/*
 * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The OpenAirInterface Software Alliance licenses this file to You under
 * the OAI Public License, Version 1.0  (the "License"); you may not use this file
 * except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.openairinterface.org/?page_id=698
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *-------------------------------------------------------------------------------
 * For more information about the OpenAirInterface (OAI) Software Alliance:
 *      contact@openairinterface.org
 */

/*! \file PHY/LTE_TRANSPORT/prach.c
 * \brief Top-level routines for generating and decoding the PRACH physical channel V8.6 2009-03
 * \author R. Knopp
 * \date 2011
 * \version 0.1
 * \company Eurecom
 * \email: knopp@eurecom.fr
 * \note
 * \warning
 */
#include "PHY/sse_intrin.h"
#include "PHY/defs.h"
#include "PHY/extern.h"
//#include "prach.h"
#include "PHY/LTE_TRANSPORT/if4_tools.h"
#include "SCHED/defs.h"
#include "SCHED/extern.h"
#include "UTIL/LOG/vcd_signal_dumper.h"

//#define PRACH_DEBUG 1
#define NR_PRACH_DEBUG 1

// The following tables defined for 4G
uint16_t NCS_unrestricted[16] = {0,13,15,18,22,26,32,38,46,59,76,93,119,167,279,419};
uint16_t NCS_restricted[15]   = {15,18,22,26,32,38,46,55,68,82,100,128,158,202,237}; // high-speed case
// Note: in 4G implementation, restricted set type B is not supported
uint16_t NCS_4[7]             = {2,4,6,8,10,12,15};

/*************************************
* The following tables defined for NR
**************************************/
// Table 6.3.3.1-5 (38.211) NCS for preamble formats with delta_f_RA = 1.25 KHz
uint16_t NCS_unrestricted_delta_f_RA_125[16] = {0,13,15,18,22,26,32,38,46,59,76,93,119,167,279,419};
uint16_t NCS_restricted_TypeA_delta_f_RA_125[15]   = {15,18,22,26,32,38,46,55,68,82,100,128,158,202,237}; // high-speed case set Type A
uint16_t NCS_restricted_TypeB_delta_f_RA_125[13]   = {15,18,22,26,32,38,46,55,68,82,100,118,137}; // high-speed case set Type B

// Table 6.3.3.1-6 (38.211) NCS for preamble formats with delta_f_RA = 5 KHz
uint16_t NCS_unrestricted_delta_f_RA_5[16] = {0,13,26,33,38,41,49,55,64,76,93,119,139,209,279,419};
uint16_t NCS_restricted_TypeA_delta_f_RA_5[16]   = {36,57,72,81,89,94,103,112,121,132,137,152,173,195,216,237}; // high-speed case set Type A
uint16_t NCS_restricted_TypeB_delta_f_RA_5[14]   = {36,57,60,63,65,68,71,77,81,85,97,109,122,137}; // high-speed case set Type B

// Table 6.3.3.1-7 (38.211) NCS for preamble formats with delta_f_RA = 15 * 2mu KHz where mu = {0,1,2,3}
uint16_t NCS_unrestricted_delta_f_RA_15[16] = {0,2,4,6,8,10,12,13,15,17,19,23,27,34,46,69};

int16_t ru[2*839]; // quantized roots of unity
uint32_t ZC_inv[839]; // multiplicative inverse for roots u
uint16_t du[838];

typedef struct {
  uint8_t f_ra;
  uint8_t t0_ra;
  uint8_t t1_ra;
  uint8_t t2_ra;
} PRACH_TDD_PREAMBLE_MAP_elem;
typedef struct {
  uint8_t num_prach;
  PRACH_TDD_PREAMBLE_MAP_elem map[6];
} PRACH_TDD_PREAMBLE_MAP;

// This is table 5.7.1-4 from 36.211
PRACH_TDD_PREAMBLE_MAP tdd_preamble_map[64][7] = {
  // TDD Configuration Index 0
  { {1,{{0,1,0,2}}},{1,{{0,1,0,1}}}, {1,{{0,1,0,0}}}, {1,{{0,1,0,2}}}, {1,{{0,1,0,1}}}, {1,{{0,1,0,0}}}, {1,{{0,1,0,2}}}},
  // TDD Configuration Index 1
  { {1,{{0,2,0,2}}},{1,{{0,2,0,1}}}, {1,{{0,2,0,0}}}, {1,{{0,2,0,2}}}, {1,{{0,2,0,1}}}, {1,{{0,2,0,0}}}, {1,{{0,2,0,2}}}},
  // TDD Configuration Index 2
  { {1,{{0,1,1,2}}},{1,{{0,1,1,1}}}, {1,{{0,1,1,0}}}, {1,{{0,1,0,1}}}, {1,{{0,1,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,1,1,1}}}},
  // TDD Configuration Index 3
  { {1,{{0,0,0,2}}},{1,{{0,0,0,1}}}, {1,{{0,0,0,0}}}, {1,{{0,0,0,2}}}, {1,{{0,0,0,1}}}, {1,{{0,0,0,0}}}, {1,{{0,0,0,2}}}},
  // TDD Configuration Index 4
  { {1,{{0,0,1,2}}},{1,{{0,0,1,1}}}, {1,{{0,0,1,0}}}, {1,{{0,0,0,1}}}, {1,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,0,1,1}}}},
  // TDD Configuration Index 5
  { {1,{{0,0,0,1}}},{1,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,0,0,1}}}},
  // TDD Configuration Index 6
  { {2,{{0,0,0,2},{0,0,1,2}}}, {2,{{0,0,0,1},{0,0,1,1}}}, {2,{{0,0,0,0},{0,0,1,0}}}, {2,{{0,0,0,1},{0,0,0,2}}}, {2,{{0,0,0,0},{0,0,0,1}}}, {2,{{0,0,0,0},{1,0,0,0}}}, {2,{{0,0,0,2},{0,0,1,1}}}},
  // TDD Configuration Index 7
  { {2,{{0,0,0,1},{0,0,1,1}}}, {2,{{0,0,0,0},{0,0,1,0}}}, {0,{{0,0,0,0},{0,0,0,0}}}, {2,{{0,0,0,0},{0,0,0,2}}}, {0,{{0,0,0,0},{0,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0}}}, {2,{{0,0,0,1},{0,0,1,0}}}},
  // TDD Configuration Index 8
  { {2,{{0,0,0,0},{0,0,1,0}}}, {0,{{0,0,0,0},{0,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0}}}, {2,{{0,0,0,0},{0,0,0,1}}}, {0,{{0,0,0,0},{0,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0}}}, {2,{{0,0,0,0},{0,0,1,1}}}},
  // TDD Configuration Index 9
  { {3,{{0,0,0,1},{0,0,0,2},{0,0,1,2}}}, {3,{{0,0,0,0},{0,0,0,1},{0,0,1,1}}}, {3,{{0,0,0,0},{0,0,1,0},{1,0,0,0}}}, {3,{{0,0,0,0},{0,0,0,1},{0,0,0,2}}}, {3,{{0,0,0,0},{0,0,0,1},{1,0,0,1}}}, {3,{{0,0,0,0},{1,0,0,0},{2,0,0,0}}}, {3,{{0,0,0,1},{0,0,0,2},{0,0,1,1}}}},
  // TDD Configuration Index 10
  { {3,{{0,0,0,0},{0,0,1,0},{0,0,1,1}}}, {3,{{0,0,0,1},{0,0,1,0},{0,0,1,1}}}, {3,{{0,0,0,0},{0,0,1,0},{1,0,1,0}}}, {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0}}}, {3,{{0,0,0,0},{0,0,0,1},{1,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0}}}, {3,{{0,0,0,0},{0,0,0,2},{0,0,1,0}}}},
  // TDD Configuration Index 11
  { {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0}}}, {3,{{0,0,0,0},{0,0,0,1},{0,0,1,0}}}, {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0}}}, {3,{{0,0,0,1},{0,0,1,0},{0,0,1,1}}}},
  // TDD Configuration Index 12
  { {4,{{0,0,0,1},{0,0,0,2},{0,0,1,1},{0,0,1,2}}}, {4,{{0,0,0,0},{0,0,0,1},{0,0,1,0},{0,0,1,1}}},
    {4,{{0,0,0,0},{0,0,1,0},{1,0,0,0},{1,0,1,0}}},
    {4,{{0,0,0,0},{0,0,0,1},{0,0,0,2},{1,0,0,2}}},
    {4,{{0,0,0,0},{0,0,0,1},{1,0,0,0},{1,0,0,1}}},
    {4,{{0,0,0,0},{1,0,0,0},{2,0,0,0},{3,0,0,0}}},
    {4,{{0,0,0,1},{0,0,0,2},{0,0,1,0},{0,0,1,1}}}
  },
  // TDD Configuration Index 13
  { {4,{{0,0,0,0},{0,0,0,2},{0,0,1,0},{0,0,1,2}}}, {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {4,{{0,0,0,0},{0,0,0,1},{0,0,0,2},{1,0,0,1}}},
    {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {4,{{0,0,0,0},{0,0,0,1},{0,0,0,2},{0,0,1,1}}}
  },
  // TDD Configuration Index 14
  { {4,{{0,0,0,0},{0,0,0,1},{0,0,1,0},{0,0,1,1}}}, {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {4,{{0,0,0,0},{0,0,0,1},{0,0,0,2},{1,0,0,0}}},
    {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {4,{{0,0,0,0},{0,0,0,2},{0,0,1,0},{0,0,1,1}}}
  },
  // TDD Configuration Index 15
  { {5,{{0,0,0,0},{0,0,0,1},{0,0,0,2},{0,0,1,1},{0,0,1,2}}}, {5,{{0,0,0,0},{0,0,0,1},{0,0,1,0},{0,0,1,1},{1,0,0,1}}},
    {5,{{0,0,0,0},{0,0,1,0},{1,0,0,0},{1,0,1,0},{2,0,0,0}}}, {5,{{0,0,0,0},{0,0,0,1},{0,0,0,2},{1,0,0,1},{1,0,0,2}}},
    {5,{{0,0,0,0},{0,0,0,1},{1,0,0,0},{1,0,0,1},{2,0,0,1}}}, {5,{{0,0,0,0},{1,0,0,0},{2,0,0,0},{3,0,0,0},{4,0,0,0}}},
    {5,{{0,0,0,0},{0,0,0,1},{0,0,0,2},{0,0,1,0},{0,0,1,1}}}
  },
  // TDD Configuration Index 16
  { {5,{{0,0,0,1},{0,0,0,2},{0,0,1,0},{0,0,1,1},{0,0,1,2}}}, {5,{{0,0,0,0},{0,0,0,1},{0,0,1,0},{0,0,1,1},{1,0,1,1}}},
    {5,{{0,0,0,0},{0,0,1,0},{1,0,0,0},{1,0,1,0},{2,0,1,0}}}, {5,{{0,0,0,0},{0,0,0,1},{0,0,0,2},{1,0,0,0},{1,0,0,2}}},
    {5,{{0,0,0,0},{0,0,0,1},{1,0,0,0},{1,0,0,1},{2,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}}
  },
  // TDD Configuration Index 17
  { {5,{{0,0,0,0},{0,0,0,1},{0,0,0,2},{0,0,1,0},{0,0,1,2}}}, {5,{{0,0,0,0},{0,0,0,1},{0,0,1,0},{0,0,1,1},{1,0,0,0}}},
    {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}}, {5,{{0,0,0,0},{0,0,0,1},{0,0,0,2},{1,0,0,0},{1,0,0,1}}},
    {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}}
  },
  // TDD Configuration Index 18
  { {6,{{0,0,0,0},{0,0,0,1},{0,0,0,2},{0,0,1,0},{0,0,1,1},{0,0,1,2}}},
    {6,{{0,0,0,0},{0,0,0,1},{0,0,1,0},{0,0,1,1},{1,0,0,1},{1,0,1,1}}},
    {6,{{0,0,0,0},{0,0,1,0},{1,0,0,0},{1,0,1,0},{2,0,0,0},{2,0,1,0}}},
    {6,{{0,0,0,0},{0,0,0,1},{0,0,0,2},{1,0,0,0},{1,0,0,1},{1,0,0,2}}},
    {6,{{0,0,0,0},{0,0,0,1},{1,0,0,0},{1,0,0,1},{2,0,0,0},{2,0,0,1}}},
    {6,{{0,0,0,0},{1,0,0,0},{2,0,0,0},{3,0,0,0},{4,0,0,0},{5,0,0,0}}},
    {6,{{0,0,0,0},{0,0,0,1},{0,0,0,2},{0,0,1,0},{0,0,1,1},{1,0,0,2}}}
  },
  // TDD Configuration Index 19
  { {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {6,{{0,0,0,0},{0,0,0,1},{0,0,1,0},{0,0,1,1},{1,0,0,0},{1,0,1,0}}},
    {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {6,{{0,0,0,0},{0,0,0,1},{0,0,0,2},{0,0,1,0},{0,0,1,1},{1,0,1,1}}}
  },
  // TDD Configuration Index 20
  { {1,{{0,1,0,1}}},{1,{{0,1,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,1,0,1}}}, {1,{{0,1,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,1,0,1}}}},
  // TDD Configuration Index 21
  { {1,{{0,2,0,1}}},{1,{{0,2,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,2,0,1}}}, {1,{{0,2,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,2,0,1}}}},

