\usepackage{setspace}\usepackage{amsmath}\usepackage{stackrel} eNrsnQV3G9m2rX/Uu+/dce49p0+fhnSHwbHDDN1Jh8GOmZllmZmZmRnFZmbLJFtmtvWmVIla LSdpx3YcyV5z7KFRKpVKVUu1vz1Xwd4yGYlEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJ RCKRSCQSiUQikUgkEolEIpFIpEOrra2toaEhDdwwzdwqEomkdRocHHr+/JVEMqVRWzU+PvHs 2QuxWEx/EIlE2qMCAwMfPvw9ISFRo7YqMjIKWxUeHkF/EIlE2otGR8du375z48atBw9+m52d 1ZCtgrG8d+8BturOnbsTE5P0N5FIpF0rKCj41q07ly9fxavm2LmoqGjlVpGdI5FIezRyV69e B0+uXbvx4MHvmmDnpqZg5O5je7BV2DbYOYlEQn8WiUTai5FjCqbj4xM0x8gptyosLJz+LBKJ tBcjxxTYp/v3H87MzHzDrWLOyDFGjilXr964c+cenZ0jkUh7NHJK4xQXF/8NtyoyMuqjW0V2 jkQifamRAzpUjZwm2LntRk7Vzk1O0tk5Eom0I21tbbFYXqDZtWs31Xhy/fpNzP9WxikgIBC/ jm346Fb5+vpjy+nvI5FIO6GcSNQoEAiSkpKVxunKlWtXrlzPzs7B/Obmlm+yVU1NTfj1tLR0 VTuH6dTUNMxvamomypFIpC9Se3vHjRu3lJRDYjgy8u2fqOrt7VO1c5ju7e2hP4tEIu1CQqFI jXLd3d+eJ62tbWqUa2lpoT+LRCIR5UgkEokoRyKRiHJEORKJRJQjypFIJKIcUY5EIhHliHIk EokoR5QjkUhEORKJRCLKkUgkohxRjkQiEeWIciQSiShHlCORSEQ5ohyJRCLKEeVIJBJRDlpZ WVEdynB2dnZpaYmZXltb6+rqRvlU95sjI2Ls8tzcPB0MJNJBqqKiMioqmplG9UxISJyampbJ B2sYDQkJ9fBgeXh48PkC1a+sr6/HxycoR1Pt7OzMyso+IpTr7Oy6e/d+T8/7LQ8NDS8rK8NE c3OLpaW1l5e3m5uHlZXt8PCw6rc2NzcjIiJdXd28vX1MTc0qKyvpwCORDkwpKal37z7g8XhM ZbSwsJyYmJienjYyMsnPLxgcHBSJRM+fv+BwuMqvwLQwizFv6+vrAcMjQrmurq7ff39kZWW9 vr6Gt8HBoUDWwsKCsbFxc3Mzs0xGRiab7a36rfT0TABwc3MD021t7TY2touLi3TskUgHo/T0 DHd3TxMTc8abOTg4zc3NxcXFJyYmKZfp7+/v6OhUpZyDg8Pk5PtBS7lcro+P79/+kEjUqEa5 np7eb777fX3923pE/9xWNTY2BgQEhYSExcTEKrxcWEMDp7a2zt8/UC2xVU7DIdvY2PX19akG kAaVIJEOTKBZaWlZbm4ei+WFt05OLlNTU6AW40yAPoFAgDQN7k41YwXllKen4AN3QjlN8HLY HX+F/PzeF1BddQhFTDs4OCo/ZUpgYBAM2AfKNfn6+gFib94YDAwMIHOHyy0oKExNTcWny8vL YWERyPTT0tIRJZVGwUlpfUkk0sFTLjs7FxOWlpbl5RXe3r5SqRQVGQ4NM5Gxoo6DaajssD0w fpmZWTB7Ci8nUXo5pGOq69zY2PD19XV2dnVwcFYWY2NTwE3JE0ybmZmrLuDq6l5WVv5VdxZ0 EgiE4Daf/74gl1Qbwys9PV35KVOEQqES6aCcp6e8OeDz+XZ29gEBgdh9THt6spiUv7m5paGh AQksnKqLXK6AuYeHZ0tLq3IzAMbR0VE69kikA6NcRkYmk5a+fPnq3TujpaWlysoq2A/Ailmm urrazc1jaGgoP7+gsLAQjgWWj8fjM5/GxydGRkaqrhPp2MzMzNTU9JSKqqqqlbkh4+UAENUF YBeV1ysPTECQWsba3d31+bwboWCmIyOjbt68DWTBrdnY2IL/mMD8yspKfX3D+fn5aYVg6jDH 0tJ6bGwMC1RX1zx//mJ8fJyOPRLpYBQTE5uamsZMw6rBzMDLYRqZF/xVXFw88i9LSyuATvVb XC7P2NgEn4aHR5qamo+Ojv3tDzU1NatlrDCH33z3v/TqA1LXkJAwZhq0NzExQygwDUrDANvZ OTo5OQOD7e3tal/Mz8+3t7dn/K3yEi2JRDoADQ8PK7MneLDGxsaVldUPPqe7pKQUWSRsyfYv joyIi4tLsMBHP92uw3GNFSFSWlxGyFKV0wjFwsLCp767urr6mU9JJJK2i559IJFIRDminIZo bm5OKBQq3/b3909MTK6vr1dX1xTKVVRf3/DRLyJ6cPjKuysnJiZUb6Hp6uqamZmh8JKIckS5 b66ent5bt+5UVb0/GRsYGFRSUiqRSH777VFCQmJ8fIKHBysmJlb1rj9Mh4aGu7l5JCYm4VMn J5eVlZWysjJfX3/lMpgpEAgovCSiHFHum6iqqgomraOjY3R0tL9/wMDA0MDgHXPvd3h4eEVF 5djYmJOTk3J5ff13yqf8oPLyCkBM+TY0NGx0dKymplZ5sQZisdiNjY1UF0hEOaLcwQv2zM7O MTU1/cGD3woKCgcHBwMCgvPyClxc5OCKjIwG5UC8d++MuFweFBcXHxgYqHrlxd/fv7S0TG21 ZWXlRDkSUY4o9801MzNrbGzMXP+NjIzMzc0bGBhknoWxsbGrq6tPTU2DVZNKpX/88QTZq79/ oIuLK9za+vo60AfvNzc3HxAQCOemtmbkuaqU8/T0EolEVBdIRDmi3AFrclJiZmbOnGTLyMjM y8sH5Tw8PPFWLBbjIxcXt9raWrWM1cHBicPhREZGeXl51dXV5eTkhodHqCSw5fX1DfjTVTsu cHBwQEZMdYF0WNXY2KRGud7evm++Ve3tHWqUa2trO2p/DRJPcCw5OQXtztu3BkVFxf39/YAY 82lxccm9ew/h6MbGxt++fdsv10Bzc8vbt/qYUq5kelpqamqenZ2DT5HePn/+YmBgYHl52dDQ uLKyCjNhES0sLFX7MSCRlNo4FGpo4KpRrqW57ZtvlVDYqEY5gUCoLSFVPS22R0kkkuDgECSh LBYbXg55aHp6uvLT4OBQwH9paclNLg+Uj55hGx8fx0pYLJavrz/cIDNzcHAQbzEzMDAEbpCq 81HW9PR0W2tneVlVfFwSDjYfHx8vtqeLq7OTs72tvYWNnXYXO3vLd0b6ly5dVfLk8qWrxiaG mP9tt8rQ2OCyylZhCzHn227VDguOClsHa2cXRzc3Z08vTzabHRoanpKS3lDP6+0ZUPaIssNm 1MfHt7q6Go7L3NwcnKf6SNpHkybgNyYlprq5uzu42LizbWKSfUrrE5p687tGS3smyodna0YX 6qbWeVPrXK0uy7KmSl7iubMXP8DkykWdS4LO7EVZ4zfcqiVZU31T+oXzutgeBnHnz+vWilIx XwuiusGTrHFG5moGpdXdY2Wd4hJBR05+RXRYrKezh6WTq7wbmdycgt6ezz0srOweoaenF6Dz 9vbZfgWBRNqdOtq7o6PiHBxtWb52RdVxneJSHLeo8osy0YJMOCsTzGzxpFu86Q0czxzJWoO2 lyWZqIKboEY5XkcmdvYbbhWiXdeUqka5GmEK5mtJYDk4QlBwqOCAmZMJFmQiHEV4HV+qF3Xn peQEO7hYurq6ZmfljYrVe0EB1ohppK+hqqo6V1d3Z3fL0roE8XztovywFOEQxRE7sVJ/WAto Vs6JV6Mcty0DFfMbbtW8TFgrSlGjXLUgGfO1O+Cr9WgcEdslWSNazK6xspTsYDtHC1/vgLbW 930+p6amuri4MV1FkUj7paLCUlt7W78Ql46RkgW5ZxOhFT7EZCPKaUKZXG2Y2eLD4Em3+PVN GbaOJoGBgXl5BU5OLqurq1QrSfulluZ2JwfnoAj33olyOLdZGX9ytf6I8A0FvmJF1lTF335e LmtJfl6O8622alnW1NCcpka5usbUZfl5ucNmrZHhgt6rsuackojbt+96e/tRN1CkfdHi4mJo SIStg3lTXwFq9IyMf3TgxpSxpbreyfKJpfqCqig1ysE1jS3W9UnKx5frDnir8Iu9krLxxfqy hng1ypXUxWF+32TZwW/V1y7STZ54vsbS1rC0Pq6sLsHcyhz5BVVS0l7U1tppZWWTXx4zKxN8 29TsG/oHZEx2TqZ37t69/+AeAxNlefDw/q3bt929baUbvIM0t9ik6XWui6fV7Tu37z+8r7pV mL7/4P7tu7ed3C2m1riTaw2H6b+Y2eTbu5hFJnjBrKLNHZmrYQc4env7kqkj7U452fkWViYd wyU4nCSHqLLs4txXblnEyRPndHQuqSIOReeC3pnTF8q5CXMHfh4Mv1hcG3v65Hlsg/pW6eid Onm+sDr6MJ2dm1itX5SJgqPcXFiWaHBxQI6v1M9s8RZkosLKWCsrq9aWdqqzpC9SaHCET6Cz ZJVzNC3cXy0EZ2qN88741dkP6aqyAHFWdkazm/yDt0z4RRhIMyuDM2d01Lbq7BkdE/O30g3u YWqb0NTmlIYbmb0ZX6pTveYFW4uP0BabWRhVVdJdJaQdaXNz09vLNzbFF62kdJN7xBH34QKr qKgm5ty5i3/JDfWuXNTRqxGlfCvLhN+t4CZeuKCnlrGeP69b1hC/cFiM3LhiT3kdWa/fPusQ F83KBOPLH7kCPrZQZ21vlpdbSFWY9LeIc3FyyywMX0SWus4hvqnbORXjxBi5mS3+tzr3Basm 3YSd0z9zWmWrFEZuWv5YwSExcojwwFTF23cvqvhJaG4+RUIsNrXGdXK3TEvNoopM+ozc3b1y SqNWZM1IBAhuanausDrm3Nn3dk5PbuQufUMjp/QwFdyEC+f1PlxjVRo50SFpX9Y50+tcazuj xEx/ZKafvegsP003uyVwcrMoyC+mukz6qAL8gxMzAnAsEeI+e3ZOhzFy1vZGs9/OyKmenTO1 1GfOzsFqGsuN3CE5I4fjcFEm8g12YvnZged/e1gCdDC3klWOlb1xXS2HajRJTYnxKSHRnorn HylR/czZuWjYOV3dy5pg5P58KENu53T1dC/DyJUeIiOHBjctL9jc2gDg2uFNzgDdrIw/Ol9n am7c1UlDY5P+FI8rtHEwmZUJjs4TW7vKnhoYO3fsp1PvjZwGmF7lxVZslfzS6vphMHKAFVhd 35T6xuB570TZzNYX3Is+riB/50iJqbm5sscS0hGXRDJtbGI0MFU1u8UnlP2tnSuoijp18nyN SIOeFZVfbOUkYKtK6uIOx6VV+LGe8VIgrqE5DXu0/aLqTnxgUXWcF8ubKjgJcnFyq21MR646 ThzbgZ0bnq2KTfUZX67TnLOXsHOji7XYKvF8zSEwclOwoysNZlb66QUhn7/isINzes7FRWVU x4+4Ksqr2QGOi/IrDhpxtlki74xOk0vD1AYHTmNqXWO3qkGzA/jXogij2jEA88bytfMPdQam 9nJYSjd5owt1pmbGs7NzVNOPrJaWlnAMDE5XzWzyNCHtglMalJYPaHbBFg7OVAzSVu1TGZmv mpMJpje54x8yzfh0PxsHY+kGb+93bC7K7/+JDfAPpsp+ZBUVGZtVHLHrpGAfLRyO88LqKGs7 Y3tHazcPR1cPBypHoDi6uNlb2Zp5+dv2TpbObPEX5B0yJxoYvRycrpTuR8sLZzu7JbBxMOno 6Kb6fgQllc5YWJpMrXG/eUdkyFDi0rzfvjUsLa3o6Ozu6e3v6emjcgRKf3dPX1Nza0hwhIHh q6GZip7x0tf6z4Vd2fO7uuLwqRyB15bl5uZBVf4IKjYmIbvk2xs5JMu8jvS3b/U7u7onJicH h4YGBgepHJ0yPDIinZmJi0t2dDezsjfKr4hc3NdjcnINmYLQzsn886PkkA6hkZueMTU3HF+q 1wQjFxzlGh0dL5ma6h8YoHIEC5q2oeHhP/54Hhbn/jWaXSTCtaJ0NtuPKv6RUk52flJm4Dc3 cswR6BvkkJdXNDo2RvX9aBY4upERsaOTY4e4QLq1/xfCJIobpy2sjCcmJFT3j44cHR07xSUz GnAbMCjnF+JIlDvilBseHgHlWgZzp79OZ19o0JOzgtC4U90/IurrG7BzMp3bEmjCfa07oRxq gXh0VKvLiFi8dxogrROPHcI4HADl0KB3ikudnZ2p+h8RJcQn51fELGrGM91/SzlUgb7+/pra 2qLikuISrSxFxcUNHO7eT161trWXlJRqaRCYOHC43G9COeZuJTsnc7QVRICjIFdX157x8q9x AuRrUA7zwbcXL16xWF5eXmxtLB4erJcvX4tEjcMjI7um3Nj4uKurm4WFpZYGQREHz5evXjc2 NanF4QAoxyStKdlB1JnwUdDMzIyNvdmUxvRc8beUQ+1OTkmNiIjU6rC7uLjV1tbthXKIj62t 3fDwsFbHwdnZta6+4ZtQblYmaOzJ86ErrUdAnAZ+QJjrogZcXd055VLT0kNDw7S+dtfV75Fy 9vYO3d3afQ+/k5NLfQPnm1BuaoM7tlRn62C9srJCHDj0J+XKOUma09EiUY4odzCUYw42Z3eL nu4+4sDhVmBAUGNvvuaMP0iUI8odJOXC41g11fXEgcMtFzfnwemqaY0ZgvCrUi42Ns7JydnZ 2cXBQT4C++joKGaKRCLMdHFxRY3D/OLiEtWvSCQSzE9NTVPOSU5O+bASJxbLC5VSSylXW1vr 6Ig9cWUCEhAQKJFMYT7WiWigYD4W8PDw7O7+sy/xvr5+hM7GxhZ/weTkpFZTblEmKqiMTU3J JA4cYi0sLNo5WU2taVCn2V+Vck+fPj9x4tTdu/dRfv31xO+/P15cXMzPL/j++x9u3ryNmVeu XPv++x8DAoKUX8nNzfvf//3X9es3Z2dnmTkGBoa//HKcWQnWdvv2XYaWWke5iIhI7Di2XxmQ t2/1NzY2Ghoafvjh52vXbjDzz5w5j90HdvCVysqqM2fOXbhwkdl3zO/s7NJeys3JhPz27JCQ MELBIdbgwLCLu/WMjK85/dx+bcrBhDDTmZlZP/74s0jUWFlZefr02b6+vs3NTaAM7uX48ZPt 7R1YZmtry9DQyNbWDgwsKytnvvjunRFAx0yXlpZiJXl5+dpIuejoGD29K8pz776+fseO/Qp7 hpiAYF1d7/FVVFT03XffV1RUYUmg79mzF+PjE4gVl8vD24KCQu2lnFTG7xwp8fambtIPs7q7 et1ZtnMywRGh3PPnL42MjEcU8vHx/fnnXzo7O8vLK0C5oaH3d4d2dHSCcmlp6Zju7e29fPlq T0+PubmFmZk5swDW8OLFK2YlYWHhP/10rKKiQhsph/z93DmdoKDgmJhYTIPkDx8+Wltb4/MF CIi7uycwGB+f8OrV63PnLojFYqT2iJiS9jJFt6tanbFKN3l9kxWentQLkwZpclLS1bWfZ5tb WzrcvW3m99bRtBZRztDQ+NSpM4AYsjN4MNi2zc0tuBFUauXpNUygUqN2YzoyMhpgVHi2sosX 9SYm5KehrK1tlCv54YefLCwskfZqI+Wwj9gR7Bd2BMXZ2aW/X94ZUUMDBxHAfIQFO4igCQRC JgjweEKh8NBcfZje4A7NVLu6uhBbNEc1NbXe3j77uEIBv9EnyElzbpb72pR79erN06fPcnPz srKya2pqkJBiZk5OLqozjBmzTHt7O6o8ZjIZ7o0btzw9WZaW1phZVCQfot3ExOzBg9+wkuzs 7IqKyo2NDS29+gCrpqt7aWxsjMfjX7hwEZRjAlJf3wCaISEdHBy6e/c+OD8zM4P5HA4XXk41 Rc3IyOzp6dVeyk2tc8YW6x0c7IgtmiM0soGB+9llfX0dLzTac0nWdEQo9+TJMzs7e7WZ4BUo 19bWNjc3D7dma2sHhzM6Otbb26ejo+vg4Ojm5s5ied26dcfc3JLJWGFv9hh5jaHc5fn5eUyn p6f/7//+Kzw8QnGYySnX0tIqU1yA/umnX0xNzRXXqhbu3XuAgh/FtzIzM//nf/4ZFRWt3ZRb qreztz3KVNG0m6L3nXJ1tdywGNbXptz4cp10i7fDs39flXJ37tx7985QbWZWVtZ33/0HQEOO dvbs+WPHfmXSVScnZ8xRWrWgoODvvvu+r69PX//dH388PQSUCwkJ/eWXExKJvI+1zc1NeNTv v/+hq6uLz+eDeHy+gFkMof5//+8fzIlKLpd76dJlZOsIF5LZd++M5ubmiHJaqpaWFhh4ZIhE uX04+7HOLamLq+QnzcmEf8u6r0q51NS07dcEOzo6goNDwsLCQ0LCgDK4F6bWJyYmFhYWKRdD 5fP3D+js7ELempmZfQgoh0Q1PDxSeQVBLBb7+vohXR0dHUUcxOJR5SUGeDxQDjHB24mJidjY OD8//+zs3NXVVa0+L3dkKdfY2Igk5dq1G/fuPeTxeBq1bUKhaH/v+edxRZHx7A1Z+8wW7+NF xocNw5G2l7Iqa/YNdjp54pyjqzm3PXNeJlCwjp59oGcfiHIHLZGoEUkK+Hbz5u0rV65hwt/f Hw134SdUWVkJc7X3gtYTamtr6+zsbG/v+FRBKoH21MXFpbu75zOLtbe3d3V1j46O7aTk5Rb5 BDr1j1W0DOR/qnSMFPVMlPaM776IZ6p9ghxPnTx/+tQFPb0rcta1Zc59gnVEOaIcUe5rSCAQ 2NraK/l2+fJVply/fvPGjVufKLfxKb6yX+Xq1ev46b8t2KodLrbDcuXK51Z4+crVm7duPXh4 7/6DPZSH9xDZS5eu4Of09C4rWceT+zqhGuuIcl9EuZ6eHqIcUe4zWlpaqqmptbGxVdDs9hfB 4QMirh1w2fcfBXxAns8UXd3LF3UuXby4h6JzCVhTjRvDukt6V1w8LYWd2bMygXLY9B32L6ft lEPt3nv/cjh0+/r6tDoOjo7O36p/uSNCORwhr169vX//IbzZl/KNyt4LWIc09sxpHScPi0Fp JTNI4k76Ci4pLX327IW9g6MjaoIWFjs7B3lfwY177SvY3d3D0NBYS4PwPg7yvoKbiXJfVWtr a2VlZfr6hshV4ei2WzUkkp8pB2/k9j1j/XaIuwK+Xbiga2z2Nr8ianSxVqK49rqT0W36+vuF IlEDh9PA4Wpn4TQ1N+99oKvOri4Ol6u1QfhkHIhyX0Orq6slJaXv3qmz7vr1W3fu3MXMjxZQ br/yR6xn5+fu/nYx7MKtW3d2UrAXOhf0Tp2SXxf4TDlzek8Fa9DR0VOyV8G3Cxd19Cxs3lVw E6SbvAWZUHl7yQ7H8ELrr+1lX0ZnPpRxIMp9TdatFRUVIYdlWIc0Ni8vTyKRjH9MExMT+Dc6 0ZruWd3d3XgRiUQ8Hv8zEgiE8fEJDg5OmOB/dkEOh1teXrGTEhIcbutoWlgek1UU9tGSXRKW lB0QleQdk7z7kpjhb2Khf+GCHuPfQDxLW8NqYfKMjC/n2187fdo55UbEYu0t+0U5rQ7Cp+JA lPvaWllZhq/T1ze4d+9hTU2Npt3rwjyDs28rFLZEJ/nIZN2LMtEnSiNeF/ZWZLL20BjPH/9z Qkfn0nu+bfHnVfzbLkad5vEF1fh7amu1sVRX14gaG1GX956x1tTWaWkQPhMHotxBsW4lKyur ublFo7ZKS599mJcJgiLc9A1fMP7tU3zb+UiFpWVlL1++cnZ2dXV108bi5OT8+vXb7SP0fenV B09PlomJqZYG4X0c3rxtam454lcfmE4SVN8yczY2NpaWliHmqZMjIi2lHJjWO1mG18/z7Yvu JAkLC6c7SWxsbHfXHzvdSaJRlBsaGjYyMhofn2DepqVlNDQ0zM/PGxqaID5oCxwcHNva2ohy mkw55nDaYafrdFcwPftwFCi3vr7OPEEMn4Y9vnbthouLG/NRaGh4SUnp2NiYmZnlikLt7R3G xqZ777NUK1Rfz/H3D9RGytEYXkQ5opxSnZ2dlpaWHh6eDg4OtbW1g4NDXl5sUC43N08mH48j qry8Ynx83M7OgVleLB61srJeWFg4CpTjcLh77M6LKEeUI8odMOU2N7emp6dbWlrz8vJBMB6P B3xxOByYNLi1nJwcUM7Hx3dqaur16zdSqTQxMQmUm5mZefz4D2ZouZcvX2PmISabRCJRDkmw sbHR3NyMaBDldkE5sVgcEBDo7x/g5+fPZnsXFRUxJ3UzMrJwjGGmt7cvkgVkCirH52ZlZSXa WR8fP6FQxMzs6Ojw9fVj1uPt7QNYaRflUIOwp9h47BQC0tvbh5nY68DAIMxE8fLyRn1cX/+z D2QccrGxcZ6erJiYWFRYZmZWVrYybmFh4RMTE0Q55eWD0dFRPl+Qk5MbGBjMYnlhNxEokKqm pratrd3KyoZZMj+/ICcnb3Bw0N1dPvZEYWERFo6JiauoqEQ8LSwsmV41+vsHHBycAMPDSjlE 4OnTZ8zjivj/TUxMR0bERLldUK6xsfGnn37R0dG9cuXahQsXf/zx57i4OMxHA/rzz78wt2cf O/br5ctXcRxi/vLyMg6tH388hjn41rFjxxkjXVBQ+P33P+jpXcbyZ86cU/aUri2UQ2b0n//8 yOwvNv7q1es4orq7e3755TjCgpm6upewgw4Ojmtra1i+tbX12rUbx4+fQhyw/M2bt8F5zH/z Rl8ZN0w8fvyEGc71CFJuaWlpeHi4vr4+KSkZjQV2Ci2Cv79/RkYmnBs+Uu02HxbOyMiYsS5o UJClYofd3N6flGOzfX777VFDAwcZKw4/5bfMzMyRyh1iO1dWVmZsbDIxMWlu/n5Px8cnRkZG EFUk+ES5Haq5ueXEiVNVVdU45ObnF5AF3Lv3ABXZwMDQyMhkaWkZRSgUyh86MzaRyTsJzwAN EhIScQzDwJiamj958gzLwwudOnWms7ML68GheOPGLeXAhVpBOdiG+/cfoq4xQ68C7CkpqaDK yZOni4tLEITZ2dmgoOAffvipoqIKtgR7ff36zY6OTmAf/gQMZLInff13hoZGG3Jtwteh1Sgp KT0ilFtcXMQBgCMhPj4eVt/DwwOYioiIgHlrbGxC/vX50UB4PL65uSUwaGhoiCYSTkZJORxp Dx/+Xltbh4z10aM/AD0UNEywgkyjc4gFF/HHH0+ZIVegsLCI589fhoZGoKruLmM6mpRDRS4s LJZKpTiufv/9Mcr6+jpqKzOuwYfG1PvSpSsKrJnheFPORx1nxuoqLi4G5QQCEdYD13f58hUT EzMtopyHh+fdu/cnJyex/ciYYMMyM7PgNxCc6ur3t8EDdDCr/v6BIM7x4ydhUZRfx7eYu7kM DN7p6xtIFYqOjoHpBRUPK+WQs7e3d8DGh4dHwoBhs319fSMjo+BAMB8R+JLTdJtoauGHEXMk +wUFBcAX0y+98iTVwsICgtzf39/a2oai7Wdfdyjk6bdv30POxbwNCQlLTk6RKUZmAeSJcjtR S0vLxYt6587pMGkmKm9ubq4iY32riilUWCw2ODj09q2+iYnp9vXAsWAN585dwCsQcf68DhyR FlEONQuUPnv2PLYfBgyoB9J7enpBucrKKmUKBqPLYnm1tLRiPkzL9vXAjZw6dRYrOX36HDOg IRzy4aAcnNjkpEQgEOTl5eNIQ7sArwXPprguUNnb27eXmzqALxxj9vaOvr4Bbm4eexw449AI SEd1A+hev37DnPoICwtnBv8tLCyE7yXK7dDLoWq7urrFxyfExMQ2NTUx80E5VS+HVgM2Bm03 vNxvvz1SzsexjSZ4bW29tLTs9Omzfn4BcXHxKLsbqu8bUo7FYl++fDU2Ng4lLS1dKpWPQtjW 1qbq5RYW5rEM9hHIQXOAlFa1wWWGbTU2Nr1//wETTLQX8LpaevXB0cl+dXV1aGgYiWRqalpg YAjggyQxMDAYJpbD4Q4NDe19hAs1YZ09PT1qTz0cWSE9f/NGn0lLk5KSzMzM0dCEhIQyA6/g 6PLx8SXK7ZByqLDMAMqqAuWMjExWFeru7rl69TozzhcOeFgUVHAmoXj58jVsG+oyqjkzlOFe /tZvSDk3N3fVTJxRe3s7KAeAIwgrKysJCYmweeXl5UivHj9+cuvWHcB8dXUN2/yf//zEDAr8 9q2BmZnZHg/vb0458XzNq9cvwDQPD4/g4BAkR2DdxMTE7obZJe1OGRkZkZHRqidV+Hx+fn4h kyXV1NSonjMhyn1GIlHjP//5HRilNv/VqzfHjv3KdHQPfOnq6jHPLyMrsbCwQmW/fv2mjo7u L78cZ4buQhbz3Xffd3R0ainl7Ozs4dPUTmUjM8UO6upeQhCuXbsBvFtb2zIGRigUyfs7PXUG cUCgHjz4TSyWX+X/448nL1681HbKjS7WWVmb7+PdWaRdaHubsr6+vl8rP1KUQ8Vxd/fYjgV4 Ng8PFovlhU+RpChH6JPJO1ldLygoREOPTxsb32e4ra2taGuUTx1qHeUKCgoQPbXjanR0FEmB lxcbe4qkPicnVxWD4+PjISFhzs4uUVHRSC6YmfB7ycnJ2k45ZKwODnbEmUMsevbhW4mefdCu a6wkohxRjihHlCMR5YhyRDmiHIkot/P+5fa3z+SDl4uL2977l7O1tVM+46zFtKeRCklEuW2U KywqevbshZubh7u7VhZXV7fnz18KhaI99hXs7OxiZmaupUFQxkHU2ESUIxHl1KpAb19ffX1D eUVlRaVWlvKKCi6P19ffv8dxH1rb2iorq7Q0CEwceDx+Xz+NbkMiyn2kFmj72FUoex/Da2h4 WDw6evjiQJQjEeWoHO5ClCMR5agQ5YhyJO2mXLBjfn4xUY4oR5QjHVbK+YY45uTkj42PU30/ spQbEY/a2tk2DxDlSIeQcvMyYVyatzc7YGp6mur70SwjYnFLS7upudGAtBwgIsqRDhnlpta5 /VPlbw1eFRaWAnTjExNIXUfHqRyVMimRiEfHHOxdo1O80OR97WGCiXJEuYMv4yv1czIBty3d 2FTfm+2flpqVnZWflZX3kZIpL0VFJTk5BfLprF2WzMy8vLzCwsLizD2s5JAVhCI/v6igoGiP McHXEViEd4fryc7Oj49PsbCw9g1x3PlI5UQ5knZRTgm6QWlFXLp3UKRLRAIrIv7jJSbZ28js TUCYS1QS+1PL/G3BStzY1lZ2hnEpPrteySErsSk+jq7m9i5me4xJXKqPpa2hu7c1gryT5cPj PAMjXco5cTgAvmquSpQjymlG6spZkImWZI14XdxWMHNN1jK6WHvvwd2imhiZrGNBJlz82JJ/ W/DdwAhXA6OXK7KmZVnj7lZyyMqWrN3Z3cLO2XRT1ra025ggmMuyJn3DF0GRrgjyDr+Fn5uV 8Q/sGCPKEeU0uSzKGkNjPH768eQb/ed4K9lV0z+zxe8cLb558+apk+dBS8BTG0OxvwU+it+R pXvxks4FvYaWNLzd9eXywuroUyfO37x1C0Ge2eJpYEtKlCPKaWyRbvJ6Jkrv3ruDmnj2jE5u WcTirgCFb/mHOgNxZ8/qvDN+PbX21c8FaXiZXJVf5nZytzh96sKZ0xdg50C5ydUvjgnCiGAa GL06e/bi6ZPnA8Nd0SoR5UhEuZ2XJZkIRg50unz56rmzF2HnJr/czsHIdYiL4TQu6ly6dOkK 1kN2Tm7kOjMRDT29yyi6upcbWtJ3ca1zUWHkEFKsCuG9dfu2ws7xiXIkotyXGTkdPVAO9Wh3 du69kTslRyVDy3fGr460nVMxckxM5HbOibFzX2bkJKswci8RUmY9aI8Cwlw0zc4R5YhyGn5G 7vTJ9zVRxc417NzOKYxckdzIXbz0fj1H3s4pzsjJjRwsHBMTPT1MX2poSfsiO7fwwcghpMx6 EGQNtHNEOaKc5hq5ScbIXVJS7rLCzuWURewcUAoj58LkvMpy9r2d4x5FOyc3cgJVI/ennXM2 nd2xnZOscRRn5P40cn/auXDNsnNEOaKcJhs5NTrJ7dy592fndnKf1cwmr2O06JaqkVMU+dm5 c0fUzsHI8TqymDNyqjFR2LkvODunekZOdT2MneuCndvkEeVIRLnPGLmusRLQCSxSo5ye7mWg L6s4bCeAWpAJfYIdj/96Vq0mMpbj7bsX8uR3jXN0EDe52jC7xbd3MTshj8lfAnL50tUTx89Z 2xvNbPL/9mIrc8bgjcGL7c0QQo2A+4Y4aU4LQpQjymlggZ2IjGchV71586ZaTbx+/QbqkZHp m7Glus8DSrrJ7RAXPfjt/tWr169eu35ZpVJfuXLthmLNxXWxu75PTBvLzBaf35F58+YthPHq 1WuqscXb6zduoDS0ps/+3Vm1OZkQThh/BMKIYKr+QVgNAv7w9wed4iLp1+xphChH0u6MdbW+ Z7y0b6qc156J+qg8SX7m1IXYVJ9RaU2nuHh0sfbzlgOfDs9WAXRiaY2Lh+WZ0+9PQ124oPvs +eOeidLusZL+qfJd3CSm1V5uUFqJmAxJq0wtDc5+OKWGxNPQ9PWQtLJztGhQWvG3McECCB0C 2D1e+vT5Y50Luso/yMXTSiytxU8g+BoSW6IcUU4zC/PkF1inSrnTJ89nFIasy1p32B0ZahmS 3zVZi5ef3ekPd5KcP6/78vXTmS3erIx/pNJV5e0fiMmyrMnKzvjMGZ33l2PO6JhZGSzJGhGW HV6RQegQQLi1F6+eXjivq/yD2P72a7JW/ITmNB9EOaKc5p6d2+J1jBSpUS41L2jpC6/fLcpE nj62qpR78eoJ6uBRfvwBebqlrZEq5Uwt9UGtL71fDq/PXz5RpRzL147ulyMR5YhyRDmiHIko R5QjyhHlSEQ5ohxRjihHIsoR5YhyRDmiHFGOKEeUIxHliHJEOaIciShHlCPKEeVIRDmiHFGO KEciyhHliHJEORJRjihHlCPKkYhyRDmiHFGOKEeUI8oR5UhEOaIcUY4oRzqylAMopja4Uxsc ReF+qqcdyRpHWXcUbOFoEeXmZcLF94PON36mq3Ds4KxMsKRYZnLP8BxfrpuR8ZnB7vEq7+dz +SPLID7STS4mxpflnfeCUePL2kE5ZuOX3gdWHltsP2Z+qjdU5i+Y3uAS5UgHTLmxpbo+SVnn aHHXaEmnuPhTvSaOzFWPL9UpvzIyX60dlFuVM7m0Pi4u1Sc+zTcmxTurOAwY2b6P4PbMJq+c kxCRwMopCccCqI87B85HauUal9OaEZfmixKdxC6oit4+Ztn0GlfYld3UlzctH6OH0ztRVt+U uvMW5NtSDtvc2JOTkOHH7GNsqk/XaPH0Ovej29k6WIAFsBgOMzQl40Q50kFRbm5LgHr95Nkj a3tjKzsjY7O35Q0Js5sCNbOH4sqyEvXkSjd50i1+Q0uap6/tDrtY/LaUYyyZvuFLVFugJjTG IyU3CBBQIwnDNN9gJxtHk7gEXwdXM3OrdwNTFVPru++fE4bQxdMSUY1N9gmJcs8uCQd/1Mgp H/0nyj02zXdRJoTxqxWm4KcxoRWUwz8YFOFmYPQSOxgRzwqL9UQrObPF276RxTWxhiavI+JY geGu+NcqeUkzm3yiHOlgKIeamFkYyvKzW5CJlMgCl1SrCUM5S1tDfmcWPkIdrBEl2zmbKhb7 ipTDNoBRyoLlWb7qlIM7QqKtupjaJmHO6GId2CVeqJXJumWyjmVZk3ihZnSxVhWPqIk5pRG2 jibA/qqsBW8Dwly4bRl7GcEKK3H3tua0pstk/TJZ54qsubE3F7ZZNWVG2KMSvJKyAxYUlKtv SnNnWx8A5VQjxgRQjXJefnY40v4S2G2tCdqdoEi37JIwxQ52rMta5d3Xz1WrBnZqg9s7WQbE NffnrclasExuWQTs3y5GeiXKEeV2Tbns4jAvf3v4tzFFQjq+XFdSFydZb5j9MF4MQzkbB2NB VzZDudrGFEc3849SDl9H1VuWNS59KDiwh2aqVCl36sS5nLJwMGdJZbH5bcPTYFVgkbLMbQg8 vG3UKIdtVltsbLFWrTrDO5lbv4tP9yuujc2vjBqeqargJuSVR06tcuCsUJiTSwhCen4wJsYV u4zd3IuRY2KLdeobvnD3snHxsOweK8ksDotJ9hZ15wDO+CHwdk3WGhnP2iHlwC7mFJ+ybMna bRxNT38YC+PM6QsWNu82ZW2q8cevwF/95XTZcr1qxJgAqlEOtnluQ6i6GLOkGuXg35w9LMvr E3LLIoXd2X2TZUhLATr5Od51DhPYsoZ4B1fzuQ9DxE5vcpEFUMZKOkjKFVXHPHh4HxAztdBH AoJD0SfIEfWuoSUdaQXgg2WQ31nbGwm7cxjK1TV9knKARlZRmH+YS0i0B1PC4zyxwqtXrynH GdS5oIc8LiqerVwGxgmW8i/malMAEBmZvsGSTLF1MPn98UNd3UvKgUdv3bplZW+EDVMuA5qh 0g1IK5WAUjiQBhMLfZhPdqADEu3OkSJk5V5+9nEpPqKeHCRZ/I4soI8dYJ9TGs4YLdRBQF6R Xdbtxcvh50Jj3MGuSn7SxGI9KArKxaZ4l3MT4tJ8kSDz27Jik71TcgKZjJXTku7Ksvwo5bAj 4vkaJN2wT8q4IU988uyRckTvizqXHj/5DTORmCuX8Q91rhIkSTfem1JAplNchFjBnDNBYwKI YCKkzHp0L1569Pg3WwdTZWBRcHhUC5JVM01QLiLe6/XbZ75BTm5e1vkVkUMzlZiIS/UpqIoa nK5EYLvHSgurYzCTGQgb8URUZ2V8uvpAOkjK5ZSEu7NtxLM1PROlg9JKzPQLcaoVpaCyVHAS kMS5sqzwkZ2TKbwcKiAqb40wxd7ZdEb2EcrhUIQVhHFKzg5kSlp+cGSC19Wr15WV6MI5XWcP i6z8MOUyjNFSpdzkijz3we8i32HK2Gyti+dfx/B68bhPUt4/Va5cpneiDHNU0QQ4wO/ZOJj0 TpYjY1Jc5mtEfSyui60RpWQUhoTFeBqbvSmsigZq2AEOcJ7Yx1VZc0ZhaGZR6Owmf28Zq00Z Jx6/i3oNt4ZQCLqySuvj8ioikbjB9rT05WMm21/+u0j6gFm5ifrYqIvy1HuhBhucmOmvjFtG foh8VJoLesrmAzFJzw/BviiXAU45bRmqFwXGlmr/jNhkGRPAp88fX1AZwwt/+thsnepi+C+A WfwvahlrWl4QthyeDTvYOVocHs9CVg4ao5EyMX/rF+oMj2ds/nZ8qQ4HGxZrGyoICHfF2y8d N4coR5TbNeWyikJRu3H44SiaWueiCkQksIZnq3CgNvfnwdFxWtOn1jhYJiTKHekPlvQOdAiM cP3oLRlID1FJcfwvfCio44CnWsaaXYqMtUu5DJbfXrXlt7jIN+l9WZE1sXzt1DJWeb65yVVd TC3NZCiH6tbYm8cMGYYfyquIKKmPreAlgmNMQgcKDUxVoDJi35u78gAK1HpeW+Yez8sB5gAa s2t4TckJqm9Oyy2PKOfEA2vMbS3AsqmlPtyOf4gz/JKgM/tTPwovtCC/JebP2CI5BcDVMtYN WeuSyjL4FalaxqoghrIwAdx2Xs5+RdasFlg1LuFI8A1xjkr0WlAcCVgALhEBBBJxqCg8Gw/J KVwcjhYkC9zWjDpRqoHRS7R6s1sC8nKkg/NypeE+wU4MsnAYg3JRSWy07zHJ7MGZyjlkUvIb unjI7HCgWtsZW9ka2TuboW5+9J4BjbvGutqACh6d5N01VsIAEPvS0JrO78xEulrXmKpECiZ6 JsoAcGt7YzCnqS9vTsbfS2yR5gu7srvHS5jruXjtEBcNTFdgDjjAbDYaBWzP0GxVdnE4YgKf 80V3WXzba6wwujmlESV1sUwai/XgsCmqiUGjVlAZrTid+z4OaCWTswNsHE1snUxgYmfkW9hA lCMdDOWYMZ37p/4yQjGOUpCBef3z/k/5fSP1gs4s1FzJOmd6c6f3kmnCXcHyiv9hMWw240wU 12f/3ItxxTkr0H5WcSpSfsZ+r3cF189syS9hMD+BV9gbeZVX/Lpq9BSj1grhu6a/cBR7Tbgr WHEk1P15Q84mlxk/V81RI6TYWqZ80eYR5Yhyey84yNWyPObm1e23sOJYld+ov/VlIxHTE170 hBc94UX6tpSj51iJckQ5ElGOKEeUI8qRiHJEOaIcUY5ElCPKEeWIciSiHFGOKEeUI8oR5Yhy RDkSUY4oR5QjypGIckQ5ohxRjkSUI8oR5YhyJKIcUY4oR5QjEeWIckQ5ohyJKEeUI8oR5Yhy RDmiHFGOUECU0zTELcua+iXlf+1F83xWceiWrH12Z/2MoRqiOm/K2tj+9qdO/km5l6+fzss7 LBLKuy4/SnAbV1R5xGRN1mJtb3L69AfKndYxtzZYlTXPywTyzp12sB6EbkHRJ5K8z+EPlMMf 5B3gsClrx3zNaUSIckQ5DSwgGK8jq745raAq+tq1P3tEh+UICHcVduTUCFPUhnz6yLG9xumZ KKvkJwk7sq0djM+dfV+jdXT0Hj/5va4prVqY3DyQP7XGOTqUm5J3yFmMmPA7sgyMXp0/p6sk /xuDF7z2zCp+UvtI0d/GBAs09+cjgHVNqY/++B0hVf5BNg4m+IPwE72TZRoSW6IcUU4DC4xW eKzniePn9PTeuzhluXTpyqnT59++ezG+VPf5QZalm7wOcdGt27fOndNVjo+jLBcvXjp79mJx bexHx0o4rGV2i8/vyEQ0LlzQU4vJpUvy0R90dS81tKTP/t1ogMzYRmAawrj9Dzp37uLtO7c7 xcXSPXQLT5QjHW7KIRtCrnr/wb3zH1IhZYGvQ+UqrIpakIl2ckYuOMrt5PFzaiuRn0E6dcHY /M30OnfySJ2dW5UDys3L+uSJj8Tk5InzTm7ykQEnVv/+VMDUOtfI9A3C+JH1HD8XEu2+uIM/ iChHOsrn5RZljVFJ7FPbKtHZszrvjF8hFZLsIBuSykdkKL17787FDymV0m+An+WchIWPjbNz 2O2coLE398rVa8qzne+bD93LCAu/M2uH5hatTFlDPMKo5gmRvd67fxfpqoYYOaIcUU5zrz5s cAemKx78dl85mp4yGyqqiVnYsU8ALUOjPZSXHlQvKUo3eEfxMqtiPC/FMNwX1Myts4cFnN4O L7MidPiPTMzfnv1woVZ5mTUs1kOjLrMS5YhyGluWYOcS2aqV8YuMnKqdu3P3jvIM+SW9Kxfk Ri7+CBq593ZOxpfbuSt/2jndLzRyH+ycUG7nVE57Ish372mWkSPKEeU0287x+qcqHjy8r6Ow c4yRK6z+AiOntHMh0e6nPtwvB+9hYgEjd8TOyG2zc+5sm9MnL/xp5Nwt5YNOfsn9cgjg9DrP WMXOIcihMR50vxyJKPcldk4EO8fkm2fPXPxSI7fdzqmckRMdUcR9uNja2JvD2Dm9XRk5lbNz cczZOcbI9UyWapSRI8odmGZmZvz9/aXSGeZtbW0dj8ff3Nz08fH19GR5enphQiwWq35lcHDI w4OFwmJ5BQYGT05KMLO7uyc3N0+5TH5+YVtbu+ZTDlxCDVpQGbd9h2VV1jy52vDk2aPz5y5e vHipRpS8JetgRiD9oiKTdcSn+Z45owPXYetkgtUiHd7F9nysCKVb36xST67Wz8j4uwjIoky0 JWv3D3U+c1oHhR1gvylrX/zy3UcYEUwbB+OzitgmpPvJ5H/QvgRWNLtPtxbvC+Xm5uZ8ff0k kinmbX19Awom/Pz8UUOZKjw0NKT6leHhYQ+5mCocND4+jpn9/f05ObnKZYqKiltaWg4H5bCD N27cws4yb2Nj49LS0hcXF1+/ftPa2trT01NZWW1lZY05yq/U1NTa2Nj39PSiICwmJqZLS0tg o5ubm3IZFotdVlau4ZQD38QLNQVVEdHJrOgkr+jkLyvJWX76hs9Pnjh38/aNqCRWbCr7S9eA kpDu4x/mdPGi3pnT5+1djJMy/Xaxku0F25OQ6SPszlTc6n+gd8AyQ1EDcfUtKfHp3tiSL934 xAxfTz+b8+d0zp3Tcfe2wtvdBQHBtHM2Pn36vK6uHoKMUO9DbBW7U9oQgwx6ZouvHJz6G1Ju cnLy2rUbLi7va19iYhLKysrKy5dvmptbUIVhXSwsLAFD5VcaGjio1Ioq3JOfX2BsbLqwsNDU 1Ojk5KJcxtfXH6DTUqxhZ8F2Ly/v6OiYurp6iUSCXUMQyssr8GlSUnJ2ds78/LyNjZ3yK6am pmNjY6qUCwoKUomGX2VlZXt7u7e3j3JmUFAo06BoLOXmZEJOa5qhyRtnJ7e4uMSMjOz09C8r mZk5mVnZ9+49CAoKzssrTE/P+tI1KEpWYWGJvb3jixcvCwqLd7UG9YJ9SU3NDA4ONzI2Ru3e RSq9t1sKeeL5aleWhZmZeVhYVFpa5pfHNquoqMTE1Azbj4m9hAIhff78pYOjE4K82z9IJbCK 15iYeHs7R3Prd+3DhfK7lJcPmnKonqh0MBIxMTGojNPT04oqbF1cXIJP4VJQlpeXbWz+XC3+ C/g35VsOh+PvH6hSW4NLSkq7urq8vNjKmcHBoQwTtE5bW1vYkaioGDhYA4N3MTFxCBHmIAl9 9UofPM9Evc3OWV1dff78FTLZwMBAKyurkJBQ1ZUgsPhI+bagoDAlJbWjowPwZOYAiYaGxrGx sX19fQsLixpIOekmr3Uw7+WrF4WFpZMSyfjExNj4+C7KxORkUXFxT28vVrK7NaBIpqdFjY2V VVVT09O7Xsn2gk0aGByytXGKSPA4sIu2yOKn17mObmbeXgFi8Sjis7uNRygaONz6hoY9xgRf R2ARXsn+xRZHy8SkJDEhzdRS/2+fc9kXyk1NTcGVwXQNDg7iLSpaaGg4qAUPFh4eOTMzg7QU NRr5F6bz8vJBuc3NzZcvUYUDUIXhWAICAlVXCMopaysExCUkJHZ3d7PZ3sqZISFhWko5JJ6g +uLiEqZLS0vhbJHOOzg44W1GRibYlZWVgyQUDYGBgWFVVXV9fT1eYYYBLsAtNzevqamZw+Gq Ui49PQMFXk4ZIvhDU1N5U45Iurl5oISFhaelpWFVvb29Uql0Y2ODWVLAb4qMZ6/L2ibXGr6o 04m9P6jF8rWJiU6YnpH2DwzspYyIxQNDg3tZQ19//9DwMNaDiT1uzPZt6+7pNTI2auzNPpgT 70iQS+tj4CuAAuzUXmIyPDKCsseY4OsIArZkf2M7MDgIfrI8vWPTvOf20ILI+x9YbnBw/Avl 1tbWwFGhUJiVlR0WFuGC6ufmASuC2jo6OgoHgprFpJ+oUHFx8ahQTBVGzfX29gXlUB/X19cN DY0qK6uUVRiHGNIrVGGRqBErR0Kq/EUYm+TklO7uLuWZK4XBC9nJSScNFLJ1pJ+jo2OK5DQF IUIzoUzGEYrXr/VBP5g6Ozt75bcQZGToiBXCjhAhqVd1d2gp2trax8bGkfYqZ9rZOfT19TMJ MhodLpeH7yJHBgnxr6Hp8fX1TU5O9fcPdvey6R8rH12snd7kAj6LilO7mMYBsJPOPXZ3xWF4 vsrazry5uRX1aH/BomlFMjUVEBCakOlzMI814R8MjHBJSkqDizvcgRWPjlZX19m7mEu3uF/U QGNhHNvSLR5itSxrkqxxbW2tYNJQrVJT0/z8/D08PFBHAgODYckwUywWw3UoaxZDOeZqAmiG OgX/5uTkxHzq4eH56tUbpFdLS0uqGSsgmZ+fX1tbh2ooEAhRADHlpw4Ojk1NTTAnqMKbmxvK eg0DqaXn5cArS0tr5Jhv3xogqopds1Zmmjdu3M7NlXu5R4/+AAOTkpKjoqLNzc2x2J9pZl39 q1ev8RH4D0LCDG9ubmE+vLGHBwtrZrN90KbAM390A9bW1pHLNDY2AadY/rX+czeWlY2DsZuX dUC4S2Kmf1l9fHNf3sB0xfSGnHtMmdnivefe6j5c2OqZLLFzsO7rkzfKh7syTkxOxMQkRiV7 HRjlvPztiorKxGOjhzuwwyPDAkGjg7PV1PrfpCE4aHHIzcr4TJ9aMNX9U+W8jszs4rDQaA83 lvXDh7+xWOzg4FCACC4COfHW1tZnqjAslrm5JSoaEi5UQ3g5Cwsrprqhnl6/fhN4hJf7448n sbHyKhwTE2tmZsFcSGXE4/FevHhfheFt4OuYr2MbYGmwZpgQbJKSeFqnnp4eGFeQKiIiEsn4 yspqS0ur8tPW1lZYLwS5uroG5hYeGO3C/PzCX28+mS0tLcNHWIDH46t+hKYnP78AK9/hxggF zRHx7IUNUddYSX1zalZxWES8l5efvZ2zKYqjmzk70CE2xSe/MorbltEnKWduj1+UNcq5J+MD g7u4oI9DrneyxN7RRo1yTHYD8zMpkWhpwcaPjY+pZmcKyiXEpLIPjHLsAPvtlBscGtLeqCpj q3pWAZTj80VOrtbbKSe/J3mDqzhQRYoH0xp6JkprRSlpecEBYS5O7hZ2TvJjOzDcNaMgpFaU amVt+XmsbavCvchDUcti5IqFu2tpaVGuob29nTl9B+eG7FVRhQtmZ+fULkEqqzCHw1X9CGkX qnBNTa1W3zoCXMO+wriiOejt7dWEu4JXZM0gz4fbq4Tym5HkdquM35FVVB0DynkHOLh4WsLv 2TubsvzsQmM8MotC65pSO0aKRhdqsDzTSs4pUl2J/BRfwy4oh+y1praW7Q0j6uPt46uNhcXy wpGrmoZrAuWAuI7OztCwcDbbW0sDi+3GgVFbV6eMrZJy0xuwag048OYUxyFex5fq2oYKK3mJ 8em+PkGODi5mto4mSFWCo9xzSsPRXvdPV8DRMRnr9CZf7bzc3yo8PAJZraIKm3d1ddFNvx9V Q0NDWVnZ5OSkxj77wJh86RZPecuu/GTabFVzfx7y2aSsgMAIV2cPS7nlczLFRFCkW3J2YDkn vmUgf3iuGt9lvoWvS5Wp7t9RDu21q5u7r68fmjktLUhAjIxMUBOV+6UJlBsdG0NGYGhoXCqX tsYW3sCT5QVHp6Qcjydy9bCdlwnQ1Db35aFFjk5ie/jY2isOS3dvm6hEdmFVdGNv7sh8NY7D RcUByZx7YU687Pp+OS6Xi7xV9f4u0iF4wksxGgKHaTEXFGfqkBGIF2rahguRC2QUhoZEe3j6 2No6mVjZGYF73kh1U32KamKFXdl9krKpDY7yiygD02XbKTcxOenm5t7U1KS98VxYWLC2toV3 0jTKZefkBgeHaPWxilQOlENTqKRcU3OL/rs3Ht7WTJaBQy4uzbeCm9g6WDC2VMdYu3nFibhP 5Rf0hBdRbid97DC32SsuzjZiYny5rneirKElPbcsAi0p0lt7FzM0rKCfl799RIJXdkk4rz1D 1JNl72g7MDCkRjl3d4+GBo42P8kyoZmUy8nN8/cP0OpjtaqqmuXFVqWcSNRkam5YLUjqHith 7qJR3CHAR1u8w/4WiHJEuV08O8mkugz3mIK3/ZJyUU9OcW1sXKqPX4iTi6eVmZXB7Tt3EhKT UAGJckS53VEOGauLu618KKLNXd71RJQjyu3X3fjyU3ybPKapZS7Odo0WmZgZcbl81TtX94Vy Kysr8/PzCwphQnn/89raGmZ/6u4aLKz6mCFRbrsQyYUPQiSXlpaY+Qgp5qyurn70Wwj77Owc Xr8G5T51jZUoRzpgyn107Ia+qVJHZ7uhoZF9z1jDwyMuXbqCoqd3WUdH948/nopEjTL5QzQl V65cV+saApqenvb09MLC58/rGBmZdHZ2EuU+qqam5lu37ly5cg2x0tW9dPXq9cTExK0tmVQq vX37bkpK6vavZGZm3717/9y5C/fuPcjPLyDKkY4O5T51jXVfKMdme4NXgYFBISGhwcEhqIwP H/4OH1JYWPjrryf7+/v/auEWX716c+LEKRbLCwuj8l64cHFoaJgot10CgQCBsrd3QGBR3r0z +vnnX5uammDqzp49HxMTq7Y85vznPz8aG5sisG/evP2f//lXZmYWUY5ElNs75cArOAflWxsb W0APGVNJSenp0+cGBgZUF87Ly//hh5+Ki9/3byMUiry8vEEqotx2CYXC48dPtra2MW8rKiq+ ++77srLylZWVixf14uLiVReemJjQ0dFDKJi3ICECy+XyiHIkotzeKefn53/mzDn4t6dPn718 +Qo2A3Nkip5btlMOxg/518zMDF192AHlRGgv7ty59+jRHzDAV69ee/z4yfS0dHZ2djvl+Hz+ r7+eYHoi+npXH4hypKNJOV9fP1RGGxu7u3fvnzp1Njs7h5mfn5+/nXIsFhspLeopUW4nlDt3 7oKhoZGhofHPP//i6OjEXK+ZnJzcTjkejwfjV15eTpQjEeX2nXJeXmzwTabo+uDatRtPnz6X SqUKyuWBcmrPmyQlJaPCMpcnoJaWVn39d93dPUS5T2es8meu7e0dTp8+yzwuLZFIdHR01a4+ DA4Ooonx8fFj3m5tbVlaWtN5ORJRbr/Oy92+fXdlZUWm6G70++9/dHPzYDJW1Lu0tPQqhUpL y1ATJybkfVnfuHELn5aVld279+DUqTNqfo8op0o55tFyuF+krrDBsHPz83OXLl1xcnJmAgv/ xucLgDVXV/effjoWHh4BOjk5ufzP//wLbQpRjkSU2zvlsAaAi6Ec5OnJ+uGHn5qbmysqKo8d O/7rryeOHfsV5R//+N/w8EiFf2t58uQZ6iMWu3PnbkNDw15+/RBTjs/n//jjz8p/p76+AW+9 vX1APDQTysD+61///u23RzJFt+EAHcCIwML4AXfKexeJciSi3F72SCwWd3V1Ke/+XV5ebmpq QvYK19Ha2tbxQci8mLHPoPX19fb2dqSrCwsLdF7uU0JwEDTVTsCQ2iOSaFC6u7sRQCawbW1t fX39ym6I+vsHmptbhodH6LwciShHT3jRE15EORJRjihHlCPKkQ4B5QQCofbGUyqd0diel4KC grX7WK2rJ8qRDgHlPDxZ6ekZvVorDodraWk9NDysaZTLLyh0dnbt1WYlJaWwvX2IciStphwO YDbbW1//HRydlhYrKxtTU3P54IkaRrnSsvI//nji5uahvbF980bfzz+AKEc6BBmrUCjS3njO zMxSxvqV1NDAoYyVRFcf6OoDXX0gypGIckQ5ohxRjihHlCPKEeVIRDnNpFx+fr6bm3t8fAJz 7/3w8LC3t4+XF7urq5tZYG1tLSwsPDIySrVr9I2NjdLSMjc3DxbLa499oB1WynV2diKMCKZY LJYpekGPi4tHqAsKCpXLlJdXuLq6qfVB2tnZ5efnj/lpaenKTtSJciSi3K53x9ra5l//+vel S1eYvkcyM7O+++77H374qazsfRdAra1tP//8y/HjJ7u733NveXnZzs7+xx9/vnbthp7e5Z9/ /hUY/NTwEEeWcsXFxQjj99//mJubJ1P096Kjo/vPf35na2uvbCmePn32X//135GR0cpv5ebm njhx6sKFi4gtwv7y5WvlU3VEORJRbndydHS6fv3mo0eP6+vlD92zWOxHj/5ALUMFYRZgs33e vjX4/fdHkZGRzJyUlFTU3+TklNXV1dnZWUtL66dPn++6x7nDSrny8nKE8fHjJz4+vnhbXV39 22+PwC5nZ1dmAYFAcP/+QwsLy2fPnjNP5Q8ODp09e97ExGxiYhKxRYujq6u3F6tMlCMR5WSK fs9QEx0cnMLDI5C0GhgYMp1qMpRbXFy8fftuRUVlaGgYquTa2jpmYhmmDw1GqI9wd5Sxqglm GGH09vY1MjLB26CgYEdHZ4QazQqzgIeHJ3xda2vrmTPnmHuBgLVjx35taWlVrmSPo6QR5UhE OQi554sXL2HPYMl6e/tev36TlyfvIpihXG1t3Y0btzAxMDBw5sz5pqZmTD979oKpuXT14fOU gzHLzy949ep1X1+fubllamrakyfPGMqhXbh7935lZRWmYZ7ZbG9MxMXFnzt3YXh4iK4+kIhy +0s5VD3g6+XL1yEhoQ4Ojo2NTSdPnkGGhU+RXiHtCggI9PJinzx5OiwsHDPfvTN6+PB35Rq6 u7tLS0t3becOMeVOnTrD5wtsbOxg5N68Mejo6Hj69Jm9vSPTfPz660kYacT23r37v//+WHFS Lg9errm5RWmSc3Nz1fpqJsqRiHJfKtRBeLOFhYW3b/V1dHRhJ7q6uk6cOFVf34BaduvWHeSn ICHoB8vx6NHjjY2N7OycH374KTExCWSbmJiAFYQDkUimiHLbKHe2t7cXIUVg37zRn5+fRwwR SXzq6uqO2Do5OSO25uYWCCAamqmpKUzAJ4+PjyO20dEx//jHP4uKiohyJKLcXiiHOsUM+mBr a/9f//XfXC4PFfO77/7T0NBQVCS/Sjg4+D6Bwtv//u9/VFRUrq+vg40//njsypVr58/r/Prr iZycXMpY1VRYWPTvf/+nt7evvr7+//yf/wugYebt23dtbGxBs+PHT0ZGRjFLgn5wfWAdphFJ NDFgHWKL4CPOyj6ciXIkotzulJ2dDVcmUzzz6O3tMzMzOz097ePj29/fX1xcgpq4sfH+FhHM xwIVFRUyxV0QJSWlnp4sLNnS0kLn5bYL+SmCI1UIcePx5JdK4+MTENW+vn4Wi616m1xaWnpY WASaD5niRjv8roeHZ15ePjOHKEciytGzD/TsA1GORJQjyhHliHIkohxRjihHlCNpGuVmZmc9 PDz5fIH2xnN2ds7KykbTKDc2Pl5QWBQQEKjVx2p9fYOHJ4soR9JeyolHR+MTEh4+/M3MzMLN zV1Li7m5paWltUb1FQzk4tVWfifhU+0NrIuL6+vXb4OCQ4hyJK2mnImpGY/HHx4e7tdavX2r X1NbOzwyopKGf2PKDQ0PC0UixFYsHtXewHp7+7DZ3kMqJpkoR9I6ysH/2NjajY2Na3U8HRwc m5qbARZNo5y94vZd7VVyckp8fMLU9LQysEQ5kpZSTq13Mq2TnZ09kKKBlLOzd9DqwCYkJMbE xE5MThLlSEQ5ohxRjihHIsoR5YhyRDmi3OGgXEBAoJ3dx2t3Xl6+qan5HvvoPrKUW1lZMTIy Bnk++imb7b3v9+YR5UhEuY/KzMz8wYPf1Gaurq6mp2ecOnXm7t178/PzRLldCK2Dru4lLy+2 2nypVOrl5f3vf/9gv9/WkShHIsp9VDY2tk+ePFObGRsbp6Oj9/Tps99/f7ywsECU2x3lbty4 5efnrzbf1NTs1q07t2/fZTotIcqRNEE8jtA/1GVR1nh0KFdfX49fjYqKRmUkyu0j5ZiuXWDn DAwMEXmiHElD1NLc7uFjOy8T7fo40TrKMQoMDCLK7buXY/TixStbWzutoNz0Bnd4tsbZxZFQ cIjV3dXr4WU3JxNOrjYcSso9e/aCKPc1KHf9+s2goOCPfvry5WttoZx0k9c3WeHm4UYoOMQa HBxxZdnNygSHknJgzoMHv3Up1NkpL8oBHYhye6Qcoufo6PQhtp19ff3KQWy1iHIzW/zOkRI2 m00oOMSam5tzcrGe3uBJ1g6nl/v3v384duw4yk8/HUNRDrbCZntfvKhH11h3p8XFxVu37iCe TGy///6H69dvYSbz6cOHj0xMTLWCcnMygbArJzgohFBwuOXkbD8yVzO9wT18lAPTiopKyhQq LZWXmZn3w0nDflRVVe2xj+4jS7mNjY26urqSklImtsXFJbW1dcxg0zJFd/SNjY1aQTn8KSW1 CUmJqcSBwy1fX9+WgYJZGZ+efSDKaay+EuUWZKLYFN/ysiriwOFWdHRctSB1QSYkyhHljh7l Gl1ZVu1tncSBwy00ZFGJ3gd5y9xnKCcWj2p1MO3tHTSTctre81JSUvK+U06y3iBZ49o6Wu37 6VmSpkksHrNxNJ3dOrjLrJ+inLmFZVtb+7z2am7e3MxCMylnZm6JzdNehYWFR0VF7y/lZrb4 HSPFXl5eBIFDr62tLScXp6GZ6ulN3gFTrr9/ULWvYB8fX0NDY2trGy0toLSFhWVnVxfTCbkK 5RIPknJe/vbFxeWqPaJ3dXdbWVmbm1tqaWCtrGzevNEvKi4eGx/fR8rhH8kri0pNySAIHAWF h0fWCA/u1Bwo1zdVamtv1dXdqwoETPf09nb3aG/pAbRVx+tBmZRMRkbGRiezlg7knAAo5x3o kJdXNDo2ptwGZquwedob2L7+frXADo+M8PlCO0fzqQ3Obii3Kr/04M62aW1pJwIcBYmETR7e tgsHYjZQkBrjsLSxN62padheGbW9qNZEBeUkzs5uueVh8wfSiOBXYlK8ggJDVTsPPxyx3R7Y zMw8N7b17m4PQOaC/MXG1lp5Awzp0AuZwaC0SnpQSSt8Y3KOv7WVA3IQgO5w8E2twJpOS6X5 eUUm5vqjCzWSdc4BBHZ6g9c+XPDm7RuBsHFySsKMmXj4yvjEBPydgYFhjShxdou/y3S1PDoh Ppnq/tER/u68sugDu9I6udaAvNXT19bS0raultPXN4DSe1iKfHf6Bzu7euLikl++es5rT5+T CSaWD+gSNuxcXkX46zdvMtJzurp7+/oPW2zxWl5ebaBvFJXE2p1DRjYxJxPaOZn29w1S3T86 GhkZNbcynl7nStY4B3Z2Dq1wRlGwhY2RlY2Fq7uzq5vTISnuzk4uDhaWpm5sq/aRAjniDrBj KwZ0gq5MJ/nwsKbYkkMWW2tbSys746LaqLndPn+NLzb3F7i50EP6R04BAcGK24NFB1YZcYjO ywlQ1zdV2ic5VKVXUjI4UzEj40u3eAeMuPe3SSh+ekBafsgCKy9TpZK1+l23HZOK6w6ePnY8 rpBq/VHTQP+QtZ2J/Ma5A3xyX5m9okgOUWF25yB77ftoIyI5jIGdkgd294forPw2uRI7O3uq 8kdTbJY37NziAdo5KlQOtKzKrzuw/R04DXyq70dT4pFRUzPDyZWG6XUu1Qgqh68syIS89ixn Jxeq7EdZKSkZCekBywc7EgQVKgdzwWt6nWduZTjQP0Q1/ShrY2PDwsKqY6RkXiYYp6pB5RCV JVljUmZQXEwCVXNSR3uXuZWRZJVzkF1rUqHylXNVkaAzx8rCZt+7TiVpqbIycwPD3dD2HeR4 EFSofK37arZ4owt1JqZGI8OjVLtJSrFY3gWVMcsHOyA1FSr7/9TbOnd2S+Dgal5RXkP1mqSq lZUVKyubWmH6El2JoKK1RbLGQa6KxCQuNokqNWm7pqdnzM3NhV25BDoqWoo4JCPx6f6BATRK F+mTEo+MmZmbCDpyCHRUtO6+kUWZKDEziM32pYpM+rxGxWMWFlaV3GSATrJGFyOoaHoZX66X bvHmZMLQaM8Af3JxpB1pfn7e0dEpuyRyQdYo3aTbS6hodJmXCSdXOO5smxi6NY70JVpfXw/w D/bycxhfqj/IYQ2pUPmiE3HIOFr6CyysjAvyi6naknahgrxiS2uTpt58HEvTZOqoaFKZkwlm ZcKckkgbG5uurl6qraRdq7u7z8HOMTSaNbZQtyhrPJiOvqlQ+UyRbvHQ7Lb2F9o5mYWFRq6s rFA9Je1dWVl5VtZmJTXx0+vcRZloilhH5Rs91AC+DUmrw2O97OztG0UtVDdJ+6iJcQnaTRs7 i/zy6PFl+aPQszI+PRFG5WDuEpmXCXHI9U1WRMR5WVlb5eUWUpUkfSWNjU5ER8Vb25r//y1f N+PG4z3Agu4ruLgb7cmOIuoiYAX67s8ZYOH2FbS9+vSpq5unzurs6OrYs2v/r1+/RnPiKKA1 ePcOdCVfX19fW1f9lj2Lrj3c8+YnaGcNMEECkyWw0AOmT9CJ1r9Ogy9jHUWjiAACJhXQcXB/ zwATD6TZ9un/+aefjp2+thnYeGtta5g1a+6Z0+dHs94ooD948ODx5k3bpk6d1t7VMnFa68ad 849f3HDjyd7HH468+AaskU99+Hf2/SgaRYQQMKm8+Hbi4dvDVx7sOnBq9fJ107v6Gts72ubP W3DwwJFPnz6N5rVRMODgz58/d27fO3L4+Lq1G+bOndvW0VpTV11VXV5YkldYnDuKRhEuVFSS V1yWX1NXVddQ09fXs2DBoi2btwObbU+ePBvNVpgAADfb3Qk= eNrsnQVYHHf6x7metHe1VK5tHHdd3HaXZY31mRXcHQJBAsEhgjtrWLRpY40QJ+5pFFjYxUKa 5urX1NL04vOfBWp3aa/t/xJ26ft5vk+e2WFm9jfvbz47ml0MAwAAAAAAAAAAAAAAAAAAAAAA AIDfL7dv3zp88OjubQd2b4dAdDvb9nfvPnzlyhXQ9qcYGRybafY0LdmQEguB6HToScaW/s+m p6WDtj+FumeEHGz2+qeSFVfFEIguZ90/Q5JW2WdmZIG2P4Wmb9RXZNo6irT0CiAQXU7biCha ZpuVmQ3ags4Q0Bl0hkBAZ9AZAgGdQWcIBHQGnSGgM+gMOkNAZ9B5uqUPkfUj8gFEqvp+pFSF SL+fQDAxwURkql+xZHw5Pz+NtG88KugI0Bl0/h+4LO8X1B5nVRxhN/Yg8nFV5RpU1ito7pl0 ufkir+poQOUJds0pdsURVu1ZPj7yFyxZ0HyeW/c2t/lnp2lRaZdfd5Lb1APmgs6g8/9vv6zi Ztc5kdlz3Bjz6NnORafwjUdY/qabL8sm5xBPge+L1cL6vb6MkLn2Hi+bOL1CYBmHKOmKK+LO dyQrxkQKXP9+tH10/OVVcceYeMUVkVIj7HhH3DkmrNrum9BOrFOJOi6LO65IOsdEMq2/aPsV fGJJ27Cw+Rg1pdaz+ABjwRKf8gtI67AIH98+IsQPDGQaYftlcSf+chiVgs6gM+j83yIdEMqO ED18TZJ2ctv6OJmdnvlH+XUHyNzQuXOtTDIO8ZTqifogrVfQguW2rDjnGg1uK1rXTQ5KtmAW uJW9jTQf8w+vcuRFmzIS7UU51tQct7y3iMJkm4RNAbX7yGnrKFUHaUkNBFGyBbfQo/IS0nyC Gp5tRY+zWbibXSy3NjR8SbDcK62OXNuPlK1y848wDaonNWrQ8s3eEcsduJEW4R3U5oHftdGg M+j8i6JCFL3sxAJrd5F5SJ1HzpYAuRqtP80u3030Q2zT93IVP9C5sNKOk+RSNyxRnqXxuPO8 g829ubMcEzzL1jsbEg1DqxxcjF7xW0RgBc52S3SML7F2iXVOb7Sj5ziXvOlGoM6WVLvSaSYh DZTsNhdaqj0SOc8t0j6rw9WbbBhR48og26evdXMPMguuc+OGGolWU7NLjK2FlvHl9h4+ltkH tMcJoDNoCzr/l+CHyiNo7VFmXrubJ32+aHUAflTcfsaPyLX+oc7KMbSgwo6T6FI3Gtiy28PC 6RWvKAtGtCk3z7dwnav9AreGgQAJzTrzID9vuRmtgqQ85UeUOCTU2nOKXIvecGem2lVfFi5M sBEt9s1e7xVW5y6OmmsvssrdSAyKdMjfTkZ4DuF5puRCr5UfhRQq7ezzPDLKLTm15A4NU+Br kdr1XUtAZwB0/smD7fp9RLTMOXsbs+4wDUk3pctoHVfEyuMkT6rlgt0/0PkKmrfEhhFFqB2W yI6RqYhF4iZG0Vqv8DbakjcI5vHO1eeoPE+LtD2czCITdi1ZeojoKbCPq7Rl5DoXrHWlJdgs VwuSI63FGW6cNENiiVd2rTWBb5a+zofNNY2TebD87ZNlDoQw66zt1NAkY3ozOavMjFlBlF+g st3NQGfQGXT+JQfb0h52VrMTiTnXlW0U1ESqvoTIB1D5GZokyzXvME8+eYiLKIaRJR3uUeU+ dQNCpQZZttbNnzXHKdgqdQendrdPQJVv3QVmXIpL/mFukZIQvYYmPUGVFHhmr/KIkvku7SJG VLlX9wtyl7klKan5Kwje7Hm0NCvmYqeCg4yoDAt6qn1omlflJV5mtR2BOYeZ41bZixS3EqJW UmUXmTHJzosPfNcS0BkAnX/2RpUaVWjGo0a1V557tCOVg+PD303Wg+/KtdNMvMRnwSdQ4rP0 I1IV2qpBtMoPaWeR4ZPh6k0sAR9Wa2894zOOX6xG5WrtxwX+J4VG2IpPgP9pUIi/r2IQlfZp J1OOt+T75UwsVgVXtkFn0PmXSy34RbeS/22W/8/bPYrFgs6gM2wwENAZdIZAQGfQGQIBnUFn COgMgM4Q0Bl0hkBAZ9AZAgGdH6/ORIlZ51WhXI1CILqcFe9IYpV2oPPPoO4dtia/WHrYJ3+X NwSiyyk7RGIXzkxOSgFtf4qPPvqYj3CFQVw0EPKrExiGioL5UIfHE3wr5aGsjo4O0BZ4FHz5 +Q0oAgBMD8rLyy9cuAB1AAB956uvvpo3b15ubi6UAgD0ne7ubgMDAyKReOfOHagGAOg16enp uM4vv/zy2bNnoRoAoL/885//dHBwMBhn2bJlUBAA0F+OHTtmaGj49NNPz507NyYmBo63AUB/ uX79ukaj4XA4Fy9eHB0dvXv3LtQEAPSa0NDQb775BuoAAPrOvXv3goKCPvvsMygFAIDOAADo DiEhITduwHOeAKDf4BZ/9NFHCIJcvnz5008/vX//PtQEAPSUPXv2GBkZPfPMM/i/ERERt27d gpoAgJ7yzjvvzJ49e+IxksLCQigIAOg1UVFRuMszZsw4deoUVAMA9JpNmzbhOvv4+MCRNqA7 3PrX7a8+/+YG5FdG0z/y4vMvL0heePPLW1CNxxB8K7154xZcdfwZrr37HsHdliIgkHmQXxku YZbxC06+Zn58qMbjCEXg7OZnXVFRAdr+FAM9I67c2dIhVv3FAMivSsMlVsFWSvUZfACq8Tgi G+SGNJqmLUgHbX8K7fdsi03bxrQ/Kwz5tZH1ayPtE0ApHkPaL4tj5PA92/9NZ/ja/EfxA80Q +Np80BkCAZ1BZwjoDDqDzhDQGXSGQEBn0BkCAZ1BZwjoDDqDzo8mUtXkfWeZarJ6ky/H70RP TvPdvekfv/zhNBDQGXSe8jRf4tWeYlcdY9ee48vHhW06z60+zq46wWnuQxT4mH5UpuLXHGdX n+bJBlAZ7m8Pv+40pwofc4YnHZh0HAI6g85TGRXa3s8OjjU0953lwp7jHGaZ1s2XHyF6+L5q z5jjQp/rn+dWdg5VngtIyLN0Zs5xYhsHtfnLxtDsPDMbj9ecWXMcWKaRK+gyDQrFBJ1B5ynX uaOPwRJbhqxirfpAXCS1c070qNzt5cayKzqHtPUFBMaYccq8U8ut/dPca/rRuh3erCxCyQVu aryZuILcdi2wepMHJcC66Dyq6Id6gs6g81TrrGLyAs0CyrxL9vpH5pj75PnW7vH2FDiUnkc7 rogqV7swo0xoYWap+3gdQyh+ptx8ni8b5qckmjLSnAt205KX2voHOi7rQeUqqCfoDDpPsc6d /QF84RwT3zneYkNShlPpObR5p5eHwHHJJeGKd8XL2wjMaHNWgnniLm7nqFAxKFT2CWQj/AVJ 881dZnqKDD3DbDP3cBRqKDvoDDrrwsE2PQC1DHudvfr9wPYRoXJIVL/dw4lilbEvoHovmRNp Ftjil1lp4x3sWHSEVbzWnb3YZUkvLyXGTFLt1/GPoM5RkWIAag46g8668B+ptCfIkYudkzax FIPay1nSAbTlCNmfO4cQMMeFMZ9X7VOjEiousJMLrVzxMUKzqLV0+aggZ6lTfJu/VI3CNW3Q GXTWqcg1Pz7z7UNwteXae8qoQq29LSVVIQrN+JgBfIz2tpRMrX0JpQOdQWc9+M/O2u8xEPzb 8yH/OQYCOoPOENAZdAadIaAz6AyBgM6gMwQCOoPOEAjoDDpDQGcAdIaAztNMZ6LErOMdoXwA hUB0OZ1XJLFKO9D5Z1D3DttSXl52glTcTdSdLD9CLTvop1NN+n2mpJu47Ai19ABZJ7aK4xRe 6eyU5FTQ9qf48MOPWBwGX8LkiXQmYqYniUDnkHSoSb/XcIV0Es2TJfDXhcbwxcwAHlWpVIK2 +sWirMU7tu+COkw5d27dS05M7bnYB6UAfhuff/65jY1NREQElGLKOXPmzBNPPLFmzRooBfDb 6O7uxjchExOTzz77DKoxtTQ3NxsYGCAI8uDBA6gG8BvIz8/HN6Gnnnpq586dUI0p5NatW25u bnhfzJgx49q1a1AQ4Nfy6aef4vtlg3Gio6NhpzCFXLhw4Q9/+MNEX7S0tEBBgF9LT09PQEDA 7Nmz8f1Camoqfh4NNZkqNm3axGAwDA0NbWxsSkpK7t27BzUBfhX/+te/bt68GRUVdfz48S+/ /PLu3btQk6niq6++unHjRmZm5oYNG7755hv9P1L6Bhscwr66ox28cxO7/j52H479HgeJiYm9 vb1QB10gPz9/9+7d+r8e97H2NOxZG+zYR9pX/ziDbSrG4HDjsRAfH3/+/Hmogy6Qm5vb1dWl 3+vw2WVseSz2/F8wA1vszD+1Yz7pxdbkYNdvQP+CzqCzXnEPk+Vi/igWz8eetMJOjet85zPs 6Gbsg0+hfx8DYampbw8OQh10Qufi4q4DB/R7Hd69ht14gHWVYH8wntRZN1GrsWPHpl9quNyh 9vZpuWp6l9zg4K6KCj1ehUuXJmVZv1jXdaZSMQMDCOTRJdfAoEuvV8HWVm90TknBTE2nXz5+ 7rlbc+dOy1XTpzg6Yh4epbNmHbGwwJyd9XIV8JafOPG9zgZGOq3zgwfTMglxcefPnZuua6cv 2bd3r1wmo9NoSYmJ27dtu3/3rl6uyHesXYgZvIwd+wSuhzxmYhMSzn13ygNMEfVNTQbfwubx 7uv7+rynxroOYNdvQ8/CjarfIdeuXZsxYwbu8l//+tdp8SQJADr/fnnw4AGKorjOM2fOvH79 OhQEAJ31mrVr1+I6L1y4EEoBgM76zpUrV/BdM/zHcwB0/s189NHHo4NXRzTvTHkGeofTkrJ2 b+/WhcaMqN+5MnLtyy+/BEFAZ705Y72PkSjeHjwjX6G5LzrVEZqTxJZEkcXUtwQ1J0ksbH1n 5ufngyCgs75w/w7mz/OouUhtG0OVI8iUp+0y2qoDzcCz6j1xbJv1wvQMEAR01iOd6QLvipNU WT/80hD8qA3oDDqDzgDoDDqDzgDoDDqDzgDoDDqDzqAz6Aw6A6Az6Aw6A6CznujcJ5CO57f4 8ptn/G+LBZ1BZ9D5V+vchygGUfkAIhtAFRpUrvq5ifFp5N8tvw+Rq7+dUY3K/jcCIvIBVKZC pCoEdAadQedfpbO0H5WfprED5xEC5rqy5geUeS49K8DdVA4JZbi8GnwAlQ0IO96RrBgTtw4L Fjc7Rq7wlw4g+N5TMSgoecODicxxYRqKa4m1vYi0D1EOi1a8I24dRPGFywdFbaPiDvylGmlR oe0jovYxSeeoUIq/tQptG5OsuCJWDiDNPQLpAIq/RceoUNnLzniDlL/Rf0G5b2UPotBo37pj RIivVNuwqP2yuHNM9PMfOKAz6Pz71XlAKD3k60oxT3yLUXuMKo41peYTW1Scws2U6kuCmp20 wi3M6iPU2GLH4FpivVqQvtgkoNJXpkYVQ2jVOjdisFXSRkZFFxFNsojfHNAxipSt9RAXOGXv ZCs0gmXbyelK97Bil7wjvJYzzPS1vrFVThFtfo39QnkPK6PWKWi5R+lJvnJQ2HyaHlfslLye WbvD08b7777ZLplySr1G2HzMP7rQIaKD0niOvWgDMaGeENzgU3kekalAZ9AZdH6ozkRvvl3u SaTzXXHNOldWvH1hF5EdaZp7DsnLs2eIHMMyrQPirNzY8+gyv6ylFrxaokwj6hjhxSda8QpI iqtipQZtOM2uO8cvWePsIjThLLAghVhk7A+Ijp9lF2QpCDXyCXMvetNlvvdcVq61O8swfjNt YaENCTXyD5pHiHWtvsiOijP34Ri6ITaxDS6O1FfdQsyoVMeyY3REaOwfb02JMWdl21rT55LS bYjcOfxGP/zz5JefsIPOoPPvS2eebc4xQfs74vpN7qwE27ztJEGSReEltGiJEyeYkNTskdjs 6kp/xSbfK7PcclxnYfsoLyHZRlzqp3hHhJ87t46IWwc4kSnzac20jR+JIvItfGt8ExeZBL7O bj1CYvjZp69ytY93rrssTF9sKql1Jfu/ahlgRA6c7yxwKN5F9KJbLDwswD8Wmo/4cYpso6Ve QoSQ0elkIXFseD+4aaMn0XLm/HD7gl7x0npLWqF7U78QdAadQeeH6HzQ151pnXWY36piR2aY M/OJzaf8aEGGSbtZKamWXkRjQoBVyiZK6AIj+xyPtDJzThV+sC1UjqBLZI6uEutFR/jSM4z4 ckLWroDUIlO3XK+WC0wkzpjTSk7MMg56PaB5pzeD4rBwpYtdsnP1AD8py0TS5MENMQ9ewWg4 4h8t86s9TvHzN4laQ82R+izq9KSmm4uWuXDZTjkb3B1plnmnePlNju4+80zj7PPOIQWVFvRi D9AZdAadH3YpTCg/SSHTZtrS5jjT5pAynYtOIx2D3IRcE3vyXD+JpTjLRZBoQuCa+IeY+GV5 LKizC5b74btjqQpV9nNSq+09SLMIlLnMbNdlF9GWk1RBtJG9/+yAxW6VFzipRZbRG1nN+0jC YJecNz198z1q+vnpZVYR6+iVGzypAa850udxa8ktg0hhi5OHxysOXJv8/cy4RaY23rP9A12r VPxFS23d8OVH26au8qQsJuSfRUqkdsJaH9AZdAadfypNF7g1J9hVJziNPYj2PlQfIuvl153i NFzgS/sQaQ+v+gSn4SK/+RK/uQfPtzOqEEW/oP6kdsZmfBaV9o6V7KJ24qY+RK4SjE+vnbL5 kqClRzA5PL4EuRppfJtdfYor7dfek5IPCOpPceovasdLL/HqznAbL/JbxsfXnWTXnucrBhB8 ado3/WEDQGfQGXR+yD4akY3nu10ebrF2jEo7BtdtclilHf+j3WLff8yo+v7ldxPjM373tMn3 I384Y59g4i2+X4LqB8tXae+LTd6J/rcGgM6gM+gMD3kCoDPoDDoDoDPoDDoDoDPoDDqDzqAz BHQGnUFn0BkAnUFn0BkAnUFn0BkAnf9DZwbiXXue0T4qah0SQr7LqmuB8e32oDPorE8638Wc fayilRZp65xT1xAg3yVzk6tf2otJiUkgCOisR5SVlcUnxOlIklNwgRJ0pDFx8XGbNm0CQUBn 4DfyAEoAgM7TgVu3blVXV2s0GigFADrrO2q1esaMGXB8C4DO04A1a9YYGBikpaVBKQDQWa+5 f/8+n8/HdX7ttdc+/fRTKAgAOusvly9ffvLJJ3Gd//SnP23ZsgUKAoDO+suGDRsMDQ2fffZZ /PQZP97Gd9ZQEwB01t+9c29vb3R0dENDAz4MOgOgs75TWFjY3d0NdQBA52lAbm5uV1cX1AEA nUFnAACdQWcAdAZAZwB0BkBn4BGRkpIyMDAAddAF4Mo28Jv58ssv1Wq1SCTatGnT8PDw7du3 oSZTxfvvv49/qMbGxspksrGxMSgI8Gs5c+aMwbf4+Ph88cUXUJOpQqFQ/OEPf5joi/DwcCgI 8Gu5ceOGh4fHxCaUlZUFBZlCRkZGXnjhBXhmG/j/UFlZiW9Czz///NGjR6EaUwuCIHhfGBoa fvLJJ1AN4Ddw4sSJp556ytLS8tatW1CNqaWjowPXOSkJvm0P+I3gFru7u6empkIpppyhoaGX X35548aNUArgN1NStOTwwWNQhynnzq175UsrR4evQCn0gg8/+JDGpHBEVLZQV8IRUn38Xehc ou406fcb1J/M8GDwSDrSHq6YSqETz5+/AOY+FHXvsD317xVn/MoOknUn5cdpS49QdKpJv9Mc Ipcfoy49rCubR+0FqrPohW2bdoK5D0XTN0oUm3W8g8oHEAhEx7P6PQk10WjHlr1g7k/p7Csy bR2FXzeD6EFWXBX7xxuCzqAzBHQGnSEQ0Bl0hkBAZ9AZAgGdQWcI6Aw6g84Q0Bl0hmjTI5D2 o51XJSvG03FZKMNHqtC2IaGsb3IaqQppvSzW/nVUKIWKgc6gs65G2o80HvaXpFsy4szpcRaS SmJtv7DlODVxNaninECmEkgHUGkPO22ZLT3OPLjer16F4iOhbqAz6KyDkQ+iy1cSLDxM49eS cl735PBNJI20xt3uhHirxSeQVg2qvBgQkWNJSXNMkrlywkxELeQWXPA+KB3oDDrrns4atGKd i42noajcJa6eEICYRbQzGvd6eKXZ5p9E2keFy1e7kjm2pX3i1e+KG49Qc7fSG3sR0Bl0Bp11 Vmdrt3mCPGtbm2edUz3l1wKbt7t5LtDq3DGKlipd6IGuDWMiea9AMSJq06D46TbUDXQGnXVT 56WrXDxC3GUfB9W+4eLFt8w5KZTudvfMcFiqCnzjk2DpLh9ygNmCo+jr70mqd5PTX6dq985Q OtAZdNZJnZetcnYREio1ohUjvMg4I59F3rXd3k7Uv7sGmlKjLOLWUNKa7d3YhtQoY2+eadQ6 mkyNQt1AZ9BZF69s9wkaz7CXdLOa+rRXuZtOMUv2MhsucEs2ERe0eqUovfP3c5RqwZINxBSl V95ONu4ynDiDzqCz7hqtQpSa8ePnHoFsAFWqEWkfohwStY1ooxhAWvoQxfhL5SAKh9mgM+gM gYDOoDMEdAadIRDQGXSGQEBn0BkCAZ1BZwjoDIDOENAZdIZAQGfdRN0zQgoyXftPSec7Ip2J eDwiiI50x4qrEh3pkQ1fhNBTDbdv3gPmPpTR4bFZZs9TYoxI4YY6EkqkiV+Ese6053cev0hj Wqw5OUInthBanPEs67/u3dUN5j6UO3funHv7wtEDp48d1JXs3Nrdveuw7rTnd57Nb25HuYHd u47oQmOO7j/99qlzN76+AebqCxs3bhwZGYE66AjHjh2zsrJ67733oBTAr+Xjjz+eNWuWVCqF UugI6enpBgYG7e3tUArg13L48GF845FIJPfv34dqTDlffPGFm5sb3iMCgQB6BPi1xMfH4xvP iy++ePnyZajGlLNv3z6DcWbOnDk4OAgFAX7VvsDS0nJi+1m5ciUUZMopKip66qmn/vSnP+H/ dnZ2QkGAX87GjRv/8Ic/TOhMpVLv3bsHNZlCHjx4cOLEiV27dpHJ5DfffLO/vx9qAvxyxsbG Dh06lJWVlZKScvr0aThZ0xHCw8Nv374NdQB+A2vWrJHL5VAH3dlHBwcHX79+HUoB/AZaW1vr 6+uhDqAzADoD/3NCQkI+//xzqAMAOk8DQkNDb9yA5yoB0Fm/qaysdHZ2fvHFF+3s7FatWgUF AUBn/aWjo2PivuETTzyxZw/8t0QAdNZjxsbGDA0NcZ19fX1v3boFBQFAZ70mJCQE1zk7OxtK AYDO+o5MJnvmmWfOnj0LpQBAZ33niy++iIqKgjoAoPNvY9XKVcuXVOpIlpQsD5aE4f/qQmOW lVVUVlRfu3YNNAGd9YL7dzEHNwt+8bzgKougiqlPcKVlVIN9UKVONCaqxXqu2x+3v7UTNAGd 9UPnOxgD9WnoZa64KukYE0N+mPWfhTBSjbvegi/mBZ31Rme6wLviJFXWD19+Dt+zDTqDzqAz ADqDzqAzADqDzqAzADqDzqAz6Aw6g84A6Aw6g84A6Aw6g84A6KxDOjf3CORDQuUg2tKDv0SU wyJFv0CmFrZpkPEx4+nRjmkdRKU/nlExLF4xJpJODA+J8GFZn3a4RYW0jgrlqsl5pQNo+zuS FVclbfi7gM4A6PzIdJZrBMvWExdtoDcPoNKLnMWrvUuP85Z1kRI2MmUaVIFHjSqH0KqdpMyN 1JZBkWJgvAF9AkU/v3CFm6TBt64PVaqRsjc9A2u8qy4gcryF51k5MmLFeQFut2xQ2HiMGrXI MiDJbsHmAKkaAZ0B0PnR6Iy0XhGkLzDn5/u0fxy6eogVFDM/ajOnaq9f8pYAhYa/bAdtyQFW oxopqLUip9rn72BUnObJcKNVSOcQLyz4JYMnX8k4gqwc4SK+z/zJYl7BGWHHmKhqraMlYaaw g9nxjqjlMJkVb87NI8SU2fuHmid1sZX/a6NBZ9AZdJ7UeQzJzjN3ZRiLywhBi61cGXOTd3EX K5wodaT8Jgd34jxv7jxCjmeuws6FPYfEnevMt8s/zMf32h0abuQC09fMXuatZsiPEQluL1kL zfNPCVeMchNz7JB0O3SRe+NVNCvXiprs3nQ1aOUYumwrOX8vS9oPOoPOoPOj0nlRnrmzvyGS 7yjMtHCmzk3Zzc1qsndNt6OEWGccFlS+TnBMc81qtPFNcWpQs8X+ZmFKhnxY2KFmh6fZ+IZa UBe5L6yzp8SbBSRZLT4rVnR7kaJsst70ocdYpnWzF2TaiUspiqtCaR9+Qi1S9gua4WAbdAad H5XOgoxsK1EZsQM/2B5mh6cYJ2znZDc7uC3AVbXJfVvUtN3NPcsts96WXewuHeKEsCyj2yZ1 Dkm24RV7hkTNNnc3iaxw5i+wKjiP5tdbmTq+4s6fZ2H/KrOFkl/j4BvhWDkcuPoKUrKRuHhH gHQA9s6gM+j8yHTOtOTleDYNi+Xn6OIYI1xnXF7XUq+s5XZk1NyfP9sk2SWr0Zax2LVZww6k W0S2TuocFG8lrPeLSX7lzxaGmeu9+SmWi3bQAlOtEvfwO0ZFjft9qBGOxQeo4gxzT4EJLcSY FGadeYCrBJ1BZ9D50VzZlvYLag8ylx9it6gQaQ+vvJtefZZfe5xZdoxbs58cuNCahM51zvWs OslafpjV0sev2MmoPMmTqhAZPtzNLD/Oqz1Mz98d0Hies3w/s+Y0p7I7oFmFyvAJ+vlVO5h1 PYj8PGuRwiNB6lN6hCeHK9sA6PzoHiPR3lNGFeqJu8yIXIObqL3L3KHm5cgJfpGmlAzH/EM8 hUaoGDdRPojK+7VzNWtvcuHDiPYm9RCKC65Qay3GR357exrBJ5b24Z8YKH7W3D4qUqgRuO8M gM5T8lSYXCPUft0HrqFuP4oGOoPOoDM85AmAzqAz6AyAzqAz6AyAzqAz6Aw6g86gMwA6g86g MwA6g86gMwA6/xKdGYh3Yz9z1T8knVfFU54VVyUrdKAZE9nwZQhjgVHXZvjheNBZP3hwD3Px tPcOmUWJMfSLmvrQ481ocaa60BJtY5KMZ1o/uWfnPtAEdNYXei71HthzbP/uo7qQRen5dZXN OtKY7l1Hjh0++dVXX4ImoDPwG8jIyGhqaoI6AKCzvnP9+nW7cW7fvj1NVumbb7B7D8bPau5j N29it+5qf4L365vY3fvQ3aDz9Ka7u9vAwODpp5/WaDTTYX3eKsVcKFj/V9rhr/sxL2csrQvT rMdsXbDtw9DdoPP0Jj8/H9f5iSeeWLJkiZ6vyhfY2grs5Sew5y2wvhvaETdVmOGr2IIubGA1 9twr2KYh6O5HQdO6dctbW6EOU84nDx48b2pqMI49hfK1Xq/MznKMGIDRXTAzAtY7vnd+8DGW FoptU2OfXcIk8VjvdR1q7ddfY01N0yOnJJLDAsG0WR39zXs5OTlPPrnQwABP+SuvfFZaqrfr Uo8FCbANO7C9xZihDdaj8xfGGQzMwAACgfxk/vInLJGAOXjqgc5xcRiKTo9ccXIasbObNquj 7+k3N//A03M6rAubjcXYY/b6oPM0onnt2gqFAuqgI6SVlLx18OA0WZn1C7H5NqDzY72y3dZW 39AAddARcnNzu3bsmCYr0x6BPTsLO/8FdOtjY+XKlS0tLVAHHaGgoGDfvunyjHTPTqxein1w C7r1MTA6Orply5aEhISwsLADBw7cuXMHajKFfPzxx7t27eLxeDk5OXv37v3888+hJsAv5+jR o88999zEjU6RSPTgwQOoydTqbGxsPNEdrq6uoDPwq7h58yaBQJjYfrZu3QoFmXJSU1MnumPh