter, ((fifo_dump_emos_eNB*)fifo2file_ptr)->frame_tx); else printf("[EMOS] UE: count %d, frame %d, flushing buffer to disk\n", counter, ((fifo_dump_emos_UE*)fifo2file_ptr)->frame_rx); if (fwrite(fifo2file_buffer, sizeof(char), NO_ESTIMATES_DISK*channel_buffer_size, dumpfile_id) != NO_ESTIMATES_DISK*channel_buffer_size) { fprintf(stderr, "[EMOS] Error writing to dumpfile\n"); exit(EXIT_FAILURE); } if (gps_data) { if (gps_poll(gps_data) != 0) { printf("[EMOS] problem polling data from gps\n"); } else { printf("[EMOS] lat %g, lon %g\n",gps_data->fix.latitude,gps_data->fix.longitude); } if (fwrite(&(gps_data->fix), sizeof(char), sizeof(struct gps_fix_t), dumpfile_id) != sizeof(struct gps_fix_t)) { printf("[EMOS] Error writing to dumpfile, stopping recording\n"); exit(EXIT_FAILURE); } } else { printf("[EMOS] WARNING: No GPS data available, storing dummy packet\n"); if (fwrite(&(dummy_gps_data), sizeof(char), sizeof(struct gps_fix_t), dumpfile_id) != sizeof(struct gps_fix_t)) { printf("[EMOS] Error writing to dumpfile, stopping recording\n"); exit(EXIT_FAILURE); } } } } free(fifo2file_buffer); fclose(dumpfile_id); close(fifo); pthread_exit((void*) arg); } #endif /* This is the main eNB thread. It gets woken up by the kernel driver using the RTAI message mechanism (rt_send and rt_receive). */ static void *eNB_thread(void *arg) { #ifdef RTAI RT_TASK *task; #endif unsigned char slot=0,last_slot, next_slot; int hw_slot,frame=0; unsigned int msg1; unsigned int aa,slot_offset, slot_offset_F; int diff; int delay_cnt; RTIME time_in, time_diff; int mbox_target=0,mbox_current=0; int i,ret; int tx_offset; #ifdef RTAI task = rt_task_init_schmod(nam2num("TASK0"), 0, 0, 0, SCHED_FIFO, 0xF); LOG_D(HW,"Started eNB thread (id %p)\n",task); #endif #ifdef HARD_RT rt_make_hard_real_time(); #endif mlockall(MCL_CURRENT | MCL_FUTURE); timing_info.time_min = 100000000ULL; timing_info.time_max = 0; timing_info.time_avg = 0; timing_info.n_samples = 0; while (!oai_exit) { hw_slot = (((((volatile unsigned int *)DAQ_MBOX)[0]+1)%150)<<1)/15; //LOG_D(HW,"eNB frame %d, time %llu: slot %d, hw_slot %d (mbox %d)\n",frame,rt_get_time_ns(),slot,hw_slot,((unsigned int *)DAQ_MBOX)[0]); //this is the mbox counter where we should be //mbox_target = ((((slot+1)%20)*15+1)>>1)%150; mbox_target = mbox_bounds[slot]; //this is the mbox counter where we are mbox_current = ((volatile unsigned int *)DAQ_MBOX)[0]; //this is the time we need to sleep in order to synchronize with the hw (in multiples of DAQ_PERIOD) if ((mbox_current>=135) && (mbox_target<15)) //handle the frame wrap-arround diff = 150-mbox_current+mbox_target; else if ((mbox_current<15) && (mbox_target>=135)) diff = -150+mbox_target-mbox_current; else diff = mbox_target - mbox_current; if (((slot%2==0) && (diff < (-14))) || ((slot%2==1) && (diff < (-7)))) { // at the eNB, even slots have double as much time since most of the processing is done here and almost nothing in odd slots LOG_D(HW,"eNB Frame %d, time %llu: missed slot, proceeding with next one (slot %d, hw_slot %d, diff %d)\n",frame, rt_get_time_ns(), slot, hw_slot, diff); slot++; if (frame>0) oai_exit=1; if (slot==20){ slot=0; frame++; } continue; } if (diff>8) LOG_D(HW,"eNB Frame %d, time %llu: skipped slot, waiting for hw to catch up (slot %d, hw_slot %d, mbox_current %d, mbox_target %d, diff %d)\n",frame, rt_get_time_ns(), slot, hw_slot, mbox_current, mbox_target, diff); delay_cnt = 0; while ((diff>0) && (!oai_exit)) { time_in = rt_get_time_ns(); //LOG_D(HW,"eNB Frame %d delaycnt %d : hw_slot %d (%d), slot %d, (slot+1)*15=%d, diff %d, time %llu\n",frame,delay_cnt,hw_slot,((unsigned int *)DAQ_MBOX)[0],slot,(((slot+1)*15)>>1),diff,time_in); //LOG_D(HW,"eNB Frame %d, time %llu: sleeping for %llu (slot %d, hw_slot %d, diff %d, mbox %d, delay_cnt %d)\n", frame, time_in, diff*DAQ_PERIOD,slot,hw_slot,diff,((volatile unsigned int *)DAQ_MBOX)[0],delay_cnt); ret = rt_sleep_ns(diff*DAQ_PERIOD); if (ret) LOG_D(HW,"eNB Frame %d, time %llu: rt_sleep_ns returned %d\n",frame, time_in); hw_slot = (((((volatile unsigned int *)DAQ_MBOX)[0]+1)%150)<<1)/15; //LOG_D(HW,"eNB Frame %d : hw_slot %d, time %llu\n",frame,hw_slot,rt_get_time_ns()); delay_cnt++; if (delay_cnt == 10) { oai_exit = 1; LOG_D(HW,"eNB Frame %d: HW stopped ... \n",frame); } mbox_current = ((volatile unsigned int *)DAQ_MBOX)[0]; if ((mbox_current>=135) && (mbox_target<15)) //handle the frame wrap-arround diff = 150-mbox_current+mbox_target; else if ((mbox_current<15) && (mbox_target>=135)) diff = -150+mbox_target-mbox_current; else diff = mbox_target - mbox_current; } last_slot = (slot)%LTE_SLOTS_PER_FRAME; if (last_slot <0) last_slot+=20; next_slot = (slot+3)%LTE_SLOTS_PER_FRAME; //PHY_vars_eNB_g[0]->frame = frame; if (frame>5) { /* if (frame%100==0) LOG_D(HW,"frame %d (%d), slot %d, hw_slot %d, next_slot %d (before): DAQ_MBOX %d\n",frame, PHY_vars_eNB_g[0]->frame, slot, hw_slot,next_slot,DAQ_MBOX[0]); */ //if (PHY_vars_eNB_g[0]->frame>5) { timing_info.time_last = timing_info.time_now; timing_info.time_now = rt_get_time_ns(); if (timing_info.n_samples>0) { time_diff = timing_info.time_now - timing_info.time_last; if (time_diff < timing_info.time_min) timing_info.time_min = time_diff; if (time_diff > timing_info.time_max) timing_info.time_max = time_diff; timing_info.time_avg += time_diff; } timing_info.n_samples++; /* if ((timing_info.n_samples%2000)==0) { LOG_D(HW,"frame %d (%d), slot %d, hw_slot %d: diff=%llu, min=%llu, max=%llu, avg=%llu (n_samples %d)\n", frame, PHY_vars_eNB_g[0]->frame, slot, hw_slot,time_diff, timing_info.time_min,timing_info.time_max,timing_info.time_avg/timing_info.n_samples,timing_info.n_samples); timing_info.n_samples = 0; timing_info.time_avg = 0; } */ //} if (fs4_test==0) { phy_procedures_eNB_lte (last_slot, next_slot, PHY_vars_eNB_g[0], 0, 0,NULL); #ifndef IFFT_FPGA slot_offset_F = (next_slot)* (PHY_vars_eNB_g[0]->lte_frame_parms.ofdm_symbol_size)* ((PHY_vars_eNB_g[0]->lte_frame_parms.Ncp==1) ? 