  // TDD Configuration Index 22
  { {1,{{0,1,1,1}}},{1,{{0,1,1,0}}}, {0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,1,1,0}}}},

  // TDD Configuration Index 23
  { {1,{{0,0,0,1}}},{1,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,0,0,1}}}, {1,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,0,0,1}}}},

  // TDD Configuration Index 24
  { {1,{{0,0,1,1}}},{1,{{0,0,1,0}}}, {0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,0,1,0}}}},

  // TDD Configuration Index 25
  { {2,{{0,0,0,1},{0,0,1,1}}}, {2,{{0,0,0,0},{0,0,1,0}}}, {0,{{0,0,0,0},{0,0,0,0}}}, {2,{{0,0,0,1},{1,0,0,1}}}, {2,{{0,0,0,0},{1,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0}}}, {2,{{0,0,0,1},{0,0,1,0}}}},

  // TDD Configuration Index 26
  { {3,{{0,0,0,1},{0,0,1,1},{1,0,0,1}}}, {3,{{0,0,0,0},{0,0,1,0},{1,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0}}}, {3,{{0,0,0,1},{1,0,0,1},{2,0,0,1}}}, {3,{{0,0,0,0},{1,0,0,0},{2,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0}}}, {3,{{0,0,0,1},{0,0,1,0},{1,0,0,1}}}},

  // TDD Configuration Index 27
  { {4,{{0,0,0,1},{0,0,1,1},{1,0,0,1},{1,0,1,1}}}, {4,{{0,0,0,0},{0,0,1,0},{1,0,0,0},{1,0,1,0}}},
    {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {4,{{0,0,0,1},{1,0,0,1},{2,0,0,1},{3,0,0,1}}},
    {4,{{0,0,0,0},{1,0,0,0},{2,0,0,0},{3,0,0,0}}},
    {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {4,{{0,0,0,1},{0,0,1,0},{1,0,0,1},{1,0,1,0}}}
  },

  // TDD Configuration Index 28
  { {5,{{0,0,0,1},{0,0,1,1},{1,0,0,1},{1,0,1,1},{2,0,0,1}}}, {5,{{0,0,0,0},{0,0,1,0},{1,0,0,0},{1,0,1,0},{2,0,0,0}}},
    {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}}, {5,{{0,0,0,1},{1,0,0,1},{2,0,0,1},{3,0,0,1},{4,0,0,1}}},
    {5,{{0,0,0,0},{1,0,0,0},{2,0,0,0},{3,0,0,0},{4,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {5,{{0,0,0,1},{0,0,1,0},{1,0,0,1},{1,0,1,0},{2,0,0,1}}}
  },

  // TDD Configuration Index 29
  { {6,{{0,0,0,1},{0,0,1,1},{1,0,0,1},{1,0,1,1},{2,0,0,1},{2,0,1,1}}},
    {6,{{0,0,0,0},{0,0,1,0},{1,0,0,0},{1,0,1,0},{2,0,0,0},{2,0,1,0}}},
    {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {6,{{0,0,0,1},{1,0,0,1},{2,0,0,1},{3,0,0,1},{4,0,0,1},{5,0,0,1}}},
    {6,{{0,0,0,0},{1,0,0,0},{2,0,0,0},{3,0,0,0},{4,0,0,0},{5,0,0,0}}},
    {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {6,{{0,0,0,1},{0,0,1,0},{1,0,0,1},{1,0,1,0},{2,0,0,1},{2,0,1,0}}}
  },


  // TDD Configuration Index 30
  { {1,{{0,1,0,1}}},{1,{{0,1,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,1,0,1}}}, {1,{{0,1,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,1,0,1}}}},

  // TDD Configuration Index 31
  { {1,{{0,2,0,1}}},{1,{{0,2,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,2,0,1}}}, {1,{{0,2,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,2,0,1}}}},

  // TDD Configuration Index 32
  { {1,{{0,1,1,1}}},{1,{{0,1,1,0}}}, {0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,1,1,0}}}},

  // TDD Configuration Index 33
  { {1,{{0,0,0,1}}},{1,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,0,0,1}}}, {1,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,0,0,1}}}},

  // TDD Configuration Index 34
  { {1,{{0,0,1,1}}},{1,{{0,0,1,0}}}, {0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,0,1,0}}}},

  // TDD Configuration Index 35
  { {2,{{0,0,0,1},{0,0,1,1}}}, {2,{{0,0,0,0},{0,0,1,0}}}, {0,{{0,0,0,0},{0,0,0,0}}}, {2,{{0,0,0,1},{1,0,0,1}}}, {2,{{0,0,0,0},{1,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0}}}, {2,{{0,0,0,1},{0,0,1,0}}}},

  // TDD Configuration Index 36
  { {3,{{0,0,0,1},{0,0,1,1},{1,0,0,1}}}, {3,{{0,0,0,0},{0,0,1,0},{1,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0}}}, {3,{{0,0,0,1},{1,0,0,1},{2,0,0,1}}}, {3,{{0,0,0,0},{1,0,0,0},{2,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0}}}, {3,{{0,0,0,1},{0,0,1,0},{1,0,0,1}}}},

  // TDD Configuration Index 37
  { {4,{{0,0,0,1},{0,0,1,1},{1,0,0,1},{1,0,1,1}}}, {4,{{0,0,0,0},{0,0,1,0},{1,0,0,0},{1,0,1,0}}},
    {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {4,{{0,0,0,1},{1,0,0,1},{2,0,0,1},{3,0,0,1}}},
    {4,{{0,0,0,0},{1,0,0,0},{2,0,0,0},{3,0,0,0}}},
    {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {4,{{0,0,0,1},{0,0,1,0},{1,0,0,1},{1,0,1,0}}}
  },

  // TDD Configuration Index 38
  { {5,{{0,0,0,1},{0,0,1,1},{1,0,0,1},{1,0,1,1},{2,0,0,1}}}, {5,{{0,0,0,0},{0,0,1,0},{1,0,0,0},{1,0,1,0},{2,0,0,0}}},
    {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}}, {5,{{0,0,0,1},{1,0,0,1},{2,0,0,1},{3,0,0,1},{4,0,0,1}}},
    {5,{{0,0,0,0},{1,0,0,0},{2,0,0,0},{3,0,0,0},{4,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {5,{{0,0,0,1},{0,0,1,0},{1,0,0,1},{1,0,1,0},{2,0,0,1}}}
  },

  // TDD Configuration Index 39
  { {6,{{0,0,0,1},{0,0,1,1},{1,0,0,1},{1,0,1,1},{2,0,0,1},{2,0,1,1}}},
    {6,{{0,0,0,0},{0,0,1,0},{1,0,0,0},{1,0,1,0},{2,0,0,0},{2,0,1,0}}},
    {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {6,{{0,0,0,1},{1,0,0,1},{2,0,0,1},{3,0,0,1},{4,0,0,1},{5,0,0,1}}},
    {6,{{0,0,0,0},{1,0,0,0},{2,0,0,0},{3,0,0,0},{4,0,0,0},{5,0,0,0}}},
    {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {6,{{0,0,0,1},{0,0,1,0},{1,0,0,1},{1,0,1,0},{2,0,0,1},{2,0,1,0}}}
  },

  // TDD Configuration Index 40
  { {1,{{0,1,0,0}}},{0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,1,0,0}}}, {0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,1,0,0}}}},
  // TDD Configuration Index 41
  { {1,{{0,2,0,0}}},{0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,2,0,0}}}, {0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,2,0,0}}}},

  // TDD Configuration Index 42
  { {1,{{0,1,1,0}}},{0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}},

  // TDD Configuration Index 43
  { {1,{{0,0,0,0}}},{0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,0,0,0}}}},

  // TDD Configuration Index 44
  { {1,{{0,0,1,0}}},{0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {0,{{0,0,0,0}}}},

  // TDD Configuration Index 45
  { {2,{{0,0,0,0},{0,0,1,0}}}, {0,{{0,0,0,0},{0,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0}}}, {2,{{0,0,0,0},{1,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0}}}, {2,{{0,0,0,0},{1,0,0,0}}}},

  // TDD Configuration Index 46
  { {3,{{0,0,0,0},{0,0,1,0},{1,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0}}}, {3,{{0,0,0,0},{1,0,0,0},{2,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0}}}, {3,{{0,0,0,0},{1,0,0,0},{2,0,0,0}}}},

  // TDD Configuration Index 47
  { {4,{{0,0,0,0},{0,0,1,0},{1,0,0,0},{1,0,1,0}}}, {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {4,{{0,0,0,0},{1,0,0,0},{2,0,0,0},{3,0,0,0}}},
    {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}},
    {4,{{0,0,0,0},{1,0,0,0},{2,0,0,0},{3,0,0,0}}}
  }
};