woVQDeDXUlxcjG88L7300tWrV6EaU86OHTvw7njyySePHDkC1QB+LWfOnMG3H/z0GUqhC3zy ySempqYmJiZff/01VAP4DZBJ5I0bN0IddIT09IXFRcVQB73gxo0bLc3SmoqGmkqdSNXyWj5H uHBBto6053ee2soGHgsJEoXpSpMqGhrrm9977z0w96EM9o/MtH4yqMpMVKYTES8xi6hxCC63 0pH2QMJr7MOq7HSkMWF1lrNdnti+ZReY+1DUvaN+weZrP5Z0XBFDIDqe9Z+HMhYYd70FX8z7 cDR9o74i09ZR+EpnCHzPNugMgYDOoDMEAjqDzhDQGXQGnSGgM+gMgYDOoDMEAjqDzhAI6Aw6 P8IoBkWtA0hzzy+dHp9SNihacUUk7xsf1gg78WGVdlg6IGwbQqXfTikdQDve0f7oaqsGegF0 Bp0feWS9vKLNvou6OYpvf0Jd2o8o1KisH5H2ITIV0tInkA+gsj6BVIW/1E4g70fKt/gE13iV n0eUGrRmDzms2rPsFF8xiNYf9M/YQmvs0xot16BNR6jhOdachQ4Ld7MVaugI0Bl0fpTpQ5S9 nJDM+VQZrXMY1dqtRqVn2aW76NXnBNJLvPrzPGkvv+40t+GSoOUct/5tXrMKaR9Gs4vmGxg8 G7qes+o9YVL0a3+Y8WL8HsHaK4LkEhMTV9OCE4K2YWFDNwmJM2XnEcILbYgim8xdHDkYDTqD zo9Y54g8E1YrvWMI3yOjjcf9+bHGDsw5lBSnzHYXRqFr2V5fF6dXhEr/lDx7STVFOixqH0Ky Km1nzX2BXEtW9ND9Wa8a+c5JPYi0n6BIcm146dbBK2krRgUJJZbei32U14JWjiGl60kFe9my fugL0Bl0fkw6K4eRjFJT5wx3+ZAgNteMWOIiTrANzbezmvm092JHTqZ17FYufmrcNshPW+bo I7EgpztntBBoiWb0OLP0g/zSVkdyilv+G27kEKdaFT+6xJLZylh5GcXfpe2ySNEvaOmBmoPO oPOj1LmHE55vyl/HXv9x0NoPRAvzjTwLvVd/IEldYuG+nFhQa2njPY8RbmHLnOkRbld2Uajs R7Q6l9r7Z3rEZRhZucwTFblKMs0X7GRGx8yd5zXLnTXTmDA/ZTsnp8HWI9mt5WrQKu3emZy3 h6M9E4eag86g8yPTubWfG5k+x4hhzEm25Jd55m/28Qs2IkaYEAPN0/bzqlfZPT/zxdBVPj5m Tzul+yguC6V9Wp1TC20oi3wXVRk98cLLkev8QtPNQmsIzCTnZecErUOCxTUOnMUeNSfpwfFG HuHmjEgTr2D7vAM8+QD0BegMOj/KK9sqQeUeSlKze0ydW0I7ua4Prd/nF1fvvngPW65BW86y CzdSq87xlndRyk7y5KrJWaoPMksPcBpOMnM20+ou8Cr20ZceYCw9xcXPjmUDqPQ8e9lBZlO/ UPo2M7XZLabRq/gED65sg86g82OIXCPsuCzG0z4ilPVp7yPjw62a8dvHKrR1RChXIYohkRLf t3578itTo7ie0n60bViIH0Lj4svxMRM73x6BVIX/VTs7PkG7dsnj80KpQWfQGQI6A6AzBHQG nSEQ0Bl0hkBAZ9AZAgGdQWcI6Aw6QyCgM+gMgYDOU4S6d4QcbPb6p9r/Pq8bkax8V3caA9H2 yHh0ojEbvwxlLDDq2rwHzH0oI4OXXzN7mp5i6B+nE6ElGLFSLXSkMRA8ASnmzGQzXWlMmvFM m7/s3gF754dz6/atgwcO79zSvXOrTkTe2O7t5qcjjYHs2tadHJdekFOqI+3ZsWXf/r2Hvvji czBXL/jHP/4RHx8PddAdkpOTc3NzoQ7Ab7k0p9FERkZCHXSEjz76yNTU1MjI6MaNG1ANAHTW a7q6ugwMDP7yl78cPnwYqgGAznpNYmKiwTipqanTZZ1uY3tWYOnpWONG7Kv70MWg8++Ejz/+ 2MLC4oknnvjjH//o6en56aef6v0qPfgKq4jBXpqBzZiBPT0D4xdjn4PRjxD16GhodDTUQRf4 8LPPdnR3sxAku6Bg94EDn339td6v0vv7MQMDLLQNe4BhqxZgBq9g3dd0tKmffTYNMvz228nB wdNjXfQ+X36J3b5dvmjRka1b8QHsiy/0fo3+9TG24yB2bfxzaUsR9owhdvA9XXR57Vrs+een Qe4/88w3f/7z9FiX6ZF/Pfnknb/9bZqsztLySV+GdmGWL2D+RZhuXrA3NNQeRUAgkJ/LE9iN G9jIIczsBcwEwYZ09XGUsTFscHAaZGz37nyBABsamh6rMw1SFxt7SC6fJqszMoJpdmJO8zFS DvYFXB155Fz5+OOwpCSog+6QUVi4tbt7mqzM/X9gfjO1++iQbKyqHFtaiQ18BF38KLh161Ze Xp67u/trr71GIpF27twJNdEFcnNzu7q6psnKXHoDM34Vm/kq9sxfsT//GXvqBWyTCrr4kdwS fPAgJibG4FtOnjwJNQGd/8fcuYV9fRO7+V2+we7BfedHxd69e2fMmIG7zGQyb9++DQUBnQH9 5euvv7a1tcV1rqmpgWqAzoC+k5iYiO+gL168CKUAnQF95+23z4pEYqiD7lBaWnrk8BGog54c 395oa+1orpM31+tEivLKaH6slgaFjrRH2qjcu+dxf5XN5s1v6U4FiF6UmIgEHWlMU51cIWv9 4IMPwNyHMjgw+prlk+JlpkihiS5EVGoRWmGvI40RlpqREl+mMsiPs0ce3MMc3CyY2bPRYp3o FLw7ApdY6UiPBFVYzCI80bVlF5j7UNS9o37B5ms/Cey8Iob8W1a/F1R2hCgJFTzOHrl/B2Oi Po19ASuvQaf8ezZ8HspcYNz1FnyT58OB79n+mSjUaN5OL3HI49aZLvCuOEmV9UOnwPdsg86g M+gMOsPWAjqDzqAz6Aw6g86gM+gMOoPOoDPoDDoDoDPoDDqDzqAz6Aw6TyOdewSK4cnfBu28 LJT1CVr60dYRoVyNKgaQ76aRDwqV6l+2EfYhylGhXKWdq7kXaR39duGj4wv/X3Q9vljFiFDb vJ5pqfP3RWsfQaU9AqlaqNSgeI/Iv11lbWGHhMoBpPm/VgCfHe/QIaF0fBjvnbYrksmFD6PS 3v9ZjygHf1l7QOdHqbNMLShb6yHOteNn2ga1kOp60aaj9GwFZflhxrLjHGmfdnZZv2D5VlLe ngCpCpENaLcrmQrBh7UbQ58AH8D/nRyPb6jnWYtb/cpP8/FhRR8vt91NmGOLLzxESqzrRfCR 2in7EXzJE9undNxxab/25YTv+AK1f5rY5r+dTDs8MX4AVfRz85Wkor0cmQaVDYzPqPp2xoHx Zar0Vme8wj2cRUoX4SJbfpZ9wmpayxBavYu8aAut6mDA8qOcloHx0l3i5mwk5x/m4iv7fY/0 T/YIPqzttfHxcjXScIS2aAOl9hIy0TvplQ5oFt4jdvGv01vGZ/z3Hun9vkcmekc20Tvji53o nYlVmOypAUTRw8l+k7hoP1c5iE6877czavtL1j/Zy6DzI9YZ3xFwI9E5XlF2SS2ufhHGbAVN diYgW+4bGm/KK/Np6McVQxTDgpQsw4BKonJEWHeUWdYd0IDvec/zcNekPfzGs7yWfqT2GHPJ voDGAaH8FJnuYp62m6cYFHb00Cm0OW6RthGVTow4U04TRdovqD/BwjdLaT+/6gBj2TGu1kd8 2zjHXnaQ1dSr3TxaLnCW7GVUnOLJcVt7eOX7GRUneNotpJdX3s0oP8VXanh5MmLhXk7zJX7d SdZSvD0XtYbiMy7fz6w+zWu6yNdTnaX4h9UJClkyk7TYNbXBwZdqmbqNU7efsvgtUliiJSPf t2lIiAvScZ5OjjXlrgpYOTbZI42XBI1v85rxJfQK6s/wpAOCifEtQ6KadQRytFXJOSF+0NWw 14fk+Hd6HiFqmR0ZtUp8g4n3SN1x1vIjHFkfv3I/Y/lRLt4GvFOaz3KWHWI14r2vRhpPscr2 MmovTBZ56T5GzQU+3jst5zhLuxk155E2FTfrdWLWPg7eRzXHAvAZm/BPgAGk6TRryYGAunO8 ph7Q+XHorBzhxoQaUlKdFrR5sMKNgt5kSff7Cdgm1nbPmZAsi99GWvEjvRFBWr4p0kKq2EJE Qo2IQSbcMhdxvn36UUHDNh/JIteCLT78RBMiaiJaRqo75c8jW2Xs1ercfpHKkNimHRB13Y9Y KrcnJLhl1Vu7UGZTsp1ji+x9/Gc5iEzD3gyQnaUL4owsvWfSa0hN5wKSllh7BhuRw50K9wek 19u6BMy1RyxTdgfkLLfxZM91Epln7qMlxDumb6IvSLfyohkS/GcTC7zrL7GiF5kQePPcyMaB 1RTpiPBn9gg6rfNJCj1yHmOJZ6bUyUNsnXWIX77WWVxo4+P4/Ewvq5KzSOuwqOMCg55qKX4z oHaPLzPMhCg0EVc6ixPtFx/h1+/2Zhd4FLzpIww3IoqNec1+S95wDUi1LcV1HhbW7vARiG2r rkXsvC1JijYTVvhmVTgQPOfQMpyjKuzxrnFhm8ZtYLacoQUmzLf0mMVbRqw+ThWnmBMDDVnF 7suOM8NSzV15s71DCWWH6OG5Zi7s2S4xhCXHA0KXOQavIkekzXcXGroS54qbqE2nqeyg+Q68 +R6oUfx2TpsGAZ0fi85zHbkm/Cxrd7859GJy5TYfdoC1OMYiopnSMiCoxz/z+/lpheaSRg9U ONuUNJ8imWPoNJ+WYitZ7rtQRhA3+4ZJXjWlzPcTzzF2MkzbQhZSrSd07uhlBHBmW9HnUyKM XSSmMduYmUUmpEKfxgM+DjTzrONI1VpnL4FTapONQ4rzsoO0jK3UvCZbK+uXfSJN7O3/Ts91 FcTNdYy2DVnukrDZP0QyxyPWPryEkLnLL5RrFb+aGhdhzlxEaj7m6xRnHbHckRnlWDXIj40w 4xaQpKN6q/Npf3rgTOdwK3ShuRN5TuR6ZrHUll9MCEq351X7y0eQhvN8+Wk6I90qaI1/cOxM Q7/5FPHs+cS5zAwrtJm8qNYxXOmNisZ7KnDOPGfj6DoCZ6HdhM6NB4h+Ti86i00oQfPdxHZF J9npqZbUZJ+6g94eEtOFx4W1bxAIKQ6JZbaUKIeS/Yy8NeSYXKNZrrMpYYZmLq8J6t3J5Dn0 RU7BBR5F6719eDP9shzFy9wKu+m8bCuO1EcSPS94A6tc4eLPdoyttvYrIcouMASh88PWs9oH QedHr/MwJybMPHkLvwuLrFQ4efGcS7t8eTwbNNw8tsO/WOrkzJwTUOiVWGoVVOPCCDSmlnkX vkVKkJOL13pQBDOdmNZ5R+lBAXNZZd4Fm4mJLb7L9vvx/Sb3zvjBNkNgwihwz1zjm7MzQHkZ ySgyQ1ooDV0eFlzr0sEgxU4vCt0+psLSOcddPiKqO8vOKrX2ZFpmbKNmyDyyNlPzVnpENriL ki0YuR45K71im9yD0s1ZS10DUZuktf7x0bbB1XTlGbJ7ul1ovj07xk1+PTA7y1ZUTGrR272z /AiZnmmV3RO2FwvJzDRmVZGKZPZIiZM42U7YSCtaS3AOmENf7ETJsAlcQZYkzKUu8yneTExo I+at96H7zbSS2BXtpbKDjfxLvIu24D1FWtzuzPx271y/15fhNy9Y6pO50rfoMLfzGj810UZU SKnZ5e4RbFGsDm3f7+mQZBeRbUWPc20eEzeeZoSnzXdLdync6pck9czdSUtvdotrcOWGmgY2 EzOV7rHNbsxQ/JPfl5dnw5X6RCw0Sz3Ar+5wYyNOEUvMmY3UtVf4EQtNw9ezYO/8eM6do8Sz bJnG3HRL/PM5sJ1Ru9WbSbMNyzRzRmwKj/Gb8fPQAX5qjgm/0XdxI8E/0JSTYEbK8azvYXH8 Z8ziODWPovlN9qRIc3asOWuBe/lRCtvTIn3P+MH2Jao/zzJ6I3flNUnr4PhBe55JQBVR0csK izbzlZj5hhgxaim1+4m+gUYenDmEZNfS3WRhoillgZW/2CZtnV90oYVnuDmZZyoq84jMMPcL MfcNNeXXeUg4VvGrKLGhVqKlVPlJokOMbfoWP0mqCS3V0tVxNqvAT6a/e+dT/hT0FcdgS/4C c1+uVdZ+bnGTDbvYOaHA2o5hU3CS19wjUJymURItRK8zCjucvAPNuDFmjEK3mktsPmXGbD6h ZUyYV+foL9H2lF+hV94KZ3qiTcnkwbY3i2VReEm8ckyk1KDtY7zkWCvuQpJskB2YYeYmNqUI jQTN5OrdvszAua6s2d6pTovWefqHmnFSzKnpDou2kflhpsQ4C3KYWbjMA0k2JSZY+LItUjuJ rCwrVpN3SLJxwl5epdKFFkAo3OVLCTKlp5o5EWdFbGTD3vlxXNnuF5RvJ8XVuUZUuCSspTYN oM2nWSVvMauPM9LaiUtPCxTaa6eCqn3UsiNcxQCvoMM9ssaz5DhfOYRU7fQv3s+W9qMKFS9v lUdktWfpCb68l1u6kVZ9lq+9DN7DLdlGW36SJ528KCqo7qaWHmLL1ELpOWZanUvsSkpDL9qq QSq7SNH4Yo/ytJvcfkpUpUvqG4yWQWHLaUZyvWuswq9+QCh9m7Gg1jW6g9LQxy/fSq84wanY QV96kCu9yM7byajr4ZescUfSzFy9DQNrqbIRoVQfr2xrry7yitf7xFS7RFS4Zm4NkA2j9Ufo pQdZDSfo6Uri0lN87cXkXl7xbtqS0/zWAV5ex3jlj/NbNYLyHbSi3WypGlX0f9tTJ/nStwNK dtHrLyEyFdL0Nrt0C632ouDbK8/8yl30sj1s6aBQfpaZWusS306p70WVg3iPEKPrPIqO8tuH kaUbfCKr3HL3shVDaG03JabKZcFGhmxQWLefEo0Pv8nAt5CyvfTSI+zle6iVZ/mNxwJKtgY0 93Ky6h0ZMSbuPKPkXdxWNej8OO47ywdFHWNibYbHbw2rEOWQ9v5C+6hIrpqcBhdQe59Xe08Z n1I0cYdRPijETZy4m9k6oh0/fqsaUQxP3jnS3o7EF9UvmLxB/N1yxm+GtuHvOKJ9x2bcL20b Jhcr0wjxxrSN3xXFJ2vHJxu/Z/2DWRC5drGIfBBVqLWtasNHnqFHZlmSQ4xZRZ4VFwRyFaK/ 952Vw5M90jaEamuF77LV2htAkz0yfkNfqREq+scrPzpZ+ckeGZzske96qkWF4jviyfvOKkQx 9IMHAPBq4zXUTPYIXur2bx8PmNgqtD2Cl2u8PRN9Pdk7Q9oF4r35XU8pNNoHFeQaoXyipy4L a/eSRLHG5CDT0Ba/BtV/uVcFOsNTYf+2X8MP71uHRa1Dkx8m8FTY1Eaq3S+I2kZEysH//rwK 6Aw6w0Oe8JAn6AwBnUFn0Bl0Bp1BZ9AZdAadQWfQGXQGnQHQGXQGnacT6t5RcpDZqvfFbSMi yL9lxTuSkgO+4sf+tfkM1KfuIkN7rxZ64cdZ90kwPcWo6y3Q+Sd07huZT3g6eY19XKudLiSp wynzDW9daUynA79sNpX5WH/U5v5dzMnTMqTBNKFdJzoleYVzYoejjvRI2hsEE9Jftm3eCeY+ lM8++yw7e9HChRk6kvDwCCtLK91pD5729vbH3Cm1tbW6s/qhIWEJ8Qm60x6c0dFRMFcv+OD9 D+PjEqAOuoNS0drdvR/qAPyWS3MaTWRkJNRBR3jw4AGbzY6IiIBSAKCzvtPf3//CCy/Mmzfv +vXrUA0AdNZrVq1aZWBg8Je//GXXLvhJZQB01mPu3r3r7+9vMM406pS72MF12OI8bMVR6GLQ +ffD2NjY/Pnzn3zyyb/97W9EIvHTTz/V/2sB/8JaUrGXn8X++lfs6dewrDXY7QfQ0Y8O9eho aHQ01EEX+OzGDdXgYFBERFV9fa9G89WtW3q/SvevYF6mGL0cw25hIdbYn1jYh/d1tKk3bkyD DF24kBAaOj3WRe9z8yZ+wL0kJ+fAtm3YnTval/q+Rtg9rFeF9WuwRSJsphHWdADTzZ1zZyf2 979Pg9x74YWvnnpqeqzL9MjXf/vb7eeemyarU1gybsv7mJCEvTobW7gO+5dO+lxcjBkYQCCQ n0tQMPbdKcP2Euyvf8d26OoDZr29+p2+Pqy//90dO0r4fHwAU6n0fo2mRRqjoo40N0+T1bm8 B3MjYSv7tL5cbMOe/xO26hJcJHkkVykw7A7+mXT5siQmBj8A+hdURDdYWFS0Zf90ecjz+kVs /jPYfApWXY1RzLA5DGzsBnTxo+DevXtFRUWOjo6vvPKKp6fnkSNHoCa6QG5ubldX1/RZn8uH MKaN9sDbKQw7fw3699FRWlo68dDCH//4R41GAwUBnR/NnuNf2JdfYregbx8tKpUK3zXjOkdH R9+/fx8KAjoDenz6fP++n58frnNHRwdUA3QG9J2Kior58+ePjY1BKUBnQN8ZHBxMTU2FOugO paWlhw8fhjroBTdvfr1yxWp5c7uiRSdSW9EYH52ilHbqRHua21tlnQf2H3jMnbJ9W5eypUOh G51C9qHiPaIjm4e8qb2jbeVHH30I5j6UoYHR1yyeRIqNubk6EX6eqajYSkcaI8g38Yl9icp4 rF/99+Ae5uBqQUufxcvTiSIEltkKiyx0pEdEZWYzHZ7o2robzH0o6t5RvxDz1/8Z2PmOREey Qmdasua9oCVHiZLH/sW8TNSnSRWw6lqgjnSH7vTIhi9CmQuMu97aA+Y+FPjafPjafPjafNAZ dAadQWfQGXTWKZ1lA4i0D/8XVWi0kX/7pjL15BgFPoEKkWu+fan50c/ca2dUo/gSQGfQGXSe Yp17+PWnuE2X+LXHA8p20Yp20CrP8JUaFB9fc5SJjyneQS09wKo7zS7bSS3dy1i2l168g151 hjfhL/5RUHeMuaSb1dSHSEFn0Bl0njqdpf2o9BRFwLLP30GhMWdZ0+Z68uZ6xdimdfPkJ8h+ zjNsmPO8kPnERS65b3pT0Xm27i/Mdn3VjWeasJ4pV6P4/rpuN5HDnm3lOT9QSVcMo1LQGXQG nadQ55N+LF+bRZt9/RCbjIOCNf8QZiyxIca5Vx4kUv3mJe3mynv5zZfwKZGOK6KcegufSmLH mFgxfrCtGBWWtztSwi34i2xoZWTFmFAGOoPOoPOU6szxs815i+gvtEnbw227LG7a481LsMre RqLYPWtGnu0aMA8t92seFLYOIlk1Fj7LffD98sReGN87V+30cnZ73ohtu+S8QNbDbwadp6/O eL8rBn5wXUX98LeQqhDFf2y3MjXyw+stE5Npz9dUiFyNgM7/e51FtpkHBavek9Rt8mBF2i3e RmQyDFP28pQqQdOl8VJofqSzbABtOUrhR1hEdRDFkvmObPOUTQEyzSM/gwadp0RnaQ+/+khA 9Rk+7qBUJag7zqo4xm3+j+uf+F8bz3EqT3Fb+n44kl97jF13jv/9SHyyC7ymi/zGU+zl+9hN qsd04WX663yCzHCzyt7k60M1lkjJJVuIgnhTdrlf40FfkteclP2CjsHJq9a4zhnlpq4lXt/p 3HSYzObPD1vjn5JnOOOl55BOhnwQBZ2nn87SAVR5nu7v++z8UOeGIUlbD41s+Zwl4tIwKm4f EbWPilrHNxKZRrjiXUnpSoJjtkfziLhNu9tFlJfFHYMBQWzLmA6G8rKobVTUjo9RcxManRK3 cpr2+CXX+DUOaxfSPiLU7v1VqPaHvIe1L+Uq0PnXdBP+qfg2PSHHc8khRvhCcw/E0Asx4lV4 V/UJW475Ry12KjjO/+7AST6AlKxzC13tj7dK62wfgo+p2OpFCzYkpzmnd7hHtZHrepBHfccK dJ4SnRVnaTTOs89YGBe+LWrc4TL3xb858d0aBnlJBVbufKOQFnLzIFq+zs1fYOzJm2eX51W8 zj1+NVXaw0rK8Sg9Qgtm4TrTl3f5MIONiHG2aW1u9vbPmCYSijf6pdb4Ld3pyxPN84i3XXSI jx/y8RbbM2ONfFKcSk/x5f9TBab/jao+RDkilKmQ1lFRx2Xth2TbkFA2flLTOiLCPx6bf3QG JGzVID8+JxJOfK4qh4RKNQo3qqarzvIT/uxMIxeOUcR66qJia2+qESfMLaHBxjneMfcNL0aY SaDcix9kHqEghqQY2S72zFhmzljiI+uhczwt0rdTwwTWCe2U+EoCusSZK5rtGW5JiTbkdlKX ylz93Y3deGaSet8FlTaukW6lm92MSEZRa4iisHn8JopCg4LO8FQY6Py/1tmPlW0hWOZECzcn JdpK0p2QcII43YjXRt/8sSiqzJoQZ+kRR6i6HFT5pot7kefC5RacGlKbOgDxt87cqdU5VkqK b3GJaHTnS2Z7xVpzFltF7uHVr/YgW898TWRXog5aedqP4Wu3cLWbYzKhclCYVWzKqyfJ1aDz 5Hlx67BQm0FU9lPnID3aU2Dl0PgJb4+217QT9z18Jy7/j0e/pP3Id5c6J6NCtG3uQ/C6yfpA 52mk8zEyJdk06nUi6bU/vsS3SatyCRAQkqR2zlF2aa1utFCTsE5fNMRMUukpiplnke6Rr7R1 ElkmtzgRbIzTd9GCmZZR5a6+IXOZ5Z4xGUYEkSkt3si/llQidaV6mnijZshSz9hSK7d499JN buYRDkv7BAuyDVk1oPPESbGg4VRA3npSxkrf7M20RhX60KsK2kuUx5hle1mNfdrHOJtOs0p2 M+suCf5dW/zlRW7VkYD6i9//CR+oP81edpz7w8uV+GR153gtF7glexmVZ/lSFeg8LXTGP6Xf ZiS0ehQcYaUW2wY1Ucq3+SVV+TWpuWnLbH0kppHt/i2Dwpoub16wKSPVTrKC1nKeEZZsxkiz jyjxXHqClV3ulbcrYLHUkRxqKix1CpF6Zylc2Iudc9aRU+v8Kg6QReFGxDTH/OOC5iOUwBZi dZ+gZKVb6iaGDM6d+5C2IUFGqeVcx1nkaFNfkRG1xLvy0vjj1oNCJR71xH0BpPUKkr5gzgsv vZp2BFk1hqQunP3nebMXHkPwk2jtZEPa57fxXXDbmFh2lMyPNcs4hKwYFeG7XXzX3zEmzGm2 c8z1kg6LWscX2/6uaFm7S3CFT+NFdnybd8FxftvI+Ntpn/FG5Jrx4SGh4v93nxF0npr7zn1I 65AQ3x6Ul8Xtw6hMjbaO4Ad1iHJE1HlF3DZ+gKe9kHJF3DEmbh9EtRvhmLhDeylbe2VGMX7V WjGknVh7MXwY3xJEHaNCuQZVjqDyARSfsfOySNGPH+Ch7eOPF8oHRcr/9S1pfdV5kJ+cb+u/ 2G/Vl6EdF/xpTJP4Lezmo/6hCcakCMu4jUxcUmmfVufMdMNXXnqOJmN2DgQgfs//2dU46yh/ yVpnD/Yc7zhC6SlBywkqP9qYIJjrJjbL7mamVTvlHuPXrPeJKfBNUzgQ8r3rT1BDMs28xSYh 9d7C4Fdnm87N2EKNkHotPsjKXmbtxppDX+ZddY6TXmkTEGfmwzWJeZ0hU//2+4ygMzwV9jvU OaXQlpzpKxsTtY4K0habSaReIaHzHQKMaUGzZ7mYLT4tXP1u4JqPhFmLLElMQ2qie+E2b3+2 kW2qfVSjG51nmvAWNX6hZUCac1ixFbXYe3GroxfXNGs3VRJjmLSfXyEl0FmE5DYn12KfpW+5 I6XO0Yst7ByNBbHmzHiXumP+3gmW9IU2nkK7vD1+gkgzzhJPYeRs6nKf7OV2PkzH8gGhQgU6 g86g8y/eOxfie2dy5yfBK0c4EVHmMVIPP95cjwT70DLHwFKPTJkbNdiYXegem2ETtMiRl2nu E24mKieQcuzQDDsqh9D8WVjLJhdajAktwTRqF/J6D1WYZpnR5R+UaJJ2HK1pc2GhLiltTm4l XkWdbmHLXaMLrAgEU3GStaTAR3mJ7pdi5RJm4lpEfvNfQXm5dsxgB0m2eeJeXtMGDzrNYWk/ 6Aw6g86/VOf2IX5yroUlyzrtDWJskZV7lNOyM+zYhVacPLcMhQu3zKt0HyPndVLhPkZCvHnQ Mq+wlJkGBi+lrPbxSLIOV3hyJUbCWnc0zIyf75lUY+eT6BBZZOlINcw5xApLmOubQQiONnbn OifLHRwLPZJSjNwDbZMbHF1c53NjzYki25JdZM94S06BI4lrES11pYSaoQ0+wUmGkds4datd yT52oDPoDDr/4iAKNbJ0vSc9ypQSbkpf6LT4EFcxJGw5TY9aaOoXY5OylSUfFLYOizquoKWd 3ou2MJa96SHIcy8/wYxv8y05I6ju8mZEmrIKvSovocpLrLhCa0qKTViDV8VFpHqrFzfSXFzq mt7qX7yDHP0GvaabjB9j8/MJ0RXuuZtIoXmOaW9SEjuJxad4pe0E/3BTiZLSeImb2+aRf5TX 2O2fUkWqUf3221igM+j8e7tR1dwjkGuEK66Of2XfmEg5gGhvK/ejbVfwMeLWby8YaicbEio1 iHxQ1HlFJFMhbUPaB2VlGqH2e/Yujz8ehh+6XxavGL8gKdM+lyvqvCppvyxqHUblamH7ICod EOJjtE+UXRYpNcL2MbFSg+LLUfQjimER3oaOYVTap72qqb1uOYC2jgqlcGUbdAadIaAz6Aw6 g86gMwR0Bp31TufeUVKg2cr3RJOP+EJ+kM4r4uL9PuLH/rX5DMS77gJj/BQVeuFHWfdxMD3Z qOst0PnhqPuGjVyfSVvvlLTCUReyYLVzziZfXWnMGgK6fC4twO+x6nwXI3hbRUjNU1brRKcs XOeettZVR3oka7OLGeXJbZt2grkP5fr162lpC5JTknUkwcFBlpYWutMePDKZ7DF3Snn5ct1Z fQ6HIwmU6FCPJCcPDw+DuXrB++99EBcXD3XQHepq69e/uR7qAPyWc3mNJjIyEuqgI9y9e9ff 359MJj948ACqAYDOes2lS5eefvrpZ5999urVq1ANAHTWaxQKhYGBwRNPPNHa2grVAEBn/eXW rVseHh4G49BoNPzAG2oCgM56yuXLly0sLJ555pkXX3yRRCK9//77UBMAdNZT8N3xzZs3s7Ky Nm3ahA/cu3cPagKAznpNXl7e7t27oQ4A6DwNyM3N7erqgjoAoDPoDPyeuXr1amxsLNQBdAb0 mjt37gwODm7evJnL5fb29l67dg1qAjoDesrdu3fT0tJefPHFv/71r3//+9937NgBNQGdAf1F JpNNPLTw/PPPv/POO1AQ0BnQXz744ANTU1Nc5wULFkA1QGdA3+FwOH/84x/XrFkDpQCdAX1n w4YNBALh+vXrUAodoaCgYO9e+DIf/eD+/fv/ePf90cF3L+tGtm7aSSUFjGqu6kh7rgxfu/7p 4/5s+efHH304qvlwRK0LSY0IXi1t1JHGfDg88OHVK7fv3AFzH8qVsasmNrNJEnNfVFfizjUi Ci10oSVEkYULc744UPRYu+TBfQ8/2tP+wU8zI55mhE95/uwX+CQ1RBdaog075mkL52MH94O5 D0XdM+IjMlrxPqIcFuhCWkcQ7e8p6EZjOq6ghfs90UDuY+2Su7dtAoQGmz4z6H5gsPfu1Gf/ A4N993WiJXhOYQai/ENb4MuOHg58z7aufc82rrMDW2yw7j2DHTcMtn8B+VEO4TrnHt62CcwF nUFn0Bl0Bp1BZ9B5euss7Uekff8/X/oQ+cC3C/nh8C+bV6b6pW2WDaC/buG6rvOXBjtvGuz6 xmDHV9qXXV9NDvz2/HAJ3y5cm5sGXV/+aEr8Jf52eHb+knf8cnL6X968nf/X3nuAVZWlaaPv nX/uzJ2emb/vzPx3pqu7q7urrLLUKktLy4yoKJLDIeeckZxzTpIElYyiIBmUHEUyCAKSJQoq KjlIFjh373PAwtLqruqectBa77Oe8+yz99prr/Wt9a7vW9/69jmzb3koofPPT+fAu8KBDSJ/ C52D7gn71goFNYuy/iFUxK9WKLDhR3JZ9EKdoE+l4IWmH8HlVlG/Cj73O4LUDPAh0DnjBXJm EduFiDakTtLH6aNIGfkbuDyNm2N0CTdZx7cmkfAQUa2IaEXkA6SMv06uSdyaQNJTxA79OdK9 SjcnkTKE+Me4+SMyZ71A0iCu9rGqQej8rujczAhpF1BT3aF2nZca8OwzoV0SUf1SEd1iF1sY Yay/CQ5upf/n9xL12SsZxfpbYfovhvskI/vov/oN6RR3DfvqPz79L+VkwejHkq5hu3+/8z+V UwTDH4iFdbOKYv0vcGivRGSfZBTrlkvt4hG9kpEPJSP7JfxyTmiHHfdtlYh8SGeIZP9rcItY BJ1ZMryL/m/ioPuilzvEvNM5OAV+v4P7E5VU/ld/bfze0nkG2ZPwjgKPErhEwfDH9XEEXYf6 JeQyUfySVoV5KyhmonCZplvuCu2Xpr7mvKDngaJVFFLZVpFJKc1ZFDDpS0VriMqGfCDiJpG7 hMR74OMFhyzOyIPLFBcfIm+ZzkaXuYSLebDNxuV6mN1B3ip9bxETeYu067uIejpFyQX6TPEa 8ldwtQgOBQirhGsu0hdoRz1VSN4CzdbcZRSu0jlz51hTxBRtDMTdg6AivpGEWSXy5gmd3x2d OwQUJLYpRPOEdND8Da7jN/D9+pTy59KBpwKqedRDjjpUi12q4FIO5/Qo49Ww2cWt9qVRlkBg Gbea+W4e3T0m2UIRvRLOoV/98//9T5yuJyIfMVSVfve/f/P/KqUJRTbz67l/zaX8udTFUxca +A1svhHU2X5cf69djYhX6lFpi13cMtsVw7nPF54yiOF0TDqparaHV327sCuHf7v4pSpuaYPt J/S+Ugo+6lbLuNzKCOtiWJ/fwyG1W9ryc+GQM9Rc8X7TOXsBIengNUXkMArHYXQRro24EAN+ BTDMoJ2I1BE4h0HEEHrpSBuBWxQ0XSBkieCHSO2GVgiUbCAZhBuTuDkIM0+IO8D/IaIzIOaO 2EmauddvQ8YAoc+ROYW0CdrwvtEEBRNIuOJKH9QU8Ud+mGfCvg7hRdD0gLgF3Eth7AWVq0if QeQdSOtD3AdXHkFfG9s5YREP71Kas9a+4NeEcxWypuCdDC0vSJjAs5m2rimC5y0hKAF8+tD1 gmIa8pcInd8lnZWkP1O6QtP5Uoe4z60jAqZfydnv3P3VJ/qpZxR0dqrG8zoH7eU5t0faavtu oW28sh/vFP1cK/jA4a8/lgk75VMrEtYlZnt5/74THx8w+9Y568RZ9T99y/iT5i1B/0wObp2v 5ex2fHP6j/rJJ/j2/Y7H4ZC82fYjxofPuXy2W3S7TvCB00JfyFjt4jf/Ws9lz/5vtmmGHTgo +ZlCEs85t53HDb/VdNnxDe+nZuVi4e2Myx0Mz8QD3+z69U6l/V6NjOBGkfeZztPIWYCDB7Ru 0YOfvYClzviH45QSHBNw/Bw0rkPBFQa+OCoBl3JIikAhFDqOOBmCmFJ8IgKzFEhpwbQAZtY4 qQIxDezWgusNyJxfp3NCLU4dwwEGOCXA6Yi4MeiZ4ZAKZC1hdQsm7uC2gd5FcEXC3g3HzGDm g6+UYZcCESV434WBPzQuQEgSsjFw9IaoFcy8oegBC6qStnCPBb8RXOugogWhAFi4gd8CCdRS fYbWzrEV4DiEfQaIpSz8CZbxT+j8zuj8uWosH2XohvWKe6UcU3Lfr+a868s/fqyRJnw+8cBZ k938el8pXDjOUP5ot9R2EcMdZy326Qcd4Bf4xrNLMrxNNLSTYX1h3wn1b6TO7RJU3iFssEfC eLtaCr9PFoeU5wE1+517OH+vHsspJbXHoVEyvJiTl+srRYddchdPXR2WNLDdxqX6majdXj3X bwXlDoc9FBEx2yl8kVPWdJtavnhsw2kxk52mdxgRXeKBhZw88rt0rhw+JfmHA4q7DHMEQzsY 77F2zlmE2wUo3qAtasowzmH5mrzDoOCPokVagUqEwiQWlgE4LASbImicw4UniMzHYX9EleOg M1IX4ewPvevgkwKnDhTtoRAEjxuQ3qDz9RLImyJijLbPb71A7jyCbkHSCqqesMmEbQRUYuCa DN5oOAdBrxAJVdhnh+QZmJnBOhfWcbCMgwgDYtEIiIZxHHxioeIKBWucq0UzE/JukI6HsRuc OpFcDnFDXGM9Je0BpMxhnwVRbZw4B/cm5C4QOr8bOod2CsgJ/UHA5ZhjNrdbuYCRxeeHxXaZ xB45uudj6TC+yHY+Pu7/85tT2x1qBDVsvuD14HRPP64SfNQ85OAZzt0uLWIhLTSdLc9/fUT9 iJnvp3//j//C43lcyehT5SQ+c6/PdijuNos5eIz7dzIRHAyuP4kHHNdx23VU56C+x45Dyl+Z x3Hwi2+XMNspYPG1tv0+HsaBiw8EeXW3C0ec1nXawWV31DT46yOMzy3KxSg6B2QdO3r8c8pg UNf5/T//5/9RThEI6xR7j+mcNY9rZeBRgU0BQktoani2wS8MUu7ImYSIPb5VxTFr+OXgrAz0 UqGsAd9eXEzHfh/aDN5tjYQpWLtCOwn6jtBJQkQl9FPhHw9RF1yfpMOuKGNbRAEutYhoREgD kp/QFNa7CmN78DjAJBACdtC/DK5wOJ6HRiZiivG1I5LGYGAIk0gcV4dRBvTNcNYf5yMh6QCz 81Byh1EQuD1xKR+ChrApg541bO8jNg9COiw6LyClBWfl4VQJaxv879/BtIJekhM6vyPtLGxk t+Og0B8Oi/7xtN4hp6yTQnKfcGl9KXbuK90EvuhHYho6H+/RPHypXzKo9LS46ieHBLcpXzvj nXVK1eKoVzPjcrPo5XaGy41jcr5cntlHj8vvNCngM7+wzyRfKLCAU1D6jyd0vxSx3qMdd5zB 8cdDYp9w6O9xqBe19fniW/6POYQ/l4vk9sk6rnH5qFXUcXWXExfbhdQDD2hlCoXePStj/MUR id9/I/qZVaVYWDvjUquo89UDXEJ/OGP7rZ7/Ie3IUwGtYj9+x2rrucKmkT2LsHzaSD4jRxM2 bRbh+bBOQ9YkTJNgnQllIwjZQskXtsVwjED4Y1ypgdotxDZDOR7JU/BPhss9WhuqGeKUBqyr cb0W5ilImKRN99QuKOuASx6nFejk0UBfFVMBnwn8HyC+AbIWUA6BYQmCMuByF/FNUE6kHeAe UQhohMMFcOtAxRsaKYhtgaIFNM7DMZteyBvY45QMLAtxcxTO1xHQi8QGmEUhgbVqyHqBiEKI qoBxHs43aDWdMkO77Aid38FGVZNoSJdERI9EeJcEpe8utYmF9UiEPRAP65GM7BY1d9+1+9Sn RreFw9pob3ZYl0R4t0Qoy7Md2iV2caME+q5O+mRkr0RIK7XOpf3htPebVVREr1Ro7Wlhri/N S0Sj+yUi+sTM3XYIeR8P7ZdmPzG0Q+xyu1joAzGqqNBO8fBOUZcbh4WUP+cQ/kTU/Zhvi9gl Fm2pYsO66QJDH4iHtDHe/33nadohlv+STnkLtDM5c37dLqU+c9mXlpC/jJw55CzRjMicRf48 7dnOX6TzU7fnzNIn81iF5M7Rx7msom5NsrKtoODl+iMolmXO0Weo42zWXfRzF5E3R5sKVDl0 ftbTsxfpDNQSgLqXMtqpurEz04sC1hY5dZIqh7KrqQUCtWqgKJzByp+xydHHrjx9yxxxhW2F qLBLLaLeedwO+QIXW/+2MikyNgn7lAgENIhS+pRKAdUCPtVCwT+gW6kMfmU81vEnLVPP+jcy qGqQqDASFUbo/N/A6HZadV6kI8co7SlOa0ZKn/41/GJQNjnN5VbqdsZlqpx2RnDTnwlUox/3 1z7rw6UzpUApfZfHSjnzPyG8hNK2GazPzB+O62AHfVGPyJoldP4g6fxKXQZW89unnDKLO2GR wu3X9FdqTKoc/yoB37tCXrm8XhXCF1tIzPZP4vI0UodwuQq+JfArwaX7SJv+EQFdVJ5xXBuk N7KjuhD7/AcCNdkRZeNIHkB0H7219GNCxQid30M6U6taC5/tfzjyEafsp4f5PxH3OO7XJk6t tcO7xCmahHSKh7HW3WzlSy2u6VCuFlqzh7GOWetcRkinRPSAmJH9dsnLnNYXjlveFAhnBX2F d4tfbhW92EItzKkyaQPgUjOh89sStXz2i8Z2bgjpQlALaqFIekGvrNkpd5YOFGGHYFHr2ew5 +pNewDKR04MTdvBqgnMegh7SAV30mnqZrhWl6+kVNLXIXUTAVdiWI7YBziW4Obe+6M6ZW1+b 57GeQi2TbxI6v990DulgGHlt57rMnbKgHFN14qTS5+eyeI2cd55Q+EIp6pS579cnFbYJ+5/w bxUPKDzJI/fHA9rfON8VPZ9+jI/x8SGNr0wKhMI7RU29dx+U/vQg328lQk9Y+XIYhXEou3zJ p7iNU2G3dano5WpuMfVPDyhsF3f51qGSEdrKIHR+g84L8IoEdxCSh5HwmNakWZPwDAevKiQ9 YFuJy2XQzEHWGJxi4VMDq0DwakArHund4LSBVyPsMqEfCj4VnJEFjxkiHtD72nSeOKQ8hsBJ fCUFr3y4lOBGBxR0waUCzybE36f3wkR1IOyOK8PIfkHo/H7TuZNh6v35Lukdav4HpfW3nzHd 71LMdVbwI5FLXGbeX+0+8DtuzW3b9n0kHnhC3vIzDssDSh57VcIPcwttkwo6Yejz5UGlb20T D3IofnkukVOI8XvxyxzK4rskjb8+Jvp7uaiTiorbBQ2PaHjuOmV1xCJkz0G+PxkWM8LbCZ3f SJQm9YvCn47glCxOSkMzARF3cEYVPmUQ0YJgHLxu4EgwckegbgntaOiEwDwA3/DB8zZOu8Cv Frw20MpHXDNUzCERhegqqF2AeSD2nqF3vc3N6cCSgDhIuUHKEpJRCEoCjw1sYnBaDG4lEDGG XBYrhpzQ+f2ms5nX559y/1FQf6eg6X77MtFLladENLdbVoqaOH3+p9PbpJ32ipnsNY45zq/9 J5l0kcQRmcCbBz8X2+XQLhNdcZLv5FcqbjtOOxyJeCpj4bFDOvyYqtxX0mZ7hQ13ObaK29rt FVbeJ2b5mVKG6I3Ws5LGXxgWihI6v107e0ZBJB5lTJoLpUyabpwe9IFjNKQS4JWAU5EonoaO AzQuwSoGlsE4JACPQprOvnch4gqbJoQXwyALeUxcKYRhOCwv4iA3PDvh6gbLUkRmQsIKvPrw GELjAs7aQdEfSk7IWIK2H8RTCZ0/AGPbwHXb0fOnrj+VvfJQklrkBt0+wSf3iUGJqFvkfi6F 3abJnJL235pm8ihbf35Qd4+IwS5R70OCEp8JOR1Ssf3ikPYhl1tHOeW/kA86dIbnNyJBx5TF donp7+bR3G7TwDA3/lJA5aB2wG4OvX3aXl8eFPjUuIRo57dq50V4XsY3hvAugEc2vGsRUQFR LZjHQ0ATkqkIz8K3irC6Dl45CCjRMdUuCeDkg2UijtnAuwaCtjipj5MarHepKNvbBVw6cEnC 8dOwqoGbG0R94RENaU8oOkDQG04Xwe8I+2sQN0bqDJRdIZy0/r4VofN7S+dLrQynxCPqCWep A3rTqoURVM1jcPEQtcgNbxc29919QvZTEWrt3CIeXH5GXO8zTt39TncZgYUnxZU/PWnyjW2Z SPgDhmPUt1yqXwhb7zXNPmsdyGESxakfftSjkeF6heNc2Nng+/yqtrs4ZP6wT3ibWRmh81tf Ip7HlTKI6UFQh07CXrgyiuhCKJjiqAoEE1E4BVMPOsjTMhkBFVA3g7w7TMIRUA3zLET2wuEm 5O0hogsRPch6IayRziPnBuPLCOhA3F0oecI1C+6VSBmArg2EjHGhC/EtcExF+jQ88+BQz4oe IXR+j+kc3ERHZIVvfuWB9Vr05RbRoPuM0G7JqIdSkV3r29ORfVLRffSli23iEf1SUXScGP3C csgDiah+ycheydA2RkiXOHsX+xI1VzwQj+gTc4s/LCDz6THBTyV8jvtthIEROn//BwSyFmgW sN9ZLl5F1jSyl1DJhN1ViCXRvuhC9hvKy7RlXsh6A7pgld6hLliio8LylugXk9klFK3S3u+i V3lm6Zg06piyAXIX6AoXsrLR5+dotzbbPMibo6tBXGHvNZ1/7tQsGlgr4J7P41rEf6GZcamF bFT9xJQ2ipQxEhVG6LxF0sVmxuV2MXbkGAkj+ekRJn/7j4wROhM6k1/y3Bp0JjHbHx6d7/ec kP78ymOJUNY7RyRtTlF9kvaFHJLy75zOglJIHkMB6zcKSNqcqCW/tG1JehJh7lvR3ty17dC/ mqbuPxe7bysko/iDNjdPbJHKGCd8K+Xzx7P8p94tnZf/eOgk7LPhXQavO//zKbCG9nJvhZpQ KfgeDkoUpJI/tXk7xsbGtLQ0NTTVt0iSkBL/Ysf2rVMfdU21wMDAd9wpjk5OqhpaqppbInGc OMV1lmeLVIZO6uqdHR2Eue8Fnjwe0lDXJHLYOrCztvLz8SZyIPhr1vIdHcrKykQOWwTT09N7 9uz5+uuvl8lfKhMQOr/nKCkp+bu/+7t/+qd/qq+vJ9IgIHR+r2Fvbw8WXFxciDQICJ3fX0xO Tm7bto1N5yNHjszPz38oS4h+5pUrzLZh0sWEzr8cPHny5MKFCxwcHHJycuHh4ePj4x9Es1aY bgwmwIxoIF38c6P12TNxLS0ih62ANdanoavrzYqKV1/fezzIZP4GTPyaGd+6dSvZ1cXU1PwA 0qSkZOn27R9GWz6EpKVVt3fvIx4e6uBDaE55GlNNlLnzG+Z//Yl57f7WpbOiIm0/kEQSSX8m /fP/xTx2jplzlfnZp8wrjVuXzk+fMu3t3+/k4EClMT29jD17mI6O9Nf3vUUfRCo+erRLSur9 b4gDU+oE85+3MUvGmEOZzN//gRnbRtZTPzf6Zmak9PWJHLYO9J2dk0tLP4SWBCgx8b+YX+xm fvIR8+//nvmbr5mJ90n//kxYWlpKSUkxNTXdv3+/v79/XV0dkclWgKWlZUZGxofg0E69xFSU