6 : 7); slot_offset = (next_slot)* (PHY_vars_eNB_g[0]->lte_frame_parms.samples_per_tti>>1); if ((subframe_select(&PHY_vars_eNB_g[0]->lte_frame_parms,next_slot>>1)==SF_DL)|| ((subframe_select(&PHY_vars_eNB_g[0]->lte_frame_parms,next_slot>>1)==SF_S)&&((next_slot&1)==0))) { // LOG_D(HW,"Frame %d: Generating slot %d\n",frame,next_slot); for (aa=0; aalte_frame_parms.nb_antennas_tx; aa++) { if (PHY_vars_eNB_g[0]->lte_frame_parms.Ncp == 1) { PHY_ofdm_mod(&PHY_vars_eNB_g[0]->lte_eNB_common_vars.txdataF[0][aa][slot_offset_F], #ifdef BIT8_TX &PHY_vars_eNB_g[0]->lte_eNB_common_vars.txdata[0][aa][slot_offset>>1], #else dummy_tx_buffer,//&PHY_vars_eNB_g[0]->lte_eNB_common_vars.txdata[0][aa][slot_offset], #endif PHY_vars_eNB_g[0]->lte_frame_parms.log2_symbol_size, 6, PHY_vars_eNB_g[0]->lte_frame_parms.nb_prefix_samples, PHY_vars_eNB_g[0]->lte_frame_parms.twiddle_ifft, PHY_vars_eNB_g[0]->lte_frame_parms.rev, CYCLIC_PREFIX); } else { normal_prefix_mod(&PHY_vars_eNB_g[0]->lte_eNB_common_vars.txdataF[0][aa][slot_offset_F], #ifdef BIT8_TX &PHY_vars_eNB_g[0]->lte_eNB_common_vars.txdata[0][aa][slot_offset>>1], #else dummy_tx_buffer,//&PHY_vars_eNB_g[0]->lte_eNB_common_vars.txdata[0][aa][slot_offset], #endif 7, &(PHY_vars_eNB_g[0]->lte_frame_parms)); } #ifdef EXMIMO for (i=0; ilte_frame_parms.samples_per_tti/2; i++) { tx_offset = (int)slot_offset+time_offset[aa]+i; if (tx_offset<0) tx_offset += LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*PHY_vars_eNB_g[0]->lte_frame_parms.samples_per_tti; if (tx_offset>=(LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*PHY_vars_eNB_g[0]->lte_frame_parms.samples_per_tti)) tx_offset -= LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*PHY_vars_eNB_g[0]->lte_frame_parms.samples_per_tti; ((short*)&PHY_vars_eNB_g[0]->lte_eNB_common_vars.txdata[0][aa][tx_offset])[0]= ((short*)dummy_tx_buffer)[2*i]<<4; ((short*)&PHY_vars_eNB_g[0]->lte_eNB_common_vars.txdata[0][aa][tx_offset])[1]= ((short*)dummy_tx_buffer)[2*i+1]<<4; } #endif //EXMIMO } } } #endif //IFFT_FPGA /* if (frame%100==0) LOG_D(HW,"hw_slot %d (after): DAQ_MBOX %d\n",hw_slot,DAQ_MBOX[0]); */ } /* if ((slot%2000)<10) LOG_D(HW,"fun0: doing very hard work\n"); */ slot++; if (slot==20) { slot=0; frame++; } } LOG_D(HW,"eNB_thread: finished, ran %d times.\n",frame); #ifdef HARD_RT rt_make_soft_real_time(); #endif // clean task #ifdef RTAI rt_task_delete(task); #endif LOG_D(HW,"Task deleted. returning\n"); return 0; } /* This is the main UE thread. Initially it is doing a periodic get_frame. One synchronized it gets woken up by the kernel driver using the RTAI message mechanism (rt_send and rt_receive). */ static void *UE_thread(void *arg) { #ifdef RTAI RT_TASK *task; #endif RTIME in, out, diff; int slot=0,frame=0,hw_slot,last_slot, next_slot; unsigned int msg1; unsigned int aa,slot_offset, slot_offset_F; static int is_synchronized = 0; static int received_slots = 0; static int slot0 = 0; int delay_cnt; RTIME time_in; int hw_slot_offset=0,rx_offset_mbox=0,mbox_target=0,mbox_current=0; int diff2; static int first_run=1; int i, ret; #ifdef RTAI task = rt_task_init_schmod(nam2num("TASK0"), 0, 0, 0, SCHED_FIFO, 0xF); LOG_D(HW,"Started UE thread (id %p)\n",task); #endif #ifdef HARD_RT rt_make_hard_real_time(); #endif mlockall(MCL_CURRENT | MCL_FUTURE); openair_daq_vars.freq_offset = 0; //-7500; /* if (mode == rx_calib_ue) { openair_daq_vars.freq_offset = -7500; for (i=0; i<4; i++) { p_exmimo_config->rf.rf_freq_rx[i] = p_exmimo_config->rf.rf_freq_rx[i]+openair_daq_vars.freq_offset; p_exmimo_config->rf.rf_freq_tx[i] = p_exmimo_config->rf.rf_freq_rx[i]+openair_daq_vars.freq_offset; } openair0_dump_config(card); } */ while (!oai_exit) { hw_slot = (((((volatile unsigned int *)DAQ_MBOX)[0]+1)%150)<<1)/15; //the slot the hw is about to store if (is_synchronized) { //this is the mbox counter that indicates the start of the frame rx_offset_mbox = (PHY_vars_UE_g[0]->rx_offset * 150) / (10*PHY_vars_UE_g[0]->lte_frame_parms.samples_per_tti); //this is the mbox counter where we should be mbox_target = (((((slot+1)%20)*15+1)>>1) + rx_offset_mbox + 1)%150; // round up to the next multiple of two (mbox counter from express MIMO gives only even numbers) mbox_target = ((mbox_target+1)-((mbox_target-1)%2))%150; //this is the mbox counter where we are mbox_current = ((volatile unsigned int *)DAQ_MBOX)[0]; //this is the time we need to sleep in order to synchronize with the hw (in multiples of DAQ_PERIOD) if ((mbox_current>=120) && (mbox_target<30)) //handle the frame wrap-arround diff2 = 150-mbox_current+mbox_target; else if ((mbox_current<30) && (mbox_target>=120)) diff2 = -150+mbox_target-mbox_current; else diff2 = mbox_target - mbox_current; if (diff2 <(-7)) { LOG_D(HW,"UE Frame %d: missed slot, proceeding