uint16_t prach_root_sequence_map0_3[838] = { 129, 710, 140, 699, 120, 719, 210, 629, 168, 671, 84, 755, 105, 734, 93, 746, 70, 769, 60, 779,
                                             2, 837, 1, 838,
                                             56, 783, 112, 727, 148, 691,
                                             80, 759, 42, 797, 40, 799,
                                             35, 804, 73, 766, 146, 693,
                                             31, 808, 28, 811, 30, 809, 27, 812, 29, 810,
                                             24, 815, 48, 791, 68, 771, 74, 765, 178, 661, 136, 703,
                                             86, 753, 78, 761, 43, 796, 39, 800, 20, 819, 21, 818,
                                             95, 744, 202, 637, 190, 649, 181, 658, 137, 702, 125, 714, 151, 688,
                                             217, 622, 128, 711, 142, 697, 122, 717, 203, 636, 118, 721, 110, 729, 89, 750, 103, 736, 61,
                                             778, 55, 784, 15, 824, 14, 825,
                                             12, 827, 23, 816, 34, 805, 37, 802, 46, 793, 207, 632, 179, 660, 145, 694, 130, 709, 223, 616,
                                             228, 611, 227, 612, 132, 707, 133, 706, 143, 696, 135, 704, 161, 678, 201, 638, 173, 666, 106,
                                             733, 83, 756, 91, 748, 66, 773, 53, 786, 10, 829, 9, 830,
                                             7, 832, 8, 831, 16, 823, 47, 792, 64, 775, 57, 782, 104, 735, 101, 738, 108, 731, 208, 631, 184,
                                             655, 197, 642, 191, 648, 121, 718, 141, 698, 149, 690, 216, 623, 218, 621,
                                             152, 687, 144, 695, 134, 705, 138, 701, 199, 640, 162, 677, 176, 663, 119, 720, 158, 681, 164,
                                             675, 174, 665, 171, 668, 170, 669, 87, 752, 169, 670, 88, 751, 107, 732, 81, 758, 82, 757, 100,
                                             739, 98, 741, 71, 768, 59, 780, 65, 774, 50, 789, 49, 790, 26, 813, 17, 822, 13, 826, 6, 833,
                                             5, 834, 33, 806, 51, 788, 75, 764, 99, 740, 96, 743, 97, 742, 166, 673, 172, 667, 175, 664, 187,
                                             652, 163, 676, 185, 654, 200, 639, 114, 725, 189, 650, 115, 724, 194, 645, 195, 644, 192, 647,
                                             182, 657, 157, 682, 156, 683, 211, 628, 154, 685, 123, 716, 139, 700, 212, 627, 153, 686, 213,
                                             626, 215, 624, 150, 689,
                                             225, 614, 224, 615, 221, 618, 220, 619, 127, 712, 147, 692, 124, 715, 193, 646, 205, 634, 206,
                                             633, 116, 723, 160, 679, 186, 653, 167, 672, 79, 760, 85, 754, 77, 762, 92, 747, 58, 781, 62,
                                             777, 69, 770, 54, 785, 36, 803, 32, 807, 25, 814, 18, 821, 11, 828, 4, 835,
                                             3, 836, 19, 820, 22, 817, 41, 798, 38, 801, 44, 795, 52, 787, 45, 794, 63, 776, 67, 772, 72,
                                             767, 76, 763, 94, 745, 102, 737, 90, 749, 109, 730, 165, 674, 111, 728, 209, 630, 204, 635, 117,
                                             722, 188, 651, 159, 680, 198, 641, 113, 726, 183, 656, 180, 659, 177, 662, 196, 643, 155, 684,
                                             214, 625, 126, 713, 131, 708, 219, 620, 222, 617, 226, 613,
                                             230, 609, 232, 607, 262, 577, 252, 587, 418, 421, 416, 423, 413, 426, 411, 428, 376, 463, 395,
                                             444, 283, 556, 285, 554, 379, 460, 390, 449, 363, 476, 384, 455, 388, 451, 386, 453, 361, 478,
                                             387, 452, 360, 479, 310, 529, 354, 485, 328, 511, 315, 524, 337, 502, 349, 490, 335, 504, 324,
                                             515,
                                             323, 516, 320, 519, 334, 505, 359, 480, 295, 544, 385, 454, 292, 547, 291, 548, 381, 458, 399,
                                             440, 380, 459, 397, 442, 369, 470, 377, 462, 410, 429, 407, 432, 281, 558, 414, 425, 247, 592,
                                             277, 562, 271, 568, 272, 567, 264, 575, 259, 580,
                                             237, 602, 239, 600, 244, 595, 243, 596, 275, 564, 278, 561, 250, 589, 246, 593, 417, 422, 248,
                                             591, 394, 445, 393, 446, 370, 469, 365, 474, 300, 539, 299, 540, 364, 475, 362, 477, 298, 541,
                                             312, 527, 313, 526, 314, 525, 353, 486, 352, 487, 343, 496, 327, 512, 350, 489, 326, 513, 319,
                                             520, 332, 507, 333, 506, 348, 491, 347, 492, 322, 517,
                                             330, 509, 338, 501, 341, 498, 340, 499, 342, 497, 301, 538, 366, 473, 401, 438, 371, 468, 408,
                                             431, 375, 464, 249, 590, 269, 570, 238, 601, 234, 605,
                                             257, 582, 273, 566, 255, 584, 254, 585, 245, 594, 251, 588, 412, 427, 372, 467, 282, 557, 403,
                                             436, 396, 443, 392, 447, 391, 448, 382, 457, 389, 450, 294, 545, 297, 542, 311, 528, 344, 495,
                                             345, 494, 318, 521, 331, 508, 325, 514, 321, 518,
                                             346, 493, 339, 500, 351, 488, 306, 533, 289, 550, 400, 439, 378, 461, 374, 465, 415, 424, 270,
                                             569, 241, 598,
                                             231, 608, 260, 579, 268, 571, 276, 563, 409, 430, 398, 441, 290, 549, 304, 535, 308, 531, 358,
                                             481, 316, 523,
                                             293, 546, 288, 551, 284, 555, 368, 471, 253, 586, 256, 583, 263, 576,
                                             242, 597, 274, 565, 402, 437, 383, 456, 357, 482, 329, 510,
                                             317, 522, 307, 532, 286, 553, 287, 552, 266, 573, 261, 578,
                                             236, 603, 303, 536, 356, 483,
                                             355, 484, 405, 434, 404, 435, 406, 433,
                                             235, 604, 267, 572, 302, 537,
                                             309, 530, 265, 574, 233, 606,
                                             367, 472, 296, 543,
                                             336, 503, 305, 534, 373, 466, 280, 559, 279, 560, 419, 420, 240, 599, 258, 581, 229, 610
                                           };

uint16_t prach_root_sequence_map4[138] = {  1,138,2,137,3,136,4,135,5,134,6,133,7,132,8,131,9,130,10,129,
                                            11,128,12,127,13,126,14,125,15,124,16,123,17,122,18,121,19,120,20,119,
                                            21,118,22,117,23,116,24,115,25,114,26,113,27,112,28,111,29,110,30,109,
                                            31,108,32,107,33,106,34,105,35,104,36,103,37,102,38,101,39,100,40,99,
                                            41,98,42,97,43,96,44,95,45,94,46,93,47,92,48,91,49,90,50,89,
                                            51,88,52,87,53,86,54,85,55,84,56,83,57,82,58,81,59,80,60,79,
                                            61,78,62,77,63,76,64,75,65,74,66,73,67,72,68,71,69,70
                                         };

#ifdef USER_MODE
void dump_prach_config(LTE_DL_FRAME_PARMS *frame_parms,uint8_t subframe)
{

  FILE *fd;

  fd = fopen("prach_config.txt","w");
  fprintf(fd,"prach_config: subframe          = %d\n",subframe);
  fprintf(fd,"prach_config: N_RB_UL           = %d\n",frame_parms->N_RB_UL);
  fprintf(fd,"prach_config: frame_type        = %s\n",(frame_parms->frame_type==1) ? "TDD":"FDD");

  if(frame_parms->frame_type==1) fprintf(fd,"prach_config: tdd_config        = %d\n",frame_parms->tdd_config);

  fprintf(fd,"prach_config: rootSequenceIndex = %d\n",frame_parms->prach_config_common.rootSequenceIndex);
  fprintf(fd,"prach_config: prach_ConfigIndex = %d\n",frame_parms->prach_config_common.prach_ConfigInfo.prach_ConfigIndex);
  fprintf(fd,"prach_config: Ncs_config        = %d\n",frame_parms->prach_config_common.prach_ConfigInfo.zeroCorrelationZoneConfig);
  fprintf(fd,"prach_config: highSpeedFlag     = %d\n",frame_parms->prach_config_common.prach_ConfigInfo.highSpeedFlag);
  fprintf(fd,"prach_config: n_ra_prboffset    = %d\n",frame_parms->prach_config_common.prach_ConfigInfo.prach_FreqOffset);
  fclose(fd);

}
#endif

// This function computes the du
void fill_du(uint8_t prach_fmt)
{

  uint16_t iu,u,p;
  uint16_t N_ZC;
  uint16_t *prach_root_sequence_map;

  if (prach_fmt<4) {
    N_ZC = 839;
    prach_root_sequence_map = prach_root_sequence_map0_3;
  } else {
    N_ZC = 139;
    prach_root_sequence_map = prach_root_sequence_map4;
  }

  for (iu=0; iu<(N_ZC-1); iu++) {

    u=prach_root_sequence_map[iu];
    p=1;

    while (((u*p)%N_ZC)!=1)
      p++;

    du[u] = ((p<(N_ZC>>1)) ? p : (N_ZC-p));
  }

}

uint8_t get_num_prach_tdd(LTE_DL_FRAME_PARMS *frame_parms)
{

  return(tdd_preamble_map[frame_parms->prach_config_common.prach_ConfigInfo.prach_ConfigIndex][frame_parms->tdd_config].num_prach);
}

uint8_t get_fid_prach_tdd(LTE_DL_FRAME_PARMS *frame_parms,uint8_t tdd_map_index)
{

  return(tdd_preamble_map[frame_parms->prach_config_common.prach_ConfigInfo.prach_ConfigIndex][frame_parms->tdd_config].map[tdd_map_index].f_ra);
}

uint8_t get_prach_fmt(uint8_t prach_ConfigIndex,lte_frame_type_t frame_type)
{
/*********************************************************************
 * Only prach format 0 and 1 are fully implemented on NR
 * NR format 0 == 4G format 0
 * NR format 1 == 4G format 3
**********************************************************************/

// Table 6.3.3.2-2: Random access configurations for FR1 and paired spectrum
	return(prach_ConfigIndex>>4);
/*
 * Table 5.7.1-2 and Table 5.7.1-3 for Frame structure type 1 and Frame structure type 2 respectively
 * not defined in NR

  if (frame_type == FDD) // FDD
    return(prach_ConfigIndex>>4);

  else {
    if (prach_ConfigIndex < 20)
      return (0);

    if (prach_ConfigIndex < 30)
      return (1);

    if (prach_ConfigIndex < 40)
      return (2);

    if (prach_ConfigIndex < 48)
      return (3);
    else
      return (4);
  }
*/
}

uint8_t get_prach_prb_offset(LTE_DL_FRAME_PARMS *frame_parms, uint8_t tdd_mapindex, uint16_t Nf) 
{
  lte_frame_type_t frame_type         = frame_parms->frame_type;
  uint8_t tdd_config         = frame_parms->tdd_config;
  uint8_t prach_ConfigIndex  = frame_parms->prach_config_common.prach_ConfigInfo.prach_ConfigIndex;
  uint8_t n_ra_prboffset     = frame_parms->prach_config_common.prach_ConfigInfo.prach_FreqOffset;
  uint8_t n_ra_prb;
  uint8_t f_ra,t1_ra;
  uint8_t prach_fmt = get_prach_fmt(prach_ConfigIndex,frame_type);
  uint8_t Nsp=2;

  if (frame_type == TDD) { // TDD

    if (tdd_preamble_map[prach_ConfigIndex][tdd_config].num_prach==0) {
      LOG_E(PHY, "Illegal prach_ConfigIndex %"PRIu8"", prach_ConfigIndex);
      return(-1);
    }