Z4oxmCe/oem8V5BZ0EX69+cS98qKrKwsNpCfn09kQuj8s2Agg/nFTmZaH+ncnxXp6en/8A// QHH58OHDMzMzRCCEzj8LXs4zh4eZ8yQK/efFyMjIzp07KTrb29sTaRA6E7zvUFFRoRT07du3 iSgInQned6SmpnJwcCwuLhJRbBHY2Njk5uYSObwXWFtbffpsrLt/q6TCknoDU6e+wYktUp/e gbGpqel33Cnj45M9D7dKj8irGASHxG2VEdI39nhobOUlWfa+HX39j/d/9f8pi/xaWWBLJFWh f1MS2CqVURb6tSTXr+XlJN9lj6yuMXm5OeR5f60suCWEIH36H+V4/nmr9Ijorw999eui2+WE uW/FvfsDmoJg3gezesuk2i1Tk3o8S4Cc5Nl32SOLL5kS/LtWCraMHO5upR7pgIsC4lOKCXPf isaWQU3hf2DWgVlK0hupCg9joSjL/47pLC2050U2mOWkC95ITXBSQFJ6CWEuoTOhM6EzoTOh M6EzofOHQ+cKMCtZqeKddFnFppFc8RNHNZW57EfnrPxLmX8hdC7b6N/KDQFu/lq+6WvFGwIs J3R+z+i8kI/hdDxNxWg2qwd/1v66g8VCrNxhDaoyrBRh8fZPuHcqFwu3fwSjK7BWjNEMrBA6 l2KtBDNZeJaGp2kYz1//+pT1dTIfczl4mo6JLIzexPAtvLyzweU7tAAXb//o+ZPQ+X+czhR5 s6DLAdHTUOSD/BlkhmC5ih7nzEYw77G6tZZ1XLs+/unj+o0ZvobudLrwKtZxA+uzjHXjPdZB Oetk48YsUYm1TKh/AhNz1vksSOyGoimrwHpWthrWLXWsq+yn1LKOG1gH+UjwQnMm6+s91mc5 yx3KrlI1qzIsLi/nI04eQofgaovl6l82nevR4wqhXZDlgSIP/IPR7giBryDP+hoegCJbyHPh 6G6cOQ4DJTwuXO+stHMQOAwDI0yXvUNGEzr/jXROheoZ3L1Fs6POFIZimK3DdALOq8DdACNF aPOHjTyu+mCtBhPX4SQJD2OM3sFMPPKDsVKBRle0XUH5JXio4KofPfmnGMBWB48KwMzDdV3Y q6ExhfWsaqzchPq/Yzsfxmsxdh5/+HfwG9O3pFvAWgGZ4TRnrzrAk3q6KaZL0Xse4ZowUUTW NTBLkBGIlgSUeuGSJpy1MViI8Wg4SyLQHDfDNyaNaizGwV4YwRbQUMZ8zS+bzvfQZAotcYyV YrWU7uVqXejKYaYcq3c2pug8uo/iYzcmbcrkLoAtN8KNYaSB3sJ3tQojdP7b6ZwJuT3g4wTv PpzmQPkNrGbBXQCastDmgNZZCH0LO23YSqEpEoaSOG+HaBVYOaDdGyaaWKpBNBeSHGHCgKwy 7mej1ATnFOEnjxvuiNSFhABshcAngvZ8eotzPgmBXBDjwt1YpGiAcRJqThgIg5MuwlTBOITm SHAdha8DguTg6YEEUcjzIdUZkqJovgY1JcT6wZAbXva4IAI7aTiKIcoRzgwI6LC2UFmNWsiF PS927kNlGq1Z1sftL5XOHXY4/geIn4bMadTcQpsVjnwCyTOQOYOaRJbQcuGkgcRYlnXEsrTX 7uCaJHbsREo0Lc8VYmy/L3ROg+ZZ3E3DXRvICuJ5NeYjIbMNRipwUIS/GS6rwVUDF41x0wza SphtAjMBvGq44wZnI9qWSxTCLWdYaOEqpUBbcIUPUf5gtoGZDZMzkBKDkwqMddGTR0/+s/EI YiDKGE5acNCCmxG07fAwAglOuKIK/u2oCoWeASbvYjYaIpqIUEBqAJidCDmBbA8Y6CDeD76q 6CpHnzW0vwK/Cv3QvgvQMt4w9cuQpIEAF1yRgSwvbvhipeoXTef75tARx+N8zOTjZR3uGkBf Fs8LMZOHlyUszZsDRw0kXGctWMrozzxjnDdHtCnEeeDrhuXKd2VvEzr/zca2wkk05NBcCGXA 0BAzqfBgID8Ozb6IN4bPORQG0crO8Rx0JJEYgkITaJmg5zIURFAWCeN9iHOGkRouR9DhZzlq sNBDlgOiHeGriQs+eHwFsR4YKabp/CIO7tyoCsfuf4W4ONJdoWCFdDmYaKHOF9J7UHABUnxI CsFNPVjbI1kWpkpoioCqAGojoaGCGG94KqClGPcNYMoBPQaKwhGpBikDlqIpo1fQ4cII8Ea3 P7b/K7TMsVT7C6ZzAxqMoM7ANNsl0oBKLWjJYqFmY21SQU+8Fkq4FvMdna9Jw0oXT2Jw8r/A LYcFQuf3gs4VtD/qsgF6c2kuTFyFtx6eFONxKLR5oMZAww0UWUNJAO4WGC1B3yVonYGRIh5k 06y5pgIdCfip03Z4jCsK4+lClm7hojykhFCaiIUUuIhAgRcpIViuoIfTQjrSjfA4EwEiuOiL zkgEBeJpJM7xwE4DflqoCYYIP/1Eax1MVCBHCnKHoSCJpCjaDR7qhLIo3HLC4G30e+OmE/rC 4SAGuZNgGG8Y2xV4kQRPGaiII9MbMW54XPAD3Pkl0LkW/b4It8Js2bprscsTkfZYrNhgaDnt r7jhjPKU7wi+nImrClAWoefhNBt0Zb+r5TOh89+4UVW2YaPe2XBWl214qmvX/Vf0cTWr39nn aza2L2s3srGoyt7doI9fnazYyFO5aTfzlfu6atOWd+26j3otASKK6Cpad3enUJa5AyvmvGpd cdC3sJ3VrKoWOcBMFsoSSIna9JTKjXrWsG78JbvC7rAkUP0DX1+NgerX61OxSYDVxLNNosI2 DZVX6c0zb6S1YgxlYGljY/rFLXqv+e0jv4z2dT+OQ/VltCX/Vepjq9H5TVm94675M9nePCZ0 /kXRuWKT8n01DCo2vpZvnHyl2cs2hTBtYtxf4GkVS7NXfRBBnuy4rLINKf38Ma7rj/vzAYGV m7R59Yb3+8fPGITOHwCdK1AfAN8AlBtBlAOyZyDLj5wE9AdA4Cjr62lcdUagCqRPgPcIJLno LbClyncbg7R16FxOWxrXtCBykhaOlBCSw/GSPR82bMTzsGN46jZoUr8Rn1O+cbJqw5C+t+FG qGPlYU+V7OMqlr3NWhaFyNMbhdTjzHTQnrWx5HkVMrQxtWbrQ0Yeo6wnluhDkR9Dr0quZZV2 dyOqh13huo3AntvI8MGdRNYxOzSoaiPKqH6jhoTO7wWdK5FnCzkr3BCDvSXm7mC2APMVyDbG aVXMlWIuD3P5mCxAjx+EpVCdgIkCrJW920puHTpX0Ju/NooICaPjXuhJjx8DJWAWocAGoQ4Y vo35ZHrnKCWQte9WjrseCDZCVwYdBHI/CPOleJKAuiSMxyPXCUn+WK1EVwDCTFmewArc80Oo Ke6nbCjlQhicQlQgnhXQAWAaCli5h6FIhJqg6JUXgkXnGEng31GUSB9r7MTHv8NgCTou45Ix bl+lZ4+BEGQ74aIVevOwlo3aQFwzRMZFupJVoWhJw2ACsn1od1x9Csvd4YgrLrh3GS9K3pi9 CZ23Kp2pXtN0QJoUjn0LHQasVDFWgWorfPYldMRgoIjWTHoaX4iBmjYGiv5ag/mDoXMRXMVw mguaQvR2uZcL5sqRroZzwjBmQF0WxjJQEIOyGHJuoNID0iLwVYKJKiouwPYQrTFvmkPFDjla 4DmDpDCaywbHocMLB0vUnYcuA9YSUD6DlmyWBi+EBT+yr9NuxtVknJdGdjAdC2QuB2Ve3Ihm aViWPk0wA+d+XPHFcDi0T0DtOGrD6FgCDxVIHkVnFqJOQuIsXJWgrINGP4gehbM6dE4gPwDW mogIxVUNHBeArwr0lZBshXOy8FaA0B50FL6x4iB03sJ01rBHijSMddB8He2xWKpCkQVOS6M5 Fi3XMV1EW2sz0VDRRG/+O4wk3Jp0zoOLMny9UWgErgNoKaLPSO4FQwCGotAWgqsqTYdLFrgd AT8ZRF+jB7+9GuyMcP4sxiuRbw89R+QaIvgCmO24pQUdHfpgrgShp3GSA8aSkOOjNxDp9S+L zpkxLNqmIVAB5zXoiddYCircCAxERyiSXXD/Oq5Zw8YITnoI0IKnEjz4UR2JW65IMgTXb1B6 A3GSyI6mjWfP47hiAn9TMB+g2xGe+rDURkwYrhjDPoBujrsEFA6g6iZ97H2WFShI6Pye0Dnf DgrWiJegFc362xnVyDKBgB5rCFWv75FNR0FWFT2EzjmwU8WNeHpIxylBwxBLBbAUQNoVTKch 3hnXnHE7DH6isNREoAZs3TB7i1bZEa5wPIF7qQhVgbod8gwQ7E8LvMQI6pLojUOmKyJk6TA5 anVDzbGDuSxDqBBG3EiOpF9RKbKEuTrK3KGlQ8+xtQGoScIda9gpIjcYESa0D+TyIfxuP274 IJAXl5XoIIHOaGjtQcFVXBfBBWeMJ0KbFzcdYCKPvgLcVEaQKR0rGHUZEcawDaAnDVcZ6J/F 9UsYiYTeMXQUEDq/N66wKm/YeiBXG+HeGz6QKpQ7Qc/qNU/p7HVYmWKwgGhnXDTBzTjaU7SU CBM+NNzCUDCMTkKMB+E+yLaBxEloi6IhCSMpsBSExFFcdqP9Eslq4OeAgTwC/FBhj7jLtK5c uIVgYfDsRZArRtPgJgnJ43A1wCQ7wKAEPiLgPQZpLugo414GVovp4DqxE9BXRUcWzSz2T8yl WONqNEq1wHsWPTcQKYNKf2hxwlAGRnzIj0GiAB1sLyqImCg8D4XyCchSlaHWVhm4aIG0KKQ6 IigEzFsIM0ZNFHzkoc8H4a9Z0QWEzu/PvvMaK25h7c2Tf+nML/PXSNZeiaKcdgu/ZPFuOR8z Bev+q7lczBVt7P0VYzpvw5lchtm8jVeVXxXC4uxs/nr+NSp/LtY2/f7DWgntkJzOwVLJRjl3 MJOL5Tuv1W29Vq8CA1iRQpTl8KKA9bUKIZyIdsMMK6D0iR/MVNCfzQoCrKQzr21qF/X05zHw Vcc5AVipYayMuMLeHzq/NUrhrXEIZYTOb8ihfNNB+cbVitfPV2zarK/YtJVf9rY8m483X91c ZtkbeTb3Y/mmH4Qp/y4NRuJp5vrm9XwGHsTj5eY6b06VGIlDgg3iXDD01shbQuctHhVGfivs x9P5PU21GxtbdzaF4P6Z2BX2TnoF2XcmdCZ0Jj/994unc/1fiJT+haZqDMT9z9B5NmfDrCVp c7oPZ0LnH8a9+wOqfKyYui0y/Zb9T4SL/LB2HrwOGYkz75jOYrw75raOdi7fSnbCfdjLkH/B +EE8HHhy6Js/ygr+VpZ/SyRJ7v/kO/KrLVIZWYHfMrh+q6qi8C57ZHWNKSxwRopnq/SIDN9H cgK/2yo9IvTbI9/89k5ZFWHuD2Btanr+6fDc05Etke6UNwqKym+RylDp+djcwsK7/nfaubmF Z6NbRALzgcFXElPzqIMtUZ/huYmpubXVVcLb9wLd3d2qqqpEDlsHKioqxsbGRA4EfwU6OjqU lZWJHLYIhoeHd+7c+dvf/vbFixdEGgSEzu81MjMzAfzqV7+qqiLLVQJC5/cblJkNFnR1dT+U Nq0wnz9m9vSwUi/zxSLpZULnXwKePXv2L//yL2w6f/nllxMTEx9Cq5YHmEI7mMB6im0iHU3o /AtZOCclJZ3l4dHT00tNTZ2cnPwQWjV0m/nlHqZbPPN2ETM7h/l4inT0z4fWZ8/EtLWJHLaQ ve3hkVVT8+G0J8+b+ZvjzFsVzPq2rVvJvj6mgcEHkCbk5Yt27Pgw2vJhpKr9+/sFBT+Q5jTU MkP0mH/3K+a/Upb2/2Ke0Wf2TG9FOispfbccIIkkkt6aOA8yr3oyDfyYLW3M4nDm//PPTNmI rUjnR4+YFhbvfbKymtDQyPvqK+qAaWn5IbTo/U+lBw/2MBgfSHMaKpjpUczc+yzOvGDu3cbc acRcIyuq/36w4/Y6RkclWHsiJIxvi0Df2TmltPRDac1LpsZu5q/2MxseMVtvMv/j35k6caSL fw4sLS1dvXpVVVX1yy+/tLKyqqurIzLZCrC0tMzIyPhw2tNdzDz1Bcv2/kcmlzFzcJ508c8E IyMjbIDQmdD558JkP/NaNDMpmzlNbMCfEWVlZf/2b/9GcZnBYCwvLxOBEDoTvL9YXFzcv38/ RWc/Pz8iDUJngvcdFhYWH330UWNjIxEFoTPB+47CwsKTJ08uLCwQUWwRmJmZ3bx5k8iB4K/A s2fPrl+/TuSwdeDo6JiTk0PkQEDwAWB2dnZpaYnIgYCAgICAgIBgi+NxQ5ars7O7l5eHu6uz 5/XW528x4Z62Fp2nrlJw8c1ofEKdmemuCvN0p884e6RW9K0tjd3Orx+apQMAxjpbq4q6iCFI QPDuMdpbn5QQY3DqlLKRT0JKyeNZJnNxvKuj8+nMq4iRtYJw3bMWgQUU0kLktZyLH892XXNT l7HOoM7kxFqamcXn39KR9Sx9Qt/ScuWyqXzsNJEsAcH/EIrs7BJKaLW7OtITbqIrpyAja+Nf Osj+oci1O9fM+I3cExKTbyVcUjX0rng615fsqyljEpOQdCvtip2NXXpJrplWYNVTms7tN6Id tJNniEx/PF5OVeenRIWHUohJLBn5yZbNUkdVbnRkGHV7+JWcAarTloYLUq+zygtNzm+h9xfn nze0t4+xfoJr4ml3VfdzIvUPF3O3zM2jszupo+o4TyGT5DUms9jH2dSpmD2ySmNMudSt/B10 9n58JKDsKXWmI9ZTSUTL18ti7659Vqm9zIUWHSX/2ucr1KWuxBgnjUSinX+KhVQjtpdP3zUk Ojo6LvH284XVlZXF6cnpl9TsujgzNj7Dflnw5crSzNTkHCXjlYWp6U0vKawNWkkrqVgFUrf7 WVvbOqT0tGQLcir6RFEnwq2VTSIyOl4+u61mb1M+TGe/e/P8We9s8gLiB0znm2ZmUSw637nq ImifRx3UBXmbWeayf1Gx8Lq1ZX4fdVByyVnLPW2OUsHRfoFBt6kzbbd81a2vjM70uMhZ5va8 pG8M89XXo/MQ/FiM3VU6oex7o7CioqLl2ezi4G01TXklPZfk7HQ3C2VJhoZvTMPMk2pVXU1F RRlFQ6/4K0EKEiqR5X3r7yqsDjppmDiEZVXV3iu6GmRpENXWnK8oYZNaXlnXUBdqbO4Xc295 uMLAw7V6hM5+LztI7EIBofMHTOd0Y+OIjHbqaLqnzl1VU89YT87YMaV5dH3tfNVcN+EufTjd ZCipHFnzuDM2wMMthebsy8fe6op2yfUtmSHGJsZWVoYyOlZx94aITH8CJu4pHOGW1DS1srK6 VNQ10Z56UsWr88XwNQ2t88mtC1MdburmSbeuC2s61zzpC2KoeCW29Rb5qfnFravttSEXZQWG mrEm4/C2/SqVoyurD/MEOEQNLA25937KaxBLL3wG83Xd3WrH6OyNeRdFA/MJnT9crE4MDo5M rttvC8Od+dk59wa/+8XXqdFHA+Oz65qkp/fh0OTc2POnQxNs7TD5/GHLAJV5paexNCsr+97D MSLQn4bhalVu+8rhDWnfTxJwT5xYGQoU0ouvocS+EG1nEBoXregT+2RlNEbB5WbN9FhDuNKF uEl2B6z2Oeiez+mhDvq9dfWiyoeWe/LV9RKohdJ4bayulnvTONVt1drmtkXPWMZ2ipuwP6Ez AcHPROcK6cPnMtrX/6FmsjHuhEX40NpKU6KPtr6pm62NkWFM691UfuvQ/sWn4QybpIqJ5zUX pHyubtC511LJ/iprOhgsChWTdiq+k6qkHDJIM3Y21kpT2fnmC+Zs7sXzpob2fn4uelrn4uoH idQJCH4WLI7fq2h9PvOS/W156klV+0OWqbR0vyQ5Mupm98QKc3G4pv3h3OriQH3n0Pjy4kT/ vZ5Hy+vG9mxH04NH4yw/x8pkS13Ng4cDzc2D86yri8MPqutaaNNqbepuxvWIiKg7TWQpREBA QEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBA QEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBA QEBAQEBA8K6xOPWsvrI0P+cV8hu7R8af9d69P7j0Mzzu2YN66hl1D8f+TJ6x4aHnL5Z/4OLK 8EBHxZ0idl0LbtePLq5fmH7aU9PYv/DmDTND9xrujyysvXHhRefdxocj8z+1CQsTQ02VZRsS y73bMcw6vfysd+D5xMJ/i5RWXwxVFuRWdQ6t/rj8a2sLkzMLtHAGex6OvPjxD5oZ6qstK8nd 6Pvi+s7XO325/34FLefy1tnvVeXl6N07BdSlu22P31Lu0lR7Q3Vx/kbBeWUD4+wOXR1/0l1R WvxqtFU09G8qeLm7sZJ+XFn98ze65eWL4Y6Ovsmltbe3ZHluZm5+5Uc0ebS/MS+ndGB04YOk c3uy88cf7VExNNuATWzBg4H2spi0urn/5kcttRVEmhubmpmZ6hk4xKY1L76Vy00pDEW5S3fH f6CQcR9Frm0HRdbramZuaH3hTtckdeFp653opKo3h/LqcEt8QlrX1BvMWB7Jj0ms6Zn8qc1o izH97Pe7lY3W5aWjdC74ZsMqczxQQi8w+cF/xwz7LNxAU1rFODSv6eWPY3NNrI9H3D1qprmk K6gaWf2jn7SWbSP6h52cBht9r6iseM4vZ5TFvJXR9qBAH1sne+q8uZGFkUtgSe80+7ah+qIg S2dre1vqkpWZpa1X6uPXx8rig5tHtm3nV1ov2ERTVVHXNr97ihoDkQZCH+/hNV5/oKm6rLzd 1WK63KXnWYHuFlZ0mdZOzg6Wnrn3Hm0uc6Q8eP8BqVsDb53nl0tCfX3jG/5igyc7cxWlZPWt Aqp7pj5IOt+PdTjEY/P0exRYXlpYXGbPg2MDDxqbHoy/mB0fn1p4uTo/OTo8/oJ1aW1ucmxk YnZ5cW5qYmL0SW9TW9cUPT+uPepubWxsH3+drmtjTTbatllddMfPlF3i5lErG3ltpl1ZmLqX k3rjqqeAkGhYA4tlL+cGunqeTW8uaMRDTljBp+xVP+YHmpyS9+x6wVxbWV5cWlmam3o2PbdR 7urU6OT07MLS0hJr3l4b6W1vbGx8+GyWfZVu5Aq7KbN9bY2NzRvKfXludPLFwsJMX3vT/Y7H 37NSmiPPHRQyH9r4+qIu4tA3UrltnWFKJsEpbDqvPOunH/TgKWvMrC2NT07PLc4/6W5pbO59 8arRi+OdTY2NLT0vNpN2Zf5heRT3jjOBOd1sRTTe39nYeP/xNFvzrM5OTExNjvZ2NHc+mVhb t6/6PYU4hY3CB54Ph5pKaEcUDXa2NN7vnNo08Cee9lL1eTT+PZ23estS5JR+xCbjqVT2GG9Y PTWXjlw0VBCxS3y+3viZNF89EfPQ52vM1aFKLW5Jr7j77KevTXbaySuaRNzd3JfzrSlch6Wy v6Pj6g1rJX7dhFXmaqSehKhVxnfN7UnlOSKX0fviwS3X45Kur6RaHmonbXJtbFOho5WXDh2V y368vDhDWSILM88GmhqbBlnm0OJUpzEPj4he5MNRVs/OjVHSb+p9xp7B56enJ8Ynh1hdH+ui svO0Zd0Ye9Zf7Gu/T8t2k6ZeHn1M3Tow+d2Z2ee99Jnn8+8FnZvjnA6ftRp8/WR1jONZ9chZ 5mp3SbSWmpa6tq2jscLOvRoVoy/yHaW4DcJY4lhKslMTMYvrr0sU38+lb2WuZu1Z2/+8Lu6C lo62urqOiVN4ff/MpoG6PL+4riK7MvxFlOyaJ16j88xAY/qN3MHBqnMyEiH1Eyyq9Ed7+me3 jGy2lbwUhKWds7+7c67ZgEssun68N8uXVz2ipTFNXsW/myX7tdEqfQOnhMQoZRX9kifTLaVx 5tr6Ghrqmqqm1+sGmC/7bAXkQ0uGVib7IjycdLXV1OX1zM9fbR1dYQ7fkeLn0Xa/6GenI83Q 8Awpmd5kxrVEGx7kN+p6xcHnxZz7BaIqGyJUzS6m9zFXJ0uuhVubn9PU1JTXtk8q7FtZ6jaW 4ZGw8r/sbawsrmzlnjayyFwa6brm4Wygp6GhqqrlcqXl1Zph/kmUs+IXv/nstIRDaefju4UR RqqUMNW1TFyyG6hemr+qIcojom1moW15pZQ94Y40ZUjv+nTHIYmrOfVRpoxTjHMu9ibqchKq nnG9tE2y8iA3zsJQV11dw8DCM61is228mmHNOKl98buRutimefiAfd6jpfYkAU654s2z/Nzz +82d88y16hDdw8r+m42n2ac9jZ1PNs9J822ppw+Lp3R8R4piX70Dwn5LzLUrBlLCponfdd9k jdB+vtDakdYY40+PK+d1DL26tLS4vNmiGq28fIRDqWTqZV2QwVkejYv+ATrqcuKGbsV9kyPN t7i+2L7zgHDYnf6ZRw1BzhZUZyrqmwfGFFPjr/KS6d7jso5WJupqyvwn93+07Yi6f/zTkcHi q7765/Q1NbUMDFxy2p5Rjxi4f8tcS0tVXVnJ1CO3gVpDrXXcSbU2oOSvZWToFE+NmS2PznT3 P330JUNRlQ1T9zSKSLVXbU+pRQ/2lypL6KT30COtKc78008lSoZf5NiIHNe6yKbzDUt53nPX +qujD39+LKadlS3RlVfei02/lgRPWYfop99btE53+9kqf7vrrFd65/etYuYau9s0JMTW6fy2 pc/36bz20EGQ0zS5tTvLm1M6eHh+0Eda8XIZPRB70wM0rUI6G9NkZLWy6+6YKMteZT1z/lFD Zdsj5kKX+RnpiLKuMl9TOdNrLDtyMspCQcE1feJ5pcieffrRtPG22nVL+qhM9sPvVHTrFaNv udRK+5+yMJh7wURQxX9oYSREwTg05/FUZ4qqcQB7PulKdJNWch+c6DHk2i/qmEUP+Ll7useF r90f70hzO6USwaLAWl1l7YOxTRbIeJ3OKdX8J8zZ5gRBMeM7w/RU8jDL9+xZq7aRsQiFo0fV QpfWl8zrKiXZRMEghLKxV8O1ePlMb7Ae/tiaoeqf83imL0tMRLuIReKF5hR5HbuKoVdtWc20 ETsq79pFN+T5xOR4TazD4ePa1WPLLTFW+7gdHr5lLToVJMPNcLz5F9wLbalc3wqE3u6myh0e nRjuKtXh4dQOuUs9MfKcxBnNywPUhWfDE1NjxRd0DvMY0rbYi0eXLWQOfnVQiCGmbehd0PLo +x3PovOdqdWa83Lbv1GpZ5lv8TaagsZUZdYi9bSML7VQsvNVUTS72sieZ320jS7ndpWF6H5+ wrCHZau03jzPpRhOib3r1iVdsxi2sim4qHfGKnHuRZ8ln4BFUht1piHcTlrv8oPmQk0RtfR+ lp3Ym6krb1E9tNVX3K0JznsPKWbUtbLR2fecanf1VXs+3St5CU5cWqHra4ynxSL8evmPp3Lt xE7qXmbTOcFaScAotr8i8vQpiULaIbQYqXp8t4R5WlpyUlJKUrDxtq9lc7/nUXs597C7425O mIKSaU7bSGfD7SQaaTWtz9bH5vOKn0jnAUdBDsPE5u4c35MyF+i5KMJBxTjp5dpMmL2BV9bA Sl+6hJRmUW9/jIejpesFn4sRxY0sY2Sx05JfOSL1pgGfbED+us4aLjx/Rsqqvr1Y+oR4eA2r DpP39CUEA6q+sxA64qx3/PYLQRl5FlTMfGI7hykCjV6QMbiY3ru2OlVflBIaGJGSmeKuwXtA 2qpjqN1IQMguqYd192MPVUHrrO6J5iwLPetA36DQazd7Xl/Xrz0pUz+hlNU9luetdtYybUM5 tmgdE4uqao3R5hb3zHxdJrOx+tLaAcUUjUKNxPTi6tnzZriSqtOV6sYrRjsOMEJT0igp30wM OLb7hFPmKy2zluco+YfP9ktT7ZAR3r1zB5eGd+MT2l6tCjXdd9Zp8C2euIkAKW5x54w3LwzU s7sy6Xbz04W+nBPbP+cQpAvm59jz2V6hkMymWXpyWLhqxvjdjmNy1AVJgT1fbBfRv/xg9JUJ t/bofmXqtWB9BeGD3xw3Cr6zsPamdl6p9lXkVPVluzwawpzEpS/MUw3XUjMMvrcydof/64O6 XtdSkpKS01KtRM5I6EWmBVlyKwSyzYnGBFdO6cDntIP06Z206xcjYm6lxGpKnNyjea33fsKJ /QoF7Cns5fzkxGR1tOWOPcIhybTo0pMvCe7fa57Zt9WN7RtOh7gt+l7vuKorFJ2js2JtT+mF r9P5SZGwgH7B48lsa2q1FcryfKyk2KvSdK6M4jrOyKWXPXPhiqePiGq5uThRcPfy9g/NfjS7 9sr9unkJbCMsahBUVJEdTWd18ki93bP619F5sk7lpEDY3dHeTO8T0gHUpLLck6evZZlVkmsu a9FAWYcdCaJiyvm0McXsrc5wcbBUlpXSdsscmem2F1YLT0hUOyMdWPh0w3D2PSluVt1SJM0p Glz6fJ3OksL+lcPfM7YffN/v/zRQxjAsd2C4JVmOV8QpOK25/3F3fpCAsHppT7OJoIBFbDt7 wHqoC5umtLGthKzwQFsDZV5xveslPa/TWTmre/imoyy3TfoGZVt0OERCSpsoOou6pH+Pztf1 pNbpbMjQjKpi8+6SopLD1cq7YWaHDwvZs7rExd3T53zMvYEXrxnbWsF0b65O5kTZcYqbVz6h 7YThykieE0rlo697KQcfTS2vlgaqHdUInnltApp79LivMo3dlU5RRV0vum5xHxZP7qDNhJH2 vHPivDbXatmehjA9SSHTBLqvl0ay/LUFFKzv08ycK46OKWj+zoR/VHBx3w6xrIcLb6XzMXkP dn80hDtJyAbOMRdCNFUNLza8fF7Ey3FYwczZmaqHs5u3j19mRXu2nxGntM96forOskHU2GrL DOQVUApKLOgceF513eGUTODdyphj+xQLHn63aKiJsNr5pZC9O0t0bp7nL4RVPJze+nQ+wGXS Mfc9Ottxa13taEqTkrJvZkl0uCTw4Ncyhc+X7oXpHNMMYpmGL4I1BHiM4x5WRp3iEM15QhO8 LNxczi5hfay059n4Jj7c8EvND9zR03Jap8VS6zlx5YC8wbdUiKYz48/Q2VNeWPF8+auRVB5i dkTStXdxrSPVnVM6gKbl2nCwtT7naWFplxxq2Cy0xDMkVLJ7xgd7B9Z9R/Vhe/fr3etvdRRU jC5tSbPS0fHMZRdX6KMtZhb17Em5+DGhdTpP1OtLCgVUvU5nPoOOhTfpbBxd3FsTrH1aK4R9 qilSZ9th2er+FhMB/u/orCZsntY2O/aoa2TdwL6iyC9ulbS8ic5qnAq3uuYfl1w6K+3SyRpf 8003+Dj0qh49jVLnEvk+neeu60mci6D4shpqIKrxis4KCtYRdc/qrsmoO/avG8Fd3h4XSwbn NtFZ9ITmhQ1uTl01ZXwj4T5IKaiXg16q4tIemRuXliri3RXMg/sWmcsDRXInxQNzejcM68eh liYWQcWr33OFHRRLbF2fN56WhZ3YfTq4lJpSX4bpSQga31hv7OqzQIXTJ1XCKJWR46x4Rj1w eEMKIxVXZM5a1I283Eznw8fW6Xx0g873wig6X5hjLoaoqpmFdFDGj4WyVlDF+rRQEnYpPqOl INiYU+o7Oh+XDZ5mLkcZi/G6VbCzJVqKfXXGY/BZk94pMf9S2gybq7+houaSnhKjLWPftt6w h8E+vqUDs1uczo0x1rsO67a9Xs3yMLODUpdmmEt1ib7GFk6e3qGB5grbPpHIebSy8KhcQ05B 3dozNi5C68QBvnPXespCDu3jyXi0yprjuyOtTI0d3D09HQzULaLSml++Us4r44Xh3nZuPp6e ni5urv6RGc/fuufwrFSen/dCLatH5oeyrsVX9m7eSxrzkOH8jEPOw5OGv4eXuYVPZiPNu4Y4 +2+FvNhG86Nc74/+Y5dXOa2SXzTG8AnJZ7Z13fSzMrR1o+5ytbVyvHF3fv6BMYdQYNGTuf5K W30zOzd3T0cXXROX7I4p5nAB99en/YpZGn28Vk3gjFf581c1aArV2nVCs/X723hDPsKaF249 nO6/raEqr27j6X/lioeB4J/4NSq7GnS5ThlcaV1fGsidMUnreNKcqWNo4UHJycfRxPh8ceOz 73Tdo9ty+8Xim2eZy0NxQbZ6xk6enl7mhiaBydTac+6C5MGztknf229qTnIW4ddIzCn11hVS CWXPdeMB4gw9X+p4ruCCq6GZA9VwMwMTt/M5YyuvTJvVVGOebxXOf7dnM9Gsc/yIhGs2xeIX PaVWFiaWjlQVPd3tHXTM7RLqn7DvbM+OMVY3t/P2pi652VrpmoY2P39tG2OuJeHwl7yxTa90 2WpJgN5ODt2mobEIbREunZhXps3Ks0rJg0e0wqpezvXdcLezd/TwovvV28neIaGi57WNqrLA r7+RLJxcqXCX2CvmyO6Pu8HW/EKeVP2bIjz5ebWii7sf1SabGJtRytTJysrY9nzj09lib/V9 gq7s/HXX7fYLnx+jlgbl12V5FS09PcMjo40luHZwulKKoLkgQlXLjBpa+poGPmEVL5nz+VG+ eka2VI3szIyNLuaMvFzb4nSeGequrO148brTY+JxV+39gcXFuZnpiY768sys8rbbMVJGHndZ bpnpwab46zF5Ne1DfX3tHU9mJx7VVt8bfrXOeTlWmpMUExNX/fDNveOVB7WFMTExaRWdyz+4 6zre0tAwwN5lWRytzC1sfrLZsns50FaTnhwfw0JiWvnwwtvCSBZH6+91snfKWGEkzWNUeS/H y7KoisXklLezhtPsqzCStamB/OSYmNjCx9OsuXh+pL6q/iH7/uWptob6/onvbOuZR+2VdW0v vu8mWuxvbHv4jCb5xEDjjesx8fnVz8dGuvp6RmemOurrO5+wVdVCT3N9B2unbKq7PoWqTVxK 49Dru+UL4y01TU+n2RJaaCm4SdWsrIsdePPy4f2ae93P3tjSHytPTi2q6uh90Nz2mG3YLA/c b+roZ9+13FaTRze8off1RdXa8wf3aloebnZKj/U2FZS1rZtULyfrC1KpG+NvVX4v7OLlRE9G cix1qaC6c+ktoTvPaqsans5sKnhppKq0rHt0+knn/fr218JjnnXWFtc9YGVd6qgouE4VmpLV 8fz7UQlLEwNV1ffHXq5N9N2vbuphP3RqsLuhsY8+XhouyEjOrKPtvRcPm1OvxVzbGBsjva3V 7DxU/iF6kLCLHmospZ5183brxOTz5uYB9vT8vKmMen7GvVdr5JW+u7To8qu7VpnvN+b6yy30 bC5fTUlPTwxwdAlPurvEJCAgeE+xNtJZdeW8j4+Pf3pdPxEHAQEBAQEBAQEBAQEBAQEBAQEB AQEBAQEBAQEBAQEBAQEBAQEBAQEBARv/PyjEf5A= eNrsnQdcU1f7x+m2fdu+o7u1rXa4ESegKCKIAoIs2Xs4WLL3DiRh7703yN4j7L33FBDFASoq Khsy/ie5ev9pEiBabdXen+eD4eaMe0/Ifb73Oec8h0RChAgRIkSIECFChAgRIkSIECFChAgR IkSIECFChAgRIkSIECFChAgRIkSIECFChAgRIkSIECFChAgRIkSIECFChAgRIkSIECFChAgR IkSIECFChAgRIkSIECFChAgRIkSIECFChAgRIkSI3jBNT097e3urMNLg4CB1zvHxcRUmVFtb S9MEqGfdUuHh4fTntm4pLBZLX8rY2HjdgiAPTSlwAsxc3dTUFE3BrKysdUvR9CQQ6KV1S4Ga aUqB1l9RTzLsTHCEmYL0zTHTmS/Wk/R/XYgQIUKECAEPBDwQ8EDAAxEiRGvLngkB80RfEBxc tyB9KXCHWbcUMIg0pSorK9ct1dnZSVPq2rVrzFwdqJzGHDNTit40MNMnDHsyOjr6BXryzwtc OAsLi4WFRSWdaD6CmZmZSiY0OTlJzzbrlqI3zdC5rS36jxuosbFx3YIgDz0dMXN1CwsL9H9g 65ai/2MGvbRuKVAzTSnQ+ivqSYadCY4wU5C+OWY688V6kv6vCxEiRG+QgKWD74csTGjTpk30 lYCD6xakL6WqqrpuKfq7LrC865YCF8XQsK4rGrMOWmemFLiQF+gThj3Jw8PzAj35ssCDvt/+ Lu3cuZPlperbb78FfLhhwwaWV6CLFy++oprBabO8SomJiTk4OLyUqj777DOGBIgIESJENDp2 7Bhs3Jl5rqF/SGTy6fLvfSBi5nGb/umSmUfL1Z4u1+0Thj3JzNPlPwE8vv/+e2BztbW1US9P iYmJQ0NDGAwG9bIF1ezs7PzSay4vL6+urka9SlVT9OfrsbKy2rVr11/MHgYGBrKysshtHBGi Nxc8EP1j9RqCB6COzZs3v0HskZWV9TqDwVvJHjw8PAw9h4gQIULAAxECHs8LHkZGRsCQvUHs UVFR8SqqRdgDAQ9EiBDwQISAx18DHpAhe1PYw9/f/xUhDcIeCHggQoSAB6K3Hjxm5pZcoipp UvvgrfuP5mjKVreN0WQLTm0EOSennqzWXM/wJMh2/FwoSFD+4fEphuDxZrHHq3OnIOyBgAci RAh4IPq7CIHhKuOXDh6AHD48aEWfvuVzApxAXRaQA8OcOyQ8AVcALKFpCxQHldBkBjlXAw+E PRD2QMADESIEPBD9XYJWE7/0j4x58IASNXusBh4wflB7M0BB6rdAYgY8Xil7vPTVKAh7ULPH K425gYAHIkQIeCB6K8EjsbAT/AoSzBgAGOjBAxyEsoF0wSkTLg5ew5kh0viWzymvegA6ArAE 0Ah1Hobg8erY41WsRkHYA/7IbG1tEfBAhAgRU+BBBP/ICejR7Mzde/du3br9+PGTleWVheXl 2YWFhbn5pbmFhfmF2YX52fm5+fnZuYXZWXKaA0fA70Agz8LcwuLcIsgGXsyTM8/Nzc8sgjQ3 B96ZWVxYWllaXl66/+jB7cmJmbl5IvKRvH7gAV7Dx9kVA9YAD+o66b0ZcJ1Spglrnw9D8Hhe 9oiNVWMmdXZmJCScZzIz86mszOvGjfZXUTNIXV3ZIL2KmqmbKC52eYGCbm5W1J+CpKTkqxtw QcADEaK3CjwIBDyRiKcQSGJaujvG1c7O3sEdnZCaVFJf09Lc2lnV2FpRX1ldU9JQU15XU11T Xl5XXlpfgWuoLK2vqqyrrquuaaysbaxsaqxsralpqq2pr6ypqq6vrK8pq68uaaitqW1qq29u wdWURySFWaNtUSiH1MKiBQL+n/xxDIzdpbbyryF4nNKKYBI8AG/QgMfw+BR0BNDLi4EH8+xx 8+ZPJBILc+k3EimY6czPlQRIpCwSacOrqdyBklheZTJ4gVIrK+9TfxB2dnavbrIHAh6IEL1V 4AGwg0DxehBIsYHh9koXPSytrdxsdC0vWdtYZYbFNOQWVVZV5lWX5+KKC0tw5B8lBYW4wgJc YX5pYSGuCFdcXFpUUlZUWlJSllVRmlNeWlxUVJVfWFdQXF6Gy6uuzC8syfQLt7I01bHR8ra3 Q13QjUq9vEhc+Sd/HKm4Hhrz/deABxTZlXo4fjXwYJXyppmSwRA8ZuaWYI+HuW8RvRvkglPm Gste1gAPiD2++eabr9bU8jLL/Pw7bm6frJv8/X/MzVVhJid9Ak3g8SxrZGhu9goJ2cZ8hbW1 H/T2vs9k5uvXKyIi9jCZubDwQ0AFKSkbmD+Z5ORTz9UbCQkbHjx4Jzf3I5rP4osvvvj888/L ysoQ8HguwQOXq31ToHfXrQRad7baWjO4FZrE8F2a1WfUkjJNAN9uOYuk17Y/oTMECfQG86VA j6Xiutddqbdurz5vKYYZJqYer/1BPFdzr6XHg0QgkFYooy0JEVHmR09b7eN201SNtLP2sLMx MdJDYxwSEqLLS0saqmvqSqsqi8urSsqrissqi0srSkrLS3GlpaUlZbiysoLSivzCqsL8qhJw 56nFVdVXNuYVV/okJJi7ONgaXPI0MPA00goQV7ThPJWZmYnHI+DxN4AHwz9gmjke4PYFz9yg XqtCP8cD5IfdHeAggBA4M3iLenIpuBXQL3tZFzyANm7ceP78+fjVRSC8t7T0STwTys/PHx0d jX8hgSZAQ2tkuHPnDg6HY77C7m7x0dGjTGYGHcV8zQ0N5wF44HBWz3My3c/VG7dv74acHunp ATRvHTly5FVEiXmLwYP6C0gz9Zo6w7d8TgyLgy8d+LbCnE+z1ow6J30e+HGDfoY5wzOh9nCe 0op4bbsUvikxCR7QfYy6f6BbFjNlV+t5eG4bvcCdkDozQ8gJSGlgOGmfvt3XnD06Ozvp90Mh D7AQSbMk0iMSmT1i46NsJaRstu1z+npzzAG+RAtrR0tDQws9UytDF1entKTEzuLK6vLa0pLK yqKKmqKK2qKKyhLAHaXFZQBB8svKc6tKCxrKS1vKyXwSlZRi6u6hY2drY2qAOq/pJyiB3cJm uJXNhlcoJzON8M8Gj+sT02v/Yf8t4EGznJbmu7PGqhbwRaP/doCvM81yWmqXCPPggcVir6wu IvE9PP7zK0zo+vXrjx8/vvJCAk2AhtbIMDc3d/PmTeYrvH9f9/FjCSYzg45ivubJSSxAgps3 45/nZO4/V2/MzbFD4DE2VkHz1tmzZxHw+DNfQPrvyBrgAb6hq+HEGnOxEPCgcY+sdk97MfCA 02qtU0/IXy0bDB6rncmbAh6riUggzVHYgwieqqJDnc+p2vPyeG/fFbTjgL+4NPrISX959QBX lAnGwtDOJCogoKi6GtfQWFpeVVFcUVNIdn2UA/Iow5WUlVRVlHdV1jUX4VKiIp3Q9oZm+hbm Rv4ox+gzCuhNbKY/b/XeuUf/xDFLeenL2ZeXCcvI+NfrDB5hGc00OVcDD5qFKtRKLuqi+WLS 4BYCHgh4/MNF/wWk8Q2uBh7UD86QeYIj+0E+kNXA46CCPxTTD0rgkQGKIghnAF9Smhg+byt4 UFMHuHxNx3RQBBqpeV7wAKWgzoem5dODH00ROMgAw2zU4MHwQt508CAtURJ5yIUUFxfmJHwG tZ/dQuSIrapooIGWJzuv+zdswUdE/PQvufmgzNDmdj6ukZmXy+pqauvqKkvLyotx5cUl1RWV 1XXNtWUN2dGXXdDOWmgTXXcjrMm5+BOn/dmOOv6y22cnh50Iv6eiCPq0kCPvqaS81BXSCnLP eQ2HWuDRk19FXFcDD2ioBdyaqCdyrNEE9T2N5r4Kg0dISIibmxsCHgh4IOBBY/JWAw/q7xT4 2jKsmWH+2o5ra9vQte31WwMe1E9SoAjNkAfDoWFmOg10L8NZc7AfGL5nwmXp3cU04EE/4PIW gAdh6Sl9hMWHWQoKm21nvcCx3UZBOMTFGqOpjGLndv1xD+pHVg9hsUBrY0cbM1sbcy9P18ys tJq6qqqqysaa2prK6oTkTFcXb2MrC0t7cwc3S5Shqiv7/tj//ei/ebuhCK+7knSEgqwP/zHM zgNO7MdS89MIBAQ8XjvwgP6G4fmiNN4J+sml1M9ca3/HV8sJg0dNTc3du3cjIyMR8Hgx8Ojr 66+pbc4vrBq96oCAx5sIHtBTNv13hCF4UBvNNbwTrxo84A0RQKKHH/CtN/ctgjMwnOh1/fZD cBzOA8wx9VQxqBJwEM7A8GLdY6rh4oAfmASP1aIaPpfoO21i6vEa4AH7WEB3wa/pH9xg8ICv heZu/BYMtTwhkh6TV7eQ4mMitOXPavNzO+7YHbjrsLeGurmSlL6MiMkpXgzrQf8fdgayHYrX vhRlbo7V17M1NfDwds3Kz8nOzsO6eRiaGJvoa7t6oUJNjJy5eDw2bY/5lTWY86Aj/xEzBRGH U3yhv+6N+H6r7UFOwzOnU/LS8Ah4/B3gweSqFhjLGUYupfYNwuOV1EwObh00d4/VbmvU4AHO 7cGDB8XFxeuCR2xCltI5Z+5TJifFUQ+nP792/Ttzm5DM7NKXCB4tbR2uXrGiUlZc/MZC0q6j 136afvSpoXlQUkrR0NDQi4FHVXWjT0DSxUteatq+RWXig1eOl1XWDw4O/nnw6O3tS7pcoKHl clLUOiNHAyDBtWvRCHi8ceAB8zn1t4kheNCvYf+LwYNbIwQ+B4YTVFYbmaWZxAIPTDA01tRz 1FfzCNHkgQhk3QuhfhRi6C96YfDoGZ5cbeIo+JV6eAU+c/rRFhg8wHnCTVDfjd94jweRtPh0 sIWUFhFlLSiOOiHod+aMB/dJH0l5Jy4+i90HUDw8QVLi/ieOu/66xXvbAW8uviAVtVCUnaOj lbaRrpaRkaOrq6uzlYe0RIKSSuJ+Xovvf7HZuzdCRMRHVND5IKcrKzv2V1abbTv9ThxzlZE0 FBK6nJOOJ+L/5Gk/C3v2F/XSy1V91/W1V2z97XE8oOW01GtV1l1OCzM5qAdayzYzt0jDJzRf cxg88vPzi4qK4uPjAXsAW+zl5UUNHgMDZOtcXd2ore+5j+sC2yFtPjE3SfUYRd20kWtbWrsO SGlECElhxOWdUNjopqbWFwOP9vZu8PNyWrGkvC0r+7mDPKYC0r4y5xOV9TLautmv3/xZRjNS WMZFXduzoqqBGfCATruruzcyJktO1XHfET0eEayEaqSiTmpSpjKuiue0NFbHKDA6Lq+jo/vF wAPAjLNrlKC4xQEeEwEpH5lzcVqmAUVlh/TNXQNDMxoaWxHweIPAA/wK7DLDcHw04MEQEgCr rLEqFi4Sl9++dgZmwAOaNw5ZeYYDqdAAKzzzgfoJBb71wZYXXDWUDdQG34XyqgeocQV6l8ZF QI1q1Mix7oWsFpXoz4PHJdec1fwYcKPwrRIuTuMLgsED9AbcD9Rd96aAB7gbMNxxjEgiEwBk V1PDojwPi/j8wo7iOmwhKuBnauhyRsLt591hP+/xPcrteOqoleBR5927g77/JeCX7Z6ikv56 xgbKyvrnNPxMreyFBdx37owVEA89KmjBL3BehA/Fzx25lS12I6vt7gMu3DxW/EdQpw/7HeZx 38+blJe5QoKClv1/wlMSEfqF8CxBR1coP6EjREomIuHZ0ZfEBOQ6nyUSTSKQm6PO8KfbXHc5 