with next one (slot %d, hw_slot %d, diff %d)\n",frame, slot, hw_slot, diff2); if (frame>0) oai_exit=1; slot++; if (slot==20) { slot=0; frame++; } continue; } if (diff2>8) LOG_D(HW,"UE Frame %d: skipped slot, waiting for hw to catch up (slot %d, hw_slot %d, mbox_current %d, mbox_target %d, diff %d)\n",frame, slot, hw_slot, mbox_current, mbox_target, diff2); /* if (frame%100==0) LOG_D(HW,"frame %d (%d), slot %d, hw_slot %d, rx_offset_mbox %d, mbox_target %d, mbox_current %d, diff %d\n",frame, PHY_vars_UE_g[0]->frame, slot,hw_slot,rx_offset_mbox,mbox_target,mbox_current,diff2); */ vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_DAQ_MBOX, *((volatile unsigned int *) openair0_exmimo_pci[card].rxcnt_ptr[0])); vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_DIFF, diff2); delay_cnt = 0; while ((diff2>0) && (!oai_exit) && (is_synchronized) ) { time_in = rt_get_time_ns(); //LOG_D(HW,"eNB Frame %d delaycnt %d : hw_slot %d (%d), slot %d (%d), diff %d, time %llu\n",frame,delay_cnt,hw_slot,((volatile unsigned int *)DAQ_MBOX)[0],slot,mbox_target,diff2,time_in); vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_RT_SLEEP,1); ret = rt_sleep_ns(diff2*DAQ_PERIOD); vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_RT_SLEEP,0); if (ret) LOG_D(HW,"eNB Frame %d, time %llu: rt_sleep_ns returned %d\n",frame, time_in); hw_slot = (((((volatile unsigned int *)DAQ_MBOX)[0]+1)%150)<<1)/15; //LOG_D(HW,"eNB Frame %d : hw_slot %d, time %llu\n",frame,hw_slot,rt_get_time_ns()); delay_cnt++; if (delay_cnt == 30) { oai_exit = 1; LOG_D(HW,"UE frame %d: HW stopped ... \n",frame); } mbox_current = ((volatile unsigned int *)DAQ_MBOX)[0]; if ((mbox_current>=135) && (mbox_target<15)) //handle the frame wrap-arround diff2 = 150-mbox_current+mbox_target; else if ((mbox_current<15) && (mbox_target>=135)) diff2 = -150+mbox_target-mbox_current; else diff2 = mbox_target - mbox_current; vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_DAQ_MBOX, *((volatile unsigned int *) openair0_exmimo_pci[card].rxcnt_ptr[0])); vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_DIFF, diff2); } } last_slot = (slot)%LTE_SLOTS_PER_FRAME; if (last_slot <0) last_slot+=LTE_SLOTS_PER_FRAME; next_slot = (slot+3)%LTE_SLOTS_PER_FRAME; if (is_synchronized) { /* if (frame%100==0) LOG_D(HW,"frame %d (%d), slot %d, hw_slot %d, last_slot %d (before): DAQ_MBOX %d\n",frame, PHY_vars_UE_g[0]->frame, slot,hw_slot,last_slot,DAQ_MBOX[0]); */ in = rt_get_time_ns(); phy_procedures_UE_lte (last_slot, next_slot, PHY_vars_UE_g[0], 0, 0,mode,0,NULL); out = rt_get_time_ns(); diff = out-in; /* if (frame % 100 == 0) LOG_D(HW,"hw_slot %d (after): DAQ_MBOX %d\n",hw_slot,DAQ_MBOX[0]); LOG_D(HW,"Frame %d: last_slot %d, phy_procedures_lte_ue time_in %llu, time_out %llu, diff %llu\n", frame, last_slot,in,out,diff); */ } else // we are not yet synchronized { hw_slot_offset = 0; slot = 0; openair0_get_frame(card); // LOG_D(HW,"after get_frame\n"); // rt_sleep_ns(FRAME_PERIOD); // LOG_D(HW,"after sleep\n"); if (initial_sync(PHY_vars_UE_g[0],mode)==0) { /* lte_adjust_synch(&PHY_vars_UE_g[0]->lte_frame_parms, PHY_vars_UE_g[0], 0, 1, 16384); */ //for better visualization afterwards /* for (aa=0; aalte_frame_parms.nb_antennas_rx; aa++) memset(PHY_vars_UE_g[0]->lte_ue_common_vars.rxdata[aa],0, PHY_vars_UE_g[0]->lte_frame_parms.samples_per_tti*LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*sizeof(int)); */ if (mode == rx_calib_ue) { oai_exit=1; } else { is_synchronized = 1; //start the DMA transfers //LOG_D(HW,"Before openair0_start_rt_acquisition \n"); openair0_start_rt_acquisition(card); hw_slot_offset = (PHY_vars_UE_g[0]->rx_offset<<1) / PHY_vars_UE_g[0]->lte_frame_parms.samples_per_tti; LOG_D(HW,"Got synch: hw_slot_offset %d\n",hw_slot_offset); } } else { if (openair_daq_vars.freq_offset >= 0) { openair_daq_vars.freq_offset += 100; openair_daq_vars.freq_offset *= -1; } else { openair_daq_vars.freq_offset *= -1; } if (abs(openair_daq_vars.freq_offset) > 7500) { LOG_I(PHY,"[initial_sync] No cell synchronization found, abondoning\n"); mac_xface->macphy_exit(""); } else { LOG_I(PHY,"[initial_sync] trying carrier off %d Hz\n",openair_daq_vars.freq_offset); for (i=0; i<4; i++) { if (p_exmimo_config->rf.rf_freq_rx[i]) p_exmimo_config->rf.rf_freq_rx[i] = carrier_freq[i]+openair_daq_vars.freq_offset; if (p_exmimo_config->rf.rf_freq_tx[i]) p_exmimo_config->rf.rf_freq_tx[i] = carrier_freq[i]+openair_daq_vars.freq_offset; } openair0_dump_config(card); rt_sleep_ns(FRAME_PERIOD); } } } /* if ((slot%2000)<10) LOG_D(HW,"fun0: doing very hard work\n"); */ slot++; if (slot==20) { slot=0; frame++; } } LOG_D(HW,"UE_thread: finished, ran %d times.