    // adjust n_ra_prboffset for frequency multiplexing (p.36 36.211)
    f_ra = tdd_preamble_map[prach_ConfigIndex][tdd_config].map[tdd_mapindex].f_ra;

    if (prach_fmt < 4) {
      if ((f_ra&1) == 0) {
        n_ra_prb = n_ra_prboffset + 6*(f_ra>>1);
      } else {
        n_ra_prb = frame_parms->N_RB_UL - 6 - n_ra_prboffset + 6*(f_ra>>1);
      }
    } else {
      if ((tdd_config >2) && (tdd_config<6))
        Nsp = 2;

      t1_ra = tdd_preamble_map[prach_ConfigIndex][tdd_config].map[0].t1_ra;

      if ((((Nf&1)*(2-Nsp)+t1_ra)&1) == 0) {
        n_ra_prb = 6*f_ra;
      } else {
        n_ra_prb = frame_parms->N_RB_UL - 6*(f_ra+1);
      }
    }
  }
  else { //FDD
    n_ra_prb = n_ra_prboffset;
  }
  return(n_ra_prb);
}

int is_prach_subframe(LTE_DL_FRAME_PARMS *frame_parms,uint32_t frame, uint8_t subframe)
{

  uint8_t prach_ConfigIndex  = frame_parms->prach_config_common.prach_ConfigInfo.prach_ConfigIndex;
  uint8_t tdd_config         = frame_parms->tdd_config;
  uint8_t t0_ra;
  uint8_t t1_ra;
  uint8_t t2_ra;
// Implementing table 6.3.3.2-2 from 38.211 only until Prach Config Index <= 28
  if ((((frame&1) == 1) && (subframe < 9)) ||
      (((frame&1) == 0) && (subframe == 9)))  // This is an odd frame, ignore even-only PRACH frames
    if (((prach_ConfigIndex&0xf)<3) || // 0,1,2,16,17,18,32,33,34,48,49,50
        ((prach_ConfigIndex&0x1f)==18) || // 18,50
        ((prach_ConfigIndex&0xf)==15) ||   // 15,47
    	(prach_ConfigIndex>28) ) // for prach_ConfigIndex > 28 the prach is not implemented (formats 0 and 1 only implemented)
      return(0);

  switch (prach_ConfigIndex&0x1f) {
  case 0:
  case 3:
    return(subframe==1);
    break;

  case 1:
  case 4:
    return(subframe==4);
    break;

  case 2:
  case 5:
    return(subframe==7);
    break;

  case 6:
    return((subframe==1) || (subframe==6));
    break;

  case 7:
    return((subframe==2) || (subframe==7));
    break;

  case 8:
    return((subframe==3) || (subframe==8));
    break;

  case 9:
    return((subframe==1) || (subframe==4) || (subframe==7));
    break;

  case 10:
    return((subframe==2) || (subframe==5) || (subframe==8));
    break;

  case 11:
    return((subframe==3) || (subframe==6) || (subframe==9));
    break;

  case 12:
    if (prach_ConfigIndex == 12) {
    	return((subframe&1)==0);
    } else {
    	return((subframe)==9);
    }
    break;

  case 13:
    return((subframe&1)==1);
    break;

  case 14:
    return(1==1);
    break;

  case 15:
    return(subframe==9);
    break;
  }
/*
  if (frame_parms->frame_type == FDD) { //FDD
    //implement Table 5.7.1-2 from 36.211 (Rel-10, p.41)
    if ((((frame&1) == 1) && (subframe < 9)) ||
        (((frame&1) == 0) && (subframe == 9)))  // This is an odd frame, ignore even-only PRACH frames
      if (((prach_ConfigIndex&0xf)<3) || // 0,1,2,16,17,18,32,33,34,48,49,50
          ((prach_ConfigIndex&0x1f)==18) || // 18,50
          ((prach_ConfigIndex&0xf)==15))   // 15,47
        return(0);

    switch (prach_ConfigIndex&0x1f) {
    case 0:
    case 3:
      return(subframe==1);
      break;

    case 1:
    case 4:
      return(subframe==4);
      break;

    case 2:
    case 5:
      return(subframe==7);
      break;

    case 6:
      return((subframe==1) || (subframe==6));
      break;

    case 7:
      return((subframe==2) || (subframe==7));
      break;

    case 8:
      return((subframe==3) || (subframe==8));
      break;

    case 9:
      return((subframe==1) || (subframe==4) || (subframe==7));
      break;

    case 10:
      return((subframe==2) || (subframe==5) || (subframe==8));
      break;

    case 11:
      return((subframe==3) || (subframe==6) || (subframe==9));
      break;

    case 12:
      return((subframe&1)==0);
      break;

    case 13:
      return((subframe&1)==1);
      break;

    case 14:
      return(1==1);
      break;

    case 15:
      return(subframe==9);
      break;
    }
  } else { // TDD

    if (prach_ConfigIndex>=64) {
      LOG_E(PHY,"[PHY] Illegal prach_ConfigIndex %d for ",prach_ConfigIndex);
      return(0);
    }

    if (tdd_preamble_map[prach_ConfigIndex][tdd_config].num_prach==0) {
      LOG_E(PHY,"[PHY] Illegal prach_ConfigIndex %d for ",prach_ConfigIndex);
      return(0);
    }

    t0_ra = tdd_preamble_map[prach_ConfigIndex][tdd_config].map[0].t0_ra;
    t1_ra = tdd_preamble_map[prach_ConfigIndex][tdd_config].map[0].t1_ra;
    t2_ra = tdd_preamble_map[prach_ConfigIndex][tdd_config].map[0].t2_ra;
#ifdef PRACH_DEBUG
    LOG_D(PHY,"[PRACH] Checking for PRACH format (ConfigIndex %d) in TDD subframe %d (%d,%d,%d)\n",
          prach_ConfigIndex,
          subframe,
          t0_ra,t1_ra,t2_ra);
#endif

    if ((((t0_ra == 1) && ((frame &1)==0))||  // frame is even and PRACH is in even frames
         ((t0_ra == 2) && ((frame &1)==1))||  // frame is odd and PRACH is in odd frames
         (t0_ra == 0)) &&                                // PRACH is in all frames
        (((subframe<5)&&(t1_ra==0)) ||                   // PRACH is in 1st half-frame
         (((subframe>4)&&(t1_ra==1))))) {                // PRACH is in 2nd half-frame
      if (prach_ConfigIndex<48)                          // PRACH only in normal UL subframe
        return((((subframe%5)-2)==t2_ra));
      else                                               // PRACH can be in UpPTS
        return((((subframe%5)-1)==t2_ra));
    } else
      return(1==2);
  }
*/
  // shouldn't get here!
  return(2==1);
}

int32_t generate_prach( PHY_VARS_UE *ue, uint8_t eNB_id, uint8_t subframe, uint16_t Nf )
{

  lte_frame_type_t frame_type         = ue->frame_parms.frame_type;
  //uint8_t tdd_config         = ue->frame_parms.tdd_config;
  uint16_t rootSequenceIndex = ue->frame_parms.prach_config_common.rootSequenceIndex;
  uint8_t prach_ConfigIndex  = ue->frame_parms.prach_config_common.prach_ConfigInfo.prach_ConfigIndex;
  uint8_t Ncs_config         = ue->frame_parms.prach_config_common.prach_ConfigInfo.zeroCorrelationZoneConfig;
  uint8_t restricted_set     = ue->frame_parms.prach_config_common.prach_ConfigInfo.highSpeedFlag;
  //uint8_t n_ra_prboffset     = ue->frame_parms.prach_config_common.prach_ConfigInfo.prach_FreqOffset;
  uint8_t preamble_index     = ue->prach_resources[eNB_id]->ra_PreambleIndex;
  uint8_t tdd_mapindex       = ue->prach_resources[eNB_id]->ra_TDD_map_index;
  int16_t *prachF           = ue->prach_vars[eNB_id]->prachF;
  static int16_t prach_tmp[45600*2] __attribute__((aligned(32)));
  int16_t *prach            = prach_tmp;
  int16_t *prach2;
  int16_t amp               = ue->prach_vars[eNB_id]->amp;
  int16_t Ncp;
  uint8_t n_ra_prb;
  uint16_t NCS;
  uint16_t *prach_root_sequence_map;
  uint16_t preamble_offset,preamble_shift;
  uint16_t preamble_index0,n_shift_ra,n_shift_ra_bar;
  uint16_t d_start,numshift;

  uint8_t prach_fmt = get_prach_fmt(prach_ConfigIndex,frame_type);
#ifdef NR_PRACH_DEBUG
	printf("### prach_ConfigIndex=%d, prach_fmt=%d\n",prach_ConfigIndex,prach_fmt);
#endif
  //uint8_t Nsp=2;
  //uint8_t f_ra,t1_ra;
  uint16_t N_ZC = (prach_fmt<4)?839:139;
  uint8_t not_found;
  int k;
  int16_t *Xu;
  uint16_t u;
  int32_t Xu_re,Xu_im;
  uint16_t offset,offset2;
  int prach_start;
  int i, prach_len;
  uint16_t first_nonzero_root_idx=0;

#if defined(EXMIMO) || defined(OAI_USRP) || defined(OAI_ADRV9371_ZC706)
  prach_start =  (ue->rx_offset+subframe*ue->frame_parms.samples_per_subframe-ue->hw_timing_advance-ue->N_TA_offset);
#ifdef PRACH_DEBUG
    LOG_I(PHY,"[UE %d] prach_start %d, rx_offset %d, hw_timing_advance %d, N_TA_offset %d\n", ue->Mod_id,
        prach_start,
        ue->rx_offset,
        ue->hw_timing_advance,
        ue->N_TA_offset);
#endif

  if (prach_start<0)
    prach_start+=(ue->frame_parms.samples_per_subframe*LTE_NUMBER_OF_SUBFRAMES_PER_FRAME);

  if (prach_start>=(ue->frame_parms.samples_per_subframe*LTE_NUMBER_OF_SUBFRAMES_PER_FRAME))
    prach_start-=(ue->frame_parms.samples_per_subframe*LTE_NUMBER_OF_SUBFRAMES_PER_FRAME);

#else //normal case (simulation)
  prach_start = subframe*ue->frame_parms.samples_per_subframe-ue->N_TA_offset;
  LOG_D(PHY,"[UE %d] prach_start %d, rx_offset %d, hw_timing_advance %d, N_TA_offset %d\n", ue->Mod_id,
    prach_start,
    ue->rx_offset,
    ue->hw_timing_advance,
    ue->N_TA_offset);
  
#endif


  // First compute physical root sequence

/************************************************************************
* 4G and NR NCS tables are slightly different and depend on prach format
* Table 6.3.3.1-5:  for preamble formats with delta_f_RA = 1.25 Khz (formats 0,1,2)
* Table 6.3.3.1-6:  for preamble formats with delta_f_RA = 5 Khz (formats 3)
* NOTE: Restricted set type B is not implemented
*************************************************************************/
  if (restricted_set == 0) {
    if (Ncs_config > 15) {
      LOG_E( PHY, "[PHY] FATAL, Illegal Ncs_config for unrestricted format %"PRIu8"\n", Ncs_config );
      mac_xface->macphy_exit("PRACH: Illegal Ncs_config for unrestricted format");
      return 0; // not reached
    }

    //NCS = NCS_unrestricted[Ncs_config];
    if (prach_fmt<3) {
#ifdef NR_PRACH_DEBUG
	printf("### using table NCS_unrestricted_delta_f_RA_125\n");
#endif
    	NCS = NCS_unrestricted_delta_f_RA_125[Ncs_config];
    } else {
    	NCS = NCS_unrestricted_delta_f_RA_5[Ncs_config];
    }
  } else {
    //NCS = NCS_restricted[Ncs_config];
    if (prach_fmt<3) {
        if (Ncs_config > 14) {
          LOG_E( PHY, "[PHY] FATAL, Illegal Ncs_config for restricted format %"PRIu8"\n", Ncs_config );
          mac_xface->macphy_exit("PRACH: Illegal Ncs_config for restricted format");
          return 0; // not reached
        }
#ifdef NR_PRACH_DEBUG
	printf("### using table NCS_restricted_TypeA_delta_f_RA_125\n");
#endif
    	NCS = NCS_restricted_TypeA_delta_f_RA_125[Ncs_config];
    } else {
        if (Ncs_config > 15) {
          LOG_E( PHY, "[PHY] FATAL, Illegal Ncs_config for restricted format %"PRIu8"\n", Ncs_config );
          mac_xface->macphy_exit("PRACH: Illegal Ncs_config for restricted format");
          return 0; // not reached
        }
    	NCS = NCS_restricted_TypeA_delta_f_RA_5[Ncs_config];
    }
  }


  n_ra_prb = get_prach_prb_offset(&(ue->frame_parms), tdd_mapindex, Nf);
  prach_root_sequence_map = (prach_fmt<4) ? prach_root_sequence_map0_3 : prach_root_sequence_map4;

  /*
  // this code is not part of get_prach_prb_offset
  if (frame_type == TDD) { // TDD

    if (tdd_preamble_map[prach_ConfigIndex][tdd_config].num_prach==0) {
      LOG_E( PHY, "[PHY][UE %"PRIu8"] Illegal prach_ConfigIndex %"PRIu8" for ", ue->Mod_id, prach_ConfigIndex );
    }