LUAOAAkMFyL9NeCBCi2j+fqs9lWl3pYFYnLqeyn1Ri1r7NWCRqPd3d2zs7MbGxu7urqAKUxO TobBw9E97riQIYABTj6r03KBcheTAQwo6aYraKeq6ieo6icqaF+Wu5gkez5OTNFPWAZtbBn8 vODRemVsz6ELHDw6rJxa3EJO4ioRAA9AK4BtQOXaFqHaFmFQK1LqEaelndV1PNcFj/ikAj0j 71Oi5oBhBGX8ZS+QGUZJLx3UDE4b1CZPOWcJ5UDFc95Yz8TauhbmwQPAD9Y9huO4/lEhlKgS +dyUL2WCPlHUSZPXSpY9Hy+pGnxW2c3WKTI3v3JtvwoCHq8PeJDopijQgwccoI/GttK7IKi/ bgzXXzDMwAx4gASveoMeNOiRgObZCh5ZgJ/coVvKak4buCE4P/yYA/cVVCfoHPj5iPp2tMaF wCfzssCD5l7HcNEi/C788LXaaAs1eFA/uNETy2sOHutGLiWvaomLcVZWs+M6avn7b45cRzwN dD1EJTHcxzHHjjrs2un/+27sYS4sP1+AkCB6336jzb867Oey1VCzVpT23n3AYdNWJ77jISb6 3hKilrzHTI9w2LPt9N9zIJJfyFZI0OUIj+fufUG//O60Y5eLuGRsbvoStKqFYschUU6DzBME Ijm0yNOEp0rQEfAuEWTDE0nLIP1F4EGiAQ/in2wXgAfzy8z/FvAobRqBj0N3mDWeEaijeYC7 zWorZehX3dKsagHIUVFRAV4UFhY+efKkvr5+06ZNADwsUCmHT5hJqEapGxWqG+WrGmQrX8og G26tFPDzadJJBTYXJLmLCfIX454XPLJy605JuB0TtJHWjNcwLqK0kqUCWtGhtPL/DZFbAcCg oJW0PniklIvKOokoBFNOuwCctop+BqAO+T/Ulqqomy53MVHufNwl8wjmweOUqOVRQZT0uQQV /SxwquDyFbQuw9WCJK9NPm3ZczGnZVwu6vvX1La8ueBhYGAgKyv7DwEP6qd4+NtEDR7U36+/ CzxYpbypD8KWkZ4i4MhmsJGF64chARSnuTPQdwvNNUI3K+icz+jHPO+YEfUta+0PCDp56sRw yGONQAQ0uEjd4mqjLTTgQe1YhqDlTQcPIgGIbO5J5MmlUSbnVe0UJVHHDzkdOhQkpxpygN+K i8tURdhF5ETEtv0hm/e4H+SykxHDqkjbcXFYHuS4pKloJHvGj3WP19ET1hqKLuY6kUeOuP76 i92e7Rh+Ljc1eQcZCVtObt/N+zx+2+G/bZvVGV79c7KXs57N8SCukBOBkiivAVEsU35fpk1E QLTLFDcHxe0BUGWF9DTy2UseVKFhDjzsaKHCtZcCHn9mUtPLAg9oJR2UaCZmwMehP3XqLyD9 dwp+C/IZQkdO60VB/k9z3yJmAogB23316lV3d3fwOiws7NatW83NzeHh4QmXK83t400dMi3R Rcq6aaoGeRomherGuSoGmYq6qTAYACRQNchVM8zXMMx6gaEWY5skU9t4R7c8e1fQSqqKfjZo RcM4V9UgU4ni94BaUbmUDZKaQea64FFR3R4WXeQfVhKZUKtvnaOinwNXSMEDUFsK+Zz1c9SM Cs6ZZEUlVjMPHt4BOUa2GcqXMgHSqBnmgDqV9dL/CGNkRlLSywR9As4/K7caiePxRoAH9YAL MNZrD7VQT5kABhH6DjKcNgkfvOSas7YNfYFVLfRPJQCZoHWpawS4AHmoQ/1Qx92i396axncK jRNBr7UwWQyh4qUMtdBPVmHYq+BiwWcB/Qoy0E9yox5sgvsfLkIzBk0DHtQDT9Dw95sOHgQS YY5EhGJqJERF2fAKe+zidDvE6S18+rKOMeb4KbPtrA4HD9gdP+R67Igb33Fr1q1hmzam79yB 5uRyEJGz1dG20lJ3FJMy5OE25zuEVpYPPCbgv48XzceH5uUMO3TIZfsurT1sqENc7sInzQUO Wp04an2UNzMzlYiHmGH5D4lIToAoiCRAIDSJvLkLAXI2QDRAzkV8aQ4PqoEdwh+HelaeJapx nbcHPP5e8fPzw+Dh6uo6NTV148aNycnJuLg4aPwlKirq0aNHBbg2db3Q5IwaYNoamnrdA8s1 jTKV9NI1TAqAHVczzAaWV8OoUEk3XcMoA+OLq2vqegHwsMNknNMPzytspsz36PUPrzhvQm5F 3ShfwzhP3SiH8qJQ0ygrNLaqu7d/XfBobulxcrucV9REmf85mJnX7OBeoqqfoQmoyShHzQBU WKh8KcvEIT86qaa5tfe55ngApCkoaSzEtbn6l2kYZpBPzJRcrcqlDABjgDpAzYBn1A0ysL5l +SXtjKbEIuDxmoIHtfWEDNZq4MHQbjKcevpKl9PC1hlukRp+oBkasOWlrj8qu5UGTiD7S23u qcEDTtRxz14APKinpK59vQCBqMOeQGtn1ui0X0VcGd7b1wg1Rj86Qw8eNAMub4HH4+kmcQA8 YmIc5VWsD3E5bt0eeJA7TF7d5aSwi4CAw/Ej1my7Qrbuw+xjxwgJ+PGddNm1z3YXK4qT21hN SV9NxuUQuy3rdrvjXFHGRkESMmZ7OB33c3jsZfNk2x1+jActImR2iMN534HAbaxYVnbsKZHo gtRlsu0GphwaXqGaPPHs5VOR4J9PDxPIXEJGkyVKIkDvk56WgF9Ar5kbY6GIQB7Aofh/yD+p E/kI5VTJ7VJOmEh6CUMt4E4Sk9v2DwcPaWnppqYmX19fgBnBwcEPHz6MoKiurq6npycrK2vH jh2xsbHV9YPn9cOiEyv/6E/o1DVP1LdOs8KUuAWUJaY3lld1/plVLbbOqVrGkZez6qgP1tR3 XTSKs3TKdvTABURWpuU0d3X1M7mqpbG5G+OZlpVX/4fJJO19/qHFKI+igIiqnKK2xuaewcGh F1jV4h+aV1jSCL3u7OovKW8Pi63SMkszsCsydCh28a+MTq4rLmvr6OxHIpe+ieBx/fZD6hUf NOCRVdEH+wrO6MfQsMRfAB47Jb2Wlp8uEJiYenxMIwQqq4vNBke8E2qfOmR8CuGCYoZxNPVD NczMLbb23bQOKKbuh76RO9AFgp9Xrt9be4qFgHYkfARUBffMGhcCGoXPB+QHrfcM//9aP/B6 jZjna3eae0w1dETOIgmeXQ8fBG0BqKBOoCB8pZUto2uAB+guVbvUNRYBvVlzPJaJTzdsi0iM 0RMTNz10yFb0uKWmpIuBju8RAevfWU0597mJ8AdKi9qfPO60bQd23+/owzvR4sLWCkrntFT0 Lii6Scu7HDtjyXPC+oKCDxeH6342C5njtgonHY9yO7AdtN+9z2svJ0r4ZNBZkRAeQXse/tSi jBcx3BRrT8ATVvAryyTiPIE4hycQqOCBAEEC8TlqfpoZ/MQT5qemhuobussr+qpreiur+8qr +surBksruoqKr3d1EBbnKGuOCYQ/7+8gkQrrhtb+w/7LJpf+vfr++++tra3v3LkD6AKwx+XL lx88eNDa2uro6Ojk5AReXL16tbi4+OrV8aqq1vZOWp+AqV1yaVkrk+ZyXfBobe1uaurq7e2n H4JpaOpezxYzXtXS1tbT3UNbYVR8aVt7L/OGniF45OTV1jV0/HG6aUtodPELRClBwOM1BA+a kX36AGI0y0ghPwDNGhMmwYN6dui6O5VQz44w9y2iHiyAL4F6ICM4tZFmMxTYRoMXZt4FkO+C fpYI9dgEeA2FN6RZ+ULtaaF2qjAZuZRmVgz1gM7zRi6F2wKwQT/FlOHQ2BqgyBA8INHEeH9T PR7k+GFPwSMhJsZCQMxqK5vdjm2+EqJRTg7u6ipoLm7nbayoXbuCuI56q8jYn+L22fJ78M+/ OLDt8xWTd9LVcdC/4C8qid6xG7trl7e6moeKElpJCS0vjWHfG/nzlvBfd9gIHPdSPBusIo86 eUyPnV37OLdFgmdJT015R01xa2VBa0V+W0VRd01Jf335leamka7u0f4rN0bHbl+/de/2vYf3 pmemZ+dnF5bm8fglZgz+87k7SORJrWT+mpntSEvH+QW2xCU0R0Q3hkQ0BITW+wQ2enhVOqNy nRyvtTRSspNJh0DmlFf7ef1ly2n/dvAwMjJKSEhYXFwsLS0F7OHj4zM6Onr79u3Q0FDwq5aW FsAScIShBTSxTaLxJ7yKAGKGVgml5S0vAB6rCYBHU0v3nwQPRutcWsNjSxHweGvAg3pk/wX2 aqHx3q8NHs+7Vws0oECT4FkKcMAKaptOP9RCP30CCmayGhgwtLY0eZiM47GaHX/hvVqo26IJ 70aNiAx3fIMntMALZtcAD5q+fXM9HrCdjo+KNhE/a8lzzHvn7rCt7OEKGg6SkjbCpxx4ubF7 9yZ/yxq497CNlIj90RO+e7ldtu7y3HnAQUnJQk4yhJXVY882Rz7OmIs6UQoaVpz8rr9xhO/Y G8i5z4trn70Evz0/j/3ufZcO72PX5N1/jn+PuSS7o+QBp7P70TJ7XWV3e8jt8VPaHai8J0SF I0iTO+jCiVBtwXA9iSgT5QRrnTRn02wPh/xAv4r4uMac/J7K2istfdcGb92ZePT48fLcAnnE 5cUEDa5Qrn68vt5PSqbM2YXU3Ueqb8KXVi0Wls5mFS6lpC0mxjdhUAWemNl7E7CXhEB8tWFE /lHgAQCjoaFhYWGhv7/f1dUV/FpVVTU9PV1UVLRx40Y/P7/h4WGGFtDMLjEn/5WDh7FtQnnl ywSP6ITS5tZXAh5hMTgEPN4sAUsEB/ZkmAEK/nlaL2rtSQjU8x+geQg007nhAKGtfTdXOweG 0xhoBMUR1cVmA+yB26WPSgoMIvW7oAl4sgQ8oxUUOajgD582FHeUpjnIxUF9afROAwHtSLgG +AxXC3NKL3Aa0KyJNXpvDW5h2BZ8HLyAz2e1jxiKtkodADYV1w3vpEOfH/IgrZHhDQAPPAH/ bFVLVGyMsYiYAy8vVvKUuRC/u4I6mpPHZNd2Gz52P+nTvny8Tjv3ObCyubFuiz7O5S4ppntS UFdN3kheHHWC3/2MmKPQSTcVlbBD/JhNu4059nnKCAUInUAd2GPDts/l1z3ae/ecVOP52U/2 fzb8G/WOf2p9+APnwx9hjnzkfuwTL75PfQU+9T/9WZDIhgixDyPFN0SKfRIp/km42EdhZz4I EX4n8PT7fmc+8zv7tZ/ML36KbL4ax3y1FSNsTJI8XNNDo4rTshpx1X3N3WMD1yfHHz56sLQ4 TyISGI7VEJ69eDpVFU/Gh4Xbd1NNLMwPsseqq91Lz5zPzH8QkXQvOPaOf9h9L68pF/SIEypP X683NweKIkIkvPLoZf808IDW0t6+fXtqaio+Ph78Ghsbe/fu3by8PG9v7zUseF1D16sGj8i4 0pa27pcIHqUVLd3d/S8dPF5YCHggQoToLwYPytxJsmJiYiwFxaxY91pyHzSVPO1qYYaVlLTd uR2z5VdPzgOYU8etBflRe/eHbNocsWWL1Qnei6Ji+ueVzdVlrIWFbA9xY3YfdFdUcxeUwB4R NDhzwlGQM/z3X31/2WK2j9v7iLDz8VNKJziOKB/ZbM73H8dT7zue+BDL9y+34x+7HvnIifMD a46PLY5+bsH3sc3xD1DHPnHh/bcn3+e+/J+EnH4vRoIlUfadFPmPUqQ/TD77cZL0x/FSG6Il PokQ2wBAJVDwP0Ei3wdIbPOR4fJVPRtqoBfvhM4OjC5NLGkpar3SNnr76sMnDwj4P2yGC6hj gURaWSESlwmkpaUuv2iLfUeTTI0HU6N6wgJuBMVccwi6buF23cJ6xNJozNjg3iXzHiWdYl3T h8PkyT8EyvTW55pMgoDHuuCBwWAAGzQ0NDx69Ki2thZa55KVlTU5ObnaUMtz6c/s1cKELX6+ vVqeSwh4IOCBCNHbBB4rRMIC5B0gkuLiYi3OaZgf53H7eWv0rr0x51XQ4lKWfKI2J0Wsd7LG fLcl4AC7w0kuV9HTzuwcmJ9/89/OYSmnYqAgF7CL3fOn3SghEXdzA3dxIRQXpyP7Hocdm124 9rlJCpoLCvqy84btPBT+/U7DfWxyWlJnMFoiAfp7MbI/Yk5/7iPwXtAplhCBd8NE3g8W+8RL 6GMXvndduN/FHnrH+eC7KPYP7Dk+tjn0L+tDn9gc/MSR8zOXI5/68mwIP/leovC7WRLvZIm/ my76TsqZdxNEP4gT/zBS4oNgsY+Cxb8KktrkL8MapMoXaaBx2RlbEHG5Iq+lvenqteGpmQcr sMOCSLpRXe3NJeQicHa4DHenp77Qz63DxWfYGDNy3mhE62LvOdV+ecUhQekGTsHAHexl7p74 xQXyyhrCGwkeoEJQc2dn52vyZ0kTx8PPz+/WrVtxcXHAiINTBb9u3LgRvADMgIAHAh7IbRwR orcDPPAEwhLxKXgkR0TbKyhhxUXdjx724jyceFYhfPcxxwNHLJWkbUSFI7ZwBP663Yl9L1ry tLuMKPbQQTc2TmMlZR0lOa/9hzx5jmPUpL0Mz4VzHfHevAW1Z4fbcQ4/BQlHqVPmRw5id2xH bd0cuPlXh1NHtBRkYlNSrtwey+koccoPUkm04w7V3hKk9E2g5GeBov8KPv1RmND7ceLvpsq8 myL1cZzoV6FCP3kf/9aNe4M7z3uuR95z5ngfdfA91IF3UfvfQ3N8gOL8yJnrYzeej334Pg0W +iT8zIZo8Y/iz76TLMWSIsOSJMMSK8kSJPLvAMmffWT3eCuJBGhfirT1ywutqC++Mtb76MFE goK6ww6OxvDYoY6O8orStLCQSpTzoJ5hm7hE9WmBvMOHM3ewpXy/OfGbn/z/920IF/ft2moS ZXebVzq99C/bnfa1Ag9ohAUQAgaDaWpqmp6elpWV7e7uRsADAQ8EPBAheuMEHnIZr80kh+Z6 GpQrISrankcYw8Zhxr3fQlYqwtghgJPPcdsma66t1tz7PA/zuPEJWO3e77Htt/ADbFZHuc3F ZUyMNK30FVxFhE2OHXA9xOorL+V7XMBnH7+N4Gn0ce7EnRxBm7fr791txXcwTFs0R0siWPmU qaRARHjA/ds3CUtzS/jlqUcPRm5eq+xpjSnPdEz3V4414w5SZfVU2OSu8I2n3H/9JP8TLPxl 5KlPE0+zZJxlyZR+P036kySp/8ZIfBkk/G/Pkx+487G48ryDOfIOiuN9+4Pv2+7/0O7ABruD H9lxfozi/i+G70sXvnfN9nyAPvJ5nARLgsh7EYL/9Tv1X8+T29zFhIPOu7mYOO3cn2tuPjN+ E1fb4p2UmZNXXOnh0aymlLZja+jGH3y/+i7gq+/Cvvs66fuvs775LvbLH+q0DJYm7r7qWR7/ WPAAKikpAdQBXqSnp5uZmQ0ODoJ+QMADAQ/kNo4I0dshApEcxwOKyRmWEG0pJWvDesB2028e R3g8L160k5J2FhG24thtveWHkF+3Yo7wOQsLBxw+GPDzZuefd6K5hMy11c01pd0PHTP+bbvV of1+Fno+ClI2HEdMOLns2A56/cLhv43H6oS4ydGjMQrCA7YXGoylUnSFw21Vct2t6iMD23Oz r3f1zk3PQCczv7Bw79HdkTtDTQNtWRW4wOwU88sBUnFWHBFqvwVLbfQX/9r7zJc+ol8GiH8Z LPlFmNR/omXfS5FnSVV457LsBynSHyVKfhAj8mGU0AchJz725vsPmvcHa+6Nuvs+OPPFR1q/ fRUj8lG+JEuxOEuRKEuhCEuW8MdhgmKn9oSdEb3XUb+4spJR3e4Un1vfPTKUk1d3QT1hy+/e n34Z8uWm0O9+iti0MXXz9xXfbyz736aU39mvJGW96s/lnwweQBMTE+3t7dAmcaATxsbGEPD4 J4MHIkSI3ibhifh5EmXfFDwpISrG9rymueAJl/37A/bu95M448jN53xS1FFA1PbwsaCdB7Db fvfjPRJ05gyKkxO1fxd6z0EzORU9OVn0QU67fbzGEnJujibeIoet9/5sfGSnFud+PUllVx2U haSRJtsJw127fQUOZJkK1WLEceZ8efonCs0ly1HncViTAh9UWVJoW23BrVv9K/jH/++MWcI/ mZu/9niq8e6VstGGws6ChOpEj7xA48sYpXgrnlCt3X6qv3nJ/+gh+63n2f95iX3uL/6vELFP wsU3RIu9Eyf5XpzUF9Gy3/qK/svu8GdefJ8kibHknGHJP/NOhsiHGWLv5kl+HS0ufGR7uqkx aerm0vJyx9jtvJae6/emF66NN9o5ZPKcDPtmS8r/tmZ9tz1x068pv26u2crauutIAht3ZUDo ysoyAh4vETySk5PDw8Nh8ADGi0Ag9Pb2srOz37t37+rVqwh4IOCBCBGit0PEFcIKgRJAjEhK i4yxFpY04GB3EjnuqSgdpHvJ7dhxu61bMGwHvAXE/GTlMfxcLjt2hmzf57lvv7Ukv42CpJmG uqmGkpvCWT+es/57hf2UlGxOsWqd2GzlIa9lLq4ozOds4mDjkyCiZcB/+qSc0gl92f1JmpyD aLFmFG+ZJXudMWeXKV+PtXijgyzOVSXXVzsvBt1Qln11uGN67i6BhKejpMWlpbmZ+UdTs1N9 94ZrhlvKW6sLqgri8hM80wJtk931EhyVIs3FgvV4QrX3h2mxBWuyBqntCFDeEqS4yf/sj/7i P4RI/uh9ZpuLyK/eYnvdJc+cPRYR7PF46ub1sf72rpqR0eZ7d4ZWHt3tT83IVbh4eRdXxqe/ 4b7anc/KmXeUr5hXKOeEGM7MZryvd46IR+Z4vETwqK+vX1pays/PB699fX1xOFxiYuLy8vLs 7CwgkJGREQQ8EPBAhAjR2+LxIO8LC23S5pcQaSQobL91j9OOHZ6iYt5YZzNdTXPeI27bf/Pc sjH08H43RWUrYaGwrdtSvtmE3sHhKK5ge0kTq6MQLizpsZkj5Jf9UXJSIRYyFqqc5p7iXjl6 phe51E8e1HHEnAsKVjKzltXV1uA7aXhsf7CZWL27Qpu3ZKvbqXp7jipztmor9ib0yQ4PmVbX 89XOukUuWqXhVp24sImRuoXHE4SlldXJiTJctLKyDIhkaf7BwqNbM3evPhgfvHu169ZQ9WhH /mB9Tn9NZld5RkNBdlXu5eqsqIrkaFxibHliauXlovJcXHX5nRvj1aXxEV7K+eHqxckWwwPV 90av5lui8o7xle9kr+IUyhaUipdWSTynn27tNFJfDxqcJa3gSW/eqpbp6enKysrJycnXDTzq 6uoAXUxMTPT29gLwACYM/MzIyBgbG2ttbX0p5hUBDwQ8EP29mplbggKkv+ZhrxD9BeCxSAEP 8PweGh+lIyyC5uF12r3bjZPLX1nN7bSko4CA2UkuuyN7Qn7f6cLGbi8qgOLlDDjMgWU94Lj3 mJmqopmcmB/rITQHr6H4CbS2cEmQco4j70WNrx0iTzkFiBno8CkKCeoZWTp5RRvbBF/SRGtI aoVHhA+3lpfHY3M8lOu8xfv8zvS7CTRaHqsx4Wm2Oj2AOXvVW27QW6YOK4ZzU66IcGzHpY+P DM7MzBAIVG4Gyg5zS0RKRI61fDrUiUi+YALxCYG4SMCTCCtLy8s9fcMjY2Plxd6xThwFzjuT XY6UV0eOTtwq9gkqOH2i7MzJyyoqKWaWWQFh+Sk5GYmZ3e2dROIK/tlioDcLPF7bOB4FBQW5 ublYLLavrw/gB4CQkpISaH4p8iV9/cQDgQeJxODvMycnB+kgRAxFv4ktordbq65qebrjKlk3 RkYvBwVjDfT0RIUuHjsaLqMSx3rcZROr1XEeN0VZb15+7M7tqF2sjnv3eAsdw0rzm/Dxaqtq aijLWQjw2MqJnVM8bnH+dIwTb5HPTrPzX1yw3GoXJeYYpGh88dTpY4cuatmiXdKN0clqRn72 nkm13UMTU5MDbeVVUU6lWLU2d5VRP41Bd9l2J94aC7Zqs31tKN4hX6nBIOUWX8UaL0Wcl2ZF FKqvPG1ybGBudvaprwFPDuW1SHHXkFfmrDzb2B5PgravJRKfbWxP2duNMnZDDr/xmESap1z7 0tJyd9+VgasjFUXeqVhOnNPmdNSenHRsZWtndmxmkp5OvqM5LjG6pqigoryypKImPTuvo6OL SCA+3VP3lQkQAmCP6enpfwh4ODs7e3l5RUVFgdf5+fnz8/Pg8dnJyWnjxo2ARhCPB+LxQPTn vQ1vN3jQh1v/K/X3tv7aatXIpTQYQiD09HT7+vlqqqlaaWo6CIk6srE7b9nluf+A5/EjjieP YfZyRfy0JXbTD9ijbEYCQlrndHTUVR2FT5pzH9JiP4CWUfQw4Uny3Rzlskvz4s/W/sKOkVJO UWIXTQTExaUNDLwdvC/ruMQqWfgbOHrHZhRcuXF35smTq511FXEuxW6aDa6yI/7iNwPPDHgI 1tlyl5ly1tpw97mdvu4vcTNQfNhTpBYlUuyuUZHo1dtU8eDhNOGp54OMGQQ8xZdBCeuFJ5KW yeABSINAIQTyaBI4RiCnFYhHIGhYWlpq7+ju7u4oTnULt9qfYPJ1ovk2XCKmoaEvt7Adl1fa 3ljX0trS2NzU0NjU2tZaUFjY3t4Bx3p94/Q6Ry4FGhsba29vB7wREBAAOAH8evToUQQ8ngs8 rl6tB+ktAw9Qp7e3N3IbfwHlVQ9AG5Ews2PaGwoepU0j0H4uf/0VDY9PXXDKhHZ4Qf7YXhg8 IC0uLXe3tof6+ly4pKGmJm7Iz43eust/8y63g1xevIJhQrz+B393++Unjx1HzeU1baTl4ndw Wmzm4t0iZSB4zk32YJHHdlz4r1iL39X1D9snKZrHcWESxS2w6rGp+dEZdWYeUfro+HNWvuet PK09YzJKmybvPyKtzNzuq2lK8ShxO1eDURj0U5oMUbjjLzHofKLG7GiBEU+No8iAz9lroYpX AhUa3WSKXNQKYzwGupqm7txaXl6i8t8QyeMgADPwc6TlJyT8PInMIGTyWKR4ORb/GH8DgEdL S3trc31BkkOQ6bYY4/8mWG+tyXTp7R0sreqsr6/v7+vs7evv6yerqakpLy9vcHDwzf0zeM3B w9fXF3TvxMREWFgY+LW5uXl8fDwnJ2cNI/jkidAzt/+6aQ+wYExnft5USTUA8dIT6ZXVDCX7 FyuIxPF4/fVcW7W+oeChhclabXvfN9qH8w8BD2Cz8Xg8Af90Lcns7GxlW517mLuhrrIOD5fd bnavbZzovYfR0ifQasft+fa77ztmK6dioiqF5jqktEP2l58M+Lees2DbU+3wY0P4F7k+2y5q bdP2E7PN5jeMYnPLkooriewdf+AXk+DgnmHhnaPuEK5qG6ztHOESnlHZ1PtoljzT5P74cAcu FxfoXI7W6ERLT/grTAUp3vaVbnQ4nWEumGUhWI0W6/OXvxaqNOQl2oQSLPfVb8mNvN7b+GT6 /rPrIJAIM6SVh6SVRyTCIpFIWKbszLJIDjdKJhBa8GjrGOjtqMlxibDamWD1baL9roZCj7Gx KzVNba0d9deuDYyP37h27TowggUFBb09PYuLi6SnW9Qi4PFywAOLxaampsL4UVpaOj09XVxc DF6rq6uD12s4ExYXdwAL+Pix5P37umun6Wns4mLTutkYJiLxIxLpnTUyLC8PP37sy3yFCwts 8/PsTGYGHcV8zcvLP4D0XFc3N1fwXPlB/Qh4IOCBgAcCHi/L40GgiEggRxWDjkw/fFDbUIn2 tD+nIIHlE7Hafwi9bXvgATbLEwetxYUdLmk5XFKylzjNt/3819+bsn1pob1FLNvgfz3R39SF fhPquvUSStQ5V9k4ldUwabd9gmZcQdTg1QEHTJKZR7pVcN5FTLyafeQFx2gT19igRFzH4E2o 1Yd37vXVV1XG+JRiL7SgRG97CD8OkbodItfnKlxvdbTMaH+DBfu4+4npoDNj3hLNGPEqV+Xq cLtO3OXbI31z8/BUFvKCnXlAUBTqIBDxJMI8OVEFOwfg0djc2tHaWJXpFmnLGe+wIw59uKU0 8M7kzdbu3r4rnfcf3gIP3bW1teXl5eAFxBtEIhEBj5cIHhgMBvxxDgwMeHl5QewRGRl548aN 7u7ubdu2hYeHT01NrQYewHwDC3jjRtIrHWrB4z8nEt97iUMtDx+qAAv+KoZa5ubYQUIil76h ot7SfXh8Ct6uXc4iaTXDB+/nDm1AD082gLahBwchywgNB5BrTnu6PX1e9QB9u9SbzsMHqReh 0GwiD17T7CAPtQttLk+ibBAPZWNopuH930GGNWahgIuCRjSoN6+H3gIFfxVxhauF2yVR7U0P zj+xsBMqCK2pYbit/FmTePoN7sFZ0TQNEigFVULfva19N+F+g88EGpSBr5Thxw1ODKoQRkTw AUFH4Eum6eq3xuMBvyAQyetsSc+iZN15ch9XW4oyN7IQFQ3YfzTuu12ojb9bHefVM1CzPS8T cvCk5DcaP3xlseM/Hkqc5t4aO/rifq0J3VATtSXKS8kxUheN49VJZLVOPYNOkOwdqh0YuuXk n2TqFu0UmmvqdVnTNlzLKUbfJcnKMyW3oPzR1NPFnnOzczcGOtuyQ0t9dWucz4xgeB77n1oO FXzozT3syF5serQAJdPmrTQeqnInRHbUVbDJ8VSFh2Z5SlBnW/PU3TtQJeAK5oikRXA9+GXS 8jQJPwOBBwQPeDy+f2CopDA/I9wpEiUe7sgT5izcXXd5ZXFxZGxi/Pb1G7fGSkpKMjIygBF8 8uTJ8vLym0sdr/NQi4eHR1dX17179xITEyH2CAsLe/DgwcjISHBwMDiOgAcCHv8oBwVk7KDX UAKmEyQaSqHOAFtAyJjCVp4m+SbVwU3AVVEbUJqD1EcAljCsk/rEqOkCGFlq0qAHj1NaEdAR agqiEbgcmq6gPiv6t+DK4beAWYffhdbzUv8KNwQBDLVrCLxLXz99JdSptuMa/CFSu0Hg/NT9 CecEHQs3BJ0A6NJ1u/qt8Xj8P4SQV9qSF4asEJ8tFSGRmgc6/TDOtmLSKK6Tdgd5rA/x6SlL m8qKeLHyyX9zYctnNj994KYoE5Psg+1MYK+JYWkN+aI+UCQoxAqbLm9XIKQbv8cjlzci1ZpA ItyanApLSLdA+2GCLjsFZWg7Rpy3jzRySbHBBgeFRjS1dy2vPB3xWcYv35q80VqbXxtlW4aW bXU+dctHcCZcYjxIrsRBPMtcqMj8ZJsD34T36ekgsRt+ki0uUqVY5ZJAy+b8+MnhDsL8NGX0 hbwjzcrK0goeT3wmAoEAwGP8xo2aykpcWkJBnFtyiGGohzYuN/Hm9cmBgfH6xqac3OzkpOSy srKGhoa2tjbwGL609FdMDgcfFoAExguR3kbwgJSfnz89PV1VVQVdO8C8W7duhYeHT0xMIOCB gMc/CjygJ1xgg2BbDz0a09t3kBNYbWDXYA6BnqlX83hUtl6lMYvAslMbdMhnAn5CZeFsoBU4 2yXXHHAC1GcLuw6oTwxul6HHAxT5ls9p3WEganqBLD548Kd2a6zm8aC+dug0II8H8+BBXQOo FrwFXTXsNmHo8XgB8KDuK9DE9dsP4TOEnCEwO/0tI0p/GXgsk0hPKIlsZVdIpDnyIYACdyYm Y+29TMVV9TXOG4lJ2yor259XMhGXF/jFnHWD49csaHnl3P7WsaYk6ba0fzX6fTAQxlYQpR+R jHXIkrXJ5zKP5HRPlMttTAO1PpmZKSitsHPxdfSOcovKM3ZLVLMO18Cma3tlmnnFxqdm37w+ Bk0FxVNO48njR+MjvQ0FifmBlsVYxWFv8YVwselA/muYo40WHMWm3CVWAs0uZ8cCFW4HyQz5 yda4ypa6KjfG2I/WZj6aHINoauVpPI+nAqatr6+3uqK6DldViysoxSXlZEelpSRmXi5KScqN jo9PTb9cXFRcXl5eXFwM8GNgYGB+fv4v+Lz+aXE8YAUHB4OrBkAIuhogBxsbGxaLHR4eRsAD AY9/GnjAQw8Qe0DWk94mUrvfYfsFD7jQz/GYmVukcWVAPABXCD1Tg2phw0dTFfVgAbWLhgY8 aJwq9OABlaXJs0afUA8DMTPHg5oKqAGDSfCgtvXU2dad4/EC4EHjykjFddPPzIEB7A1yejwv eKyQiHNE8hpUImVB6jKeuIgn4okE/CKp0Smp3jaxvKgamAkJYQFNZUkXezfRfZFb3nf/9j1X vkPB/S23mjIsutJ+rQ/4tCvsq9a44+UFUa7pVo5FYtaJvC7pohbxMvUdZeRW8Cst3X0uQbGm rpHOUUUWAQXydulKzjnGPrnW7tFuXiGVFdWL83PQhI2n4y/LK7fu3uluqysNsWhyEhrHHJ4P FpyJkr/qL9eElSix4C8xPdZof3LAS+xGmOy1IOluN7FatEyFn1FTTsyNoV7YX4Enz2QhCzxT 93T3tzT2Vdc2ldbjcDVFOFxpSUFFblZBbmF2WRWupqa6tqamsbGxt6/37t27hFcbK/2fDh5A GAwGmLDp6emUlBSGcTyaWzuzcsrCIrNCwnOujx8EFnBwMOo1B4/BwcH2ju6Kqsb8wuoiXP3N W7L37um8LPDo7unNzi3DuMVoGfhdG98+eYe1pq4ZAY83GjyojSxks6jBg9qKQY/wUIKLw4aS 4eRS2CJD2aA8sLcfIgHY0wK7MhiiDrV/Y7UjDM009BrYembmvcDWGRhferO7LnjQEAuT4EHP VK8OPGjmpgakNFD7sqAEfyKvwzzhVwQe5JEJPJEScIu0TCTOEslTNJdIhOGrk+XnQx97tRKX iEO3rtt6oiNjQga7b8rzFH3L4vvDBo/9Xzs3FAwPNsQ3xR3sSfi5LvDj/sSv6rNNipuqbZK0 fcoFzRMF0aXCrhGaQ8NdUFNjd+4HJhVfwkQ7hBa7hpeaouLOW4aZuqVZeWdaYCIj4zKGh8dI lDChBNLTaKHg5/17E3VleVlhrhku2jVu8uN+EnNhYjNBwjc9TrXZcpeacFRYcHY5Hb/ue2Yi WP6Kn1I1Wr7U5XxVrEdvS82T6Sl4lgZ+ZXH2yczk5MzQ9cm2a0PNo70dQ4N9fcN9Pf1Dg91D Az0jo1fHbtyauvdg/snsMn4ZT56BiyfPgqGcBiV+Kjl+CAEaj4Jmn5IT8emQ1bOwqQh4MAke QDU1NUNDQ5OTk8nJyV5eXvS2r7e3V+2i036uC00te1+dx6O/v9/YwnvvoQvXxr9aWXn/z3s8 mpradPQ9pJUcrl0/+1I8HiWlNTaOoadEzTl4zQVl/GXOJ3b37+nsZRWRddUxDoiOy2tp7UDA 400ED5qZBjTgsdr8DXp7yrBCGhMGGWh4PgPUClSQHnVojPUa4EG/0IM6M9QWtfOE+Tke4Fdq /FgXPGjmZDIJHjSTLl4peNCgEXRFq6W3GTwgs0ogvyBQInQtEwnAyLY3dtdeSpv2GwIUskLC 17U1jIxcuTH+RJg745t3XH7/0HPLO4EpYaO3x4dL4gWv5Xzb4L2hK+FfDbH7r3R0pOBSXVKP m2SIeFaIumcfd0+4NDb59JQezyzmlTXbuITZeyZ4RBVb+maq2Uadd0qy8s+zcItHecbklzXe n366cS0Rv0LAk6OkL+KJdx7PdPd1lmVG5PnolTqf7fGQvBUscz9U+m6w5LCrQKMlV7kRe7X5 0R4Xkeu+Zyf9RPtcRYqxikUBZl1lqfcnrlFisIO0BIBidolwb3np9vLi7cXFezOLM48Wlx7O L0/PzyziH5EniJAjgiyQFmZJMwTwP4WA8OQBKALoCTxxBVq0S3YKkaex4leIK+R1NHhyDLNn c2QQ8FgHPNBodEhICLRnXG5uLkCOkpKSiYkJ6t1pQyMzhCXN2TgvAlN7Ws5X18y6sWW7pq5n bGLuSwSP4LC00xLmu9nPc/JZnpb1D4tXzC06LKmIcXKJ7ujofl7w6O7ujUvMO6fjeviE0VEh R3HlIHc/9bTMwMamthcDj4HhYQd0hIVt0EEeA15RFwnVKEWdVOVLmUq6aTqWYdoWYfJayXLn 4yRUAhXOeaPd4nGldQh4vJXgAU8toEmwm4JhhfAwCrQmBbaGkG8BGuWh9n7QzAP58+ABzztl xuNBolpaQm1/4fmo64IHzUDJawgeNE3A4MHww6VZd/NWgQeN/4Mi8Lxfi6sZ9mh5EDRGmiMt Ls83NdSNXLkyMjZ1ijvxWxbMro+CN7HEWehVPnq80FRs2xO/cTDs+xrfz3rS/11/+dLE2NXU qhDHQkmjGC5Ulrh7iSQ2Sb2xpxZYfUoTxDv37hdWN2NC0619ku2Dc638c3TRCbrOcRaeqTbe yejAxMTs0r6ha7Nz5Ogc5IAjoMwKkWzeV/Bzs4/u3xoZ78ANFIW0xNu0BJzv81Ec8ZW77it5 zVO4H3Oq2eFUlYNwA0qw15m331Wo3f1snbdGXYrvYE/rvak7i0uLRMjNs7JMwC9SArEvEojz gDGIhBU8nhyGjNwifn6JtPh4+tHdkZt3RsfuXr16Z+zq3aujU6OjU1evLT56Ai0IWiARFiiD OeQw7URotIr4OoDH5OQksAsjIyOvIXgEBgaGh4fX1dX19/ffvXs3Ly8PHNy4cWNcXFxza6+Z TbCEIobntD2/hJuYSjh4tFfQSVXUSVPQvgyMrOz5OEnVYCnVgIuGoWj3xMjY3O6evucCj7b2 rksmfqZWgZJKWB5hB34Jd3GVCFnQijbUSqqCdor8xUQpjUhZjUBzu8jA0Mx1waOgqNrKPlxV y++MnIegtI+kerTcxWRQG0jgnKU1o+U0Q3XNYuwxCVGxecW42h66c14NPLq7+9V1grRNovVt C1QuZaoZ5qoaZCvrpQP8AB2ioHVZHvwkp1RlvQzwQsskEQGPtwk8JqYeQ9Mywc/SppE/2ujF pWU8fYWajn/Y9uiYRghUp6J1Cnhh5l0ADl6//RCqFvwKVQ6O0BQBydgzf2l5BToNAe1I+OBz gQc4T1W7VPCaXTGgZ3itbSupz+HK9XtyFkk09UNmGpwteJcZ8IB7D6SwjGa45i+PO1L3vC42 G8rDKuVd23GNYQ/DV3RQwR8+CLoaPgjagg66x1QzDx7ROa3wEiSa3rj/aO4N+nsGd4M/s/EH tAZk+vF0dUXNnYSRqaBR0jwZPBrqa4eHhq6O3RM8GvsDi//uDbE/siSLHo+euPVg+npnWSD3 3fxNrYGftcR90Ry7ubvYa55I9M+y868XvRB11CLrVEijgn20ZG5tDEAaineF/Mc8t7CMq223 dY80dYlxjSlzisBdQMWq2UZY+OegQgtMsdFeoZmt3aMreIoxX6QkUBoPuWeeumqezC8Mj16t K8nBhTsXu6g1YyXHvETvB5y57ycwgj7abMFeYcJRbnuq2FkuWIc/0/VCSQx2sLF05v4UNJZD INe6PEeaWSI9JkPEMnkfvUXy6eGfDI9V+MdUBSe2xya2hIS2+Qe2+/o3uXvirB2aAsNW7pG/ IwtEaDYuNMTyzHP0GoDH6yZq8EhLS2tpaYHil9bX1wcEBEDggcViQyLyRRW8lfTSNIwL1Y0K VA2yVPUzgZGV10oBCbKwFEJIV9RNU9bLVNJJjU8ufS7waGrpAtwipeqjqJ0MTLm6caGaYY6q QSaw5hS2gVohJ4ANKpfACWSvCx5Jl3GqujFqBtmaJsVqRnngtFUuZTytDapQJ1VJN11JNw3U JqUeHh1fyPxQS1hMSUp6JXhRWdMZEFGlY5GtbpivYZKvbpSjop8JOAR0lJJepqFtTmRiXWNz LwIebxN40Iy2QGsuoKAQNDMhabKBDJAppF5hynAyKj05UA95AJNKvaaD4XKbtcEDOgKog2ZR DMM+gReV0C87hWdE0KygWQM8aC4TKsVwIIM+GxwMhN55AmUAiAI7lGhKMQ8e1KtaoCgo4MJp onz8EwSBx/jNG/VV9dNpNx6EXKWAx9wz8Lh7+mjMTyzhrBvifmRJPbIzuLfzOmlpqSpBezj7 s6HEDyv9/nst43+V4WL3Jm5UNpa4FJ52qRfUDOPC4sT8qgXtIkRru3DkSREEInH56dTNwdGb 3pEZ+k7hdkE5rok1ht5Z8pYROthU5/AyG49UK0xUc+fQs5EXAtn9AYqSiEuU8Y6lp2NF5FCo 8zOPrvV3NOfHV4RY4dDybegz1z2EbviJD3ifbXSTDlLnvHDkm2gDoVpX+UKUXF6QU1tdzd2p +4AcyKRBDrS+vEgiezyIENgsPGp384kWUx7LKyb29OLLKoh5hcSsnIW01Lsh4bWmVleyiiih ygB7kJ0mlIghBGibOgQ86BUXF+fi4oJGo4uLi0tKSurq6mgme0DgASysgXV8Vn6jW0CZhiGZ LjRNizRNARtkQWAAEuANNcN8Jb0MNYMMBw9cR1ff8w61GFnG65hGpWbVJ2U06NvmKumlgwrP mRVTTHkGaBRqReVStpp+JsqjbF3wyCusi04sr6rtDI6uvmSVo2KQc860WNMEEAiZmkAiV2WY r2aQ6eRVml3Q2tMzwDx4hEQVJ1z+f7vf2TWQmtV4yQqcXpamSZGWZZ5HUEUhrq2/f/AtmOPR 2dnZ2NiIgAfNaALDOB40dhZeFQsnCDyoj68WqYPepc8wrgUNYDwXeHjF164b+ZPa+jNcL1Pa NLJ2HA968ABsQHMhoEL65bTQmtm1e5gmA+QbgVegwD3McD3sGnFloYhnb/QEj5cCHkB9A30p MSkjHs0Pgq8CW7qMX2ysr7kyNHRt/J4od8KPLNG7Pon8mSV159dBZQV9oFRHRVht3GcTxR9U +34ykfqfhpA9jWWJd+/ds49V8qoXRBWKnA/f710r5FF0xjlabWC8jdwQeQ+3Zcg/8PDJXGph nalLlKlHkmtCtV14mYZ9rLpVlF1AATa0EOUT19jVP7dEXtxKIC6tEObxxCUKH1HmfeLnifiH FBIhCxj+R9MPR/o7qosycqI8sz10a11lR/2k0i7u0Tj2M0aDf9RXdjZKrtVDLN1JKjPYvK06 5/G9u5C3YhYgDWVAB2isvDCMl9/70LFqL/cHpcVTCUkzoRFP/AImvDzuenr1GJmXWzg8GR4n kWeNrCw8pQ0iAh6riYOD49atW+7u7g0NDcB2Nzc3A9hIpQiKKgaBR1JqhalDMmzdUjIajOzz VfTSwXP9ObMikDRNi1X1M/WscyMTa1czteuCh7FNkrZJVE3d0ykcldUdGJ9SNYM0gBwAP86b lQDaAa1gfHC9vYPMzPHIyq1Oy6p7tvBkICu/2dGj6JxJloZxAahQzShP3yYnPK62tqH7BSaX hsfikikeD2r5BeemZdenZTc1Nncju9O+iQLmCQoWQT0fcmZuCTpIb3RANuhZGI47Sh/cEgr7 Cce4oB4mgBI1YABTCx9fLZQoyH9aLwqqjb45cIS+2tXeAo/2cHOrOT2YuUZgpumnQKx9IdD+ blARaKqqd0ItTc/DlcNBUMEL+uuCgntA78IDQ9QRXMFHwPBDZPhxU39wcM1QPW9W9LCXQh3g RXdfT0td05Bbfb9Fzc3e249mHnS0NY+Ojg4MjgtzxGxiidvxr6BN7yVu+iA8NaKb3G83Wwuj WW/j3u8I/fdg8Bcjmd/lx8vOzz3KqomzTjgZ3CRhknJUN4Y7pE3BKZPfI8F44j5lhI6wQiBv d09ucYlAbOi6gg1OMcKEO4cVesRVG7qmqltHGLunOgSkm7sGxuZnXr8HwecSkRwRfZFEntqJ XyAQnhApO7WQsWSFQBnEIVL2iZt6Mjc81N9Ukl4ag0m2k0uyEC1Dy13zlFgKF8PHn34SxTvg eaQMJVzu7zRa3TLz+DGBEnsd6Mm1a3EqamgOjvZA/4746L7YqDEfv5u2TrcsbUaszEdNzcZ0 jUtlVLuCI0mLSwQC/hmtkChzSxHwYDzUEhUVNTQ0BDCjpaVlaWmpuLjY29u7q6sLUEdHR8eu XbsAeCSklOtbJ9CY+5yCeoULEar6qeoG6WgvXEVN95+cXHrJIv6cQTiu/A8TPnv7B9V1Is8Z pWoaZWB8Sytru5hf1ZKRXZWUVkNzMC65wtA61calKL+kra9v8MUmlwK1d/R0dvXSrNgNCCti xsWBgAciRIjeiHEWsp+tsx3cYOdz7/abVNVm1lfUFudkpZfiSjPSi06whv3GkrDtM89NH8b8 9E6yj00HfnllGf8Ql2bYn/HNePI39a6fXC/6sDR2050bQ4/n7odn26LTBIIalS9EHjfN4Q5s k7SOlQzN8pyZf0TxM5DHNijb1ZHx48ad+zFpBWbOQbZeSd7xVfbBxWq2UQYeyaiwLEMXf0xo VH1H78IiJbw7cYmAnycQlmYJxMeU2R+UMZI5EiARytgHZSrJ03Cgj+fmezsaq1IDSgLMSp0U mlDCA1iee37cs2GnHoTLdLgqljhpVyf6373aS0aHpcUyjJfttgMZ5pZTw1c6i0sqXVxGnbBj 2sbXzuv1XLzQIiPXeko8i+1QIr/QFOQWpoAHZW4HMsdjVfAwMjKqpghgxsjICHjh5+dXUVGR np4OLOmBAwcAeBQVN/iF5g8O0voTLBySIIPLjLlcFzxCowqDwguaW/9gzds7e40sE5mwxQzA o6qmFVfeQnMw8XJ5XuHzbVtPYi6AGOgH/9DCjs4+BDwQIUL0drAH+NnU0rSwuDCbNXHff/jR xOPm9lpvT7f42LiK8mZJrtRfWKK3fY7ZvCH8e5ZMC42m+dn7JNJ8R1VNXTDno6J/1fu915f6 WUf6f/vaCygsMegWY+hZrObaIK4QudWuVCy4+YJFlFBOTcISZYM68qayK4uExUXiCpl5FpZW qhs7HNzCzLAx2JgKp7haNaeYS57JmIhyO+9MK3RESgbu1gQ0pZm8KcsKIBDykA2BSCLgyR4P st8CT6BgycrcCmEZ2ogGgMEsMBnXrgw0FDZlhZaGoIpdLpWhVBoxUn3eon1e/DhrgRSMzmhP 