\n",frame); #ifdef HARD_RT rt_make_soft_real_time(); #endif // clean task #ifdef RTAI rt_task_delete(task); #endif LOG_D(HW,"Task deleted. returning\n"); return 0; } int main(int argc, char **argv) { #ifdef RTAI RT_TASK *task; #endif int i,j,aa; void *status; /* u32 rf_mode_max[4] = {55759,55759,55759,55759}; u32 rf_mode_med[4] = {39375,39375,39375,39375}; u32 rf_mode_byp[4] = {22991,22991,22991,22991}; */ u32 my_rf_mode = RXEN + TXEN + TXLPFNORM + TXLPFEN + TXLPF25 + RXLPFNORM + RXLPFEN + RXLPF25 + LNA1ON +LNAMax + RFBBNORM + DMAMODE_RX + DMAMODE_TX; u32 rf_mode_base = TXLPFNORM + TXLPFEN + TXLPF25 + RXLPFNORM + RXLPFEN + RXLPF25 + LNA1ON +LNAMax + RFBBNORM; u32 rf_mode[4] = {my_rf_mode,0,0,0}; u32 rf_local[4] = {8255000,8255000,8255000,8255000}; // UE zepto //{8254617, 8254617, 8254617, 8254617}; //eNB khalifa //{8255067,8254810,8257340,8257340}; // eNB PETRONAS u32 rf_vcocal[4] = {910,910,910,910}; u32 rf_vcocal_850[4] = {2015, 2015, 2015, 2015}; u32 rf_rxdc[4] = {32896,32896,32896,32896}; u32 rxgain[4] = {20,20,20,20}; u32 txgain[4] = {20,20,20,20}; u16 Nid_cell = 0; u8 cooperation_flag=0, transmission_mode=1, abstraction_flag=0; u8 beta_ACK=0,beta_RI=0,beta_CQI=2; int c; char do_forms=0; unsigned int fd; unsigned int tcxo = 114; int amp; u8 prach_fmt; int N_ZC; char rxg_fname[100]; char txg_fname[100]; char rflo_fname[100]; char rfdc_fname[100]; FILE *rxg_fd=NULL; FILE *txg_fd=NULL; FILE *rflo_fd=NULL; FILE *rfdc_fd=NULL; unsigned int rxg_max[4]={133,133,133,133}, rxg_med[4]={127,127,127,127}, rxg_byp[4]={120,120,120,120}; int tx_max_power=0; char line[1000]; int l; int ret, ant; int ant_offset=0; int error_code; const struct option long_options[] = { {"calib-ue-rx", required_argument, NULL, 256}, {"calib-ue-rx-med", required_argument, NULL, 257}, {"calib-ue-rx-byp", required_argument, NULL, 258}, {"debug-ue-prach", no_argument, NULL, 259}, {"no-L2-connect", no_argument, NULL, 260}, {NULL, 0, NULL, 0}}; mode = normal_txrx; while ((c = getopt_long (argc, argv, "C:ST:UdF:V",long_options,NULL)) != -1) { switch (c) { case 'V': ouput_vcd = 1; break; case 'd': do_forms=1; break; case 'U': UE_flag = 1; break; case 'C': carrier_freq[0] = atoi(optarg); carrier_freq[1] = atoi(optarg); carrier_freq[2] = atoi(optarg); carrier_freq[3] = atoi(optarg); break; case 'S': fs4_test=1; break; case 'T': tcxo=atoi(optarg); break; case 'F': sprintf(rxg_fname,"%srxg.lime",optarg); rxg_fd = fopen(rxg_fname,"r"); if (rxg_fd) { printf("Loading RX Gain parameters from %s\n",rxg_fname); l=0; while (fgets(line, sizeof(line), rxg_fd)) { if ((strlen(line)==0) || (*line == '#')) continue; //ignore empty or comment lines else { if (l==0) sscanf(line,"%d %d %d %d",&rxg_max[0],&rxg_max[1],&rxg_max[2],&rxg_max[3]); if (l==1) sscanf(line,"%d %d %d %d",&rxg_med[0],&rxg_med[1],&rxg_med[2],&rxg_med[3]); if (l==2) sscanf(line,"%d %d %d %d",&rxg_byp[0],&rxg_byp[1],&rxg_byp[2],&rxg_byp[3]); l++; } } } else printf("%s not found, running with defaults\n",rxg_fname); sprintf(txg_fname,"%stxg.lime",optarg); txg_fd = fopen(txg_fname,"r"); if (txg_fd) { printf("Loading TX Gain parameters from %s\n",txg_fname); l=0; while (fgets(line, sizeof(line), txg_fd)) { if ((strlen(line)==0) || (*line == '#')) { continue; //ignore empty or comment lines } else { if (l==0) sscanf(line,"%d %d %d %d",&txgain[0],&txgain[1],&txgain[2],&txgain[3]); if (l==1) sscanf(line,"%d",&tx_max_power); l++; } } } else printf("%s not found, running with defaults\n",txg_fname); sprintf(rflo_fname,"%srflo.lime",optarg); rflo_fd = fopen(rflo_fname,"r"); if (rflo_fd) { printf("Loading RF LO parameters from %s\n",rflo_fname); fscanf(rflo_fd,"%d %d %d %d",&rf_local[0],&rf_local[1],&rf_local[2],&rf_local[3]); } else printf("%s not found, running with defaults\n",rflo_fname); sprintf(rfdc_fname,"%srfdc.lime",optarg); rfdc_fd = fopen(rfdc_fname,"r"); if (rfdc_fd) { printf("Loading RF DC parameters from %s\n",rfdc_fname); fscanf(rfdc_fd,"%d %d %d %d",&rf_rxdc[0],&rf_rxdc[1],&rf_rxdc[2],&rf_rxdc[3]); } else printf("%s not found, running with defaults\n",rfdc_fname); break; case 256: mode = rx_calib_ue; rx_input_level_dBm = atoi(optarg); printf("Running with UE calibration on (LNA max), input level %d dBm\n",rx_input_level_dBm); break; case 257: mode = rx_calib_ue_med; rx_input_level_dBm = atoi(optarg); printf("Running with UE calibration on (LNA med), input level %d dBm\n",rx_input_level_dBm); break; case 258: mode = rx_calib_ue_byp; rx_input_level_dBm = atoi(optarg); printf("Running with UE calibration on (LNA byp), input level %d dBm\n",rx_input_level_dBm); break; case 259: mode = debug_prach; break; case 260: mode = no_L2_connect; break; default: break; } } if (UE_flag==1) printf("configuring for UE\n"); else printf("configuring for eNB\n"); //randominit (0); set_taus_seed (0); // initialize the log (see log.h for details) logInit(); if (ouput_vcd) { if (UE_flag==1) vcd_signal_dumper_init("/tmp/openair_dump_UE.vcd"); else vcd_signal_dumper_init("/tmp/openair_dump_eNB.vcd"); } #ifdef NAS_NETLINK netlink_init(); #endif // to make a graceful exit when ctrl-c is pressed signal(SIGSEGV, signal_handler); signal(SIGINT, signal_handler); #ifndef RTAI check_clock(); #endif // init the parameters frame_parms = (LTE_DL_FRAME_PARMS*) malloc(sizeof(LTE_DL_FRAME_PARMS)); frame_parms->N_RB_DL = 25; frame_parms->N_RB_UL = 25; frame_parms->Ncp = 0; frame_parms->Ncp_UL = 0; frame_parms->Nid_cell = Nid_cell; frame_parms->nushift = 0; if (UE_flag==0) { switch (transmission_mode) { case 1: frame_parms->nb_antennas_tx = 1; frame_parms->nb_antennas_rx = 1; break; case 2: case 5: case 6: frame_parms->nb_antennas_tx = 2; frame_parms->nb_antennas_rx = 2; break; default: printf("Unsupported transmission mode %d\n",transmission_mode); exit(-1); } } else { //UE_flag==1 frame_parms->nb_antennas_tx = 1; frame_parms->nb_antennas_rx = 2; } frame_parms->nb_antennas_tx_eNB = (transmission_mode == 1) ? 1 : 2; //initial value overwritten by initial sync later frame_parms->mode1_flag = (transmission_mode == 1) ? 