    // adjust n_ra_prboffset for frequency multiplexing (p.36 36.211)
    f_ra = tdd_preamble_map[prach_ConfigIndex][tdd_config].map[tdd_mapindex].f_ra;

    if (prach_fmt < 4) {
      if ((f_ra&1) == 0) {
        n_ra_prb = n_ra_prboffset + 6*(f_ra>>1);
      } else {
        n_ra_prb = ue->frame_parms.N_RB_UL - 6 - n_ra_prboffset + 6*(f_ra>>1);
      }
    } else {
      if ((tdd_config >2) && (tdd_config<6))
        Nsp = 2;

      t1_ra = tdd_preamble_map[prach_ConfigIndex][tdd_config].map[0].t1_ra;

      if ((((Nf&1)*(2-Nsp)+t1_ra)&1) == 0) {
        n_ra_prb = 6*f_ra;
      } else {
        n_ra_prb = ue->frame_parms.N_RB_UL - 6*(f_ra+1);
      }
    }
  }
  */

  // This is the relative offset (for unrestricted case) in the root sequence table (5.7.2-4 from 36.211) for the given preamble index
  preamble_offset = ((NCS==0)? preamble_index : (preamble_index/(N_ZC/NCS)));

  if (restricted_set == 0) {
    // This is the \nu corresponding to the preamble index
    preamble_shift  = (NCS==0)? 0 : (preamble_index % (N_ZC/NCS));
    preamble_shift *= NCS;
  } else { // This is the high-speed case

#ifdef PRACH_DEBUG
    LOG_D(PHY,"[UE %d] High-speed mode, NCS_config %d\n",ue->Mod_id,Ncs_config);
#endif

    not_found = 1;
    preamble_index0 = preamble_index;
    // set preamble_offset to initial rootSequenceIndex and look if we need more root sequences for this
    // preamble index and find the corresponding cyclic shift
    preamble_offset = 0; // relative rootSequenceIndex;

    while (not_found == 1) {
      // current root depending on rootSequenceIndex and preamble_offset
      int index = (rootSequenceIndex + preamble_offset) % N_ZC;

      if (prach_fmt<4) {
        // prach_root_sequence_map points to prach_root_sequence_map0_3
        DevAssert( index < sizeof(prach_root_sequence_map0_3) / sizeof(prach_root_sequence_map0_3[0]) );
      } else {
        // prach_root_sequence_map points to prach_root_sequence_map4
        DevAssert( index < sizeof(prach_root_sequence_map4) / sizeof(prach_root_sequence_map4[0]) );
      }

      u = prach_root_sequence_map[index];

      uint16_t n_group_ra = 0;

      if ( (du[u]<(N_ZC/3)) && (du[u]>=NCS) ) {
        n_shift_ra     = du[u]/NCS;
        d_start        = (du[u]<<1) + (n_shift_ra * NCS);
        n_group_ra     = N_ZC/d_start;
        n_shift_ra_bar = max(0,(N_ZC-(du[u]<<1)-(n_group_ra*d_start))/N_ZC);
      } else if  ( (du[u]>=(N_ZC/3)) && (du[u]<=((N_ZC - NCS)>>1)) ) {
        n_shift_ra     = (N_ZC - (du[u]<<1))/NCS;
        d_start        = N_ZC - (du[u]<<1) + (n_shift_ra * NCS);
        n_group_ra     = du[u]/d_start;
        n_shift_ra_bar = min(n_shift_ra,max(0,(du[u]- (n_group_ra*d_start))/NCS));
      } else {
        n_shift_ra     = 0;
        n_shift_ra_bar = 0;
      }

      // This is the number of cyclic shifts for the current root u
      numshift = (n_shift_ra*n_group_ra) + n_shift_ra_bar;

      if (numshift>0 && preamble_index0==preamble_index)
        first_nonzero_root_idx = preamble_offset;

      if (preamble_index0 < numshift) {
        not_found      = 0;
        preamble_shift = (d_start * (preamble_index0/n_shift_ra)) + ((preamble_index0%n_shift_ra)*NCS);

      } else { // skip to next rootSequenceIndex and recompute parameters
        preamble_offset++;
        preamble_index0 -= numshift;
      }
    }
  }

  // now generate PRACH signal
#ifdef PRACH_DEBUG

  if (NCS>0)
    LOG_D(PHY,"Generate PRACH for RootSeqIndex %d, Preamble Index %d, NCS %d (NCS_config %d, N_ZC/NCS %d) n_ra_prb %d: Preamble_offset %d, Preamble_shift %d\n",
          rootSequenceIndex,preamble_index,NCS,Ncs_config,N_ZC/NCS,n_ra_prb,
          preamble_offset,preamble_shift);

#endif

  //  nsymb = (frame_parms->Ncp==0) ? 14:12;
  //  subframe_offset = (unsigned int)frame_parms->ofdm_symbol_size*subframe*nsymb;

  k = (12*n_ra_prb) - 6*ue->frame_parms.N_RB_UL;

  if (k<0)
    k+=ue->frame_parms.ofdm_symbol_size;

  k*=12;
  k+=13;

  Xu = (int16_t*)ue->X_u[preamble_offset-first_nonzero_root_idx];

  /*
    k+=(12*ue->frame_parms.first_carrier_offset);
    if (k>(12*ue->frame_parms.ofdm_symbol_size))
    k-=(12*ue->frame_parms.ofdm_symbol_size);
  */
  k*=2;

  switch (ue->frame_parms.N_RB_UL) {
  case 6:
    memset((void*)prachF,0,4*1536);
    break;

  case 15:
    memset((void*)prachF,0,4*3072);
    break;

  case 25:
    memset((void*)prachF,0,4*6144);
    break;

  case 50:
    memset((void*)prachF,0,4*12288);
    break;

  case 75:
    memset((void*)prachF,0,4*18432);
    break;

  case 100:
    if (ue->frame_parms.threequarter_fs == 0)
      memset((void*)prachF,0,4*24576);
    else
      memset((void*)prachF,0,4*18432);
    break;
  }
/********************************************************
 *
 * In function init_parch_tables: 
 * to compute quantized roots of unity ru(n) = 32767 * exp j*[ (2 * PI * n) / N_ZC ]
 *
 * In compute_prach_seq: 
 * to calculate Xu = DFT xu = xu (inv_u*k) * Xu[0] (This is a Zadoff-Chou sequence property: DFT ZC sequence is another ZC sequence)
 *
 * In generate_prach: 
 * to do the cyclic-shifted DFT by multiplying Xu[k] * ru[k*preamble_shift] as:
 * If X[k] = DFT x(n) -> X_shifted[k] = DFT x(n+preamble_shift) = X[k] * exp -j*[ (2*PI*k*preamble_shift) / N_ZC ]
 *
 *********************************************************/
  for (offset=0,offset2=0; offset<N_ZC; offset++,offset2+=preamble_shift) {

    if (offset2 >= N_ZC)
      offset2 -= N_ZC;

    Xu_re = (((int32_t)Xu[offset<<1]*amp)>>15);
    Xu_im = (((int32_t)Xu[1+(offset<<1)]*amp)>>15);
    prachF[k++]= ((Xu_re*ru[offset2<<1]) - (Xu_im*ru[1+(offset2<<1)]))>>15;
    prachF[k++]= ((Xu_im*ru[offset2<<1]) + (Xu_re*ru[1+(offset2<<1)]))>>15;

    if (k==(12*2*ue->frame_parms.ofdm_symbol_size))
      k=0;
  }
/****************************************************************************************************************
* Note that only formats 0 and 1 are fully implemented (format 0 keeps unchanged / format 1 5G NR == format 3 4G)
****************************************************************************************************************/
  switch (prach_fmt) {
  case 0:
    Ncp = 3168;
    break;

  case 1:
    Ncp = 21024;
    break;

  case 2:
    Ncp = 4688;
    break;

  case 3:
    Ncp = 3168;
    break;

  default:
    Ncp = 3168;
    break;
  }
/* We remove this switch concerning the 4G prach formats
  switch (prach_fmt) {
  case 0:
    Ncp = 3168;
    break;

  case 1:
  case 3:
    Ncp = 21024;
    break;

  case 2:
    Ncp = 6240;
    break;

  case 4:
    Ncp = 448;
    break;

  default:
    Ncp = 3168;
    break;
  }
*/
  switch (ue->frame_parms.N_RB_UL) {
  case 6:
    Ncp>>=4;
    prach+=4; // makes prach2 aligned to 128-bit
    break;

  case 15:
    Ncp>>=3;
    break;

  case 25:
    Ncp>>=2;
    break;

  case 50:
    Ncp>>=1;
    break;

  case 75:
    Ncp=(Ncp*3)>>2;
    break;
  }

  if (ue->frame_parms.threequarter_fs == 1)
    Ncp=(Ncp*3)>>2;

  prach2 = prach+(Ncp<<1);

  // do IDFT
  switch (ue->frame_parms.N_RB_UL) {
  case 6:
    if (prach_fmt == 4) {
      idft256(prachF,prach2,1);
      memmove( prach, prach+512, Ncp<<2 );
      prach_len = 256+Ncp;
    } else {
      idft1536(prachF,prach2,1);
      memmove( prach, prach+3072, Ncp<<2 );
      prach_len = 1536+Ncp;

  	//if (prach_fmt>1) {
  	if (prach_fmt==1) {
        memmove( prach2+3072, prach2, 6144 );
        prach_len = 2*1536+Ncp;
      }
    }

    break;

  case 15:
    if (prach_fmt == 4) {
      idft512(prachF,prach2,1);
      //TODO: account for repeated format in dft output
      memmove( prach, prach+1024, Ncp<<2 );
      prach_len = 512+Ncp;
    } else {
      idft3072(prachF,prach2);
      memmove( prach, prach+6144, Ncp<<2 );
      prach_len = 3072+Ncp;

  	//if (prach_fmt>1) {
  	if (prach_fmt==1) {
        memmove( prach2+6144, prach2, 12288 );
        prach_len = 2*3072+Ncp;
      }
    }

    break;

  case 25:
  default:
    if (prach_fmt == 4) {
      idft1024(prachF,prach2,1);
      memmove( prach, prach+2048, Ncp<<2 );
      prach_len = 1024+Ncp;
    } else {
      idft6144(prachF,prach2);
      /*for (i=0;i<6144*2;i++)
      prach2[i]<<=1;*/
      memmove( prach, prach+12288, Ncp<<2 );
      prach_len = 6144+Ncp;

  	//if (prach_fmt>1) {
  	if (prach_fmt==1) {
        memmove( prach2+12288, prach2, 24576 );
        prach_len = 2*6144+Ncp;
      }
    }

    break;

  case 50:
    if (prach_fmt == 4) {
      idft2048(prachF,prach2,1);
      memmove( prach, prach+4096, Ncp<<2 );
      prach_len = 2048+Ncp;
    } else {
      idft12288(prachF,prach2);
      memmove( prach, prach+24576, Ncp<<2 );
      prach_len = 12288+Ncp;

  	//if (prach_fmt>1) {
  	if (prach_fmt==1) {
        memmove( prach2+24576, prach2, 49152 );
        prach_len = 2*12288+Ncp;
      }
    }

    break;

  case 75:
    if (prach_fmt == 4) {
      idft3072(prachF,prach2);
      //TODO: account for repeated format in dft output
      memmove( prach, prach+6144, Ncp<<2 );
      prach_len = 3072+Ncp;
    } else {
      idft18432(prachF,prach2);
      memmove( prach, prach+36864, Ncp<<2 );
      prach_len = 18432+Ncp;

  	//if (prach_fmt>1) {
  	if (prach_fmt==1) {
        memmove( prach2+36834, prach2, 73728 );
        prach_len = 2*18432+Ncp;
      }
    }

    break;

  case 100:
    if (ue->frame_parms.threequarter_fs == 0) { 
      if (prach_fmt == 4) {
	   idft4096(prachF,prach2,1);
	   memmove( prach, prach+8192, Ncp<<2 );
	   prach_len = 4096+Ncp;
      } else {
	   idft24576(prachF,prach2);
	   memmove( prach, prach+49152, Ncp<<2 );
	   prach_len = 24576+Ncp;
	