5XBhAXo/b5iI0lhZfU37QHZOcQnK+aqVw4iCVofA2TzuY0nbWVO+3pzw7++8vvq2yMJsaQYi KMjZ8bqAx2u7nPbq1auzs7Pgep2dnVtaWtrb28PDw/v7+3ft2hUcHMwwcmlaVrWZfTLz5vLF Aoi1tHYbWCZ2d/W+AHgwVHxKRU5+w6sBj6GAsAL6yS0IeCBChOgNFYFAAOABLPjD1Ot3/YaA 2V5amSspzu/s6JiYfCzHn/UjS+L2z923fBzyA0vuefGyR/dvk0hLk+MPccGyDwrf74nbUBP0 35sFn9XhrCEb3NDahgrVDWgSti49qBp2zLtaO7BGxD5KvKaznMI6BNLKEhFQCHlbtiVoxujw 2M3g2Ex9p0DbkEzbqBJlu+iLtknOAZWYIJypUxTWP6m+Y2AJDwXtmietPCERlikrbqEwGkTy +hTC0gp5VOZpwlNt97ayvPRw6uG1wdGemprG9PCqSNPqQOUKV7Vk24vpzqah4uJoTp4r2UW3 r08FZ9VHZlfWxsR2mDvWnzqb+NMmn+82hnyxOe0/P5Z++UPyf76M2Ml2NS2LvP6Wct6E548g Bu7ePDw8k5OT/xDwSE1NxePxT548yczM9PHx6erq6u7uHh0dFRERAbQwPj7OEDzMHVL+GvDo Ws+aMw8eCSkV2XmvxOMxNDRUhGvqQ4ZaECFC9Hroz8TxgNwd4Kbd2UWe2XI/dWzSq5/0hAwe bW2NV0dHb03clxa4/D1L7q5Pg1g/Cf6JpfAsd+rt6zfJnoqFxepMq+G4z+8UfIfz+vRW9ke1 GQKzi2SKWF4gpucmOSWcCO0UMLp8WitUOLpd2rP4GCpedWC8m+K6IK9zIayAf3N44ixkux8+ epxbVm7jFWQTnO0UXaeHSlI3CzP1zHWKqLLwTjfHhqdkl9y9e59SfIm4soJfXsGv4Cmh36FA XkQibShRBliwvLQ4ff/OjetXbg333a6vildXN9u2vdDRDj8zPXTvkc/l6rCMiuGurmb3kGIh qYAvPwn49ofEb9mKvv2l6tvvKr798fKXvxTLnH8ydoNIGdd5GqXsNdDrCR7Ozs4DAwM3btyY nZ3t7OwEHAKOAGu4srLi5+cHDcFc+dP6MyHTX2yo5WWJ9Dx7tbyAkFUtiBAhej3BAzx15ubn riyvPM68dc//CmmGtLg809BYfWVocOLOA7nTqd+x5O78VwgAj80sxXw7I/u7RqCyo11ZdUG/ 3C/7b0Pwpz0Rnzenbr95cxSq+cGj+4GpJi7ZIkFNarrRXJap7FFd0qh0Eb8Uuzv371DcHotE 4hPyEMkKgfRswgQgiY7hEWvvOFRIkU9clbVPppp1xDmn/2PvPACbqPcHHudDfK73ngtRcYAs feoT11+f8sSBOFEEZO9N2bultIVSuujee680TZNmp2lGm902aZs23XvvkX33/91dG0NboIgo 4n35Ga+Xu9+Npvf95DsTHMOYLsHkE+eDvANjlYVlZtRHg1QZs2CwAf06/d+uKj383ieH/vN+ BYUMQyPNw72CInWBvHB4cLiaKmKs353871din5iZ+fQCysyZ2S89z37zHdLr/41ftrpZroLR cFYcPK4NHm5uboAKmEwm0FxarVYgELS2toI1AwMDABWEQuFvol5x8MDreOCCCy5/LvBQqVTE rEwBO6/KS9LlXwm+yRtMOgAemrLSjq7+jd+nzyBkzHsgaMEDQS8RmItmBAk5Kmz3vo56buT3 dZR7KpIfzL30WGnav2R5UUhlDPRdTZ3aNWq/H3uNj2jZ9sh55+hfhso2nIn5Mp7qNzA8iBYT HbKYzEiRDhNWAHTUcSFRaY86hZx2j/WOYzuH5Wx3jl1/JuyED+liGN3BM+GUS2BqNrujD8wA j6l9zO9huq7bAyvTil014mBi5LltO5rq5FMlkvb2NBWX5VWo6J11sv6erv7Kdu6Zi5QvPk15 /FnKrPk5b80nfvph4ufLUr5fowiOM/QMYHVFkPxeC3Q7fAxuW4sHOKX09PT8/HyxWNzZ2alW q729vZFSGNnZRUVFgENw8MDBA3+M44LLXwc8MPbg8/n1DfXlypLCs0zVUW57RYfOOCxXFFSU a9o6ejcsT3mGkDJ3WvD8aYGzCcxXHw6hpCgwFa/XmYRUb3n8g13M6Vz3x2pTH2ImrOzpakdR AAnI4MvynCPXBYt/cmD/b1P4W5d434RKl56NXsoQkUxmNEIC6XiCxIdCyKLJZDEivVPMFlmx 9kJA3EFnf5cw0sW43COXSetOhe88l+AcynYKIh06H3QpNFlZUWsaA4qx6mLQdS8WGov90JRr N6/ddXKXPTGSolaUV9eo4yJOpfmuYUbv41Bj+5rayzKpmWtXMl5/j/PxstQfPovY8nPc/oN5 l4MGapEk32E0swayWHDwuAZ4YLXCAHgIBIL4+Pje3t6IiAiwpry8/MKFC8nJyYAZcPDAwQN/ jOOCy18KPMBzlclkAo1gMVu6k2vUR7g8Ip8npJOz0jlsDovDX/5p8POEpLl/C5k/LWgOgT77 3ojIy/loPiyi5itKFezAN7o598giHq6Pf5QbOatUyYAR64MBoQGdIZ0aey5hZUDxisOkD3dG vxZU9Ikvf4lT1BZ5mRpFBhMEDWPAgDbNNUJjfpfGju4YEv3ohaDTl5MvRueeC8/d6hC/6XTM Cf9sl2jGUc+EE+7hREZe92iDOaQ0KtpN5Re0uLYUlZQt+eyHhQv/t3nrGX5BSW1tcVLw7hSX t1OdFyUE7q4uV1TKxNF7NlO//ilrk12Ky+ms6KCc+Hh2GrGrFSErHXKN0KixBgeP64GHSCTy 8fGprq4Gn7fS0lK5XA40TlFREe5qwcEDBw9ccPmrgUdzczODwRgaGgLLvWl1HT4VvY39EjnP x/tSXGysXKnatjplJiFq7t9CFzwQNO+unBcJCU6H6AY0iBQo+N7uIUHM4Uri3XU5D2pCHytL fTA3/cjQYB9a1hypv9HZ0eObcP4CbZlv4bJdcf+2S/pPuGqlK+U7t9hTtW3NKG8MjlkqsChR k9VpojOZ8+Ql53xiDl+Icg1nukULjniQ1p0K230x2TmS6RiUceR8gF9EcmlFrdmCRX0gMkX2 GBgeSclibN53dtXWk/RcWWNdUWbIVqLzgizn2Ule3/PZCYI8VqSrfc5JJ0kijc1hM/PY2ZTs bAq1ua0NHq1YakFqiUC4xeP64FFQUAAWXF1dOzuRGoYUCmXmzJmAeBsaGnDwwMEDf4zjgstf CjxUKlV+fr7JhBQU7U6tafPRwHp4RD+Yy2UoFYoRveXYHtoMQujc+8MBeMy/O+cFAmnjt/E9 3V2Y8jWY4FIOWRI1o1swTR78WDftQWbIO01VQjTpA6lTCgiivLrcKW6tB2+Jd8GPW4I/PE1e GqZa5ZCyLDz7Uu9gO+pxgcaKcY2yB4T0ox8tDlrb0hmVzjziHHLGM9kzlnsujL3JIW7T6QiH wOxLkbQzntH2bmHUXHnv4Gj1sKkbPXQWqKS2NT6bx+AWlClYSZ4ro47OjDn6j5RLn4lZiXyh kELOUHMEEr6aJVEKi4u4+aJMOq2+tQWGb7smcX8K8AgMDOzt7a2srASccP78eQ8Pj/b2dhw8 cPDAH+O44PLXAQ+goAUCgVKphNE4ydE6HsOwwTwklghK1SUGM2x/iPUsIfSVe8MWTg+efzf1 BQLt0ze81cVFaMdZJJCjvbJWGPh5G40giPz7UM4j0sjHZQwvk8msRwCiH7YYLBYoV045HvWV r3itE+PnDcFvXuB/EVq4wj56WVZuFGAeVI1b80MgCK2oajYbjAYDVlh12GDOE6tcvCKPXwi/ EMa+EC09cDFzw/FQO9dEtyimS3D2ofPRQTFZNdU1SC9bNHD0euyBlRBBNq5q7RCI8ot5GfHn fww+9FzY4cfTPb4uE7FkMi2FJyhUqYoKq4rUFYUlZQwej8JhdvSgKb1IMg4OHlMCj8zMTKw7 rYuLS2FhIThJjUZTXFyMMQMOHjh44I9xXHD564CHTqfLyMggEokDA0jr5P7Mxg4fDZJOaxgW iXglKrUFgl1Ocp4jhMy+N/LV6aHz7ia/SGC+Pcs1i5iFeDbQMAf9oF6Z4qJJuFeS8mBLymNN mY/kRK1u72pHOs1beiBzC1DSI3p9AivyePw3wYU/HyW/uyVqga9kuT9vpWP4Wqmah54LIAyg yyELlh5rMZiNIyaD3mjQW8yjQRQ19S3hCaTDTuEnvLI8Y0Rn/ZlbT8dss4+xD6Q7R+aeuBR9 0dMvTyAaHtFfYfeYQCDQ6IsOgkcAeVQ3txTKZbVyRqrHz6En5kTZv5TuvapWJq4o7WLkK4uq yxprW2tKK/M4PAaLXdtYj7SoBSdrxM73hv0sf0HwCAsLo1AoERERgYGBly5dAuwBFgYHB80A Lg2G4ZsW8DEG+Dp8awScpF6vv0WTw2iQ1a0To9F4gxf7IQYeIyNl494Cv7W0tDQcPHDBBZdf AR5YfxZMKbe2toJvo0Ap8AX87q6uwezmbr9KeAgGD1qxgF+iLgXbeDgzn7079MW7U+f/LXLe PakvEaiLnvUIC4w1W/SIaQLto6JRslnh86qID8n8H9HRnqCHzc5XphkhoKIBmQxYIMQJ0t7T E5By7gLpv0FFS3Ynvron/v1g5WY35ncXY7bXNVQh5UXhQQOMJLtAiNViAGnAYsGCTiGrUUGn N3BFckevkOPnwy6FcC9FSvefJ687Eb3HM905nnfCL+PwhdCYNFoLEv8JLtNotpiQxBMIDT4d YxHMnQMhWSkIotQ0tIkE+aUF1GS/jWGO86Oc56X5rW8tlbbWd4lkRfXdNeDrOZcuEotkvX19 o0iDJbP8quiOvyB4YAL4FhBCaWlpfX09WOjt7aXT6W1tbY03LWCSoaGhxlsjgDo6Ojpu0eTg RjXeSunv77/Bi30PA4/W1oJxb4HPbWxsLA4euOCCy68AD0AdWAQmWC4pKcnLywNaoFhVxKXm qN15HZ4a2AibTHqJQFBchNTrCL7Mfe6+8BfvIs+7P3r+/cmzCZR3n/P3uRTRO4DEWKIBpHB7 Zz0t5uemzEeZl/7WQ3yykPivjMxdw8NoSVIEI8xojTC4uqH8QsyGS/TPfOXfbI7497HMpSGq DeczVoQmufYMNlhggwHJrUVrqkMjmB9kUqmqqw2Lzzx2LtLei+oRKz8ZwNxwNnydU/SJiDzn KO6hC6FuvuH1Dc2oP8SMGEwsEFZwA7KJIzEjiSkIEXX2DItE8hxiQqzv/ojzn4Wcez8tZOdA o2qkZ7BUo9U2qDIyM5i0/MbGdr1eZ711v1puEXiAL6TgGU6j0W5b8HBxcUlJSQEfOYC7gDrI ZLKrqyue1YK7WnDwwAWXv4jFAyOQ/Px8qVQK1gD1XFteUXSJo7Jj1Srrewd6iqQSTVn50PCg 27m0F++PePku6vxpUQvuT5xDoL0zM/iSU2hVTQliNjAhyR0mk0HODKxJf0Lgf1955KMtnH9m hX3SrNXAWPAGwhJGCCl9YRYo80+F77wsXHkh77PN4W84M38IEW87F706jRtqsGD9VSxI8IgF uqL0+Ziuh8bMHwPDekae0tEz/tD56AsRdNdo5q7zsetPhx+5TLwQRT/tFXc5LKm9uw9zqiDF UaHR4BH4lyXE1QLIpKtvpFhdyaQyqMlRpLAL0e674gMPlyv4LXUdMrmKTE/PyszMz1VIChTq ElV3d/dNssdfqjut02Ti7Ozs5uaWkZGRnp6OgwcOHjh44ILLn07s7OxutOMYpjcHBgY4HI5W q4VhrOkZ3JfdUH44j58lYfLpmUmJZDJFJBPZHwuf/0j0SwTagumR8/8WO4fA+s8T4e7nYpUK EdogBR6B9WDnpooideJLpUn3sb3v62U/qgh7RUYJQ9NakJRT2GyEoF6AH0YTnM7NOR61LkD2 46nsRdsjF/nkr/cVrTkVvk5UjAV7mFDwuOrJm80Wg3G0clhFTWNIUuYhlwB770SfeO4ZP9Km M6E7XOIdI9gnvJI8Q5JVmprR7vUWK8iMGTxQV4vJbGxoa8+XFbFYAi6dJ6RyeaT07NQgUmoC KYOeEE9MzUjkMhm51DwWjSMUCZuamrAMIBw8fjV4YAI0Tn19Pd6rBQcPHDxwweWOF6vFo6Wl hclkglcMPCDY0kuq7/aq6G8dVKglwZcvR0TE1DfXJ8XkvfpExPME6oLpYQsfiH6ZwHnt0Rhv 50xhLtukG7TA5n5ID1S4cXBIkbSklT2N4nt3a9qjPUlPcSLWd/V3IoiAZMdaYIsBRjAE7hsa CckKdkz7OlDx+eGUd/cmfeBbvMKVuto1yq62QYVCAnSNXBGASCaDGQADhLp5+oeGWUKps2f0 6QuRnhFUl3D6NqeEn8/EnQ5mHr8YY38xjMbJHxhGXCrW6uYQhJYKAZeMBLtYeof7y6orCxRK gUAq5Mryc0XCXDqTRs8isUgkJptFL8jLk/LEComiQqvFonBvRnDwwGTmzJnZ2dng44eDxxRF q1W1tHiB1zsJPMCc3t7e+GMZF1zuePDAvrBrNBo2mz00NISiCFLBvIdU1+lRhhTgMOuEHE5B vhRsxqYpX3sq9DkCbeGDIfOmhbxI4M5/MNHXhSnk5HU1N5jhwX7YqEdnlmTYtedN58feo/J5 yEh5LC/8jeIiDpL4YUFriZnRlFmsKmlng0fyXrecrwMkq7bFvHaI+nZo0drzKd+Hp5/p6W8z WyCjxQRdDT1GvSUAPIYs0BA2YVVdW3R8zgmnAEfflPPR3IM+OVucEi+EM84HEo87BwTHZtY0 dWC7IvVBzCYI6W+LmGvAPwOkHzD0tQ+0NbY3VtbUlJZpSktKSksq1CXVanUl0ly1qrq1rqm7 s2tEp4Nt/D44eNwkeLi6ujY1NU2qAaurRRB0H6YEpzBeBxpsyhvf6MgF38tv2eTwLZsZG2d/ 3Y6/G3jgggsufx0B3/UlqIzRCGJjAODRcakU7keCSwslYlVRCXgrly1f9HzYswTmgr8Hzp8e OIcgevm+ZE8HTgFPWq4uhuCBEchsMqHN5nhx5VmPVFD/JnT622DWQ0XJT9HS7Q2mbqSLigke DdtA2ANQiK6oin8uatdl9lo3/tJ14S86534UJl3hErcikxNjsphNFv212r4iRzMh+bDQMATr MRAYGBzJFSnO+0Yfd4s6H8E47JW+xT78tG+mawj5xMUIZ584vqzUYMbaw4EzNiJBp+gZmZFU Gp0ZHjZA/SPm3kFd/8DgMJitf0A30D8yPKQz6Y1IMzubOBMcPH4r8LjGt3sYvguC7gXfwa87 dLq1JlP2VLacOMAhwIGusYHZrNDrd059QqPxGZPp8SluDCPptFOd2WB4ESCBXj/vRk4m9Ibu htn8MA4euOCCy62weIBXg8FAIpHi4+NbWlrMZqw9yi/gYTTqpEJBoaIYbCkVl/x3XvRMAnvh 3/0XTvefSxDPuYe8d01cbFg8l8O2wAakzAai0c0NlUpR1As9vEcK3B+oinywmf54dvji5kYZ lkkDYYdGAMcAHrdA+TML6PYR64Ly19pTPtoW8cJl8dc+eevORG1uaK8yW4zXugQYa2VrtqDZ skiHFhRSwP/rmttiUyknz/s7BxEPehHXngzbcz72YkTOWd/Uo+eDk8jczr4hbBKzxZoQC6He ICMWbop5cGxu1xXL0E0XSMfBYyrgAQSC7gF68Fa7WsAhwIF+Q1dLV9fe/v7lt8LV0trqCpCg sTHuTnK14IILLn8d8GhoaGAwGFgBST6frynX6PX6vqyGDvcyqB82GEekAn6hoghsWaqqXroo aQaBteBBXzBeIUhmEbI3fRullMpZXFZ7fx+ijw0jJrNhcKg/L2p1Y8oD9RkPcdwfbqH8XZXy Ty7pwpBxxALrLRDaggVsbIIgA5JIY7LoxGU8jxQ7T+aPTtSlO2PfO8f93lOwMobhpDfoYSsW YM1rRxU+EqkxVmcM3cCMpcgCAEGa24J5jUZjY2NzbAb9lG/aySDaER/KTueE/a7xZy6nOXjH X/CNTaGwtPVNRjMCSxBW4MMyNrAaJ2jSD2qZMWGsZEYKu1qsSTFXjisWryve3t6zZs3Cajj8 hlJQUACmvRUlnnDwuLPBQ5BfHJ8qSiWJpXI1Dh644ILLVORXVC4FylWhUABVNfrd32xWFik5 1JwSj7wOjxJ4GAYUIRMKiguRUM/62pafPk1/ipA9/8GghdN95iHgwVzzaWRbc6swn68uKUU1 r8WCVuAokVEFIa/00p4sCJyhjLxrKOcuZuCHheX5yDa2URtA5ZuMEBprWtOidYk56Ere6M5d vzVy0TnWR+6U5bSCFAum/k1oFTIzmmA7CgPm67IVdlFypdI3KOLoxdizQSyHAOaOs7E7HKLs A7LOBKcf8AiLSqe2dXShYGMyIYk5BqzDPXRFC5axemNIPCpKKRPGKBRB1orvf8zH4PYvIIaD x+0GHnJlySV/9rp9xPX7MzfYZW0+QEwm2RmM9/+e4FFYWGh9EOGCCy53MHgMDQ3xeLySkhKr AQRo+XptVaErp+QAp1pe29PXVSyVqIpKB4cG8vJE338c9wwhe860wAXT/RYQ8mcR6N+8G1Bf 3VhaquIL+GOWCMRa0NfbxI7+rjH1yeqMp+ju9w5lPSqLeS6LdgF1xVxhIQA8YUH8KYiGl5Tl O4Tv9mT/6MT8cHvoW76cTc6xq1VVCK5YgM43YvEhWONa81RUu9Un0tnVnUTlnvSKPuOd6BJC OeKWuvVU+CGP1LMhOcddo7yCE4o11SYkyQcyg38wNLrveIy5Zk+WK40fOHjcJHhoNBoevyA8 imQ03mcw3ELwEAqloZHEwaFHLJZ7fxPwUCqLGSxBVfXmvr7vfxPwKC5WJ6XknLAPWr/t0p4j 4ckZWwASCEVeKlXJzYMHiSrde4q06UD22j1pa3angLFub8bGA2RnL6eq2pfxdFpccMHltwUP 8DhisVjgcQ2PFjId9S6M0NurjovYaXwqm5yVkkwkZvPyOaSsrJVfxM0gpM++P3jh9MD5d+W9 SGAsWehXUdLQ0trEYDAMBgNsk6Ur5fjJw2Z1cR5he/+9PurJJspDqbFfNbU02yplaNS9geSv wLABLDEljDNR3/oKlp5M/cKZvMo1+yuflAMtXbWo0QMzchiRMWWPBhq4gogBMivKK3yiEk5f Cj3vT3L0oew8HbPPMdUpgH7KPeGUW2ROnmwQbe+COl3MKOFgHWOuwIprmFdsieMP4o47BzxI FM7G7S5v/t+uzq6H2jv+yWLzbwV4+AYkLf3uyJsf7tNUPDM49ACRxLpJ8JBIFAHBKd+vdkjL XNLe/tVNgodYrDjhEPi/ZUfe/eTkstX+q3Ykrtubfsn/JACPg6ePrdvu5eGTlMvL/3XgUVhU 6h3CXbsnfcN+EoYcNiMVsMe2w7ExydSyMg0OHrjggstvBR5geyyRFmMAAB4mMxJ/0ZPV0Oul HWrXKYol/h6XgkPCq+uqensHjuygPUmIeeX+iFenhyy4m/0igf7eLB9lQfVA/2i7DdimIWxT g4Ye8kkTdXpp9FNiz4d6Wffyo+cVCqlXWiQgFAzQuAo0jlRvMmVwYuwjvwkQ/Hgo4b/BijUO scuSmf7DZiPaNA5G630Zfulhex2LB2QyIZYMk9lgsSCtuHqHBnO4IhevmDNuiU4+1EPnUref iT3mmXXmcubR8xHRaYymtu5RcIBMY63qfrF3mK2xJFcfWFEzyx/0Mfizg0dhYbHzhfD/+2Tv q+/s+PBLp2/Xh/qF773kt+vLFS6rN7n6BaWq1eqbBw8mW7h936XX39/++vt7l3zv/uPmaP+I /dFJK79ccX7F+gupGfQbBY/y8vJ0ImPvIa//W3Lw/z4/+/WaoJPnHc+5bT52JiSNyCwpKf0V 4HHCIejz704s/tr1h02Ra/ekrd9PHDNKpK7Zk/rzrqRVO+JWbA77fo3b0TOhqRnMMo1miuBR rCrNpkkP2JNtDR0Tx7p9GRvtss5czMkTFOLggQsuuNw8eAB1rFKppFIptoxoZ0RHIy6M3qyG TnckxsNsNgg5bKlEjpgOTJDjEfoMQtic+2JeezBy/j05LxJobzzpy2eW6w26vLy8srIy2KY8 iN5somW6FMc915X5LN1jWiP5nvr4J7jJp4aNVzSN/aV7rAkN/4ChvoGhCKKnc8rnJ9L+72zO 5yGidY6R64UqoRHCXCcjkMWAQIF5Spc51hMOXJnBuk95VWN4EtXBPcrBI/6YR/p2x0S780kO PhnHz4f6hiaVlVeP7ov0gEO8L1hpdTMa3mFGDC7gNgFOAsxkQS0jyEA2RJJ2kIBZHDxuFDyS 0mmZWax1W5xff2/Hmx8e/HS514qtsev3ZYABvpIDJbh6Z8JPWyO/Wun27arzJxxCBQLJjYKH urRy/xHvwPD0L789+uq7O95dcnrZ6oBVOxOBQl+3Nx3Tvz/vTFi5LerrlRcPHAugMfKuCx55 fLFQJPULSv5xjcPr7+/75DuEYcBs4LQBHoBzXrk16uvVHtv2+QaFEQvE8hsCj3XbvJZvCNty OGfTQfLGA+Ak09bsSvl5V7LVKAHwA9wchEC2x/6wITCDxJ0KeOSLVceccsAZTmbomDD2IKaP rQczeIIiHDxwwQWXXwEev2h5NMCDRqPx+Xxb44MF1bI95Pr2iyq4DzYa9UqxuLhQjW3j7cJ+ 7t6Al++JX/hA9Ny7iS8RaK//I4SSruof6M3ISOfxeDZ+B+QoRWWFHP9PBklPcSOmKaIeGEp9 jBn2v4o6JYwWPEe1tI1HwoS4Q2DTCFhq7mj2STzpQl62PeJN77wVntQNF6IOV7dVoiygt5iM QOtDN6rasdiQsb0G9YY8qcIjJPKIW8Rx78z9LnH7HMMcPOKOOHifcfQSiOQjeiN6njDSksUC YSeLmHPQVnfoqwn6JdAUMcdACLghmb0wVkQeB48pg8f+I0EL39754ZdO362PAPpu04Gs9fvS gZ611YDI667kn3cmLl/v/+3PF28UPOKSaO/878Rr7+5eglBNPJh/08EsAAk2qtx6lKQfNgYt W3H+uuARHkNd9N9973/m8M3aMDDPpoMkFDmumA2s/xmdcMUG98BQ4tTBIyqOGRLFtr9IA6cK 8GPL4Wx0/nRszjGjBHHTQSo46MnzOaKCwqmAx+Ug2urdpJ93p1+fOn4xfRC3HspkcZU4eOCC Cy43Ax7gEZ2QkBAZGSmVStvb20eVM9pTZRQ8kHRanUwoVKJ1PICE++W+ON33BULCwr/FLrg3 bTaBuvChKI9zWfkiQXJyEoVCwcI8RmcC8+hNrPBj9QlPlVEfo3tMG8p4QhL9nIgfMGZjGQMP LDwCNSJAJh0MI84ObW31xdSNpzKW7o5+NzB/k1PiqmjqhSF9O7KrCTKbLDfWjB5CqcM4FrUx Vou9sa01ico+5RF1/FLkiYtRhx2DV2899f3Pe4/Ye6RmcTq6kO5yFow3ENBAKORKp4plfOiH 0WxBo0qua48BT2/wsL3R9jp3Knh4+GVt3hP48864DXakzYeomw5mbzxI2rA/Y80eVMn+QiCp 6/ZmrN+fufUw9UbBo6BAtn5X5M6DYev3JG6wI246QAFHAap8g13GWsRzkWzV5mv3pG20Q9wQ 1wWPLGqBq2fq7qPJu09kbz5EwU57ox0Rm9DmnNOB7t58kHLEPmnq4OEfRqGzxGCBnVvoHczd djgD3JktRyibD5E3HsjcdJCM/Hgw3TOQw+Aopx7jUSApOeWStXJr1A9bEhCzydTYY/0+4kGH nMg4Lg4euOCCyw2Bh600NzczGIyysjIej5eZmVlQUNDb24sp6auBR1K0aO5jfrMISa9NS351 WjIAj9n3R57an1hTU11XV2MN88DAA1PSaj45P+SlZvqjTI8HqpOfrMl8mJW6rW9gBKWgK8AD 6HaDGa3mZdYj2ALDcTSvi5QN++IXH0//MES0yj78S444FQu2MJtGLJD+hi0eKDWg9guDyaI3 YyEjZrOsRBMUm+boHrbvpPe7n659a/GqrYfdTrqGBEWmVtY0oKcKoAjpvguZTK0lajWVWkKn q2k5qpwcNY2uptOLaDlFzNy+pk7E0oGevOV6XHSLCoj9ScEjncTffTg8NIrJylXau+Zs3A9U f9a2Y/QtR7IRL8O+NJQH0jceyN5gl7VhX/o5D+aviPGwd0ndfSQ8NUPAFxY7e9E32aUDfbrt KDgKZdOBzPX70gEwrEeySklbDhHd/NjXBY98cZGnHzGdJFAUlsYmC484ZiPGgaO0rUeyATWt RVwhaRsPAE4g7z5O8gvnAaU/dfDwC6XkMMTWH6VydVQif+vBFHAHAHUcd6FFJwnFUtWNZrU0 NbX29w8LCzQHTqV+uz5q9c6pgcd+4tKfLn/2nQMGHtr6zvnLPbGx4mi89dcNlsGahJxC64/W dy9G5oK3cPDABZe/LHgAjV9SUiIUChHNq9eXl5ezWCwqlVpTU4MYQ6iN7W6IqwUBD5GoUKnC 9qJkKF5/OngWIXnh3+Ln3x83m0B76d4Yr3Mc8NbwyDCbzdZoNGN2FazDGzzQ3cqM+Lw+bbo6 9lFe8CMdOQ8wwj4qRaNBLBBa0WMsXcQM6wxwH0APWAfOCemdUl6ncojaco66bk/c6xfo7/rT l7uF76+qqUQOYRm0wEOwlVpsrA7jk0rG0GZsG6w8KVq5bDSJB1nb3duXm690uBj25coDX685 duR8lFsY+bRbuMvlaGlROYwZPmC4raws19dPGRFTEpekiohRBEfKAkPFfkH5l/0ozu6syCTj wPDoEa9nj8HBwxY8iGTR1v1hMck8TDkWFZUFRPB2HAMwkLHlMHXr0Zztx5kb7Ig7jpJ8Q3Nl CvWvCy4945K+42B4amYB9mOppiIygb/nZNb6/RlbjuQAzgFjo12muz9risGlADzOe6aRKAVj KcDlVIb8gg8TnOfWw9TtxxibDpDsL9KTifmFRaU3GlwaHJFDZ10RylIgVrpfzszKkZJpsnHJ JlMHD21lXV1DT1//yPCwLjSGt2Jz1I/XNH2gMJYBqGPef7Z++JkdBh4KTdP9i04BwMjOKwM4 AaAC+3WPQ5HF20LAwMEDF1z+4uCB5brqdDqBQFBYWGhdD56r4KGUQ6OWFhe3p1X2eJQD8Bgx DueLBEVjFg8hV/v+S5HPEVIXTAuaf1/sHILohXtj3E6zYaTnmlEkEmE9X8aiOS1YGQ05w08a /VQT9WGG+zRt5gMFCbNk7FAINulgNI/FjCSpQGazER6wwMNoRVMkiBOC9CazKZUWczZ229nM pfsi5vtyVl9M/zmU6Dg40oXktkAj0KghQ49koIw6T5AgT5PV04EGhZqQEiAWm5CQsZQYjFkg zAeD/FTf1JFBETi6RZ1yCb0Yku2aINrvm37IPYLDl5qB9A4w7c8HrljZQCZbxMV6al4fLa8t m9WWRu6PT28NjCaeOK0WcscOgls8bgA8UjMFm/YEh8XljtOYB08lrN8bv9Eu49BZchpZcpPp tMcdU7bsC0lME45bv/tw5LaDyVsPER3dc9i8wqmn04oKihxdk9JJ4yeMiGUdPpvpEchh5ip/ dTqtXFGsUl2BK5xcWUQc+1eUR7MFj+qahu6egcqqxura1r7+YUVRjd3J1B82xf68axL2wMJu v1jh9crrG+e+uemjLw7Zggd4HRw2AJwISkVqfwEOwcwdVsDAwQMXXG4rAX+w1q8Jvxt4WGM8 BgYGGAwGVsHDVlpamwUstuActd5eam4z6Uw6oVhUrFSjrDKQmsh5+/mAWQTiwum+C6fFvEJQ zLo71sGOYkGdC2VlZRwOx2AwoAcBelpvRrV9V30VM/SjKvKj4sAHJNGPlpGe4idsHuzpHE2L NUMw4loB4KG7wlCBSm9fXwTJ+1z8ijNJSw5EfeCXu8Y1YSMnP3uUKhDYQMFjLJYTGgMPCwzb 2FIQ9rg6B6B7jL1vMlk0lU2RCZQjziGHLhPPxnOPBaQfvRiiKamqzCB7fviJ62efSny8TVRO b0x6Q2RiVURMXWBYp4d/v7OX4uDR7LNnRlrRKujXC379i4DHxo0bly9ffl3wYHGlFzzTs8ZM B1Y5fCaORBFoNFP6dn9d8IiKZ/kGZXFypePWHzgZyxfKr9e+ZBLwUBaWJKVyuHnyCeDBEEuL pg4G8NQql3J5stBo5s2CR22jQlWfkSXMovB7+4Y1FQ2NTZ0XPLN/3BS5ckeyjekDMXSs2Brz /menX3lj09w3N8/7z5Zx4DHOvgEWjvvQMLsH5m3BwQOXP5G0dg7scCZafYhg+TecXFvfCf4W sD8QTACu/7aHmIqAv9xr/BneavBobm6m0+ngKQ2PlfyyjJkERoaGm5IrynbSJclCiUaRJ+JJ 82XKIgWbl5MSz/j8jZhZhLT5030WTIuZS5A9T0g4so2o1yExpS0tLTk5Oa2tregRTBA0YIKM iNI3mPIzLoljXtJmPsK//FgVcSYn7MOqQhlqrTAgVdBNEFqXFBp3qtgptXTXBxPPnov7/kTM h+dSv3GM3OzofbquuWXUdIHQh8U0ZuX4xZ1iAx4TI0DH3RR4rAuMtVppd/8IX1rsHRh3/FyA fUDG8WBS8MXwgG+Xu3/5P2lMWHFcfJ1/SJunb6W9g9bhTPXpU/WHj7XuO9K64yDv+zWa6DjY Wv7jdweP21BWrlz5008//bqS6UfsEyfSyG9eMv3gqfiJNHIzJdMj41gSafFvDh7gJMOiGTcJ HmASYYGmtLxJo22pa+ikMaVt7b2FqprwWN6GXTHfb4xdsyd13d40ML5c6fPae3vmvL5+Hkod E8ED0AX2oMYe2mABIw1sAQcPXP5Egmlk8HkGC9j4bS0D2J8MGHnyGutfhPWv42oCzuc3P43f Hzys3ha1Wp2XlzdaJh0VazotYo1htXWeK6oVVGXxsj183EP8Q3PzuI2tNbWVHWs+S3+WkIiU TJ8WNY8gBuCxa3Xi4MAwZkXBwjyg0cqfw2ZIh2W5NJdo6UGfaSkPiDynlUc/Lk14sSA7FAnx QEwRBhjSm2GjaQIjoeCBnGFtc3lw+lGn6GXr7N/+eO2Cdce/jaPF6UxGjBqQHrcwYi4xWqlj zJEyWlfdfO0K65C1zQqEVuowYaYUCOpt68xlCM9djjvmlXBxs4P9m29nu59qrSwTZ1AKnFxb nJxrdu2o2rahetumivUbin5cUfjJUsYrbyd9/q2hue66v4W/Dnhcmz2uDR5HHRIzs0W3Hjzi OLny2x885AoVkyO9SfCQyYvjEhkZWcKi0qbK6jaeoLhUU5fDEKZnckkUqU8w66ctMT9tjf3g C4e5b2565Y2NGHKAMf+t7Yu/PDbO1YLxBiAQ8PUNC/YAA3ytA8vW749gYXDYAJ6xtmGoOHjg cluJbajS1VQ2+CRPaiexNWtMuo0t2Nii+DjwAPuCGWzXgA1uFDzAgX5P8Ji6GAwGoVCIBXjY xGMgr0gVChjqptZ3XiyFe6GOga7k9GQ6hWk0Ilq+u2Nw+4/pzxCi500D4BE5/+785wnJG7+N 6+lB0k7BNvn5+XK5HMuURdwn0LAORoweugEDJ+GsLPmx0qjpRf5/1xAf4SSs7B4tnw6U/IgZ 1pkn+FnQcupI81qwprpZdiFky6dr31r4+XPfH3vtTMxaoSoHs3kA5BiydbdYfvGgmNEOtqOZ r9ctdw6hPe6Q+u1Iwi5SGwypC2ZpbO1ikXlOn6yJ3rGnXMbjSBTZ6Qymq2fJsePatWuKPv9U 9OF/yf/+T8zc2THPzEh+dIb/ky8q/XwtI/04eEyFPa7bJG7qcjNN4qbQKf7GmsTdkMA30iTu JsEDqaWmLuMLC5PSuDxBkaCgRKWuotKFuXnyUk2NtrLp25Xu//ng4Ox/r587ZuhAqGPR9s+/ OxkYmm4FD/D4wh5xACcwqLC1G1sDP7A8F8wGMu6haitgTm9vb1z94fKHiG1g0kTBjHWYKc8K z9ZwJmxH8LdgtfVNCtjYnwxG4BhLjAMP7C8FMxJifyngR6tDE9t9Yr6YQFlrPRzG+dhpWH06 2I7Y9wKwpS14YCuv8Vf5Wwlm4hgaGmIymfX19ePAA6vvCUHmHmpDp2sJ3AUPW3QSuaSkuBTb fWhw5OCmjJmE8PnTAhdOi5xL4D1PSF/5WWx72+iZY8m5iOUE0AISNzGih/V6lAiq5PmM0De0 6dMLPO8vSbmLnfB8dWHumNrXW+ARywRXC/o/M+KLQW0bhaVC+0uOW06t3On3uiP5PZ+07a1t WvCG3gIZLVbbxWRIYUENMNeI9vylEYsZjTU1IRGpYC8j1hUGHiqQXP7oKy03r7yh6XIaI5Gc lxefLjx+kvHpZ3Eznov8x9NBj80IfurpmKcfJz/1PPGRF5iLvwXfIXHwmAp74ODx+4PHWOpQ SXIaOzGV19k1wBcqKqsa2bnSQlXN8tXuCxftGEcdb3+0j0zJvXUFxHDB5Q+Ua3g9MLqwmhGA 7k5lFmNUAJat9g3b+A2wfqKZwqrx8+Q1KIHobQ8KmME28dw2L8w6FdjGyvZW4IkmyzEawWwp AGzgMb8ntiN2XOzcwLvW0xh3XbcaPIA0NzfHxcVZVZ6txQPJL4Us3dSGDgAe3UCnG/IlojK1 BjMhmEy6c4ezZ90VPvd+AB4R8wic5wnE5YtjWpo7YDRTRigUJiYmjoyMQFhfEwjwh9EAD0Gw ebh3iJNgJ45/RBHykDLmbmHaw1JaoEWPFfk0g82gyaMxUbsFCgJAlCrNpfCzHuTvQhRLziYt SWH6mSwG7FhDHW0t5eq2Um1rWXVLpba1sqy1srStUt3f3oxWHL32fbGNDhlryWKBzGZYD1uG OmpIOzfEr15l1huKW3u8kukJOQJtYSnf63L8p0t9/jEz8O9PRj39ctJTz2c9/SxjxsvCf87P e/Zd/gkXHDymwh44ePxR4IEJj6+QyKtyhRUKZQWXJy1W1y5f7fHqO7vGwGPrgrd3vf3xXiZb eEtLpuOCy+0JHuMiQoGm9k/OH+easRoAsQG2nzibrakBbADoxfagmDUD231cXpj1KBixYMyA YQZ2Mhj8gLes0SO2V2T1itqeBjbV70MdVikqKgoMDGQwGGq1uqenx5ZJMEXfQ23sdtfAPXBL V0tyRjKdwhgaHsIUc6Abb/bfImbfG7DwgbB5dzGfIxC/+b8Yrba6paVJIBCkpqbGxMT09fWZ xpJpYaScx5Ae7geqXyNm0UPfKk6YURD8sDRtLjPxcCdat9MIm9EQE2gyIoBQWwwSe4o6PmC+ POd87Hp/3nJv/o9nEzYU1YjAZsMNrbLEWE7gZV5wBDswihEcwvbzzfXyyL10URAVCY/Zc64P HhAWa4qmAY/CDqyik+xem5PjfNpgMdb2D/OLyqVlFXqDrig7K2Xj5vD5b0T869nEp1/IeuoF +tMvMV5cKFjwnuidpbknnXDwmAp74ODxx4IHFjoSl5zrG8LQaJs0FY3fr/JY+PZOAB7z39q+ YNHOZSvsWWzRrW4Shwsufyx4XM3VMi7KwhY8bLU5UO6YlwQbE9NVxgVXbHRIHQcetrtPavHA NsNCpwB7AHoBwzWSa33LFiRswcP2uNiP1w64uhWCRWJIJEhJBDqdTqVSAYdY8QOjiyFOe/t5 VVV+dSaX7OnrFRIQyhfyK6pLjaah1AjFgodjXrzLZ8G00Hn3MGYRsha/GhQfn8Rm06VSWXd3 t0gkam5uNpqHjVA/aslALCUAPIywaaCjnxt7PD/6aYHfzDSXRWGXlmrKEGwwwCbED2Ka1N4B G5F3jJAFeUEqkkP9LEm2ffiWi/yf7Sk/xFG9DP39otCY5P272xiUAb60I0fQSmF0p2UOxCYM RcUUXHBrKdGMXdkUwGOsIDridIFMsMnULFNS/HxUXFpHa52kUKwultfWaHoH29vKi5hn7dMX f5owY1bWjJncl+cL/v0e98P/pX71OeXQrrIc8h8CHmBCMLNthZbbnD1w8PjDwQMTOkuiLK6r b+pdvtrz1bd3zV+04613Nrz5/trYtCt69eLggcudJ9r6TkAO2XllN2TxGGdGuPYhxm2z3y3L NtD0avaHceCBOXFso0rOBrGsM1zN4jERPKyBH7/bHR4ZGWGxWFiAh16vLysry8nJAfgBVBWG HyODQ3UJ6pIdNFlygbyiMFeQKxFJ1aUlZGqWVJ4bcpnyxuPxLxDCFjwQNv9e1guEnPde9k5N JnV1dYyZU4q12ioI1pngXsRXgdbUMFp0BmgEMsPlEk6cz8uuux7b/tErTvveUEjiLUgFD7MZ KWOOmDTG0ktGX8H/EfCA9Ei8BRL1OQg4BcAHRUw7mrDOgfxzaMpJXoRfyIo15z9aUh4dB4mK +4j0juSU3oSE/vCI4cDQckdXnre/eXAQwsqYm0ZbrFizbK/GHuCf2TICjejgYQBN5prqhlq1 JCbgULLPTmLECSYnor+zrCI9nrLqZ/Ki95n/WcT+9EvSNyszNmyJOmHHpcb39bb+IeBxu9Xx uC574OBxm4AHUpZEqSZTxT+s8f73e3vfendtzrrn3vtoRXwGEwcPXO54wSIzrdGbrZ0DGIdM jPHA1o9DBdt4TiyN69rggZX8tYKHbXMBDIQmxR5rjKj1oJ5xfOv5j4vxwK5lUvCwLliv91eL nZ3dVDqOgUcQk8kca8uCCHiilpSUsNlsLpdbUqIu4AvEl9g1x4X6mhGg7KVySVkRElza0dFV Wqb2v5zw5ozI5wnx8x8Mn38P5wUC68M5vkWFWtRZg1xyTU19cXHJaFe2seoZgC7MFiRRt6+v LShy/fKlj69+e37QiTfzsk7193abkJwUowHJTzFbMIeKxYJ1VcFYxPqfBTJjNUgBxGTLsy5E 7fd333D+q0UeH31MPX1RHJrYHJvR6uVXc8Gp/IKjxsmx+tTZ2kP27O27m3ORUE8TmEMPIWkw JqxgKlZYDLqqGQQcCsmpMYNtSss661X56T7LspznxTm9FRW5o7omryaPkbh5e9JXK7J+WJu2 93Cyqzc1Mo6UkCiRFPT29/0hfz5/FvCwsgcOHrcPeGCSTszdauez4tMvKnY+hIMHLn81h8vE AmJYejiWLWIb3mkLHrZZLZOmiowDAPD9edI+R9juVlsExifWY2FEYX0X7IKZXybOMC7+ZNLT sJYavpmbNsU6HhqNBgAGlh5rNv/SmF6v1+fk5Li6uWakpVRHq/q8tHA/+K6vE4r4RdIi6+5c tviDOWEzCeFzHwxacA/jRQLzvRe9RMIilC6QQho9PX0yuRK+0reB2DMso+mxUjn5wtGvvHa+ zAp8jBn1WXMVuGrzCGwcQUufW8Yar5gxA4XZYqUXzGSBVViHkGQWY5EsO3DDV8defSH52KGu snJZGkl5yaPV4Wzjnv3aPfuqDhyu3XlQu2or8YPFbLu9hu42pEyHyWgxow1nx1k8JgcPLDnX BM5Do+mqLeZn+3/Bcn4u/dzC6NAtPCFRymIlObimHnHI8wqUpGTm07kiNo9BpUsksq7ubhw8 psIejz32GA4etxV4AHELTP2dwQOv44HL7eN2mdTrMZVQTLDvzWSnAq6Y9ChXqw1yNZ/O73m7 pgIeFotFKBQqFArbYEuAH+CJzefzGQyGVCYp4Asklzj1ZySWFpMeMkkk+WoFUjK9u7dLXSJN Skpf8kbws3f5v/Kgz4L7yC8S6G8/58Fly1BFjVQPNZksYrF04nGtlVH7OjoY4afzAp9rzSXw Ip8qz4+DLEakiBjW3gQ9KTDRCBLdAWF1OKwkAGFlNsaMFB25NN+3Pwj65gdZHltcpmQmxfPP 2TeePNGwZlvFj+uU36woWLyUMveNoCdm+M6bp06Igy0mA2zoh00jowaUa5EH5u/BcmwtkKlQ WV2aT0u++FHGgb/H2j0b6bOJy6cK8qSsNIaUkVcslqqk8kKRpFAq4/PzCqSS9jHfEw4e15Y3 3niD8BvJ3LlzHR0dCbdGwC19/fXXb9HkhYWFhFspO3bsuKHt737kpWX/918AHgvf/OKu6U+O ezczMxMHD1xwwWWK4KHX69lstu1m9fX1YE12dnZ+fn57ezvieRkcqk1Qq7dTZWkFBRoFj58r 4YsLC5WZ5HSxLFet1mz8LnXmXR5zpnsvuJ/0MoH72uMegT4pWA0xTCRimcFwRc/6X0qFIJU5 IDWHKAieNyQhFKfdLyM7GkZ04yqam9BipEbUxnEleEAwWiEEyEhtTfLPG90XflgWRypsqAtg UkgZGXlel4uPnhR+8W3qwjcjZr0U9tSMiH8+Hjdzpu+/nkj76ofBkhIzbO6EDQMwmrxrulZl c6znC/auwaDLIjHUfEqs0wfJ++6LO/BknM9mqUIgVpSzuHJ5iVaiLZeVqUvLylRqVQ6DrlAV 9Q0O/CEfg98KPIJSCxZvC/k9o49wuX0khshf+fmXADw++N8qnqTsdzgiDh644HKnggcW4DEw gOjE1tZWoKRIJJJIJGppaTGZTKPaHYaHuO1tjsoaUSVZkON52TPCPyxfwK+sqdDpR8wm+NgO 2sy7Ls2ednnB/ZmzCcJ/Px7g5hLN4QjE4vyeXsTKpJAru7o6x4EHZmAxowq/v70tL2pjWcrf y9Ifp/tv7ahsgnR680iPqX/YNKC3DCNuIPCfEQmxMNu2eUXAA62xYRoc4bt6np3zesbxc/qe EUljq2tKRiqZUcaS5J6+mLR4iesTT7j/4x8hjz+e9NTTpOdnZTzzYvTT82VObsZ+QEiWQTTL F6nVYe1jO0HMSDH30YMbjCM0OrtayY91/SLpxKMJZ55NDt5eqhaXlNfl5iuLtNUlTbXlzXXF