1 : 0; frame_parms->frame_type = 1; frame_parms->tdd_config = 3; frame_parms->tdd_config_S = 0; frame_parms->phich_config_common.phich_resource = oneSixth; frame_parms->phich_config_common.phich_duration = normal; // UL RS Config frame_parms->pusch_config_common.ul_ReferenceSignalsPUSCH.cyclicShift = 0;//n_DMRS1 set to 0 frame_parms->pusch_config_common.ul_ReferenceSignalsPUSCH.groupHoppingEnabled = 0; frame_parms->pusch_config_common.ul_ReferenceSignalsPUSCH.sequenceHoppingEnabled = 0; frame_parms->pusch_config_common.ul_ReferenceSignalsPUSCH.groupAssignmentPUSCH = 0; init_ul_hopping(frame_parms); init_frame_parms(frame_parms,1); phy_init_top(frame_parms); phy_init_lte_top(frame_parms); //init prach for openair1 test frame_parms->prach_config_common.rootSequenceIndex=22; frame_parms->prach_config_common.prach_ConfigInfo.zeroCorrelationZoneConfig=1; frame_parms->prach_config_common.prach_ConfigInfo.prach_ConfigIndex=0; frame_parms->prach_config_common.prach_ConfigInfo.highSpeedFlag=0; frame_parms->prach_config_common.prach_ConfigInfo.prach_FreqOffset=0; prach_fmt = get_prach_fmt(frame_parms->prach_config_common.prach_ConfigInfo.prach_ConfigIndex, frame_parms->frame_type); N_ZC = (prach_fmt <4)?839:139; if (UE_flag==1) { g_log->log_component[HW].level = LOG_DEBUG; g_log->log_component[HW].flag = LOG_HIGH; #ifdef OPENAIR2 g_log->log_component[PHY].level = LOG_INFO; #else g_log->log_component[PHY].level = LOG_INFO; #endif g_log->log_component[PHY].flag = LOG_HIGH; g_log->log_component[MAC].level = LOG_INFO; g_log->log_component[MAC].flag = LOG_HIGH; g_log->log_component[RLC].level = LOG_INFO; g_log->log_component[RLC].flag = LOG_HIGH; g_log->log_component[PDCP].level = LOG_INFO; g_log->log_component[PDCP].flag = LOG_HIGH; g_log->log_component[OTG].level = LOG_INFO; g_log->log_component[OTG].flag = LOG_HIGH; g_log->log_component[RRC].level = LOG_INFO; g_log->log_component[RRC].flag = LOG_HIGH; PHY_vars_UE_g = malloc(sizeof(PHY_VARS_UE*)); PHY_vars_UE_g[0] = init_lte_UE(frame_parms, UE_id,abstraction_flag,transmission_mode); #ifndef OPENAIR2 for (i=0;ipusch_config_dedicated[i].betaOffset_ACK_Index = beta_ACK; PHY_vars_UE_g[0]->pusch_config_dedicated[i].betaOffset_RI_Index = beta_RI; PHY_vars_UE_g[0]->pusch_config_dedicated[i].betaOffset_CQI_Index = beta_CQI; PHY_vars_UE_g[0]->scheduling_request_config[i].sr_PUCCH_ResourceIndex = UE_id; PHY_vars_UE_g[0]->scheduling_request_config[i].sr_ConfigIndex = 7+(UE_id%3); PHY_vars_UE_g[0]->scheduling_request_config[i].dsr_TransMax = sr_n4; } #endif compute_prach_seq(&PHY_vars_UE_g[0]->lte_frame_parms.prach_config_common, PHY_vars_UE_g[0]->lte_frame_parms.frame_type, PHY_vars_UE_g[0]->X_u); PHY_vars_UE_g[0]->lte_ue_pdcch_vars[0]->crnti = 0x1234; #ifndef OPENAIR2 PHY_vars_UE_g[0]->lte_ue_pdcch_vars[0]->crnti = 0x1235; #endif NB_UE_INST=1; NB_INST=1; openair_daq_vars.manual_timing_advance = 0; //openair_daq_vars.timing_advance = TIMING_ADVANCE_HW; openair_daq_vars.rx_gain_mode = DAQ_AGC_ON; openair_daq_vars.auto_freq_correction = 0; openair_daq_vars.use_ia_receiver = 0; // if AGC is off, the following values will be used for (i=0;i<4;i++) rxgain[i] = 0; for (i=0;i<4;i++) { PHY_vars_UE_g[0]->rx_gain_max[i] = rxg_max[i]; PHY_vars_UE_g[0]->rx_gain_med[i] = rxg_med[i]; PHY_vars_UE_g[0]->rx_gain_byp[i] = rxg_byp[i]; } if ((mode == normal_txrx) || (mode == rx_calib_ue) || (mode == no_L2_connect) || (mode == debug_prach)) { for (i=0; i<4; i++) { PHY_vars_UE_g[0]->rx_gain_mode[i] = max_gain; // frame_parms->rfmode[i] = rf_mode_max[i]; rf_mode[i] = (rf_mode[i] & (~LNAGAINMASK)) | LNAMax; } PHY_vars_UE_g[0]->rx_total_gain_dB = PHY_vars_UE_g[0]->rx_gain_max[0] + rxgain[0] - 30; //-30 because it was calibrated with a 30dB gain } else if ((mode == rx_calib_ue_med)) { for (i=0; i<4; i++) { PHY_vars_UE_g[0]->rx_gain_mode[i] = med_gain; // frame_parms->rfmode[i] = rf_mode_med[i]; rf_mode[i] = (rf_mode[i] & (~LNAGAINMASK)) | LNAMed; } PHY_vars_UE_g[0]->rx_total_gain_dB = PHY_vars_UE_g[0]->rx_gain_med[0] + rxgain[0] - 30; //-30 because it was calibrated with a 30dB gain; } else if ((mode == rx_calib_ue_byp)) { for (i=0; i<4; i++) { PHY_vars_UE_g[0]->rx_gain_mode[i] = byp_gain; // frame_parms->rfmode[i] = rf_mode_byp[i]; rf_mode[i] = (rf_mode[i] & (~LNAGAINMASK)) | LNAByp; } PHY_vars_UE_g[0]->rx_total_gain_dB = PHY_vars_UE_g[0]->rx_gain_byp[0] + rxgain[0] - 30; //-30 because it was calibrated with a 30dB gain; } PHY_vars_UE_g[0]->tx_power_max_dBm = tx_max_power; // printf("tx_max_power = %d -> amp %d\n",tx_max_power,get_tx_amp(tx_max_power,tx_max_power)); } else { //this is eNB g_log->log_component[HW].level = LOG_DEBUG; g_log->log_component[HW].flag = LOG_HIGH; #ifdef OPENAIR2 g_log->log_component[PHY].level = LOG_INFO; #else g_log->log_component[PHY].level = LOG_INFO; #endif g_log->log_component[PHY].flag = LOG_HIGH; g_log->log_component[MAC].level = LOG_INFO; g_log->log_component[MAC].flag = LOG_HIGH; g_log->log_component[RLC].level = LOG_INFO; g_log->log_component[RLC].flag = LOG_HIGH; g_log->log_component[PDCP].level = LOG_INFO; g_log->log_component[PDCP].flag = LOG_HIGH; g_log->log_component[OTG].level = LOG_INFO; g_log->log_component[OTG].flag = LOG_HIGH; g_log->log_component[RRC].level = LOG_INFO; g_log->log_component[RRC].flag = LOG_HIGH; PHY_vars_eNB_g = malloc(sizeof(PHY_VARS_eNB*)); PHY_vars_eNB_g[0] = init_lte_eNB(frame_parms,eNB_id,Nid_cell,cooperation_flag,transmission_mode,abstraction_flag); #ifndef