	//if (prach_fmt>1) {
	   if (prach_fmt==1) {
	     memmove( prach2+49152, prach2, 98304 );
	     prach_len = 2* 24576+Ncp;
       }
      }
    } else {
      if (prach_fmt == 4) {
	idft3072(prachF,prach2);
	//TODO: account for repeated format in dft output
	memmove( prach, prach+6144, Ncp<<2 );
	prach_len = 3072+Ncp;
      } else {
	idft18432(prachF,prach2);
	memmove( prach, prach+36864, Ncp<<2 );
	prach_len = 18432+Ncp;
	printf("Generated prach for 100 PRB, 3/4 sampling\n");
	//if (prach_fmt>1) {
	if (prach_fmt==1) {
	  memmove( prach2+36834, prach2, 73728 );
	  prach_len = 2*18432+Ncp;
      } 
      }
    }

    break;
  }

  //LOG_D(PHY,"prach_len=%d\n",prach_len);

  if (prach_fmt==4) {
    LOG_E( PHY, "prach_fmt4 not fully implemented" );
    mac_xface->macphy_exit("prach_fmt4 not fully implemented");
    return 0; // not reached
  } else {
#if defined(EXMIMO) || defined(OAI_USRP) || defined(OAI_ADRV9371_ZC706)
    int j;
    int overflow = prach_start + prach_len - LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*ue->frame_parms.samples_per_subframe;
    LOG_D( PHY, "prach_start=%d, overflow=%d\n", prach_start, overflow );

    for (i=prach_start,j=0; i<min(ue->frame_parms.samples_per_subframe*LTE_NUMBER_OF_SUBFRAMES_PER_FRAME,prach_start+prach_len); i++,j++) {
      ((int16_t*)ue->common_vars.txdata[0])[2*i] = prach[2*j]<<4;
      ((int16_t*)ue->common_vars.txdata[0])[2*i+1] = prach[2*j+1]<<4;
    }

    for (i=0; i<overflow; i++,j++) {
      ((int16_t*)ue->common_vars.txdata[0])[2*i] = prach[2*j]<<4;
      ((int16_t*)ue->common_vars.txdata[0])[2*i+1] = prach[2*j+1]<<4;
    }
#if defined(EXMIMO)
    // handle switch before 1st TX subframe, guarantee that the slot prior to transmission is switch on
    for (k=prach_start - (ue->frame_parms.samples_per_subframe>>1) ; k<prach_start ; k++) {
      if (k<0)
	ue->common_vars.txdata[0][k+ue->frame_parms.samples_per_subframe*LTE_NUMBER_OF_SUBFRAMES_PER_FRAME] &= 0xFFFEFFFE;
      else if (k>(ue->frame_parms.samples_per_subframe*LTE_NUMBER_OF_SUBFRAMES_PER_FRAME))
	ue->common_vars.txdata[0][k-ue->frame_parms.samples_per_subframe*LTE_NUMBER_OF_SUBFRAMES_PER_FRAME] &= 0xFFFEFFFE;
      else
	ue->common_vars.txdata[0][k] &= 0xFFFEFFFE;
    }
#endif
#else
    
    for (i=0; i<prach_len; i++) {
      ((int16_t*)(&ue->common_vars.txdata[0][prach_start]))[2*i] = prach[2*i];
      ((int16_t*)(&ue->common_vars.txdata[0][prach_start]))[2*i+1] = prach[2*i+1];
    }

#endif
  }


#ifdef PRACH_DEBUG
  write_output("prach_txF0.m","prachtxF0",prachF,prach_len-Ncp,1,1);
  write_output("prach_tx0.m","prachtx0",prach+(Ncp<<1),prach_len-Ncp,1,1);
  write_output("txsig.m","txs",(int16_t*)(&ue->common_vars.txdata[0][0]),2*ue->frame_parms.samples_per_subframe,1,1);
  exit(-1);
#endif

  return signal_energy( (int*)prach, 256 );
}
//__m128i mmtmpX0,mmtmpX1,mmtmpX2,mmtmpX3;

void rx_prach(PHY_VARS_eNB *eNB,
	      uint16_t *preamble_energy_list, 
	      uint16_t *preamble_delay_list, 
	      uint16_t Nf, 
	      uint8_t tdd_mapindex)
{

  int i;
  lte_frame_type_t frame_type = eNB->frame_parms.frame_type;
  int subframe                = eNB->proc.subframe_prach;
  uint16_t rootSequenceIndex  = eNB->frame_parms.prach_config_common.rootSequenceIndex;
  uint8_t prach_ConfigIndex   = eNB->frame_parms.prach_config_common.prach_ConfigInfo.prach_ConfigIndex;
  uint8_t Ncs_config          = eNB->frame_parms.prach_config_common.prach_ConfigInfo.zeroCorrelationZoneConfig;
  uint8_t restricted_set      = eNB->frame_parms.prach_config_common.prach_ConfigInfo.highSpeedFlag;
  int16_t *prachF             = eNB->prach_vars.prachF;
  int16_t **rxsigF            = eNB->prach_vars.rxsigF;
  int16_t **prach_ifft        = eNB->prach_vars.prach_ifft;
  int16_t *prach[eNB->frame_parms.nb_antennas_rx];
  int16_t *prach2;
  uint8_t n_ra_prb;
  uint8_t preamble_index;
  uint16_t NCS,NCS2;
  uint16_t preamble_offset=0,preamble_offset_old;
  int16_t preamble_shift=0;
  uint32_t preamble_shift2;
  uint16_t preamble_index0=0,n_shift_ra=0,n_shift_ra_bar;
  uint16_t d_start=0;
  uint16_t numshift=0;
  uint16_t *prach_root_sequence_map;
  uint8_t prach_fmt = get_prach_fmt(prach_ConfigIndex,frame_type);
  uint16_t N_ZC = (prach_fmt <4)?839:139;
  uint8_t not_found;
  int k;
  uint16_t u;
  int16_t *Xu;
  uint16_t offset;
  int16_t Ncp;
  uint16_t first_nonzero_root_idx=0;
  uint8_t new_dft=0;
  uint8_t aa;
  int32_t lev;
  int16_t levdB;
  int fft_size,log2_ifft_size;
  uint8_t nb_ant_rx = 1; //eNB->frame_parms.nb_antennas_rx;


  for (aa=0; aa<nb_ant_rx; aa++) {
    prach[aa] = (int16_t*)&eNB->common_vars.rxdata[0][aa][subframe*eNB->frame_parms.samples_per_tti-eNB->N_TA_offset];
  }

  // First compute physical root sequence
  if (restricted_set == 0) {
    if (Ncs_config>15) {
      LOG_E(PHY,"FATAL, Illegal Ncs_config for unrestricted format %d\n",Ncs_config);
      mac_xface->macphy_exit("PRACH Illegal Ncs_config for unrestricted format");
      return; // not reached
    }

    NCS = NCS_unrestricted[Ncs_config];
  } else {
    if (Ncs_config>14) {
      LOG_E(PHY,"FATAL, Illegal Ncs_config for restricted format %d\n",Ncs_config);
      mac_xface->macphy_exit("PRACH Illegal Ncs_config for restricted format");
      return; // not reached
    }

    NCS = NCS_restricted[Ncs_config];
  }

  start_meas(&eNB->rx_prach);

  n_ra_prb = get_prach_prb_offset(&(eNB->frame_parms),tdd_mapindex,Nf);
  prach_root_sequence_map = (prach_fmt < 4) ? prach_root_sequence_map0_3 : prach_root_sequence_map4;

  // PDP is oversampled, e.g. 1024 sample instead of 839
  // Adapt the NCS (zero-correlation zones) with oversampling factor e.g. 1024/839
  NCS2 = (N_ZC==839) ? ((NCS<<10)/839) : ((NCS<<8)/139);

  if (NCS2==0)
    NCS2 = N_ZC;

  switch (prach_fmt) {
  case 0:
    Ncp = 3168;
    break;

  case 1:
  case 3:
    Ncp = 21024;
    break;

  case 2:
    Ncp = 6240;
    break;

  case 4:
    Ncp = 448;
    break;

  default:
    Ncp = 3168;
    break;
  }

  // Adjust CP length based on UL bandwidth
  switch (eNB->frame_parms.N_RB_UL) {
  case 6:
    Ncp>>=4;
    break;

  case 15:
    Ncp>>=3;
    break;

  case 25:
    Ncp>>=2;
    break;

  case 50:
    Ncp>>=1;
    break;

  case 75:
    Ncp=(Ncp*3)>>2;
    break;

  case 100:
    if (eNB->frame_parms.threequarter_fs == 1)
      Ncp=(Ncp*3)>>2;
    break;
  }


  if ((eNB->node_function == eNodeB_3GPP) ||
      (eNB->node_function == eNodeB_3GPP_BBU) ||
      (eNB->node_function == NGFI_RRU_IF4p5)) { // compute the DFTs of the PRACH temporal resources
    // Do forward transform
    for (aa=0; aa<nb_ant_rx; aa++) {
      prach2 = prach[aa] + (Ncp<<1);
  
      // do DFT
      switch (eNB->frame_parms.N_RB_UL) {
      case 6:
	if (prach_fmt == 4) {
	  dft256(prach2,rxsigF[aa],1);
	} else {
	  dft1536(prach2,rxsigF[aa],1);
	  
	  if (prach_fmt>1)
	    dft1536(prach2+3072,rxsigF[aa]+3072,1);
	}
	
	break;
	
      case 15:
	if (prach_fmt == 4) {
	  dft256(prach2,rxsigF[aa],1);
	} else {
	  dft3072(prach2,rxsigF[aa]);
	  
	  if (prach_fmt>1)
	    dft3072(prach2+6144,rxsigF[aa]+6144);
	}
	
	break;
	
      case 25:
      default:
	if (prach_fmt == 4) {
	  dft1024(prach2,rxsigF[aa],1);
	  fft_size = 1024;
	} else {
	  dft6144(prach2,rxsigF[aa]);
	  
	  if (prach_fmt>1)
	    dft6144(prach2+12288,rxsigF[aa]+12288);
	  
	  fft_size = 6144;
	}
	
	break;
	
      case 50:
	if (prach_fmt == 4) {
	  dft2048(prach2,rxsigF[aa],1);
	} else {
	  dft12288(prach2,rxsigF[aa]);
	  
	  if (prach_fmt>1)
	    dft12288(prach2+24576,rxsigF[aa]+24576);
	}
	
	break;
	
      case 75:
	if (prach_fmt == 4) {
	  dft3072(prach2,rxsigF[aa]);
	} else {
	  dft18432(prach2,rxsigF[aa]);
	  
	  if (prach_fmt>1)
	    dft18432(prach2+36864,rxsigF[aa]+36864);
	}
	
	break;
	
      case 100:
	if (eNB->frame_parms.threequarter_fs==0) {
	  if (prach_fmt == 4) {
	    dft4096(prach2,rxsigF[aa],1);
	  } else {
	    dft24576(prach2,rxsigF[aa]);
	    
	    if (prach_fmt>1)
	      dft24576(prach2+49152,rxsigF[aa]+49152);
	  }
	} else {
	  if (prach_fmt == 4) {
	    dft3072(prach2,rxsigF[aa]);
	  } else {
	    dft18432(prach2,rxsigF[aa]);
	    
	    if (prach_fmt>1)
	      dft18432(prach2+36864,rxsigF[aa]+36864);
	  }
	}
	
	break;
      }
    }
  }

  if (eNB->node_function == NGFI_RRU_IF4p5) {
    k = (12*n_ra_prb) - 6*eNB->frame_parms.N_RB_UL;
    
    if (k<0) {
      k+=(eNB->frame_parms.ofdm_symbol_size);
    }

    k*=12;
    k+=13; 
    k*=2;
    