FWU0DitXyB8eGbFA0G0CHphTDxtTr74Ltrx/0anftk3AX1wmDTnDwQMHD1xwubPBo7Kyks/n A8wQCoUAOcBrW1sbFu8xRgiI+6GX3tx9SQP3wu29HWkZKdwctl6ns27jepI76/5LL93vveBv 6S8RRK/9IzQ9id/e3pGby6FQMxRKeWFhUUND3VW0OTyIujjqpBSy8ztZZxdGHvqO4u1fEB+f HxOVFxIDBi80tqkYedYZTSakuAd0BcFgP5bxJadfe8/l/Y+kBQKAOOUd3SQ2nylSdrcZJRHE jJ9W+bzwUui/ZmQ8+Rzlqedpz8wWzF5EfvE94vLNXdpyExLFil6oZTTH5SqnakECWbHgWMgo lshLxPw4zzXRTi9HOC9IDd/XWF1YX18vlyubGhu6u9uUpUVkDlNSrBwcGf4DPwYTwQMouxVH 47HSu7b5Vjh4/J5ibWWCgwcOHrjgMonGMZkNI4aRId21h25IZxwxDvUP3yanPRXw4PF4Xl5e TCazqqpqcHDQbEa+7tsGYGAJpQA8Oi8ilUtHTDqRSKBWqGCs8jiq9RPDRfP/5fLC/Y4LHgx5 icBY8HBAclwejDSUN/X0dmu15dHRMUqlctITwCqBWXQ6SUJi8Ko1mqigASGzk5LdlZbelZDS FhvXER5T5R7IP+texRLoh0dMltH28tBoOVHEZwN+bFCVH136w8ZPvhCVKip76/P5xCJOQrmc 0dRc3a4p5zucJf5vacqMubQZrzD+/S71k68zl/5E2Xm4msI2DgxCFgirhGqtFjapIAktkBEh H+SopvKqWnIGOTHUMSZgTcDFFUmhTk3Vpa2tDSqVXKMq5NMY5AwSV8gvKStraWpGfUvXsXh4 e3uDJ21jY+OtBg8rRVhTt07708G4EMH9fFc4eGtweNQvlsos3uKYDlYecCdvPZduCx7RZPmu C5ngrW/sosFKlXY0f4ojqcR2weKrWzr7bQ8BJgTrs3JLx50kWA8Ogc2GpYNNOo9PohAcVFYy eoucQtjgxxY0zio7rwzMsPpE4g4XIti+qw/5M/RLEsVTlWD9RodU8CNYD84BbIPNOellhmZI wJwcSZX1MsFb68+kgIWJ95YlrsQmB3OCmbHLRE+p33qG2Hqw5U4XonUzcI3/3RIM7id4xdZY jwW2Aa/Ww1nvG1gJbk5iTiF2o8CPAmUtDh644HKHCVC+I4O67paeJm1LtbJWI64ok1xtlJdJ y6sVNSKiOCuW+icCj+HhYXVJCTUnh8Xm1NXV6fQ667VD1pKdMNxDb+64pAbgMWAcFgr5ankx qvoNaCdYWMAt/mCu0/P3H1rwsOvLhOR5D3slRSO6Y2RkuLq6gsViiAukev0VJuWx8hzYD4Oq 1BSXj74K/PoHyaWTbRlpdcGMJu/wVs+L9RedWs65dDq4lRxw9Fu2OsDRdUhvHOUV1PliQDq3 jRo9SiqqAsLiSsTKejUvxmtNkstHyeeWEGMPt7XLy1nkuLXryJ9/w1z6XcrWjUm+l+JjQ4ls StcQoiCQumAQ1lQOdaVclRCMCCWhjAJZjMWlWg4rP49FyWOlMEnJ2YkpGYnJKenJYQnhMYlx NDK47twcGo1FZ8hE+UhnvOuBx+9Zx2MceGC9h8i8UrDGShcJOYXYNgpNE5bDZX1rhzMRLGMN o61vYcHbL33tBr7Lg/XgFTOq2B4Cq34zzsxy3IdmPRA24dXmsZ4SPFbhB1vG1mN5bWBysIxl pQEFDZbB/NYeTFZrA7Z+KpcJNgYqHlsYd28xdxXmLsFCx7FrsZ0ZOyuwmVecwLoZOHnrltga 67Gsvx1sGTsf7FaAZXBbJt5bHDxwweUOEJPB1NnYVS7TasXVxZxSGV0hYcildIWMrrQOqXWB plAw5SpOkfeRwC2L90Wcj/2zgIdVEfYMD+bLFZnZFI6QW9dUbzAhD1IT0owNDCRftZvd2OAn M/VbOo16kVBULlGgKtpktiBblhRrvljk8dxdXvOnRcwmEOf+3SfMn97c3Mhm00mkLIWiyIT5 bsbiMSALrEdKcUFG1LjQp1IGf7/C/pOvNdmk0pwYaZCn9mJg49FzzfsPNRw6VGlnV7Fvv2aX XeqS7wK22OkNJit4jJYUhUZNL2BujbahpLCiRsUj+/1Ac5mbff7NlPBd+VKqnMXyP3TUf/ue ZPuzjIRYBpeWTMnIYNPae5EKaRYzYjUZzWixXN3kMVZHDM2ohZpb2+WyIqEgT5DH4efy+Bwe i8EkU8kkahaLy8nLE/EF4FYJ5XJ5Q139KGzdxuCBaTFbfwrmjrFqW0xRYm/ZkoZVaYK3wJqn PnG21cvWpgDYISbNAhs3G6aXrz2PFR6sDU8xFY81YbduA8DDtlIxODp4F6urY738a18mVgXo bBDLCjO2gs0D1ttWGbIeHbst2HWBLV9d4W2bID/OdWU9FtZE3no462zYuYErGvcrw8EDF1zu AOnvGiiVlGmkWkVuEcIb2GDKkMFQWIeYoZAwZRKGTMkqLmaW+Z0IXvPfbbuXHQ93i79NLuSq 4KGzwMMW5FWPDgNqutDD3U09Mr6YnUpWsgW9da3QsBn5ig82G4SHMmua3HnmHlOv0SgWFmjF SLasCUI0NvKwbWpctSRsJiF27t3kOQT6Kw8GHDsQzOWylYXi/r5B9JB6tMntWL81CBwcGkHD Jcy9/bSTjsdfW0R0v1yrLefRMyke58qcz9Ru29u8elvNqk3yn1YyvviU/M67Ec/PY51whK9Z aqO2tkVcXF4oZxDdPycdeyzx6DPRfpu5uVQxm0+KTQZziwX5IqRAvJjF5rDZnO7uHtja9/YG xWgwdnd3NzY2VlVXV1RUlJaVlZSUlJaWlpWWaTQarVZbV1fX2tra19en1+unMuHtBh6YVrVa J2zfGqf1rG8BNgBfycfp5XHAMCl4jHvrGvNg2hycFVYVx3aDia0NMM8Rtg3WBQkLq7DaWK57 mbbTTuy2AKACK9FjezMxkrF2QLBu+RHqW7GumQgekzZ3sL05YGMcPHDB5Q4T/bChra5dI9Yq uSoZSyljK2VMhYwhl4PBBEMhZyjkTKUCDPAuMuQKlkKao3A/5Ltu8c6tX9jt/upYmNvtbfEo N/Qm1Hcl1PUgo74ntqYvvnYQjNhaXVKLPqmjxbNYuCNNvI/UHlA+ENM4Et/Um1zTdZzZ48CE OyC90SgR5pfJEPDQIxmxZlQFGw6sy3iWEP7KXdQ5BO6cBwLdnFMHBwfH6nwBwNCZzViPlVGz h8GC1uMwQ5oU0slFH4Rs212vKOHmidPSSCQfX5m9o+KntYJ3P6YteCvhpTkRM56JeeLpiH/M jPn2B+PQ1et/QlBVZT2vQCHITY9z+jjJ7pEou6fi/TbK5ZxCiZzHYJcVq9XFqqKiYsAHbA6H yWIBKvjV4DFqHDOZAFfodLqhoaEBVMCFg2Wwxmg0Wq7TBPf3AI/e3l7AHuNq2E4FPKz+FFvl bssk1u/vtj9azRqDwwZbK8c1FCW2+zhHxtXmsXpSbKv8WU0u42a2BQ/s0qxFj62Xf43LxGDg uvG3mJXDikbY5OMMKeiF6G03mxQ8Jh4LBw9ccLmDpbO1ixrPIgZnx3mnxHglxXqlgIW0QBI5 PIcSwaBGMqmRLGzQorlgUKM5OXEcdiLP61jgWoQ6Dm1benD314fDLkXf1uBRMNzpUd3kU9Xq U93uXdXiqW33qOjxrOjyLu/21vZ61gxcru/2qG5xKW27oCk/KFTuYDSHKPv9C/SZVfAAPGw0 5Ofnq+VI5JtuNB4TaWFyZk/WC3cHzSEwZhOErzwYEoH2qYEgo9lktiAFvnQWC4RFhBjQ2AwL Yv6A+pUloct+Orv4M21uXntLd2RKTnQKXUjiChwuUj/5IvAfj/s8+s/Axx+PeeKJrMdn0p58 OfjlhRpy5tVa2kOQpaq6Ll9RLM3PjnX5IvnoM/HHX04P2VaqzgPEweMjcZ4VWm1VVRWPx6PR aFqtFmDDddrUXlNuiCv+KPCYKNiXcaDmJlowbLUhpuKtX8Ntgx+A+sZiDLC3bBnmv1uCrUV6 rdEO11aU2GzWA2E4cbV5rDraVk1r6zuxlZi3BQvYGAcemGsG63Rga6O4xmVaQykm7WoNj/VN sDp3rI4ka7ay7ZZng1i2m1knx67X9li2h8PBAxdc7mBprm0BsOF93N/rZKDXKTACwGuKd5bX oSDnnR4uu7yuGDu9nHd7Oe/y9DoY7LzNe8sn+3d8cWj7Fwf3fHU0zC3mtr5OpGoGBPfDcA+M vA6gy30WU7/ePGCE+0yWHgN4hYcgeMDSV9XBz2Tmcws7q3phNOy016DPKygoViqs2r65uUUh UZ7YHTfvIf85BM5sgmz29OBQfwYGHmj4BAIe0Gi6KmLuwPJV9f09qQeP7HlyVpajs2VouKNn IJnGS8wWNmu7C4PjKN8s958xw/upx0OffSZt5nOMx5/n/evl9OcX0Pbs13d2XA08Kqoq8+VK lZKT4LEq8fSr8WfezA7fV1MlKa2pFCqklQ11LR1tykIlAI+W5maMN341eNju+Es9tDG5ncED qGmrPd8aI2FVf7ZVwrDS/Zg2HPcWoAVMTdt2KwAiUNZaOxSM66J4jbbLtrNhjHG1eeCxNovj ZgP8gJlBMFWOBXzudSXZ2hysdhJwXbauE9vLtI3xwN4a15HBVmyPaGussA3SGHdo282snRTG Hcv2cLb3DVwLuKKp3M87ADwOHDiwatUqXDHhcmdLe1NHgm+a7+kgX/tQX4cQMPwcQtL9sgNO RXoeCpxkHAn0OBQYeCrm0p6ArUsAeBwEY++yY+G3jatlcukzW7rMg/ltvTl1Q0Xdln7LQGWX oW1ID5sHYYsJHWakRKfZhMZQdgx1ZUukmfRcsaKora9vwGwWSqVlaqRkent7i1AoIpNyChXF CWG5i2Z4v4yAh2LOg0HhAUz0YFhXOCB6a/orPFbyvL1O6/zTDxc++VRJJA/pdT2Dnepqjbqq xqSDO/gy5s7dye+8Hf70M3Ezns+cOZvz/ELR3Ldz3lksOHlmuK3tahfX1NzM4uZRsxIi3DZF OyyOPLuEEn2mt7umvrtNXl7aPtCjqdbS6fSW5hbEDmO5qYpe4+jiJqnj9wQPXK4hEyNdf4Vg fpap10i5/eX3Bw9ccPkrSFdbT6Jfhu/pQAw8fOyDwUj1y6JGsHMi2dQIzriRHcmmRHIY0fyL +303Ldn7ZwEPSDEwmNTY4arq8ahodS4cYndpQ2UD7HqghEfGckmRMAx0YCp0wGjQamvYjFwK nVkgkbAYTD6XK1dKydSMXC6vtqYRfNVXybWL57vPItBfIsjmPBgQFczCwAMaTRLRI5MaRvu/ IhVAYGiwv0Mj4FRxmFpFcW1zQ4EwXZAbUVxIbaopMdTXF3h6U5Z9R5zxCvmZ+blvfMT54POs Jcsytm7rKVYgTHQVi0d/X79criITU1NCnZK8t4c4r0kLO9/SWN3W31NYUSYtUqaRMhlMRqm6 pL6mdmho+CZR4bcVHDz+KMGMKpghZdLslanLDmciFjQyqWsGBw9ccMHlCktAV39SIPHymQDM 3IGBR5xnSrIPMdknY+JI8slM9CGm+Wef3+29Zcm+Pw14FPT1B1cNnNPoHKv7T5XpaL3V7pLh 7AbYiBo4LGN2CevASmtZ4JGB4dqKaiE7N9TXPzw0RFDAr6rT6nWj+RotjfUrFns/S8h6kVAw /2HfuAgeutpoBQ9EuWPNUNDZAJGYkFgPeLi3s0SlrdJWZEYcibrwaczlHzLizg40ldeycjPX bOe+/wXz/z4nL/0hdd3m5BPHMyOCDPqr1mezWEzNDU3igkIeh8ejpXOzQykpfikxoSQSicpi phAz4pOTMkiZLBaTxWRKC8Tt7R2T2i5w8PgLgoc1KsM2mOTXGUzG9bbGwQMXXHC5Knh090d5 J/icDfJBwQMbkRfjY92TY8C4lBTjjo5LSdhynFsqWIj3Sju/03Pbn8jV0mTqz+3qPFfatbdo 4HyVWaGv9ZLoqA2QGTVF/FIdY2yY0UiNsTBK/cBQtaa8uqpSb9CNRpaiJTqM+s4DG6KfJ2S9 QOC9+g+f5FgRotBtwMOCdJtF6nRh3haTBUnVBUtdnR2FxbU1mlJOxLZMlzlJbguj/VeWyCha oTRq79GYH5Zn7NhGdnSkRIVmUzIzciiDQ8NWWhjv7LCYuzq6lXKNgC8T8nh8HpXLzWHQOZkk ekpqWkpKMjk7m8Vhs9kcoVBYqlb39fbeVr+ZWwQeYEIwc2FhIf43jgsOHrjgcnuBRw8Aj0Rf x1/AA3W1kMjh9KxQ2sRBDmGAV0oky2O/39Yl+3d+cXDnnwI8LHCbuk1zWT6Y1tFwuaiT1VgW JBzg1gAdboRHq4mODQgarUxuGYbNQ5AJi/oY1fJYT3ozBBACqR0K67wcs+fcF/sigfHvfwam peSjW6F1PhA+MOpheAC26MEMZgQ7TJAFrRQK9XT1KJRVlcWFvPDtWQ7PJjo8E+f1PY+WmM/J Sw4Kzgz05GcmFuTSckVculhAYeUO9A5cDTyQOuZGc1/vSEN9e3l5lbpErShUSuRqqbxEIpbI JBKlXFFUVKQp0zQ3Nw8MDGC5wHc8eGB1PE6cOJF7dRmXbItl4F5XJp6qTqe77l6TIlBBQcG1 9wIbTNwLTHXdw01KYlO5ut4ruRRroXhdGXcnp3gzNRrNpL+4W3EnJ72Z172TJ518Fi96R7Xt CvCY4uekdwLhT+Vm4qY/XP4S4NE7EOWd5OsY7OMQPGrxsA9OukwkBuZkBFCR4Y+OsWViALI+ K4Thbue36ZM92z4/AMaeZcdvnzoeUVFRvZN9qR9o7G4VVBsbDN359V2ShhZR1XBtN2S+WpYq xh6QeVyZc9R1ArjCAJtG0IwXYqL0jX96vEQgvf1kNIUqGd0TrQcK5h5B+tqbAafARiNsMBgh 0xDqdent6JUWqIok+UTv7eH7ZoQfeDrhwhopi5kvllKZVLm0QKGQyeQysUwqLyxkc7j9ff3X ASsLICTziE4H0KKnp7e9s6utraO9vb2zs7Orq6u3p2d4eBhrSXO7CaYQdTbd934TAVqGcD0Z V14MY5XrCiCliZdw3b0+/vjjiSc5a9asa+81aWYlmOq6h7sa4F1XxkELuEVT2WvcnZzizdy4 cePE87xFd3LSmzmVOwmEu+ZBW/CY4udkIv5N5WZO/HThgsudJ+CrdPTlZF/HECt4BJ4L9zgQ sHvZkb3fHN/79SRj15dHzm508zoQvH7xrs2f7gNj59LDIa63dx0PoJoNSNlQwAHQsAUaNEM6 pPWZyQiZb7AoBTTap9VkQdrFw0px20fzA58kxH7wXFQBXzUpwEAWM2wC9GE0QRYd1gWms0+U r1KIxRm+O0IO/Sv8+CPJHivU+fxCVTkzj6cqUaPFQMu0Wq1MKsvLyzOZTNc8JWiydbdRBOkf Ijf6PR23eOAWjz+vxSMzM/PsBJkIhBj/nL2eTHH+cUKj0Sb+Nm03mPQ3jstfUAb7B2N9U3zP /mLx8HcMC7SPctru6bzTa9JxbrvH5aNh7nYBaz/evvHTXWBs/3x/8IWI2x08MI+JYaymBpLA AhnAuJFyWBAyAYS4UowWWIfo9K5208qv4v5JcP/kBc/8TF53Q3N7dX17TXVHtbajurqnttEy ZECOZbGY0GAPrMF8S2e3SKYpLVJnBu2OPPtklNP0RN+lFUWCisrGPJEE8EZjY0N9fb1MJmMy mROf6lfDj0kxA1tvLbiBf+ZxwWWK4h7MXLPWSbjzlds8xgMQ1Ouvvz5F69Cvs5ht3LjxunvZ 2dld2842d+7cO+BTAZ6hNU19/IIGfkEdt6CGK6rniGrZwkqWoJL5/+y9d1gcSZboe/943333 ze7szO7M9ExPt9S923dm2o3pVsuilvfegaAstnxRhZEA4YT33pvyFu+99x6EFUhCICFhJCSE 9/AiK6Xs6sIIkGkEdb7z5ZeVGelORkX8MuLEicK7Gfl30/PupOa2pea0JWW3JmW1JmbeTki/ HZvaFJPcHJ3cEJXQGJHQII2vk8TckkTXiqNrhJHVgohqLlBxNVtYzRJWhAnKwviVoeyKQHZx ECcvIr7q6bORjfTPGh0eFQVE+1r9BB4+lsERfvFJ7JxEVhbQJJkqrKdwcxwNPTUOauKPEIDq HqcGOYStc/CYnJ+ahLtOZHO1z80D5JgZhyJ4rEJm5+fG52emwGnGoU4U2HfDzjz+y/9Noak4 5/nxCkJZmYHBGUH+mQE+We5eGfZe7amFAHEA7IzB88DKuju6XwxkV9SUFBRGBRmF234Z7viJ OOhKV3tdd8+zmrr6vr5eABvgAy0pKenevXvzK4j3BaPFwpiibx5nQylK2YRS0/DYxiMXR48F iqVKLmI8YjNq1+3dwp04Xl5eK2kdWluL2e3bt1971N27d5dpZwNotDGCsrZ2DMRm3hXGAW3h xjZzottYEbdDJY0h4sYgYWMgt96f2+DDvuUZXuMeWuUaVOkcWOHgV27rXWrtUWLplmfhkn/D sdDEPvu6TbaxVbaBRQb9RjrVNJ10PZVolKbLTNFiJGrSEjCkWBQ5FqefQLiepH8j3ie05N7D 0XVlh+mZWbxlxK92WcAxkFel/7zizvON8LN82dXiZx0KwEPsFRsXmBYbmLqIBiUDTQxLdzb0 VN+PwxzWBap9nBK47sFjam56AjADIIU5SKFGiPmZGWi5ihYPGXjMTs5B0TnmJmEv0vni5FKd v2oIMc6DhVUjxaX9mRlPUhKexMc+EUTccw/OMXN6VN04OzMzBjWVvGxsGZgcK2+pS4iPFAfY 8lzVgh0O8wKZjzrbh4aG2+40d3Z2ZGfnRERElJaWgmcZGRlZPkq5fChRhfVF430pq5X1L7UN j209cs0cMgvKOiYnZ5QGeW9yr/OZd2gphhqtyUjAUCPRlAgMLVqTmaTJiBbF3Op/ProO7xkG j0WBYf3IBogGf7ezLyq1PkhYHigqCxaVBvMr/Xnlfpxi3/BS75Byr+Ayz8BSj4BiN79CR98i e59cG6+cmx6ZVm4ZFq5pZo5p123TrtmkGFmlMs2TGWZxDJNY2rVYilEM0TBKVz9Skx6hSYvE kCVogviqjkCdyNMxiqLeSKTfSKKZxpOM4hk3YuubH60fa1S3PPqPvdb/vtviV7stVwse36l5 CgOjFcBD4h2XEJwRH5S+iIakAE1mZTobeKruRaEOagLFHyX42wevc/CYk00CPwcPl517pa+m e18F5slGyU7Pzk/OAggBpdBoR36a776Tvipnm7jimbLKgeiYoQjJMI8/HMQa8Qkrp93gEhjt dbdmX43bnYMiow5UtZXm5CbkxsRnSzhR4c7cYL+sjMJbt6rz8pPj4+Ok0oi0tLT8/Hy421dJ C5tHbt994hZYhKXF4PXjcfQ4PCPB0iWrorZLaZk3l+X/Rb1PhjnSGk1mDMAMDDUKIIe8Yukx WgZJoBZobutTgsdmA4/B4aniik5ebEVYVHVYZENYRG2otCpYXBskqArgl/lxyn1ZVd6hVV4h Ze7BJe5B+S4BgD0K7LzzbT1zrd2zLV2zzJzSr9unXbdON7ROZlgkMUxTaGZxVJM4snEswTBK hxkFwANPjcCQJBiymHgt2sgm1cQh3cQx7Zp9qrFdynW7NBO7rBv20unpqXVik/zqdoAQv9pl 8WsVq48O2a1KD2gHS0Pi/SyC5cGD5SgSuEXzXSMXUTcpULFXjB3N5bKKuvo+jPp+DPawtq9d wDoHDwg6kPGySKzSuVeBSldeds1B4DEyD3RmZn5s4llzhImu5487c03MC/1DOoURD/yCuhxc e63sesyse0ysHhhaso6eLQvnzs2+jFUGrvfseX91c15uQUpRallZallBek5yfFaEJE0iEgh4 AZGRkoyMjKysLLDMycm5f//+BgYP2P1sYJ1FF/mlpKCsQ4vx84qPGgnYA3AIoJHbd54oTfQu ZHhkIi6tmWKSoGWQDEytgBzyitOPo5mnllY9XFf/SCV4vDsBtURR2V3PwNyb7lk2npk23pk2 ntnW7rk3PbKs3LPMnTKu2Sabu6Sb2CZdv5lk6pB6Dah9krFdwjXrFCPrZEPrJAOrJAPzZLp5 AsU0Vo8pJVyP1DOM0KVJdA0jtQ0jdQwitJkR2vpSbaoER5NgqRKmVZKdb4G9V66NWxZ0UY8s G58sU48MFEN44Ny1gtyIkZHn6wc8gB4mhhVU31+VVjU/ihek+ZkD6vgJPLguUql3/BIaJ/VO iPZPdqC7nN9z+co+1JX9KI3DeG87v/UOHj8P1YHo/KoKEKjJYnZqbm5Y5mU6PzlaHe5rtvM7 PpXyora+KiqhyMW7w8X3Ht20h2zURaK16ui2aGASDh5PoxqOP4Y+lMagTp/56dHx3iftbe13 Gyu7aosai4sKCkoq8gvr87MLivIzi4sLi4qKysvLa2tr29rahoeHN3CZr4xcCsvQ8ERMSpOe cSKWFr2wvgMcArX260eHCqu6eweVqPC2ZGZmFsDedbt0TWYijh67DHL81PRBi8HR45z9Cpta e5XgseHBIyu/BU9laRA4KKoQTRFjyDwsmYMl87FkEYYo1DeLtPFM06QKLOwTLB3iwF40RYSi iHAUHo7Cx1EEQPEUAZYixFD4ukyBo3c6xUxCNZU6eabqMkQYighPFeFoYCnGUURYmhionpHE 1C7Fxb/INajYNajENbTc2DHpEMr1v/cw9pw1SIrwevSwbV2Bh7qpeA2HJ4jSAq3CfF85l3pb BIk9Y+OD0+OC0hbT1Lig9OTwHCeG29mdFy79qAb06kG0p63vOgePOVlADjiEuXxw9NV1tEAn mZ6em56U8UpfbqHn3mMuxy5XpxXW1TYXRCem3HRus3K5q6V/X1Wr4uTZuJ07Iv/6l7BPPvf4 2z8b+FLo2wqwx5zM42RybHR8crh/9llP/6PeljuPWtvaHz+429vV/hDc/6NHj/r7+4eGhsbH xze2Y4YSPKanZ3OK2g2tU0Hdt7CF/+dVXrQWM4lkkhCV1DQ4NKHEhjeU+uYeB+98vH4cnhG/ EuSQ48BIGahEB/EqHj5+8UGCR1vbfHX1T/r4sWICsNHBAdK2tkVbKqFd/v7z3d0bFTwmp2er 6x9o0/loqhhDFeAAIVClWKpYhgp8LE2IJvD50or7vaNUY15hRWdFQweOyMHQRFi6AE8X4ugi PA1SHE2AowmxFP4Nu+jegSmPoCyv4PzH/eNmVpEYsgBPE4K9eJoATxVqyg7BUMRgC8082tG/ wCW0VNNY8PcjZp/u0P9sN13lvFF6tM/jB60bADzihSnBN1kwePhYBQPwEHnGAMZY3Lk0MCU2 MC0pLMuJ6XZmx7kLey8DVT2g7mHjtd7BQ4YKC4Ojrwo85qBxMdNTsqEwM/fuJOAwZn/fkctO aLk3wE3JjYpNzPUNrjO8UXL6SuRX21if/c3/oz8GfPxf7E8+CfrT55LTV4Zabs9AfTRzE7LZ 6JAmlJm5kYnZ0cmpmenJuanx6ampKXlvUiV4bGCpaXh80z0HVHx4/ZXWfVh6rCYzycA6Navg 7uTk9LxSVtNgOS/zxs8rafdnlWFpUZqMRNiDdA0KO53qGsWJYut/WafTtYDH3r3z/+t/zf/l Lz9pQsLP9iLbQTIdnZ8BCbwdSSMQbEjwiE6pI5pEaZABckjwFCkebpegivAUEZYqwNJ5OBI7 v7S9tfMZgc5Ky2m53ztAMhCiyRIMxBIiWAFOQEqWoCl8j+DMwYkZK6cEG7fMwck5d78UdQIX gApOn4+j8/FUgewSAsA2WCrAD4GWgeg4xuOzXbRPduhv3WO0ZTdT5bxhWoz344cbATwSRanB 1qxXE7VA4CH0iI4PTl8KPOIC0pLDsh0M3I5vP3N2z8WzKhcv7VNzs/Zc5+Dxlgqu2fG5ySmA AYNjNU6ODn/7LOqa6cDTkVsdTzzEkfyUjNvZ+eVmFrH7Djn/5g9+v/sT/5NPRJ/9Of6Trcl/ /IL1yZflNx1mh15MQSeZUw5U2MzgMTU90w6NniiBKq811X04/XhNRoKFc2Z5zUNlLlq5ZOW1 2nrkoKnxeGB2WtTakGOh06m+eXJK1i9WHawRPIAi4uPz00+YKJCGDn9/iD1guujuhnZdvDiP 9P8CJgFbVtDuwWQy1dXVP6CsEsAu1jGMx9LEAAY0qWJNGsQGOJoYQ5OggZK4ZrbRvc8nRfEV GrosF5/0p6PTPqF5Gjo8LA2AhAgD9ZtArIKlSvFUCZbKL6npar7bR2IIyYYRzfeellR34Mkc wDB4Ol+TLsTSpODkOKoQWtIEeIpEg8L95/Ebn+7S/3Sv/hYVxpbdDJXzRqmxADw2QldLkkQR PATuUa8Bj9Ase6bbkR9Ont59FuiFHy+5WrltBvCYl7V4gO+m1qJKo23bTf7+1b2UzLnZ+Yf9 vbE5qelVNc8edzfweVEXLoT/z1/FH/0p/pM/Jv/hT8V/+qLi8+8SvtwpvKA6eLsZasOYnJI5 uyplM4JHRe1DS5dsbWbsoqMnVqHyfqd3lX6nK5K84ns8abWBVQqOHqWqJ0GRI96cPWCnUzwz MVRY/bhn6IMEj4wMiB/mZX0oADPkWz9gugD4AcTYGEqm4HUGOGR9u5esTUJ5xQSjOBk2iHBQ I4YMJ+gSdYpETYdLM+LXND1u63xONRGiAGDocwsq2+93D12ziFTXY6OpEohP6AIMUKoUTRTe dE5+OjjtFZQO+YGQeZ5BmS9GZkSRFRhCGIbIw5PFeBpILMTSAdhIMTQhgBw0lf/dKatP9+hv +ZGxRYW5ZZcMPGI2CHgkS9PkwCMEBo9lulpkLR5ZDgbuh7cdP7nzJNBzKudcLF02BXjMzc7J JqatySt1xesG6RLuFVU+fzHS1VX3oKP0QW/n+OxIR21xvD41ftePcb//Y/yWjzP/+k35dz8W 7jqScOJCvpPjeO9DqHtnanrVsdqV4LEhhCcp1zGI1aDEaZCj3kqVB/ud4mhST2Pre3b7Ou1V Npfa7bpD/c820q9Xos3E3xQUt9g5i2wcxZ4BaRbOGQA81AiSt/Ii0JRIbcNUIkOy6KXv6P+h h607NzX+LjLV2sED8fHQ1YX4AYiDw0sCWQmubGgJFhRrG8epE4VXSXw1El+dKACqpsfWILIs 7GNqm7ta7j83tYlS1w5RJwmvEsPoJpz61t6G2z3QRr0wNJEL0l/V46nrscjGvMr6R0G8QnVi uDpBCJ2TEBrKL+l+NhGdUksx4qN0w9F6HBSRhyZwUUSuBpGPIXHRFPF3p20/2a3/+R7GVhXm VlmLR9pGBA8fy+DlwSMmCCyTk8Iy7Q1dD2w7dHTn8WM7T5xWOetk6bxOcktPT8/yM5u8IXnM zUzOzk5PTUxODI7cLq9rrLnTdLdVwjZI8VNPDzPIzAl90N9YmyCNv6yRuv1g3JmLAryWhMGM srRKZoU+e9Y3Pjc3Oj839V7cNib72p9E3+jhEt+i9grp/UmOb1GjjY7Rfvjf9wTX3+5p1602 s2+k2+lFmWrzGLggAsqRbIQlct78uxtDjcTRY2n6XCeycQPhv1ZYEW9sbV2wpZj4l3r9/8k3 2M0y1PQwNjYx9bFylHoF5xhaJWozo68SJBpk6dqQA+CfBkl8QtVzzzGLRW6G8ts28n+0Uf/z WabPOgKPrVvnCQRIv/tu/uDBl9sXBY+hoeXAY2hoQ4JHILvoul1aRHx1ZFJNRFJNVGJNdGJl dmHLnXt9I2OTdzv7EtLrJHEVUUlVUUk10qRacWJVfHpNR1f/4OhUbf2D+JSayISaxMyW2qbH TwZGm1sfSuMqpYnV0Qk1MQk1YEUSX15Q2tg3MPx0YLS26VFSRhO4UFQSuFx1dFK1JK6KZhb9 3QmrLbvpW/bob93D2GAtHulRWStv8YgOAuyRBMDDztBl/7aDR3aeAHp8zxl7S6fNQcFz87PT M7LZ7YG0t3XWNTy81XIrIgib4fB1+s3vpSE6pQ2pJdnpArpJjO61zABBelxKZmZOXFJKTHp2 78jo9LxsPtzp1Q6nWYs8jbNW1j7rX+PM9bC0SDU9CerN2j1w9JgzqIAdB4yLtD9WWhXo8K0k hX9E+/2fBX4cGZ3MK2wI46QyrgW6eMd5BedhqdJL2sKVc6CM92I0SJKjl9z+uYf21Ta9ExfN F/4TkVsC5PmOvrYWnZZuFV0tKiov/TQW7WpBEsNYIt/VAtbBFmPjjVfW+4QVOvjnT/6saRqa BnxqZnJyZqlvW6h0n5qamvlpLo65mdmpqenJpb40Z+fmpkHquWlZrfCqlgGfjXPzNq6p3x22 3LqbsUVF/zO4xePCxgGPvKQCZFQLHMfjteCRHJZlb+gmA49jQI/vOWlv6bBpwANkkrkx2cDc jvbO6rqOiqoysdflhBt/jL72schHI6cgLi87P4MtqotJqyqoKSmoLC6uysorScvIHxiQTfQz JZur7t2Dx+zYiz4xs8vz1HrWIv2vBed+ddfx0ArTb7DKsZ7ySRKX6+6fZmqfdkVHpE6UrKmt I0adKD560eWrH/S+3Kbb0/t8XimL1wqL/OuePB2URuXTDH3b7nY3tfa4+OWq6gov64heix/A 7BhK5KmrPtv2GQCzf7lNJzAs+cXgyPsHj7WIAngAooC7WuZfOZci7SewcymMIrBzKUiAeJOu 2Ln0gxPf8EJ7n7wXozMjkzMjE3OjE3NjEzOzMn6YnJkbHBofGh0fmZwcnp4dm5ydGJ8dm5ga HZseHB6dgIKLQuEpx6dmx2dm5mRhsodHpsfAGcZnhydmgI5OzID1F8MTI2NT8LSlIOXwxNzI +Nzo5CzY9nxo1to59btjN7eokLf+SPtMxXDrHuaeCwapMb5ZuUXj62A42xuCR1F6SfDNcF/L tYHHUaDH95zYNOAhc9CYmx+FhsNO3r97p7i0uSA/l2t3Ssj4Fdvw9yIfrcryotLShuLsguZb 1RW3Gm7VNTXeasrJy09PyxgeGIRG5EKzxczOKqOgy2QzD6cFWaC9ozeYlaxD8XT3jY1KrMPT I9SJK2/th5ADrJxU8/5+L/Orbbp7DjOCwpNmZ5XuQ6uWx93PK6ruJKZUPBsYzcxtMbNPvaQt VNUTLxVQBegFbMjOwyZfQcihdwl1MzWjcqmTfwDgUVj4M7pQGGwr36ABgER+EO7GHU4bxC2i WyQ4emY4eac5+QBNd/VN40hKqhofDU3O1DV3ePtn2rpn2PumO3lnO/pm2PoluXqmZhc1Dk7O 3LnfHx1f6+GX6xuan1V8u/fFWFF5m51LipNnpqNPqqNPupNPhq1riiCioKd/pO/FREZ+q29o gZN3hrNPqrNPmotPuoNXuq6x+PuT1lt36X++h7lFxWiLiv7eM/qpMd5HNe1/tcvi4yMOR0nh rtz88sZfZlzbG4JHeXZlCAQeQYibB8814rVdLQ5Gbge2Hdic4DE9Nz8OIerU/Tvt1RVt1SUF IuczPNPfhpl/EhlIvFNf13DrfmFhRfOdhub7rW2tbUWFBalpqU1NDdNTUEvH9Pz02DxgYuWA 2s0OHrCMjU0VljR5+kU/6h7IKWzD0qQXtYQaJOnr4meCui/qHCZ4x6FroO4DehXv0PVIObZl +fbK5WR6erqu/n59Y4esAXw+ObOJZhp7UUug/vN3ASx/RZuz94TVN9sJX23TO3TmOl+SNTa2 XDy39QgebW2KkcGqq3+2Bfz094egYtHWDDi82Gq8Sj448AgWlOkYJ6jr8q7qsq4QwlUJHDVd PvipzeT6hBa0dbwoLu8gMAWXtMNV9fiXdTkahODIuMoHvcOShEradQmKEK4ONmpzNMlsS4eo 6qYuW7eky/ggNT3WVQLromagrVvyna7nRdXtN+2TNIk8DT32VbBLj6NO4GjostT1wtSp7O9P W23Zxdi6x/DjXdQtO/WoBpZpErfdqubIbGuAQD46aPubvVYAQkJiKlo73l8J8IbgUV/aGGbP 8Vk7eBw/sfvUzeu26yS3cDic9zbxx/P+yY6WJz23q2ND1SI8/hLj+XW+hDH1pGOwb6y1pWt4 dPjJ067GxnogY2NjymJ/UYEnzh4fH9/kdhgbmywpu11b3952r887pFCDKF7K2QBDg9w5Lmux VI5bfL2dAD63j50zEUfljU9MKbPTW3gR45Ndj5/1PYHi0g8OTQqjqnSYkTL30Ui4V+sMyv/v O8kAObbvp7n7RvU9eX1psx7B473LhwcevHI9oxQ8NIWKEIroRRPjKGIsRaJBFqJ0uFY2sfe7 n5c1PtRm8DFUIY7MlsbXPBuZ8Q/Jw+mwsCQ+li6EophSpViyFKUX7hGU1fNs/KZLAgbsIvGt XZJ6Xkyk57fo0AFmQIHW0bLhtGiqFC0LdqpFE6Gp4u9O3/x4D/XPO8nfHCDr6FsKuS4JEndV fS9Q3QPeUJiS/rd7rX93wObzU84054T3QCBvCB63a++EOwtWBx7hmfZGrgdkPh6Hdxw5qXJG yBKvk9zyjuN4IF9NUGv2i4HRrs7evq77zXWpTVWi21WSjua8sYEno4OjfX3PAWx0d3e1t98b HFROrqGUFcmDrqcTst7bW02PbNwyVHWEGuQIJLwYXPGp6QkOnrX/difpq226O/bTvAJin/a/ UJru7cqzZ8OdD54+lzllhbDzjl/2BiiIIkuOX/b4dgfpmx90r1uGt95ZaRO3Ejw+SPDgluoZ x2OhkBpSKHIpRaxFEeBpAhRdDEXn0GU7uscODE2HCIvVCGxrp/j+4SleXLUqgYOmCjRpUHx1 CFqoEixNiqVLcXRew90nFQ2P8PpCLQNxZUN3Q1uvNp2tQQS8AahGAgUco4sA2KAp0LomTYii SP95zPazHXqn1A3cPJxiJV6xQpfOjtrZWai1vLzxoSs3/ygp/Dd7rf5w0PbXKlZyEGIGCOSv 591CYioGht7VN90bgsed+naWiyJ4LBVADIBHLACPULjF49Dh7cdO/HjS3sp+YmK9zBzxzsFD KUp5l9Ld/fxBVz+8nld0R4su1iBJ4VYODZL4mGz0xJfbdL/doWdhy2nv6FZa7N1Jb99Ab++A q1fSwVOOJy667pT1ah09Z1JS1rSq87xr8Kirq7O2tn5b5V5371BP39sfIfvBgUcgu1CLEYmm C7CyEOhYSAU4mgBQAUpfpEGX4CmcipqOW629WlRWXHJjd98QzVSsTpFgqZF4iBwEcMhTHE2C o0lRFH4QK+fFyLSJfYylS+Kz4Wn/0HQNIgtHh86MowvhqeI0qXw8jYeFAplKNIj845fN6cYW ApZ7gsApgnWzqbZw0Vu91dbtKy7eqx38axXL3x+wkW8D+c99NwEYgATrDTzam++Huwm8X00S B8CD7xaRGJoZH5wGNCE4HSi8Ds0cF5IWH5KSEp7taOx+4LtDx3aedLR2mpxcR/NVKcFjoahe EyYVtLyLM9958LTm9iOgYEVp57clAOMfdvV3PXoG1g3NhMcuuKvpcE+r+23bZwC5c3yvQ9T3 rqptUxrq/Uh13f1r5qIjZ+z+voN4Ts2qpfXBas/wrsHjbc1OOz4xnZF/x9gm7ZptWnbhvYm3 OnTigwOPxrYez8A8DQIHR42QRUoXo+gSDDRviwQn6xZBEQXSuNre55PU6/zyuq7mtm4tcrgm RaJFlUKdLDSxbEY5KR6ABzT3itDCKX5wYt4nOD0wNO/ZyKypXTSKIsRDaSCeAXiDoUlkhwhA YiyVf90iMMjXM1boEcmxiRa61VZlTU+9pqodGBqPyKg/z+QBAgHUgRDIHw7abkf7F1TfXz/g 0dnygOMs9rEM87UKBepjFRLuwBd7RoHHBSqSqRBRzwihhzTCO+4m3enQjqM3DCwmJ9dXz/La wMOZnff1JQ9YQTW6wUpO8FDcxOpFgQR5aliDIsuQvcAOCntB+uHRlzkf5OGDeiEg18G7wAqw obKSeovy4sXog65+qgH72DnXQ6dsZe4cupfRtmmZVUrjrE3eZCBZOC/H3IY/s6aAwx8EeFTX P7Z0ycIzEnD0WBw9DqzcdMupbXy8OcFjfHK6pb1vcmrO0T0BpctGk7kYsgBDEqPIQixJgCVz MJRwdRLL0DrOn12iSeM6+Wc7+2VgiCywCwsFRedrkAUokgAFlhQeisxBk3gEQ3Egv9TwRqSh eYwfq1iPKUJR+GAvmsJBkbkaZD5IDJZ4MkvfMMjVPUjC847l2UtZjplJwp6ezlXdPyCQkJiK z085f3TQFsGPjw7ZAfx4W60fbwgeD1ofRvnGhznyw51gFYQ78sPseeFAHXhhMg1/paHQksNx ETsYud00tRkeHllvGWZt4DE8OmnikwZsKEqte21iol0sqGrf50MBHngTIloKPAA5wKcFioAE YgGwEfwEZoETAK4AP+Hz9DwdAgeC9DBCg5/gqJWYTimrla5Hz4LCsxkYxhlVS6Eke3R0QmmT D07WP3hk5t/F0KIBbKApyHyFkZqMBAw1yp9T/uDRW3DX/4DAIyG/ecsJJ2nGLbD+pH/IwzfG 0Mz3+o1AM/NgE4sgU5mamQeYWgQam/kbGvuYmgcZmfgZmvqbWQTDe8EWsEQSv1w3CzI08jU1 C7x2I8Dwmp/JjQBTK1l6SyRx4HWLIDv7AE6of5TQRcK6GSvxrKvOGRtde89XeePD80zef+2z kW/9CIoq+8XBY2hgqKm2ub6ysaGyCWijbLmMQgkqmhqrmybG1mMZuOauFrhiXUnlDtfX7/Oh Vn5vawAPefqCcUIePOTbMQCEkB3j3vx+5EU5quU1H+lT4x03t0EBwA3+e3qwV2kQJXi8XfAY HJqQxtdrGyQsOl8hPBOQrlFcRELDi8E3+pN+EODR2vFkr3bwH2StBI6s3OK6jpb7fWB7d09H TXlmRUFCRWFiRVFyRVFSZWFiZVFCRVHiyy2FMi1KroT2ylYKk2QboSW0EayAZUGy7EBovVx2 CLwuSw+dtqIgsao4qaootro07kF77fzc26lkO7uf61hH/e6A7b/JBsL8h4qVbUj2LwseG0ze CnhEZtYT7WLvPHiqek0IKmKwhH0YwBKurEFKeDtyOPjeB1vkE8OSVNCCnAScHCzBmeFd8DrY CPYiG4Miy+DzAIUdM8DNIFcEipy8oPo+fGYk5VIXXSF4wIiyDHiAdRg8wE2CXW/Fb0QZx2N5 GSgIR6qtp3HWSoMoweNtgcf0zGx+yX1DqxSt182SjKXFgDSG1im5xe3T02sMT7f+wSM8rupP h+1eumXuu/nxEQdeUs1Gyoe9/UOgAP+dzPv0P/fZ/OOK15uMulWCx1sHD39pKVwFg42I+8cy 4AGwAe6VAIlhxwkYDwCNgO1gC9gO9iIHytfyQMEuGDxAMuSi8DkBXSwKHvCZQRokJdLTsehF VwIe4FrypLEQPMA5gWXmX3W1AH3z7hUleCwvoKpCqq1eHklpECV4vBXwaG7rc/TJx+nH4/Xj VxgpFy9LbO+d33h7LS1v6xk8BobGz+hz/vDKHeJPR+w9BYUbNTcC2PjyosfLJz1sB3BLCR7r CjxA9SpflSM9C4vW1/JumWAvDBLICtIQoQAeCp4bCmNDwF5ADvOLdW0onFne7URhF3x7y4AH zDkwosi34cDgAQMMAlQNd3qQvbBPyML2FiV4KMFDKesWPPqeDrPE1Th6tCYzEQkRs/KJgTQZ ieDYUEFVd+/qHA/WLXiAivhv593+bbcl3A6wHe3f2z+0sTMkeORPjjnAjwxwC3NDsobJX5Tg 8S7AA8ED5AMf+fZXAA+4yoY9MGGFE3Q+fg43WSiwhEKLx8I7AZcDJ4EdSuEECuABswTAIeSK 8D2AA+FdCy+6FHjID0uBIUcBPORHtSAkhgi4B/hYedRRgocSPJSyDsFjfGJGGF1Pvh6vyUzC 0KLXPhUyDUBLMvFafFxq88jI5AcNHqCo3HLcEa5APz5i/+aeDx+KDAyNg2/Jjw5BjTy/+dF6 n3bwatlDCR7vGjzgunsp8JCvvuW1qLZjYWW9PHgkFbTAJ4d3LQUe8M+FV4THnix0fF2Jjwfc XyPfdiHf1QI7iiyKSfNyPU1K8FCCh1LWLXikZrfoGKXj9OPWjBw/n5w3FgCMiV16SeWDD3TK y6TClo+POsC15+ennN9FlK11Lt6iYtgC/77bYrXsoQSPXxY84D6IhScE4AFOuLD3ZBnwUOgl gZ06FoIH7Nu56KASOOXCi67Ex0PhQRR8POC2FPBQi1pvzSN9lOChBA8leLwf8BBIiy9ig9UJ QqiHZZWdLEs6fjDiAYG4BRa13fvAQggC6vhU1tYB6tzv1H3eXWjxdS6gYN96wmkN7KEED4X/ 4NomiVszeMB9Igu7IbqfDir4fsB191LgAVf0CE7ID25VAA/AFUuFHIFPIr/rtT4eyE9wWsSr ZH4x51LYlxW+NyV4KMFDKSsHj3tGW3958JAUnlT1PKPhfxEbCk17R4t6K+wBOX4wEzUZMfXN H0yLASgV4S/9f9ttuYZehg0mt9q618AeSvB4c1EIILY8eMAOFSDrIrChEE0LpITbHODqGD4n EqFrKfCAPUngFg+wDrc/wAkW+q/Ce+VHsiDri150hcNpYSPAD7IQPMBd7dcJhkEI3CdIJh9b bG2RS5XgoQSPzQAedyj/edfgk9G2dzJWYuXgcfqq72kN/7NovwNn7K9oc9BkKeYtNX1gadH6 FhmJ6fXNbX1v67meDIwVVz9Ky+1IzbuXnHM3Kft+Qta9+MzW2PTWmLS26OTWqORWaWKLJKFZ FNcojG3kRzfwoho4EXUsUV24uC5EUBXErw7gVASwKvzDynxDS72DSjyCiu288y/qiU/h+Kfw