OPENAIR2 for (i=0;ipusch_config_dedicated[i].betaOffset_ACK_Index = beta_ACK; PHY_vars_eNB_g[0]->pusch_config_dedicated[i].betaOffset_RI_Index = beta_RI; PHY_vars_eNB_g[0]->pusch_config_dedicated[i].betaOffset_CQI_Index = beta_CQI; PHY_vars_eNB_g[0]->scheduling_request_config[i].sr_PUCCH_ResourceIndex = i; PHY_vars_eNB_g[0]->scheduling_request_config[i].sr_ConfigIndex = 7+(i%3); PHY_vars_eNB_g[0]->scheduling_request_config[i].dsr_TransMax = sr_n4; } #endif compute_prach_seq(&PHY_vars_eNB_g[0]->lte_frame_parms.prach_config_common, PHY_vars_eNB_g[0]->lte_frame_parms.frame_type, PHY_vars_eNB_g[0]->X_u); NB_eNB_INST=1; NB_INST=1; openair_daq_vars.ue_dl_rb_alloc=0x1fff; openair_daq_vars.target_ue_dl_mcs=0; openair_daq_vars.ue_ul_nb_rb=6; openair_daq_vars.target_ue_ul_mcs=6; // if AGC is off, the following values will be used for (i=0;i<4;i++) rxgain[i]=10; // set eNB to max gain PHY_vars_eNB_g[0]->rx_total_gain_eNB_dB = rxg_max[0] + rxgain[0] - 30; //was measured at rxgain=30; for (i=0; i<4; i++) { // frame_parms->rfmode[i] = rf_mode_max[i]; rf_mode[i] = (rf_mode[i] & (~LNAGAINMASK)) | LNAMax; } } // Initialize card ret = openair0_open(); if ( ret != 0 ) { if (ret == -1) printf("Error opening /dev/openair0"); if (ret == -2) printf("Error mapping bigshm"); if (ret == -3) printf("Error mapping RX or TX buffer"); return(ret); } printf ("Detected %d number of cards, %d number of antennas.\n", openair0_num_detected_cards, openair0_num_antennas[card]); p_exmimo_config = openair0_exmimo_pci[card].exmimo_config_ptr; p_exmimo_id = openair0_exmimo_pci[card].exmimo_id_ptr; printf("Card %d: ExpressMIMO %d, HW Rev %d, SW Rev 0x%d\n", card, p_exmimo_id->board_exmimoversion, p_exmimo_id->board_hwrev, p_exmimo_id->board_swrev); if (p_exmimo_id->board_swrev>=BOARD_SWREV_CNTL2) p_exmimo_config->framing.eNB_flag = 0; else p_exmimo_config->framing.eNB_flag = !UE_flag; p_exmimo_config->framing.tdd_config = DUPLEXMODE_FDD + TXRXSWITCH_LSB; p_exmimo_config->framing.resampling_factor = 2; for (ant=0;antnb_antennas_tx,frame_parms->nb_antennas_rx);ant++) p_exmimo_config->rf.rf_mode[ant] = rf_mode_base; for (ant=0;antnb_antennas_tx;ant++) p_exmimo_config->rf.rf_mode[ant] += (TXEN + DMAMODE_TX); for (ant=0;antnb_antennas_rx;ant++) p_exmimo_config->rf.rf_mode[ant] += (RXEN + DMAMODE_RX); for (ant=max(frame_parms->nb_antennas_tx,frame_parms->nb_antennas_rx);ant<4;ant++) { p_exmimo_config->rf.rf_mode[ant] = 0; carrier_freq[ant] = 0; //this turns off all other LIMEs } /* ant_offset = 3; for (ant=0; ant<4; ant++) { if (ant==ant_offset) { p_exmimo_config->rf.rf_mode[ant] = rf_mode_base; p_exmimo_config->rf.rf_mode[ant] += (TXEN + DMAMODE_TX); p_exmimo_config->rf.rf_mode[ant] += (RXEN + DMAMODE_RX); } else { p_exmimo_config->rf.rf_mode[ant] = 0; carrier_freq[ant] = 0; //this turns off all other LIMEs } } */ for (ant = 0; ant<4; ant++) { p_exmimo_config->rf.do_autocal[ant] = 1; p_exmimo_config->rf.rf_freq_rx[ant] = carrier_freq[ant]; p_exmimo_config->rf.rf_freq_tx[ant] = carrier_freq[ant]; p_exmimo_config->rf.rx_gain[ant][0] = rxgain[ant]; p_exmimo_config->rf.tx_gain[ant][0] = txgain[ant]; p_exmimo_config->rf.rf_local[ant] = rf_local[ant]; p_exmimo_config->rf.rf_rxdc[ant] = rf_rxdc[ant]; if ((carrier_freq[ant] >= 850000000) && (carrier_freq[ant] <= 865000000)) { p_exmimo_config->rf.rf_vcocal[ant] = rf_vcocal_850[ant]; p_exmimo_config->rf.rffe_band_mode[ant] = DD_TDD; } else if ((carrier_freq[ant] >= 1900000000) && (carrier_freq[ant] <= 2000000000)) { p_exmimo_config->rf.rf_vcocal[ant] = rf_vcocal[ant]; p_exmimo_config->rf.rffe_band_mode[ant] = B19G_TDD; } else { p_exmimo_config->rf.rf_vcocal[ant] = rf_vcocal[ant]; p_exmimo_config->rf.rffe_band_mode[ant] = 0; } p_exmimo_config->rf.rffe_gain_txlow[ant] = 31; p_exmimo_config->rf.rffe_gain_txhigh[ant] = 31; p_exmimo_config->rf.rffe_gain_rxfinal[ant] = 52; p_exmimo_config->rf.rffe_gain_rxlow[ant] = 31; } dump_frame_parms(frame_parms); mac_xface = malloc(sizeof(MAC_xface)); #ifdef OPENAIR2 int eMBMS_active=0; l2_init(frame_parms,eMBMS_active, 0,// cba_group_active 0); // HO flag if (UE_flag == 1) mac_xface->dl_phy_sync_success (0, 0, 0, 1); else mac_xface->mrbch_phy_sync_failure (0, 0, 0); #endif mac_xface->macphy_exit = &exit_fun; #ifdef OPENAIR2 //if (otg_enabled) { init_all_otg(0); g_otg->seed = 0; init_seeds(g_otg->seed); g_otg->num_nodes = 2; for (i=0; inum_nodes; i++){ for (j=0; jnum_nodes; j++){ g_otg->application_idx[i][j] = 1; //g_otg->packet_gen_type=SUBSTRACT_STRING; g_otg->aggregation_level[i][j][0]=1; g_otg->application_type[i][j][0] = BCBR; //MCBR, BCBR } } init_predef_traffic(); // } #endif #ifdef OPENAIR2 //init_pdcp_thread(); #endif number_of_cards = openair0_num_detected_cards; if (p_exmimo_id->board_exmimoversion==1) //ExpressMIMO1 openair_daq_vars.timing_advance = 138; else //ExpressMIMO2 openair_daq_vars.timing_advance = 0; // connect the TX/RX buffers if (UE_flag==1) { setup_ue_buffers(PHY_vars_UE_g[0],frame_parms,ant_offset); printf("Setting UE buffer to all-RX\n"); // Set LSBs for antenna switch (ExpressMIMO) for (i=0; isamples_per_tti*10; i++) for (aa=0; aanb_antennas_tx; aa++) PHY_vars_UE_g[0]->lte_ue_common_vars.txdata[aa][i] = 0x00010001; //p_exmimo_config->framing.tdd_config = TXRXSWITCH_TESTRX; } else { setup_eNB_buffers(PHY_vars_eNB_g[0],frame_parms,ant_offset); if (fs4_test==0) { printf("Setting