    /// **** send_IF4 of rxsigF to RCC **** ///    
    send_IF4p5(eNB, eNB->proc.frame_prach, eNB->proc.subframe_prach, IF4p5_PRACH, k);

#if 0
    /* TODO: resolv this conflict (there should be no printf anyway, so no big deal) */
<<<<<<< HEAD
    /*
    en = dB_fixed(signal_energy(&rxsigF[0][k],840));
    printf("Sending PRACH, k %d,n_ra_prb %d, N_RB_UL %d,  en %d\n",k,n_ra_prb,eNB->frame_parms.N_RB_UL,en);
    if (en>60) {
      printf("PRACH: Frame %d, Subframe %d => %d dB\n",eNB->proc.frame_rx,eNB->proc.subframe_rx,en);
      write_output("prach_rx0.m","prach_rx0",(int16_t*)&rxsigF[0][k],839,1,1);
      exit(-1);
    }
    */

=======
        en = dB_fixed(signal_energy(&rxsigF[0][k],840));
        if (en>60)
          printf("PRACH: Frame %d, Subframe %d => %d dB\n",eNB->proc.frame_rx,eNB->proc.subframe_rx,en);
>>>>>>> origin/fix-if4p5
#endif

    return;
  } else if (eNB->node_function == NGFI_RCC_IF4p5) {
    k = (12*n_ra_prb) - 6*eNB->frame_parms.N_RB_UL;
    
    if (k<0) {
      k+=(eNB->frame_parms.ofdm_symbol_size);
    }

    k*=12;
    k+=13; 
    k*=2;

    // Adjust received rxsigF offset    
    memmove((&rxsigF[0][k]),
            (&rxsigF[0][0]),
            839*2*sizeof(int16_t));

#if 0
    /* TODO: resolv this conflict (there should be no printf anyway, so no big deal) */
<<<<<<< HEAD
    /*
    en = dB_fixed(signal_energy(&rxsigF[0][k],840));
    printf("Receiving PRACH, k %d,n_ra_prb %d, N_RB_UL %d,  en %d\n",k,n_ra_prb,eNB->frame_parms.N_RB_UL,en);
    if (en>60) {
      printf("PRACH: Frame %d, Subframe %d => %d dB\n",eNB->proc.frame_rx,eNB->proc.subframe_rx,en);
      write_output("prach_rx0.m","prach_rx0",(int16_t*)&rxsigF[0][k],839,1,1);
      exit(-1);
    }
    */
=======
    en = dB_fixed(signal_energy(&rxsigF[0][k],840));
        /*if (en>60)
    printf("PRACH: Frame %d, Subframe %d => %d dB\n",eNB->proc.frame_rx,eNB->proc.subframe_rx,en);*/

>>>>>>> origin/fix-if4p5
#endif

  }
  
  // in case of RCC and prach received rx_thread wakes up prach

  // here onwards is for eNodeB_3GPP or NGFI_RCC_IF4p5

  preamble_offset_old = 99;

  for (preamble_index=0 ; preamble_index<64 ; preamble_index++) {
    if (restricted_set == 0) {
      // This is the relative offset in the root sequence table (5.7.2-4 from 36.211) for the given preamble index
      preamble_offset = ((NCS==0)? preamble_index : (preamble_index/(N_ZC/NCS)));
      
      if (preamble_offset != preamble_offset_old) {
        preamble_offset_old = preamble_offset;
        new_dft = 1;
        // This is the \nu corresponding to the preamble index
        preamble_shift  = 0;
      }
      
      else {
        preamble_shift  -= NCS;
	
        if (preamble_shift < 0)
          preamble_shift+=N_ZC;
      }
    } else { // This is the high-speed case
      new_dft = 0;

      // set preamble_offset to initial rootSequenceIndex and look if we need more root sequences for this
      // preamble index and find the corresponding cyclic shift
      // Check if all shifts for that root have been processed
      if (preamble_index0 == numshift) {
        not_found = 1;
        new_dft   = 1;
        preamble_index0 -= numshift;
        (preamble_offset==0 && numshift==0) ? (preamble_offset) : (preamble_offset++);

        while (not_found == 1) {
          // current root depending on rootSequenceIndex
          int index = (rootSequenceIndex + preamble_offset) % N_ZC;

          if (prach_fmt<4) {
            // prach_root_sequence_map points to prach_root_sequence_map0_3
            DevAssert( index < sizeof(prach_root_sequence_map0_3) / sizeof(prach_root_sequence_map0_3[0]) );
          } else {
            // prach_root_sequence_map points to prach_root_sequence_map4
            DevAssert( index < sizeof(prach_root_sequence_map4) / sizeof(prach_root_sequence_map4[0]) );
          }

          u = prach_root_sequence_map[index];

          uint16_t n_group_ra = 0;

          if ( (du[u]<(N_ZC/3)) && (du[u]>=NCS) ) {
            n_shift_ra     = du[u]/NCS;
            d_start        = (du[u]<<1) + (n_shift_ra * NCS);
            n_group_ra     = N_ZC/d_start;
            n_shift_ra_bar = max(0,(N_ZC-(du[u]<<1)-(n_group_ra*d_start))/N_ZC);
          } else if  ( (du[u]>=(N_ZC/3)) && (du[u]<=((N_ZC - NCS)>>1)) ) {
            n_shift_ra     = (N_ZC - (du[u]<<1))/NCS;
            d_start        = N_ZC - (du[u]<<1) + (n_shift_ra * NCS);
            n_group_ra     = du[u]/d_start;
            n_shift_ra_bar = min(n_shift_ra,max(0,(du[u]- (n_group_ra*d_start))/NCS));
          } else {
            n_shift_ra     = 0;
            n_shift_ra_bar = 0;
          }

          // This is the number of cyclic shifts for the current root u
          numshift = (n_shift_ra*n_group_ra) + n_shift_ra_bar;
          // skip to next root and recompute parameters if numshift==0
          (numshift>0) ? (not_found = 0) : (preamble_offset++);
        }
      }

      if (n_shift_ra>0)
        preamble_shift = -((d_start * (preamble_index0/n_shift_ra)) + ((preamble_index0%n_shift_ra)*NCS)); // minus because the channel is h(t -\tau + Cv)
      else
        preamble_shift = 0;

      if (preamble_shift < 0)
        preamble_shift+=N_ZC;

      preamble_index0++;

      if (preamble_index == 0)
        first_nonzero_root_idx = preamble_offset;
    }

    // Compute DFT of RX signal (conjugate input, results in conjugate output) for each new rootSequenceIndex
#ifdef PRACH_DEBUG
    LOG_I(PHY,"preamble index %d: offset %d, preamble shift %d\n",preamble_index,preamble_offset,preamble_shift);
#endif
    log2_ifft_size = 10;
    fft_size = 6144;

    if (new_dft == 1) {
      new_dft = 0;
      Xu=(int16_t*)eNB->X_u[preamble_offset-first_nonzero_root_idx];
      


      
      k = (12*n_ra_prb) - 6*eNB->frame_parms.N_RB_UL;
      
      if (k<0)
	k+=(eNB->frame_parms.ofdm_symbol_size);
      
      k*=12;
      k+=13; // phi + K/2
      //      k+=(12*eNB->frame_parms.first_carrier_offset);
      //      if (k>(12*eNB->frame_parms.ofdm_symbol_size))
      //  k-=(12*eNB->frame_parms.ofdm_symbol_size);
      
      // printf("First prach carrier : k %d\n",k);
      k*=2;
      

      
      memset( prachF, 0, sizeof(int16_t)*2*1024 );
#ifdef PRACH_DEBUG
      write_output("prach_rx0.m","prach_rx0",prach[0],6144+792,1,1);
#endif
      // write_output("prach_rx1.m","prach_rx1",prach[1],6144+792,1,1);
      //       write_output("prach_rxF0.m","prach_rxF0",rxsigF[0],24576,1,1);
      // write_output("prach_rxF1.m","prach_rxF1",rxsigF[1],6144,1,1);

      for (aa=0;aa<nb_ant_rx; aa++) {
      // Do componentwise product with Xu*
	
	for (offset=0; offset<(N_ZC<<1); offset+=2) {
	  prachF[offset]   = (int16_t)(((int32_t)Xu[offset]*rxsigF[aa][k]   + (int32_t)Xu[offset+1]*rxsigF[aa][k+1])>>15);
	  prachF[offset+1] = (int16_t)(((int32_t)Xu[offset]*rxsigF[aa][k+1] - (int32_t)Xu[offset+1]*rxsigF[aa][k])>>15);
	  /*
	    if (offset<16)
	    printf("Xu[%d] %d %d, rxsigF[%d][%d] %d %d\n",offset,Xu[offset],Xu[offset+1],aa,k,rxsigF[aa][k],rxsigF[aa][k+1]);
	  */
	  /*
	    mmtmpX0 = _mm_madd_epi16(*(__m128i*)&Xu[offset],*(__m128i*)&rxsigF[aa][k<<1]);
	    mmtmpX1 = _mm_shufflelo_epi16(*(__m128i*)&Xu[offset],_MM_SHUFFLE(2,3,0,1));
	    mmtmpX1 = _mm_shufflehi_epi16(mmtmpX1,_MM_SHUFFLE(2,3,0,1));
	    mmtmpX1 = _mm_sign_epi16(mmtmpX1,*(__m128i*)&conjugate[0]);
	    mmtmpX1 = _mm_madd_epi16(mmtmpX1,*(__m128i*)&rxsigF[aa][k<<1]);
	    mmtmpX0 = _mm_srai_epi32(mmtmpX0,15);
	    mmtmpX1 = _mm_srai_epi32(mmtmpX1,15);
	    mmtmpX2 = _mm_unpacklo_epi32(mmtmpX0,mmtmpX1);
	    mmtmpX3 = _mm_unpackhi_epi32(mmtmpX0,mmtmpX1);
	    *(__m128i*)&prachF[offset] = _mm_packs_epi32(mmtmpX2,mmtmpX3);
	    */
	  k+=2;
	  
	  if (k==(12*2*eNB->frame_parms.ofdm_symbol_size))
	    k=0;
	}
	
	// Now do IFFT of size 1024 (N_ZC=839) or 256 (N_ZC=139)
	if (N_ZC == 839) {
	  log2_ifft_size = 10;
	  idft1024(prachF,prach_ifft[aa],1);
	} else {
	  idft256(prachF,prach_ifft[aa],1);
	  log2_ifft_size = 8;
	}
#ifdef PRACH_DEBUG
	if (aa==0) write_output("prach_rxF_comp0.m","prach_rxF_comp0",prachF,1024,1,1);
#endif
      // if (aa=1) write_output("prach_rxF_comp1.m","prach_rxF_comp1",prachF,1024,1,1);
      }// antennas_rx

#ifdef PRACH_DEBUG

      if (en>40) {
	k = (12*n_ra_prb) - 6*eNB->frame_parms.N_RB_UL;
	
	if (k<0)
	  k+=(eNB->frame_parms.ofdm_symbol_size);
	
	k*=12;
	k+=13;
	k*=2;
	printf("Dumping prach, k = %d (n_ra_prb %d)\n",k,n_ra_prb);
	write_output("rxsigF.m","prach_rxF",&rxsigF[0][k],840,1,1);
	write_output("prach_rxF_comp0.m","prach_rxF_comp0",prachF,1024,1,1);
	write_output("prach_ifft0.m","prach_t0",prach_ifft[0],1024,1,1);
	exit(-1);
      }
#endif
    } // new dft
    
    // check energy in nth time shift
    preamble_shift2 = ((preamble_shift==0) ? 0 : ((preamble_shift<<log2_ifft_size)/N_ZC));
    preamble_energy_list[preamble_index] = 0;
    
    for (i=0; i<NCS2; i++) {
      lev = 0;
      
      for (aa=0; aa<nb_ant_rx; aa++) {
	lev += (int32_t)prach_ifft[aa][(preamble_shift2+i)<<1]*prach_ifft[aa][(preamble_shift2+i)<<1] + (int32_t)prach_ifft[aa][1+((preamble_shift2+i)<<1)]*prach_ifft[aa][1+((preamble_shift2+i)<<1)];
      }
     
      levdB = dB_fixed_times10(lev);
      
      if (levdB>preamble_energy_list[preamble_index] ) {
	preamble_energy_list[preamble_index]  = levdB;
	preamble_delay_list[preamble_index]   = (i*fft_size)>>log2_ifft_size;
      }
    }
#ifdef PRACH_DEBUG
    LOG_D(PHY,"[RAPROC] Preamble %d => %d dB, %d (shift %d (%d), NCS2 %d(%d), Ncp %d)\n",preamble_index,preamble_energy_list[preamble_index],preamble_delay_list[preamble_index],preamble_shift2,
	  preamble_shift, NCS2,NCS,Ncp);
    //  exit(-1);
#endif

  }// preamble_index
  
  stop_meas(&eNB->rx_prach);
  
}

void init_prach_tables(int N_ZC)
{

  int i,m;

  // Compute the modular multiplicative inverse 'iu' of u s.t. iu*u = 1 mod N_ZC
  ZC_inv[0] = 0;
  ZC_inv[1] = 1;

  for (i=2; i<N_ZC; i++) {
    for (m=2; m<N_ZC; m++)
      if (((i*m)%N_ZC) == 1) {
        ZC_inv[i] = m;
        break;
      }

#ifdef PRACH_DEBUG

    if (i<16)
      printf("i %d : inv %d\n",i,ZC_inv[i]);

#endif
  }

  // Compute quantized roots of unity
  for (i=0; i<N_ZC; i++) {
    ru[i<<1]     = (int16_t)(floor(32767.0*cos(2*M_PI*(double)i/N_ZC)));
    ru[1+(i<<1)] = (int16_t)(floor(32767.0*sin(2*M_PI*(double)i/N_ZC)));
#ifdef PRACH_DEBUG

    if (i<16)
      printf("i %d : runity %d,%d\n",i,ru[i<<1],ru[1+(i<<1)]);

#endif
  }
}

void compute_prach_seq(PRACH_CONFIG_COMMON *prach_config_common,
                       lte_frame_type_t frame_type,
                       uint32_t X_u[64][839])
{

  // Compute DFT of x_u => X_u[k] = x_u(inv(u)*k)^* X_u[k] = exp(j\pi u*inv(u)*k*(inv(u)*k+1)/N_ZC)
  unsigned int k,inv_u,i,NCS=0,num_preambles;
  int N_ZC;
  uint8_t prach_fmt = get_prach_fmt(prach_config_common->prach_ConfigInfo.prach_ConfigIndex,frame_type);
  uint16_t *prach_root_sequence_map;
  uint16_t u, preamble_offset;
  uint16_t n_shift_ra,n_shift_ra_bar, d_start,numshift;
  uint8_t not_found;

  VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_UE_COMPUTE_PRACH, VCD_FUNCTION_IN);

#ifdef PRACH_DEBUG
  LOG_I(PHY,"compute_prach_seq: NCS_config %d, prach_fmt %d\n",prach_config_common->prach_ConfigInfo.zeroCorrelationZoneConfig, prach_fmt);
#endif

  if (prach_fmt>=4) {
    LOG_E( PHY, "PRACH sequence is only precomputed for prach_fmt<4 (have %"PRIu8")\n", prach_fmt );
    mac_xface->macphy_exit("PRACH sequence is only precomputed for prach_fmt<4");
    return; // not reached
  }

  N_ZC = (prach_fmt < 4) ? 839 : 139;
  //init_prach_tables(N_ZC); //moved to phy_init_lte_ue/eNB, since it takes to long in real-time

  if (prach_fmt < 4) {
    prach_root_sequence_map = prach_root_sequence_map0_3;
  } else {
    // FIXME cannot be reached
    prach_root_sequence_map = prach_root_sequence_map4;
  }


#ifdef PRACH_DEBUG
  LOG_I( PHY, "compute_prach_seq: done init prach_tables\n" );
#endif

  if (prach_config_common->prach_ConfigInfo.highSpeedFlag== 0) {

#ifdef PRACH_DEBUG
    LOG_I(PHY,"Low speed prach : NCS_config %d\n",prach_config_common->prach_ConfigInfo.zeroCorrelationZoneConfig);
#endif

    if (prach_config_common->prach_ConfigInfo.zeroCorrelationZoneConfig>15) {
      LOG_E( PHY, "FATAL, Illegal Ncs_config for unrestricted format %"PRIu8"\n", prach_config_common->prach_ConfigInfo.zeroCorrelationZoneConfig );
      mac_xface->macphy_exit("PRACH Illegal Ncs_config for unrestricted format");
      return; // not reached
    } else {
      NCS = NCS_unrestricted[prach_config_common->prach_ConfigInfo.zeroCorrelationZoneConfig];
    }

    num_preambles = (NCS==0) ? 64 : ((64*NCS)/N_ZC);

    if (NCS>0) num_preambles++;

    preamble_offset = 0;
  } else {

#ifdef PRACH_DEBUG
    LOG_I( PHY, "high speed prach : NCS_config %"PRIu8"\n", prach_config_common->prach_ConfigInfo.zeroCorrelationZoneConfig );
#endif

    if (prach_config_common->prach_ConfigInfo.zeroCorrelationZoneConfig>14) {
      LOG_E( PHY, "FATAL, Illegal Ncs_config for restricted format %"PRIu8"\n", prach_config_common->prach_ConfigInfo.zeroCorrelationZoneConfig );
      mac_xface->macphy_exit("PRACH Illegal Ncs_config for restricted format");
      return; // not reached
    } else {
      NCS = NCS_restricted[prach_config_common->prach_ConfigInfo.zeroCorrelationZoneConfig];
      fill_du(prach_fmt);
    }

    num_preambles = 64; // compute ZC sequence for 64 possible roots
    // find first non-zero shift root (stored in preamble_offset)
    not_found = 1;
    preamble_offset = 0;

    while (not_found == 1) {
      // current root depending on rootSequenceIndex
      int index = (prach_config_common->rootSequenceIndex + preamble_offset) % N_ZC;

      if (prach_fmt<4) {
        // prach_root_sequence_map points to prach_root_sequence_map0_3
        DevAssert( index < sizeof(prach_root_sequence_map0_3) / sizeof(prach_root_sequence_map0_3[0]) );
      } else {
        // prach_root_sequence_map points to prach_root_sequence_map4
        DevAssert( index < sizeof(prach_root_sequence_map4) / sizeof(prach_root_sequence_map4[0]) );
      }

      u = prach_root_sequence_map[index];

      uint16_t n_group_ra = 0;

      if ( (du[u]<(N_ZC/3)) && (du[u]>=NCS) ) {
        n_shift_ra     = du[u]/NCS;
        d_start        = (du[u]<<1) + (n_shift_ra * NCS);
        n_group_ra     = N_ZC/d_start;
        n_shift_ra_bar = max(0,(N_ZC-(du[u]<<1)-(n_group_ra*d_start))/N_ZC);
      } else if  ( (du[u]>=(N_ZC/3)) && (du[u]<=((N_ZC - NCS)>>1)) ) {
        n_shift_ra     = (N_ZC - (du[u]<<1))/NCS;
        d_start        = N_ZC - (du[u]<<1) + (n_shift_ra * NCS);
        n_group_ra     = du[u]/d_start;
        n_shift_ra_bar = min(n_shift_ra,max(0,(du[u]- (n_group_ra*d_start))/NCS));
      } else {
        n_shift_ra     = 0;
        n_shift_ra_bar = 0;
      }

      // This is the number of cyclic shifts for the current root u
      numshift = (n_shift_ra*n_group_ra) + n_shift_ra_bar;

      // skip to next root and recompute parameters if numshift==0
      if (numshift>0)
        not_found = 0;
      else
        preamble_offset++;
    }
  }

#ifdef PRACH_DEBUG

  if (NCS>0)
    LOG_I( PHY, "Initializing %u preambles for PRACH (NCS_config %"PRIu8", NCS %u, N_ZC/NCS %u)\n",
           num_preambles, prach_config_common->prach_ConfigInfo.zeroCorrelationZoneConfig, NCS, N_ZC/NCS );

#endif

  for (i=0; i<num_preambles; i++) {
    int index = (prach_config_common->rootSequenceIndex+i+preamble_offset) % N_ZC;

    if (prach_fmt<4) {
      // prach_root_sequence_map points to prach_root_sequence_map0_3
      DevAssert( index < sizeof(prach_root_sequence_map0_3) / sizeof(prach_root_sequence_map0_3[0]) );
    } else {
      // prach_root_sequence_map points to prach_root_sequence_map4
      DevAssert( index < sizeof(prach_root_sequence_map4) / sizeof(prach_root_sequence_map4[0]) );
    }

    u = prach_root_sequence_map[index];

    inv_u = ZC_inv[u]; // multiplicative inverse of u


    // X_u[0] stores the first ZC sequence where the root u has a non-zero number of shifts
    // for the unrestricted case X_u[0] is the first root indicated by the rootSequenceIndex

    for (k=0; k<N_ZC; k++) {
      // 420 is the multiplicative inverse of 2 (required since ru is exp[j 2\pi n])
      X_u[i][k] = ((uint32_t*)ru)[(((k*(1+(inv_u*k)))%N_ZC)*420)%N_ZC];
      //        printf("X_u[%d][%d] (%d)(%d)(%d) : %d,%d\n",i,k,u*inv_u*k*(1+(inv_u*k)),u*inv_u*k*(1+(inv_u*k))/2,(u*inv_u*k*(1+(inv_u*k))/2)%N_ZC,((int16_t*)&X_u[i][k])[0],((int16_t*)&X_u[i][k])[1]);
    }

/****************************************************************************************
* The following commented code shows that X_u[i][k] is the DFT xu[n]
* according to ZC property DFT xu[n] = xu[inv_n*k]*X_u[0]
*


   printf("### Calculate ZC teorique:\n");
    int16_t Rexu[839];
    int16_t Imxu[839];
    int16_t Re_Xu[839];
    int16_t Im_Xu[839];
    double X_0_im = 0;
    double X_0_re = 0;

    for (i=0; i<839; i++) {
      Rexu[i] = (int16_t)(floor(32767.0*cos(M_PI*u*i*(i+1)/839)));
      Imxu[i] = (int16_t)(floor((-32767.0)*sin(M_PI*u*i*(i+1)/839)));
    }
    for (i=0; i<839; i++){
    	X_0_re = X_0_re + Rexu[i]/839;
    	X_0_im = X_0_im + Imxu[i]/839;
    	X_0_re = 1;
    	X_0_im = 0;
    }
    for (i=0; i<839; i++) {
    	Re_Xu[i] = (Rexu[(i*inv_u)%839]*X_0_re)-(-Imxu[(i*inv_u)%839]*X_0_im);
    	Im_Xu[i] = (Rexu[(i*inv_u)%839]*X_0_im)+(-Imxu[(i*inv_u)%839]*X_0_re);
    	//printf("###### for i=%d -> shift=%d, Rexu=%d Imxu=%d\n",i,(i+shifft)%839,Rexu[i],Imxu[i]);
    }
    printf("### i \t### ru(re) \t### ru(im) \t### X_u(re) \t### X_u(im) \t### Rexu \t### Imxu \t### Re_Xu \t### Im_Xu \t### X0=%f,%f\n",X_0_re,X_0_im);
    for (i=1; i<31; i++){
    	printf("### %d \t### %d \t### %d \t### %d \t### %d \t### %d \t### %d \t### %d \t### %d\n",i,ru[i<<1],ru[1+(i<<1)],
    			((int16_t*)&X_u[0][i])[0],((int16_t*)&X_u[0][i])[1],Rexu[i],Imxu[i],Re_Xu[i],Im_Xu[i]);
    }
*****************************************************************************************/
  }

  VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_UE_COMPUTE_PRACH, VCD_FUNCTION_OUT);

}