eNB buffer to all-RX\n"); // Set LSBs for antenna switch (ExpressMIMO) for (i=0; isamples_per_tti*10; i++) for (aa=0; aanb_antennas_tx; aa++) PHY_vars_eNB_g[0]->lte_eNB_common_vars.txdata[0][aa][i] = 0x00010001; // Set the last OFDM symbol of subframe 4 to TX to allow enough time for switch to settle // (that's ok since the last symbol can be configured as SRS) /* for (i=frame_parms->samples_per_tti*5-0*(frame_parms->ofdm_symbol_size+frame_parms->nb_prefix_samples); isamples_per_tti*5; i++) for (aa=0; aanb_antennas_tx; aa++) PHY_vars_eNB_g[0]->lte_eNB_common_vars.txdata[0][aa][i] = 0x0; */ } else { printf("Setting eNB buffer to fs/4 test signal\n"); for (j=0; jlte_frame_parms.samples_per_tti*10; j+=4) for (aa=0; aanb_antennas_tx; aa++) { amp = 0x8000; ((short*)PHY_vars_eNB_g[0]->lte_eNB_common_vars.txdata[0][aa])[2*j+1] = 0; ((short*)PHY_vars_eNB_g[0]->lte_eNB_common_vars.txdata[0][aa])[2*j+3] = amp-1; ((short*)PHY_vars_eNB_g[0]->lte_eNB_common_vars.txdata[0][aa])[2*j+5] = 0; ((short*)PHY_vars_eNB_g[0]->lte_eNB_common_vars.txdata[0][aa])[2*j+7] = amp; ((short*)PHY_vars_eNB_g[0]->lte_eNB_common_vars.txdata[0][aa])[2*j] = amp-1; ((short*)PHY_vars_eNB_g[0]->lte_eNB_common_vars.txdata[0][aa])[2*j+2] = 0; ((short*)PHY_vars_eNB_g[0]->lte_eNB_common_vars.txdata[0][aa])[2*j+4] = amp; ((short*)PHY_vars_eNB_g[0]->lte_eNB_common_vars.txdata[0][aa])[2*j+6] = 0; } } } openair0_dump_config(card); printf("EXMIMO_CONFIG: rf_mode 0x %x %x %x %x, [0]: TXRXEn %d, TXLPFEn %d, TXLPF %d, RXLPFEn %d, RXLPF %d, RFBB %d, LNA %d, LNAGain %d, RXLPFMode %d, SWITCH %d, rf_rxdc %d, rf_local %d, rf_vcocal %d\n", p_exmimo_config->rf.rf_mode[0], p_exmimo_config->rf.rf_mode[1], p_exmimo_config->rf.rf_mode[2], p_exmimo_config->rf.rf_mode[3], (p_exmimo_config->rf.rf_mode[0]&3), // RXen+TXen (p_exmimo_config->rf.rf_mode[0]&4)>>2, //TXLPFen (p_exmimo_config->rf.rf_mode[0]&TXLPFMASK)>>3, //TXLPF (p_exmimo_config->rf.rf_mode[0]&128)>>7, //RXLPFen (p_exmimo_config->rf.rf_mode[0]&RXLPFMASK)>>8, //TXLPF (p_exmimo_config->rf.rf_mode[0]&RFBBMASK)>>16, // RFBB mode (p_exmimo_config->rf.rf_mode[0]&LNAMASK)>>12, // RFBB mode (p_exmimo_config->rf.rf_mode[0]&LNAGAINMASK)>>14, // RFBB mode (p_exmimo_config->rf.rf_mode[0]&RXLPFMODEMASK)>>19, // RXLPF mode (p_exmimo_config->framing.tdd_config&TXRXSWITCH_MASK)>>1, // Switch mode p_exmimo_config->rf.rf_rxdc[0], p_exmimo_config->rf.rf_local[0], p_exmimo_config->rf.rf_vcocal[0]); for (ant=0;ant<4;ant++) p_exmimo_config->rf.do_autocal[ant] = 0; #ifdef EMOS error_code = rtf_create(CHANSOUNDER_FIFO_MINOR,CHANSOUNDER_FIFO_SIZE); if (error_code==0) printf("[OPENAIR][SCHED][INIT] Created EMOS FIFO %d\n",CHANSOUNDER_FIFO_MINOR); else if (error_code==ENODEV) printf("[OPENAIR][SCHED][INIT] Problem: EMOS FIFO %d is greater than or equal to RTF_NO\n",CHANSOUNDER_FIFO_MINOR); else if (error_code==ENOMEM) printf("[OPENAIR][SCHED][INIT] Problem: cannot allocate memory for EMOS FIFO %d\n",CHANSOUNDER_FIFO_MINOR); else printf("[OPENAIR][SCHED][INIT] Problem creating EMOS FIFO %d, error_code %d\n",CHANSOUNDER_FIFO_MINOR,error_code); #endif mlockall(MCL_CURRENT | MCL_FUTURE); #ifdef RTAI // make main thread LXRT soft realtime task = rt_task_init_schmod(nam2num("MYTASK"), 9, 0, 0, SCHED_FIFO, 0xF); // start realtime timer and scheduler //rt_set_oneshot_mode(); rt_set_periodic_mode(); start_rt_timer(0); //now = rt_get_time() + 10*PERIOD; //rt_task_make_periodic(task, now, PERIOD); printf("Init mutex\n"); //mutex = rt_get_adr(nam2num("MUTEX")); mutex = rt_sem_init(nam2num("MUTEX"), 1); if (mutex==0) { printf("Error init mutex\n"); exit(-1); } else printf("mutex=%p\n",mutex); #endif DAQ_MBOX = (volatile unsigned int *) openair0_exmimo_pci[card].rxcnt_ptr[0]; // this starts the DMA transfers if (UE_flag!=1) openair0_start_rt_acquisition(card); #ifdef XFORMS if (do_forms==1) { fl_initialize (&argc, argv, NULL, 0, 0); form_stats = create_form_stats_form(); if (UE_flag==1) { form_ue[UE_id] = create_lte_phy_scope_ue(); sprintf (title, "LTE DL SCOPE UE"); fl_show_form (form_ue[UE_id]->lte_phy_scope_ue, FL_PLACE_HOTSPOT, FL_FULLBORDER, title); } else { for(UE_id=0;UE_idlte_phy_scope_enb, FL_PLACE_HOTSPOT, FL_FULLBORDER, title); } } fl_show_form (form_stats->stats_form, FL_PLACE_HOTSPOT, FL_FULLBORDER, "stats"); if (UE_flag==0) { for (UE_id=0;UE_idbutton_0,1); fl_set_object_label(form_enb[UE_id]->button_0,"DL Traffic ON"); } else { fl_set_button(form_enb[UE_id]->button_0,0); fl_set_object_label(form_enb[UE_id]->button_0,"DL Traffic OFF"); } } } else { if (openair_daq_vars.use_ia_receiver) { fl_set_button(form_ue[UE_id]->button_0,1); fl_set_object_label(form_ue[UE_id]->button_0, "IA Receiver ON"); } else { fl_set_button(form_ue[UE_id]->button_0,0); fl_set_object_label(form_ue[UE_id]->button_0, "IA Receiver OFF"); } } ret = pthread_create(&thread2, NULL, scope_thread, NULL); printf("Scope thread created, ret=%d\n",ret); } #endif #ifdef EMOS ret = pthread_create(&thread3, NULL, emos_thread, NULL); printf("EMOS thread created, ret=%d\n",ret); #endif rt_sleep_ns(10*FRAME_PERIOD); #ifndef RTAI pthread_attr_init (&attr_dlsch_threads); pthread_attr_setstacksize(&attr_dlsch_threads,OPENAIR_THREAD_STACK_SIZE); //attr_dlsch_threads.priority = 1; sched_param_dlsch.sched_priority = sched_get_priority_max(SCHED_FIFO); //OPENAIR_THREAD_PRIORITY; pthread_attr_setschedparam (&attr_dlsch_threads, &sched_param_dlsch); pthread_attr_setschedpolicy (&attr_dlsch_threads, SCHED_FIFO); #endif // start the main thread if (UE_flag == 1) { #ifdef RTAI thread1 = rt_thread_create(UE_thread, NULL, 100000000); #else error_code = pthread_create(&thread1, &attr_dlsch_threads, UE_thread, NULL); if (error_code!= 0) { LOG_D(HW,"[lte-softmodem.c] Could not allocate UE_thread, error %d\n",error_code); return(error_code); } else { LOG_D(HW,"[lte-softmodem.c] Allocate UE_thread successful\n"); } #endif #ifdef DLSCH_THREAD init_rx_pdsch_thread(); rt_sleep_ns(FRAME_PERIOD/10); init_dlsch_threads(); #endif printf("UE threads created\n"); } else { #ifdef RTAI thread0 = rt_thread_create(eNB_thread, NULL, 100000000); #else error_code = pthread_create(&thread0, &attr_dlsch_threads, eNB_thread, NULL); if (error_code!= 0) { LOG_D(HW,"[lte-softmodem.c] Could not allocate eNB_thread, error %d\n",error_code); return(error_code); } else { LOG_D(HW,"[lte-softmodem.c] Allocate eNB_thread successful\n"); } #endif #ifdef ULSCH_THREAD init_ulsch_threads(); #endif printf("eNB threads created\n"); } // wait for end of program printf("TYPE TO TERMINATE\n"); //getchar(); while (oai_exit==0) rt_sleep_ns(FRAME_PERIOD); // stop threads #ifdef XFORMS printf("waiting for XFORMS thread\n"); if (do_forms==1) { pthread_join(thread2,&status); fl_hide_form(form_stats->stats_form); fl_free_form(form_stats->stats_form); if (UE_flag==1) { fl_hide_form(form_ue[UE_id]->lte_phy_scope_ue); fl_free_form(form_ue[UE_id]->lte_phy_scope_ue); } else { for(UE_id=0;UE_idlte_phy_scope_enb); fl_free_form(form_enb[UE_id]->lte_phy_scope_enb); } } } #endif printf("stopping MODEM threads\n"); // cleanup if (UE_flag == 1) { #ifdef RTAI rt_thread_join(thread1); #else pthread_join(thread1,&status); #endif #ifdef DLSCH_THREAD cleanup_dlsch_threads(); cleanup_rx_pdsch_thread(); #endif } else { #ifdef RTAI rt_thread_join(thread0); #else pthread_join(thread0,&status); #endif #ifdef ULSCH_THREAD cleanup_ulsch_threads(); #endif } #ifdef OPENAIR2 //cleanup_pdcp_thread(); #endif #ifdef RTAI stop_rt_timer(); #endif printf("stopping card\n"); openair0_stop(card); printf("closing openair0_lib\n"); openair0_close(); #ifdef EMOS printf("waiting for EMOS thread\n"); pthread_cancel(thread3); pthread_join(thread3,&status); #endif #ifdef EMOS error_code = rtf_destroy(CHANSOUNDER_FIFO_MINOR); printf("[OPENAIR][SCHED][CLEANUP] EMOS FIFO closed, error_code %d\n", error_code); #endif if (ouput_vcd) vcd_signal_dumper_close(); logClean(); return 0; } void test_config(int card, int ant, unsigned int rf_mode, int UE_flag) { p_exmimo_config->framing.eNB_flag = !UE_flag; p_exmimo_config->framing.tdd_config = 0; p_exmimo_config->framing.resampling_factor = 2; p_exmimo_config->rf.rf_freq_rx[ant] = 1907600000; p_exmimo_config->rf.rf_freq_tx[ant] = 1907600000;; p_exmimo_config->rf.rx_gain[ant][0] = 20; p_exmimo_config->rf.tx_gain[ant][0] = 10; p_exmimo_config->rf.rf_mode[ant] = rf_mode; p_exmimo_config->rf.rf_local[ant] = build_rflocal(20,25,26,04); p_exmimo_config->rf.rf_rxdc[ant] = build_rfdc(128, 128); p_exmimo_config->rf.rf_vcocal[ant] = (0xE<<6) + 0xE; } void setup_ue_buffers(PHY_VARS_UE *phy_vars_ue, LTE_DL_FRAME_PARMS *frame_parms, int carrier) { int i; if (phy_vars_ue) { if ((frame_parms->nb_antennas_rx>1) && (carrier>0)) { printf("RX antennas > 1 and carrier > 0 not possible\n"); exit(-1); } if ((frame_parms->nb_antennas_tx>1) && (carrier>0)) { printf("TX antennas > 1 and carrier > 0 not possible\n"); exit(-1); } // replace RX signal buffers with mmaped HW versions for (i=0;inb_antennas_rx;i++) { free(phy_vars_ue->lte_ue_common_vars.rxdata[i]); phy_vars_ue->lte_ue_common_vars.rxdata[i] = (s32*) openair0_exmimo_pci[card].adc_head[i+carrier]; printf("rxdata[%d] @ %p\n",i,phy_vars_ue->lte_ue_common_vars.rxdata[i]); } for (i=0;inb_antennas_tx;i++) { free(phy_vars_ue->lte_ue_common_vars.txdata[i]); phy_vars_ue->lte_ue_common_vars.txdata[i] = (s32*) openair0_exmimo_pci[card].dac_head[i+carrier]; printf("txdata[%d] @ %p\n",i,phy_vars_ue->lte_ue_common_vars.txdata[i]); } } } void setup_eNB_buffers(PHY_VARS_eNB *phy_vars_eNB, LTE_DL_FRAME_PARMS *frame_parms, int carrier) { int i,j; if (phy_vars_eNB) { if ((frame_parms->nb_antennas_rx>1) && (carrier>0)) { printf("RX antennas > 1 and carrier > 0 not possible\n"); exit(-1); } if ((frame_parms->nb_antennas_tx>1) && (carrier>0)) { printf("TX antennas > 1 and carrier > 0 not possible\n"); exit(-1); } // replace RX signal buffers with mmaped HW versions for (i=0;inb_antennas_rx;i++) { free(phy_vars_eNB->lte_eNB_common_vars.rxdata[0][i]); phy_vars_eNB->lte_eNB_common_vars.rxdata[0][i] = (s32*) openair0_exmimo_pci[card].adc_head[i+carrier]; printf("rxdata[%d] @ %p\n",i,phy_vars_eNB->lte_eNB_common_vars.rxdata[0][i]); for (j=0;j<16;j++) { printf("rxbuffer %d: %x\n",j,phy_vars_eNB->lte_eNB_common_vars.rxdata[0][i][j]); phy_vars_eNB->lte_eNB_common_vars.rxdata[0][i][j] = 16-j; } } for (i=0;inb_antennas_tx;i++) { free(phy_vars_eNB->lte_eNB_common_vars.txdata[0][i]); phy_vars_eNB->lte_eNB_common_vars.txdata[0][i] = (s32*) openair0_exmimo_pci[card].dac_head[i+carrier]; printf("txdata[%d] @ %p\n",i,phy_vars_eNB->lte_eNB_common_vars.txdata[0][i]); for (j=0;j<16;j++) { printf("txbuffer %d: %x\n",j,phy_vars_eNB->lte_eNB_common_vars.txdata[0][i][j]); phy_vars_eNB->lte_eNB_common_vars.txdata[0][i][j] = 16-j; } } } }