HDWiyNYlz8Y1z8Yjx8knK5BdWF3fNbf5siioAcWpDda++ebuee7skqScdpm178ZlAGu3xaQC U9+OTL4tTWgRJzQDUwtiG294ZP2/281Byb8LFRAqrAzhVwfyqiBrh1f4hZX5hJR4AWsHFrsF FLv6Fjv5FDl65zl45Nu55tu45tp6Zjv7ZfEjK5+/2NQRnBRCpgPwkB/foQAeMCHAXhZI44C8 pwdYh5kEHn6LbIddMZEmBYVRJAjSIInBXiQBch6k3UMh4DninrHoRSMz6xc+9aKdRAjtwH4d CjihYSoGFwKKuKTCF1pzvHQleCjBY6PK2PhUfHqzuXN2fmz8s3SPyZ53Nb1OT08PoI7XtvRC LR5qPsfV/LjS4qs4sx9P255WD7iqJ3wb7AHNm3wOHfQvFWZq5psOsX8+OAY0r+weS1oRKCwL EVaECCr8eRX+3FJfVrlPaJlXSJlnUKkHqNH8ih39ihx88my9cm56ZFu5Z1q4ZNxwTje1zzCx SzW+mWJgkcK8EccwjaVdiyMbxxAMo3X0o7XokXhqJJYsRRMlV3WEqjpcLF2qdy2eYppAMooi GEZ5Bufdud+3eTLqg+6BxKymYGFZkLA8RFgeDFubU+obXu4dWuYJrB0IWdsFWNu3wN4Hwoab HlmmTqn7cSH7sSFaxlHGNsmGVqlM8ySGWaz+9VjqtTiSUbSeAbB2lCYtEkeNwJAkaIJEVZuv psfDMyKJJglU0ziCQaSzT5ayoFiVgHpZoXsFnjFtYUr57Supo5eKCArOo+C8AY9/WdjLs8zN vM3iTnb1N5weTgkeSvDYeDI1PZtb3G5sm/5y6hP9ODvPvLqmX7gnAoDHqau+J9R8jaxi9S2k Ry57aupzVI5dP4cKQIF6Ya34gaVFY2hRZ1ABX/+g+7fvtGISit7kJp8+G4lKqwEaKq0KldaF SitDxBXBwppAPqgNS/zZ5T5hVd6hFV7BZR5B4Gu6wAmAh2++nXeejWe2lVuWpasMPBzTTezS jK3TmObJDNMkumkc7Xoc2SiGYBClw4jSpEvxlEhQFWroCXE0Mdk03tAmxcg2xRCAinWKoWWq wY1kM7u4pIyKDZ9RR8enK+s6+fEVoZKa0IjaUElFsLgyWFgdwC/355b4sSq8Q6u8Qsq9goC1 i1wDCp18C+198229cm+6ZwNTmzmlmzikmdimXbNON7BKZtxIYZgmAGsD8CAbxugxI7X1I4G1 cSCfEMUoglCLEUG3SDSyTTWySTG4mWJolWJgnhzCz3wxOKIsNN6dwPFA3u4UgR+6KMFDCR4b TGobHtt65uHlYnPB4S8w1Cjv0JJ7Hc9+QfA4rQ51tZxUDzyHZx9T9ZHEVRL0XX48aXtaIwgO kL7KcbVROHrMZS32nmPmX36v/eX3Wl9t04lNLF706kwmU11dffk77Op+wY+q8eEUQcor82ZX eoeXe7FKPMLKXIOKnQLyXYIKwEe3o1e+vW+urXeOrXfGTY9MK9ccS+dsC+dMM8dMU7uM67Zp RnYpBlZJ9BvxFJM4qmEcySSGYBytZxSlaxipox+pTZPiqBIcVQoqQQu37Jtu2VYuGaAatXBL N3dPu+GRRbFI+vG800lVZmVF1sTE8EbNqI2t3cLoOl9WiQ+3yJcL7FzpzSrzDC/xCC11BowR mO8cWODgDTTfzgdYO9vWK93aHdgKmDrb3CkDmPqabaqhXTLTPBGYmmYRRzGOoxjFEa5D1tY1 itIxANaO0KJJsVSxJj0SoJ2VR85NVwgOLV0yLNzTzN3TaVZJ3x+kiETc4aHHc3OzytLjrQjR LjYosgxxhFjYt6IUJXgowWPDyN2OfoAWUJgLxiKxuUA1rWWQpMWI4Uhrep/+AtUZAh7nsCEX tNgnr/piqQJtpvikmi+W6HHiipeqNhdLjVpJzwtIA5BDnSA8dM7h2x3Ev/4LD8ADUMcy4LF8 HI/Z2fmcwmaDGxIthljXIEKmIl2mWJcp1TOI0GFEkI2lZBOpHlNKvyYmG4m0GRJNRoQmU6LN EOroi4Fqv1xKtekSPFhnCPUMhbpMAdVIpCmbpB5Ph1QTmndejKVJcHQJ0yre3ivPxb/I0TfP 0bfQObDYyjtLlR72zZEbn/xAPqlmGMF3v9tWvfEy6vjEND+imGjA19IX6RgCU0t1DYR6TIku M0KPCawtpV6XEo2lRKZU30RMMBBrMaXA2lpMkQ5D9MrOYmBnLWBSfTGBKSJdE+EZfJKhkMQU 4WgiHLAz2EWDTI2TWRucwcQ+GRjZxa/Q0Tffya/QOajomkvSD+ds/nGQ4uflkJMa9OzZBzyc ua6ubv3MOCbvsyHv3aEURPLy8gB7rG0gkhI8lLJOBIAEW1KtyYhe0bwnBklUs6T65p5fFjxO afidRgefxbGOq/rYucccOONw7Irn0Use0HhbSuQy+AGQAyxPqnr9S4UuQw4tGDnWDB5jE9PB 7DwtGl8DmlBegCFLgWLJAhyFj6XyMWQJmiDgSivSS+7p6nOyS9p5kSUoPQ4a4ARVgKcKcFQh jiKEllQBFloKUSS2tVMCL7oqkFtcVH6fzBRiyUI8DdoFlniqCNSJoH7EUkQE4wgrt0zP8HIv dpWRY8p+VafPdutv3UX9dDf5NMYsXuzdWl+8wfLq7Px8GK8QTeKiKMDakHmBYsl8HIWHpQjQ ZIkOXZRTci9EVMY0ldS19lk5xWkQ+WiqCEfl42nAwiKZwcEKpGhSeLiwtKDqAclIkJrXFhFb jSNxobdAg1Rmc8AhIpzsKNqNaHuffC92pVt4ua6p9PuTFlt2Uf953CA4wC0z2r3v8QfcF7Dm OB5KUYoSPJSycpmbm+vsGkjJbnP2L9Y1gsJZrLyrAqTUNUzwCi3NK7nf0/emAbqHh4dBoffa Dy6BGBrVclLd92WLh7rveVwoWDmh5n0BzwLU4RWShdFzPXLR7RI+8NRVH0AgKDLkOAq7j4J7 1iCKz6IDfzxh9Y/dFMAbCsixNvDoeTJ0zT5Fg8jDgLqJIoaoQKZQVUURYWhCDJVLNhTdbu/P Kb2jTQ4vrLjf2N4DvrLRZBGWJoC+r2lQYjyEHGI8BXxfC9AUblRSbUR8rVdwQf/IlINHogaB iwWVIJ2Po/GhxDSQHtSbYqwMRbSNxIfUXb7Yy/x0l/6WPQZbdjM+3UU5jTaJk3i2NZZssHwb KixFk4C1ga0k+Jd2gwwIiAJDE6DIbBvn5P7BKX9Orr6x8EHfcGx6HYbAB29HztpC6CiKGE3l 6xoKbt3uKavtxJP4qXl32h89pxgBehHIrM3D0QQyzIMOAVfEUoRa+iIck7/9jBUAvE93MYCp /3WMERTokhXr2df9AVfcHxB4vPkMa0pRgodSfhGpb+mx987D6cfJHDki1xwBA89IxNCivUKK 73Wu3fdjhcNp+aICBDwuQl0tPgh4nMeHH7/ieVIj6CyOfVkzOCa59NRlU0Ag59CBqjpcCDlI kqOXXP+xiyzfq7KorhY8OrueE40TcFRQCYo1IQzgQ1RAA5WgVIMq0SAJdajs7KK2h30jTEvw U3DdNubx8/GEjEYckQN9sNMlGJoYow9qOjGGGgFqQ3Vdtk9IXv/QrLl9vDaNn1N8p6tn2Ngi Aq3HAtWlJtTyL8bSQTUKDpRioZpRqE5mf3PUdMse/U9/pH+qwtgCVYi0M+jrEHg0vTXwCIos W4mD3wqTLQeio5PLDGFw9cuXWVukCSEBXxMyuBgNW5vANzQT3+16UVx1H0/noEn8AE7e87E5 d/9MlC4bQCCWJsWAVwNZW4IBjEfipmTefvx0zNw2CkMUMM0i7j8aLKm4r03jYEkc2SWAtUUy awNTi2VtJsKzWgH/s5e5RYX+6V79T3czvjvGCA50zorzfNLduXnAA55Sdv7VKFRkJKyCwLPM v+EIDnlZGCXjTYRoFwvPcrvo3qSClivGAvkHAQoHDFn+qRd9cMBLSFx32GtFfi84rbJHSQke G1si4mrVSZFYesJbCYIBqnUtZpImI5otqel9shbfj1WCh985XOhFba4MPMJegocmBB4whxxX 9SZdBzfGP3bF8wwq8MhZh5NXPH7YbwiQ42/faS2DHGsFj2e61+IwVCmaIkFTRWiqEE0TAdUg 81V1OXr6vNScxt4X056BGSgCC02XaJBDw4R5/cMzPHExmhgON5VoUIUoCk+dwEURw3xCs3ue TSVlN2JpfA0SX/+GuOluf9O9pzdsIzV0wtEELpYCUEoIdSuAb3zo412gTuZ/fdTi0z2Mz1UM tgLdLQMPzHWFFg+4mJUvP1cl8MzjbyvZ8pXLMuEcnf1zMFQJmiJGwdaWLa+SeGo67GtW0vrW ntsdL4wsAOPx0HSRJj00t7St68morWu8mm44hgwZTYMKdYphyKzY1PonA9O+rGwUiYOigEPY jj6pfQNTGQWtZEOuug4LS+RiqdALwlAFaAq0BEh5Viv08x+NX1obgMdx/aBA5+zYTQQecIwL OA4nTAKLwgAcv2upKOVvAsBvi2SQwB1L7f3irMvLXPcqYgkcjmyZp170weEJdgFswE6z4Cj5 eGXzr4KcKEfuKMFjA0tJZaebfy7ROE5VDxS20rcUgCtGk5lENUtOSG8ZHZt6d+BxSt3vuLrP cUzwCTWfC4uBB/h5ChV8XpN9QtULAo8z9nuP3vjbd5qvRY41t3gQriWhqVwsmYuicNEkLo4M KclQ6B2UVd/yuK2z39EzGaUThCWGY0lQfYchBnKEBY+fjKRkNxmZizVJoILja9MkVs6JqXmN j56ORMRW4knhGBIXQ+Kr6YXRTUQlVe33Hg0KYyqMzaO0SSI8iYcnsXFkNo7ExlPC1UnCbyHw oG3dQ9+qor91F2PLLqjFI/bn4AF/3IFyDw7MuNqRAusEPFz98zFUHqAvDWBtChdL5OEpXAMz KV9a2vHoeUlNB9NUBFmbxMaSeShiqB4jLKegpatniCUsAjgB7IYhCoiGEZHJNfcfDXj4panr hGAoHByJD96dqm6IvXti6/2nt1r7fMOyaUZSTaIQB94piYUjc7AkliaVe1Yr/H9+NNyyh/bZ Hn0EPKAWj57NAh7yNSYyC/zCVwZvfOvg8RYFhnAEJxbCw3a0n/xTIxFTl3nqRR/8ODl84SXg SyNtJuC/udR0ckpRgscGkKi4In3jADefBEfvbC1GjKquWOYL8TZmXtOP0zVON2QEZVqhuzxP rVA9Nf4BwCOSsnP5ZP50IhS5FBW4+zD9i2+OHbrsdg7PuqDNO6nmowAe5/EyIIHB46zDvuOW K6QOoLaekVevsRfqR1u+/Lff/H6RXUZs45sp4Ns5p6g1q7Als6A5p6gJaGt778TUzOzsfNWt 9uTs+oyC5uyipqzC5rSi1rSilrS8+s6u/rn5+Y6ugdzi25kFLZX1j/uHJ2cByTzsycypTs9v ySpoATVmelFLam5dQcmt/sGR6fn5h31DRZX3MgtvZ4JrFbZkF99OyGjUM5R8e9hs6x79LXsY W1SYW3Yv3tUijwRwEEX5XLEwzhJSxsJl42rBA5xNoSG6/8XoSr5VlwcPN/+cqMTanFcWyMpv KihvfdgDufcPDY3nlTQn59RnFrVkFTUBK6UVt6YWNOcWNw0MjU/NzTe0PAavILuotfFu//js bH3D3bSs6gzoVM15BS3ZBS1phS1pOdVVt1rHZ2bHZucBgeSWtGUV3s4AFypqyS5p4Ugrz2sG /d+9hlsA4O2BTP1TV8vmAA+4uUOh7wMOtdFw5yeHc/gTXmG2FLhCBxuBLqyIwRawXZhSu0xi uBsObEdWFDpHkCwKbgY+dplmBBg84G6RRXth5LcvBA/4qRV8ThZ9cDhkuoLIB3tfbaOHcjjt xgMPpP8OaFb53aX2LvXBCPIP+JsgLA30irFAIXMiPYYLFS7/FTauoWF8Genre8ERZOiQ3Y1u hHoGplq5ZGCokWoEyZtHHcfSo89jg3cfMbe/uA95769Vp4P/B/yJBOd+tXwyL9QJGXgEHD5v 89dvjx+84HTggu3+K67HVL0uaLIWAQ81rzPoVYPHD+csPzu+iP6f//rs//n/frtw+1dn7G44 pz8ZGJMz8KxM52ZmJydnphYN7gA2gh1TUzM/3zg9OTM5Mwv4YpGo54BipqFpdMEu6ChZCmjx fGSWcSPim/1mW3czt+yR6S7Gp7teAx7g8wrJwDCEyM8nLl/FIJOVyx++TM84vAvO4fLlKrgK +H5UKL3lqzBwcviWlgcPF/+crt4XCuacm5+ZnpmYmp1eNFz8jCwm3vT0zM/tCTBvZn7xtzM3 NQNeH7A2/Crn5169kbqWJ5fwAV/sNgZ23irz4/0Oci7dROAhH5B8Xm6ONrBRfmYTuOJWmMEN mUhFIbPBdS6yC8mi8BQtcGL4JPI+HgpgMP/zaOogs8EJlpoYDjkD3LghX+PD9wN7ZSwDHvBT K9zDwgeHky11A/JZfZm/lRI8Njx4IP13QHVuRi+1d9GyEe4KRA5HVCHxommQbkH5G4D1XTTB 3bvf4+4dRTHwi00s9Q3Jum6bekVXvDb8wMKRuDRZKsfMv/pB78vvdezP73h34HFI1XP/JfdT GgH/2on67C97D15yOytr34DB4+RV3/P4cGhFzfsMOujoasDjn7tJZLPwVYKHvZlLVs/AwiE5 c9Pzc5PTc7Oz8wtAYg7CkrnZqempubmfMAPUnmALAiNzcoeBmhWqOmdnZxYwyYvhWaZZ1DcH b2zZQ9myl/aZiuHWPYwtu6mnMddipZ5tjaUKpRxCs8hcmci8XfDMnnApDdMIUhpPTs0g4LE8 CctXE3CRDrdyyL5SJ+QvsRA85Ge7WBI8AnI7ewcXWntybm5qanbuJdYpWBtg3szM9OTcPDJ/ HECL6ZnZn78SBFQAAgJrQ1afU3h5dc1PLuODv4BaPChb9+p/tofxr+P0oCDn7BivJz0PNgN4 KEQvR2pY8E7lS0v4LSuAh3wrB9xcAO+Ci004Q06++gMsGsFDHjzgae6RNjT5yWdB/jT3T5cv k5cBD3hFng3gQCLw9uXBY2FU1YUPDm6A7Bi3EvBYeW+LEjw2NnggzkUrAQ+YruVhA9Y/HbZb LXjIJ3h3gftAndjY/EAozQX4YesiYYlKyddjL2oJ1Ffs+IGhQsihpsc/cNb+2x2kL7fp7Tqo HxiW+Oz54MpvYxU+Hup+Z1CBKuedVM45ntEIOHrJZfsB8hFVz13HjY9c9riAZ13U4rwJeOw4 QI9PXnwYyFI+Hh0P+w1uJkck1Kfm3E7Jbk7NbsnMg7Th9uPBMfBRPVddfy8hrT4puyUptyUt uy0ltzkprzEltbG2sX1qdn54eKqxpTsj905R9f3uZ8OgzO189Dw141Zyegs4W3JOc1p2a0Ja Y25R0/OhCQA3dx4+yym6m5x9OzWnCZwqLbc5JrlJz0j87RHzrXuon+9lbFW5tkVF/887CCeu GsUsAA+QkeD254Vfi3ApilQrIKVCsQ+DB9guTx1IYzhQuOJQKMPl5+fqfjoof4m1gYerf44o tjYlpyU1uxle5hW33n3QPzE7/2JkLLe4GZgrKfd2cm5Les6d5LzGpKzG9IzG9ke9gDKePh0p r36QnttW09w1MjVT3/QgMfVWSmYreGvJwJ45zalZrfFpdVV17RMz8y8mZ2619qTntcqs3ZgK rJ13O1xUeVEr+IsfDbeqUD9XMdiyh/H3g5QAf+esOO9N4lyq0B0gX8MiY0CQul4BPOQFnATJ CXB6hV4G+eayRcFDAU4QWoC3I43V8CGLdmEg/wI4W8pPm4sw9vLgocDhiz74ysFjGUZSgsem Ag+gCsXvUuAB8p58A4V8Pi+91blw0kbk5DBpILowzdsaO7aUDA2P5+TfMrEMu932qOPhM5ao HEORXNISvtbvFCCHbJiq2z/30L78Xu+b7brmNpz2+6uO37gq8DglCyB2UZtzWsN/xxm7A5c9 T6MCv/7XuUOX3I5q+J7ChwPwuADAQxMCj7OY1YHH9v201YJHZ9dz3evxaAIXpcfR0AtXJ4aj iVygegZCJ7/UkpqHdzqeefllXdUKUyOwrxL4akS2ml6Ad0DGna7+klsdzt5pJKYAo8fVovDM 7aLi0mrvdw/EJFVpkdlXdcM0SKzL2sFMM0nZrfttD57xRGVMk0gckYsigKuwMAQ2UBQpTJUS /u1Rs627DD7fbfCJiv4nO4h/30e4dt02WeLe2lC0aFeLfMsDXNzBzbzyRa5CxlNo9F4GPOQP RNKDjdvRfvKXWBt4OAfkA2tr6LE1COFXieEaBBaGxKOaiIMFhU33ntXc6rpuHn1FK/QqkXuV wLtCDMOTg6MSqu/3vUjKbrxhF6tD5WF0uUSmQBhTdvdhv29Ihrp2KGRqIkudFH5ZK9jZJ7X1 wdOqhkfgrZGYYiyR88raLLQeC0UJP6Md8MVew627DD/bw/xkFwmlZSpmuaVHuPR1b4oAYgoZ QL6G1bSKhOtuhAcUwAPkFvnJYeULN/irDexFHEWQnj5wKgQJFMBD3r1T4aLysU+XKkXl8Rvh nKDIMuScKwEPOP0yDw4eRAkeSvBYLXgo0PKi4IGMn1pht8hKoOK9gcfLFvvBsbr6Dp4oa+DF WG3DA7eAvKsE0WUd0VJ+pxha1Cl13237DL7cpvvl9zoEmldl9Rqnr10DeFzQYoP1g5c9jmv4 nwIrF52OqXp/+/2lb/donrjqe16TfVGL+3bBYykB4KF3LVWTIoVia1P5KJoIQ5ECRZHEV/XY enRRQkrD05FJX3auBpGDpYlRRE4AK//Z0FRc8i0ijaehx0FBAzaFWLIEpcfHEoKcfVMe9U9k FbVp0vgYMs/AIqLtwfO61scmN6UobS6KJEBT+WgaWEqgIB5QFAuBOpn77THTT1Tof95J37pD 75iaoZO7S5TII5bnfLthcR8P+c86+Y9N+f6URVs84C7sZQyyFHiAlc7Hz+UTKAAGcubXDact wkPWFsmsLcRQJcDaGkSBuh7byCymtuFRe8+gsU20BpEPxZmncNLzbvc9n/QLzsYDMiRxgPWw 4FgiIIowYWzV06HpUEEhhsTBUYRg6RaY8WRoKjGrnsjgobT5KDIfQwPWFsqszcNT+Xi68KxW 0H/vY366h/HnHZT9F5kSoVcU1ylF4vq0b7N0tSwFHv7SUvBm5VsP5PcivpRLzTkLz2i/A+OP bAGHIOHT4S4VBfBA+vLg9hP5i0Zm1st/0CEdi0uBB9LdI9+CsRLwQB5kqQcHt7dvMefS+Z87 pSjBQwkeCFqADKPAEouCB8g8yMalQsqsc/B42XHQ2dfQ1Dkp84isrO20dEq7rCO4SpDIR/yA nEhp0YcvOH+1TQ/oFYxdWmblm1x0beABeAPqW9HmAv7Zdc4B7Nq5n/jXf50/ftV33wX7oxp+ J6/6vB/wIBgn46DoUmI8VYKjSDQpQqA4mghFF2NIAh0COzW7rvvZhKF1lDqJY24b3ftiMiGn GRotS+RpQrE0oUnfZCGqIrAU0VXdcGe/tP6RaXOnJG2GqKjqwd2uF7TrInU9LhT8CoozJsLQ RWjANjLa0aJJ1IniL49YfvwD4fsTZMZ1Kz7fJ1rkHMm2ys8SDL54shAJkPIcrMj70sM1PpwG LkWRorX/xShy+PLssSh4wFcB4CF/CcSFD7n0inw8/ApwsllUAH4Ag+PJYk0qFH4NDYyjx2Ma 8Vvv91be6sbp89AkTigvf2By3iMkR12HjaPwNaFQ8xKgWKoUmFqDGBadUtc3OGXhFK9O5Bta xjzsG8ssvI0lslBEAYYuRlPFwNTA5iDbo+CoZTTpGTx76x7DLTt1D16hBwS6RbAtEyK9H3bc mp6e+nALavAfXOHEH0v5eMy/8guS9z5V6HGQf62wS8bCwu04OVxh6BPcOoc4HiscBTcygDyp 0MG3cFzA8uAB50bYoxW5gRWCB7j6Mg8+LxvVsrC/CR75Iv9VizT6KcFjk4NHaEyFQu2/KHgg kLDC4SfrFjxg6e55/qj7ObyemddKMYnRIEkx1Ch4Otcr2pwfT1h9/YPe4TPX+eLssbGJNy/0 VgQe4iIF8IADiJ286nsGG3JM1VPlvPORqz6nNAL+8vWRv31/CWx/D+DR8aBfxzBWFgxTgJNN oSJrheDjaAI0XYzSF2qQBQZmwu6+keiUejSRlZDe1NU7TDGLUCODb3YpqAo14SCcVKhOBPgB fV9TONmFrayIipueqc+Gp/1DM9UJLCwd4g2whCcv0wRf7jRQOUKEo6bH33bU+BLWyMfbJUHk HsWxiRV6NFTlTk3Jj7WZl2/llu8NhItNZFyh/MgXJH1VUxfsH4IUyEv5Hcknk/9ABlfZjvZb 9BJw+Y8MtFkePBy9c8BTv7I2MAXU7IMFRqOLgLXViRyvwLTBkRk771Q9fWHLvf6iqnZ1Ck+D CtGdbIo9OOQpNPWbBpVPuS7q6BpIzW1RI7GF8TV9z8YMbghRZB5ibdklwNvhQxelg2tJTmOC vj9MJdDMOaEeMTz7kuyYgWePN0+RruBaLF/DDo9OwKUWkrUUuiTkd8Efa8jIa+SESH8NUlPD 4AFfdCF4ILlUfugKSHzNKwX5CYjoteAx/6q7XD5jrxA8YGhZ6sGB2IZkK4QLgwlHob5Y+QBG JXhsbPAA32jIunxb31LgIf+PkA8UqZCjkPTyowyWSvP+wQPIyMjYw67+vieQj6goovTweber uoKrBOHBc45/30X+apueJtGt98nbmRtxheAhjig+jw0/hQo4qR54UZsnBx4+FzVZRy97bDth dUzW87L/jMX3+0lQHA80FEDsnYJH39Ph69ZJV/VY4AMZC5GDCEWHFCub2BRUXiiaFEfml9d0 Nt19SjJgt91/XlF9F0dk4SmRmtSIl/ORQbHQwQc13PQhUSeyA1g5ablNoqiKZ0PTBuZCDEUI 8QY0cxn/1dwuUIULxfAki4jMQOubTiKuRyzfLoJlm53Ke7LKeUPgpo+l/g5vK1MtdYlVBaIM F5aqE9gYugQHwYMITROjYWuDdWBtqkTfJOLJ87HIxJrrltLRyXkWPwetx9OiRkLmhQwokGGb RNY1JsGQw/NL7tx/PEA2YNc2ddc1PcZRwmSNVwBOBD+3NtS9haPyaYberq7OUUL3aO7NzEQW NNJoM4m8C8TCGlZheOnCLglk4DZ8HnnnUrgMvGDAX5gYCT++EDzglpOFpPrFWRfEK2mZ0azy dwufSr4JQt4DBC6N5Rte5P8ayz9499NBJEoqogsLdgV8UoLHpgWP+VfDyZEOl4XgIe8TIp+X FAa5KMDzokNaFk3zi4AHLM8Hhnt6Bzw9Ig+fdj5+3vmHfYZffq/75ffa18xDn/a/eFtXqaur A/+j1/6JevtemNnGAszQYQp/PGV5DArcAcCDc0LNCwogdtkD/LyozTmm6nEKE3JJh/9+wAPI 495BG+cYtC4LSxJjKCI0VQopBfCGBEfhYWhsDRI3mFeRnHdPh8lLKbgXLizBEFg4igAPJRah KBI05BYClkI0hYemiFAk4Q3HlHBxhV9ocWr+PV0DCYoqwlAEGCofTRGAdVC9oihiHJmrTQ0z swllh/nEC1wj2Y6xYt+mxrKpqfENXKSAz2oHt3iULhdLFmOoQjRZiqJC0wHjoRYkDprKwdOF KTl3g/hldDNpWUOPhUMshsjFUwRYYFiq+JW1xWgKH1qS+AG88oyie2SmMDbtNltSjYZj0b+0 thAFxWYHh4hwZDaBEebgEiTmeMXzXaQsx9QE9gu5nqzNIwr1o3z9Ozw6qYCXCuAKDgQFGkIR 8mO64UBh4P0iGACHFFMYkLLQYQNsWciu4JsRPuEyWLswaJ7C3SJ7EV8R+S0K/UHLP/gyT4T0 s6zQwUMJHpsBPOQRAo60r7AXaWdTgASkZXsZqJAHYAUyXw/gAUuR6XFrdfUz56x+2EvTJruX lDX/UncyMzNTVnm3+lY7ge62/5zLSY3gs3jWqas+rwKIhV3UYh9T9Tx0xesiHDJ9leDx/V5K XNJaZlV7MTjGFeYTGSF69GCiPgsogRlKYIQSmSEERpAe2M4IIYOf+qEkg1ACM4QIaSiRAake M1SPATbKlrKf0Hb9EBIDHAuWYGMI0SAMOiF0thA4mS4zxNg00M87QML3iuTYSzl22emivu6H m6FUefZ82MUrXpsaoKcfSKKzAA8QZDaRWSwYmBoYkAQZMJRkCIwZTIRMB1kVNq8uvCKzOUn2 UsCrIejL3oh+qMzOoT9ZG3ovIQSDEEurwLAg/yiBWwTbJkrgWlacOjo8uDlL9ZW7IihlxTg9 ufLmDiV4bBLwQAatgC3wdD9LdbUs2qb3xVmXNbRmrB/w6LRXAa9PqHso0H29lDaFpa0YYqil S8qBU9cPX3S9qMU5/rIBBBpFe1GT9TJkugw8fjxmsRLq+Ho7YfdhRuwS4MHhcLy8vBbb81N8 qc6HfZERQgk3BFJemJgXLuGFSrihEl6ImBsi4gSLueFCTpiIGy7bBRKEvVoBW8IkYJ0PbwyT gDQccGCoiBsm4oRCybhhr5ZAofPHSkLTYvxSYzwKsvjdj1o2W9lSV98ijRSIOcHASi+NxoNM DRmNEwIZjRsu4AADvrIwV2bhl9YOf3UIsHOYmA2ZWswNFQJr/5QsTLYEJw+R8sMSIoJTY3zS Yr0qS+KHh7o3ecH+5jPyKEVeiHaxqwpPrQSPzQAe83IdLvKNFfKNG8uMatkY4HHPcMtoW+H6 eU3Pnw/3Pn1hYOJ/+KLHcXV/WeTSl+BxQRZAbFXg8c12ohrO4c69R/eWiEOyVBwPRVvdqy5I FwAtyhAWZgiLM0XFmYLiLGERpCLZT3FRpghal2khWM8QylS2IvtZnA1tL5YdDlKCXdCBsvTR 0mA3d2cHF3s3N8fkWHZOKq+6LGV4qH9zFi89j2+X5kQUAmtnCovShWEhXi6udk6u9h5eTnnp AsjUWeLCV6aDrA1bOB1aFsJmzxZBx2YCU0PWlr0OcfFPh0DrcMqCDCGwdltjydTk+LxSlPKL CvgOAiVST0+P0hQbGzzmFzhmyO+FA+ciXSoKXZBK8Hh30vGg39Ej2cAs9OB5lzOYsEs6vNWC x9c/EL7ZQTqnZtn1eDkXxxWCx3sQQLn/ttsSZIzPTzl3vhp8pBRvUfFHh2yBWT46ZKecXny1 sn///l27dh1YVhZWc3D1t7zU1Sl2H6Slpb32KJBGETJ7eg6sQJycnBb+c18rTCZzoU3U1dVf e+DCo8ANvPaotVly4aMpZTOAB9LJsuhepNED3mXikwZH7AfY8KfDdqsCD3jiRfnum4UzOSrB Q15yixqPXfZWJ7D2nbGHXD5eRS6FJ4lbCjy+/kHvmx3kPYeZgWFJg0Ojy19i/YDH+OT0F2dd 4bzxt/NuA0PKD/D5pMKWT487AoP87oCtCydfaZDVip2d3TuqLpXgoQQPJXi8CXjM/zwu+mvn alnziJX3M0ncRgKPqanZ+OSa5MzqqzjbgxfcT2gEX5BFLl0aPHS/2UH6dgeBynS737Gi5sr1 Ax7QG+l+/tfzbnDe+LuqV2//0GYuZIKiyv942B6Y4jc/WmNuSJSlrlKUogSPjQQesO/xamen /dNhO0AO8kFslOChQPsrieOxEhFFlahpBzMthLuPmpxUgyKXLgSPr7cTv9lOxOm5Fpc1Xbhw YdGPnXUOHjB7bDnh+HIqwzMut9o2qbujVWAG3KL42x+tLxkJlEWuUpSilA8RPOblRm0v3NXz dGiZvcjhyMxZQJvu9i51/kVnEJBPoDB4XAker5WOzidlVbcvaDicuup/Fht85OxPPh5w38qR syaSqLypqZczpHt5ea3ETWu9gYdCu8fHR+yFKbWbqmwZn5w+o8/5/UFbuK1DSR1KUYpSPmjw UMqHCx5Aimo7/u9xp9MaPhc12cfOO0Pg8YMuQI4f9tFcvSP7nymGXwCX/te//tXV1fVhgQfM Hn9X9fr33RawU6XqNeEmcfkob3z4xVlX2Mn2dwdslT0sSlGKUpTgoQSPXxA8wLewKze/7Fan KLLsKt5333Hrr7fr0Y0Dmlo6lzqkp6dHR0fngwMPIIA0DhPCfrPXClTBoCL+5JhDREb9xs6Q /KSaj2QNHUD/fNRB6U2qFKUoRQkeSvD4ZcHjZ/XywKhfUGpBUcNrU6alpamrqy81R+e6BQ9Y mG5JHx2yg+vi3x+w2Y7236heHwCrfrffBqasz085lzc+VP5DlaIUpSjBQwkevzh4+IqL1xDj QiKR7Nq16/bt2x8ceMzL4uv+8bA93PQB9A8HbfGWEcjMFxtAEvKb/3reDWCV7Ok2Ub/Se5CK igprmSwMhglPpfRaURg2C86zkqMW/uvBltceBUqMhY/g5eW1/FGLRh4Gp3rt5RZ+jKzkJhca c22WlH09Dbz2qLi4uIVP944sueiLAzewkqdTMObaLKkEDyV4rEPwgEPcq5uK13Ds06dP/fz8 QFZPS0ubnp7+gMADyPTMbFpJ2zWvlP8+7fIfKlb/Z6f5F2dczP0zJGm3uvpefHAZDzxOdcsj d14hziLio0O2v1ax+tUuC7CkOsXfe9iv/GO+Rdm/fz+TyVSCxyYHj7a2xxevOFtZuSrBQylK 8Hif4CFfjsmPdgGlQVlZ2Qf01oAR/nHFC+AH3ADy0UHbz085r60h6P3LrbZuHeuo/9pv89u9 1vD9/8deqz8ctLvhn65s5XhH4KGc+EMpYWEZO3cageV6vkk4RNu6Ao+gyDI4yCdYsuIq5Qvh pSYjXpv0PB0ClzioFwJU9ZpQPkbHexNwA19f8ngPAdU3J3gAAaTx5ZdfviPnk/cjdqE5/7XP BgkI82sVK/BTlFr3oGdgYnJ6YfqR8anyukep2fdSc9oSs9sSM+8mZLXGZTTFpjVFJzdGJTdG JDZIExrEcbdEsbeEMbcEUXW8yBquuIYtqWaJK8IEVSGCiiBeWTC7PIhVEhBe7Bda6BNS6BVc 5BlQ5Oaf7+qb6+KV7+iRa+eZ7uSdHJlQMzj8E0gMjkw4hOd+fMThD698R6EAHf8/e2cBHsXx BfAKhbb8WygtlBYpVShWvLhTnAaJO8Tvklw8uYu768Xd3d2Iu7s7cU8IIcH+cxm63V6EEEJy gX3f+/bbzM7OSm53fvvmzXsnlQGBYMiBgQcmGHgA4eLiAv0F7YAH7G5gZmHAA+vPqSH52kDv PIekJ6BBEZ3gyeXgEDACGJLOfsECfMmYRCLHArQDs+Vi4EElHT1Dp+5Zz0tci/7+/qUerLix rQ8w2JfHAXIogx/tikOkB9MMuww8fJ6Q1egeXOHiD7TE3q/Mwbvc1rPEyr3QwqWI7FBgal9o ZJunb5Ota5WpbZ6hQU5XN05TMU5V0ktR0E8i6cQRtRJkNBKkVKMllWLE5aNFiZE42QhBqXA+ yVBesTBukSAOoQAWPl9WIf+74iGCsiGixCBLp6zmjn+J4oKALYIcayesNIauyaNTMRImGHhg goHHooMHvZQb0inD6OVIkvrJ4DE5h+xkAfUvCtpNtnVA6kDnT6GypUwZ72vKI84mMhh6R8g5 M1SersHZXO87Ax7zLrKysnR0dNNNeFkSAvpu59C8g6zkVSeUKxu6qLYOP3ycmlvr6JNr4ZZl 5ZFh5ZZh5ZJt5pRJdkg1tcswts40tEzXN0/VMUvWME1WN7mvYhSnpB+joBtN0omU1YqUUY+U Vo2UUooQVwwnEENF5QJFZAJwUoGCEn68BN97wj5cwt6cOG8WPg9GHhd2vLugbKCwfJgwKVRY LlhQIlhKMTAkqvDpM8qZnOW1Abzx9WnVe0q+7204Vgw8MFlE8DCziHRwcDh7/iL05RgdpS1L I02BB+QBBC0AeFwSskfwAA0eoGsGW2EPDskkr+IBYrWA7YB1GPx8/Tk1qo5exiQSNMWvFjDl aUArBJInDjZ+kNUMHAgeERpkXqCCqyOFsAS0DE8MnCdiUQEK2iF7pSPR2mFMVOSSQWV4CHSD yHVNPjpNgQdMGjXZpepNBPRZ8/uZHBgYuGfPnvk9yUWRjp6hvsFH6JK6pv7gqFI733Q73wIb 7yIbrzwrzxwrt3wLl2yyc4aZQ6aJXa6hVYaeZYqeRaI2GbBHkppRoopBvKJenLxOrJxWtIxW lAwFPCLFlEJFiWGisqE42UAh6UB+CX9eMd97or5ceC8OIS8OnKeIfIisRrSsZpSsZoSMZoSU ejj4U0o1lpHH0tEt8NmzcWWr2ODEMqwLwMADk8UCj11/0IGe/Zdtuz6YEB4BYQw8phOYmB4J Yw5623vKfhAwAEugwQMWAkKAkAARAmZ/A43Afh/040m59aC/3kVvRDVAA20p8ECImwdQsAsC LWAr2AQbhIlXoPMJkuEFJroFxwJb4RGRk4SnBNZBg2AJKsDzBM2m5DdAfoD+KlQXBddBOVwH K0jOF6qj0xp4TJbZZHicHOccyXp54NDRj7744fufds4y8SXAiVcey9HREbyZDx8+PKVH/VKF kO4hF690Re1wolYkSSeColrRRIpGAjaQVAoVUw6WUQsXk/eXUA4RUwZ/BhIUgsTkQ0RJwaKk IFFisIhsMF42UFAugF/C966oO4+U911h93t4j7ti3twE77sEL25RL268Jxfekx3ngScFaZql qBvGq+jHqhjEqRrHqZjFCauHXGAj//SnMI4gl58d/OjRIPb+x8ADk0UEj40bj0LkWPnFKrC8 wy6Igcd0AnthNHgIagZCrw/Yj8N+GfTmVBYDaOiA2d+Qbh1pc/JQCxo80CnhENgAuALKoWEE ksPP13XgvshACagDtoI6oAJch+ldqGwpkC4gmcAd0UMtyEVBwECGmeBVg8apyl85TEM74AF/ Wq8UqlclHLJ5pUwmh4SEhFfupaSkBGqOjo6CcxMQEKA18+McJCaxnKTuz8RryyzgxCzoxirg zibgyC7gyCboyibgzsrvqqofoaQfyY1zMba6zy/uwSLkzirkyiHkzC7kwiHkyk5Zf7lkFXQW l/c1tku8J+airBemYxTJiXNlx7lz4P9RIbD0uEvwIGpG6lqk6Vql6ttkalikcUo4/3GZuPFP 3MY/BSXkVOOCTbs6mrD3PwYemCyKmJkFA/C4fEMcwAZ46XlGF4GlsJQyBh6vBR4v/hkZQQwC sC+GvAEV6eghAEBbwQzgAW0jcBiFCkXgOSAtAwUoggYPaGxBdkHXhPYNtCMKwiEQb2YPHvBP cDlU5cjRaR883lDma1bLdGJpaXn48OGl+6Ju7xly8U4HjMEi4MaG92THu3IBMMB5c+A8OCm0 4MKGc7+Lc80rbk3ObRSWdG7vH1PUDmEXBptcOSlLD068OyfebUIpXMHCb+/gnto5+IRA9IpO qi2r7uLFO02AhxtlF9A+zh3syA6OIuxGUAzQtkwhGcRcZDP88Shh45+iW44JbzwiKEFUTwox 68bAAwMPTBZJtLTcAXiw8+hzCsms/N8qCB46xtY0dZI0BR7Q2jAZPJBeHvbRyGgI1e5w7AP6 QiBbpwQP2KmhnUsR8IDDPWgmgRgwGTwgvVBNSKECD6QyYo2ZDjzgRQGFuW5hOWQeDDzekhQU FOzZs2fyqM2SEHWTSDa8G6ugOxsgDSEvLiFPCkgANsC5cQi5s+FdWXGOItKeD7pG/CMK+PAO lfU9hlbxbDhPNgpITFgwJipz4jw4hCjcwiLkFJ1UXveg/x7exT2gsHNwVFTWjUXQlVJfxHmC PdwpiALax7mz41zZhJ33XSZtOITbdERs8zHxTUdENx3GSRBVEsMAeGAh0N8j8Jg5zTcmCywy MuYAPPhELC/cYNm45Vcjx1DQxfuFxGDgMZ3AMRR0r42AB4IKcCvs9CFgQKdNdM8Oe20ID2DH 9efUJlMK1XRaZKiFypQBG5wSPBDHUSQSyGTwgBYYuAvingELkaEipD407MAGEdh4b8GjsKoN XDheO/itHqW/v//SpUtwCGZpibRyyF2CHwfOk2KywLlx4YG6cFKgwoMV58GG92Tlt3Pyyuge GidpBbDyOboHZAdGl7LwOrPjXTiEQQVoyvBkx3lx4j2Y+Z1k1QLbe8d8g3PZeJ1J6sHt/Y+9 g3JZeO0mkMOFS9iDHe8JcIWdgiuuXDiPm7zWv56U2HRUZONxkY1HRSngcQQvQVJKDDfr7sTA gybAA7qmUyl8WaEn9E1XebqayEcT+uUJ16fz2MdkwQSH0wHgISrrsnv/sZ37jyno2YMuvqSi FgOPGQR24ogBJD6rFm0PQQcQg06kyHMBXSkQ+wPs0+G6gnk0lQUDCvQFBS1Ajw70JFbQJigE 7cMpJIBqjNxS0KeBbgGcMGgfntjkKGdgE2gHlsMdwV6gELQPCqnqU10UPDSogPyJPvq7DR4L KQA8Tp8+vbRm2sqpBd8l+LLjfNhxHhz/DIhwCHuy4j0ZBdwZ79rpm0Z0Dj4Jiixkwzmy4N2F ZF2LqzsFCS6M/M6sOE82YQ9WERc2YTdWIU8mHgeclEdReWdZXbeorDurkBuboINnYPbA8FMj y1hWHms2gYlxHGEXduGXwzqAcG7z2v16WmrTMZHNxwmbjhJeggdROQGzeNASeCABVSYreHGh Z+jPUJmqJlhHTNCTa2L/iMUVJmY5AB4kzeCNW369cIMFJ6MJuvjhkUcYeMwg6ABimMyjYOAx syQkJOzZs2cJBVSX1QjhFPVh5Hdl5HOh53dm4Hdm5AXrzgw8dryiLvZuyc2dw8HRZVyCNkw8 9kwCLgz3LP1Cc1OyaglyHsx8dix8Toy8Lgw8juxCdir6gUVVncUVXWIKXvQ8Dky87gy8zsz8 tn5hxc3dI87eGQJizqw89iw8Tiy8zkx8jkx8TuyCTrd5nX87I7vxqMiWo4TNx0Q3U4ZaKOCR GIqBx+KIo6MjFTyjWQJxRUNsFOgoSejKr6yJuNLByoiD/UKGYcRkOrlyDQ/B45PlKziFZJjv EVZ+sYrWTpLWwOMFKmQ6Ju8zeDS29R3hsCB7L9wvAXwtnj592tLScmlYPFTDREjB8lrBilrB RO0gea1ABfVAFe1gB/e00oq2kdFn0feL5dV9iGq+Cpr+ChrBclrB2sYhnT0PG1sH7FwSlScK jayS49Nrex6OVda06psEyyj7yWsHKmkGyWsES2sEyKt7Rcbm9Y08Ka3rcvbMUtWOUtQMVtAM VNQKkFX1o+dz2npaatNR/KZjwpuQoRZo8cCGWmhD0OCBuGEMj4wh9gr0uC1SeeaaSPTFKUMh zWNKC0zmJsdPcQHwEJf3AD27mKLhhRssv/2+CwMPTDDwmI0sgHPpZBkdHRUQEPD09KT9+yOh 6Gflkt4/+Lh/cLR38FE3WA6M9A0PP33x/MWLZ6OPH7f1DHb2P+oeGO0ZetQ9NNI5ONo+8HBg IqnK+NMXPUOPewYfjTyhRBodf/Gkt6+vq7ePUnNwpK9/tH/gURdoc2Cos6d35PHYc0qdF32P HnYPgfLhvoePCyu7OfAOW09KUwZZjoqhh1oSMfCgbfB48Y8r2ivBY8qa6DYx0zQNyt79dwB4 CIrbUiazWPnt3n/s6KkLS/FCMPDAwOM9AQ8ooqKiFRNCy/eHoBhg75Mzqfjp02dPxp6Ojz97 NtVOz549fzE+Pvbs+VOk5OnTsfEnYzMc6Omz50+ePn3y4glYRQqbO0a4cE5bTwDwENl0THTz McLmI6KbD2M+HksDPKAf+2zAY8qaaIdSbD7LAkhCQsLRk+fNnV/al9raeo2Mgsemieq89ffL ADxus6oC8LD1S1733eY7TOyTq4FGMjIq0SVPnj2nvCDeRfCAE68Qfaunza8WAGNrzG13GJUd bUsEJfC059zmdAKHR9GjqHO4sTNncsHAY/bS3t5+eEICAwNp9v6IKwZYumb1Dj/pHx7rHRrr HRzvGxwfHB4Dbw/w7hh9/KSzd6i7/2Hv8GjPw8cDQ+MDQ6O9/Y96BoaeTjDJ46eUHUfGx0Hl J89f9PaPdveO9g+O9Q2OTRhDRvsHxnr6R7t6hh89piRgGX3xrP/hWPfgeO/Q44GHYyWVfVx4 l62npTcdE9x8XGTzMYkfjopsPCJIIColhJl3d7RgnQXNggecvQIL0V73k8FjuppoHw84k2Xe X4mYQOnv79/35wkY/3DVmnVlNRSkDwvLBmiRlzfFRBXw+G/ceBRsPf0XHuziHlX4yfIVciTF yTVVVb2kpBz+/e/n5fOJyAFVUFSikaQS8wgeaG8lKrSegwyPjFn6ZEyX2hUdnnTOzyzaVwoZ 7pzZgQr0mFNOopmBOuBo6Zt4toAjIjFA3iXwYCV6LtbzDoSOjo5AINDm/ZFRCxYmBZDUQ0ka wST1QKJmIEkjUEUnxM49Nb+8tW9kLC6pRFk9RFo1WFYrhKQeIasdqKIbVFTd3DM0nphaTbZO UNSIMLKKi0+r6Bp8XF7bZmAWJqMUSFIPImoEkjSDZdVAs/6R9wv7Hj4pqe5w9MhU0QknaQTJ awYqaAZLqQTS89sC8Nh8RHTLUbGNxyU2HRHaeOAuSV41IdQUCyBGg+Ax2WWU6j02g3Pp5Dfe 5Fkt4D32JlksMZks4CtCgCD35Vfrfvpt5y879m/+ZefJv249e/Z8BvAIiYiD4HH4xN2Pl30i reMM8MPBwWFm8ACfWuu+20SJr/6/VfsOHV++fIWv3+JPi55f8IDWuXmxeEzOV/tWwQOZ5z5z m68b1XzOUdAntzPDJPqlOKsFsEdHzyK/yoyMjCYnlKEJ8NAM5xLxZeFxZaLMNLG/w+8wMbHF jZHXkUfMxcY5s6ntYXhcObuQPT2PEwOf6+27dk5eacU1nVrG4RxCjmAXZl4n1ntOXIJ2Krr+ OaUPiqs6JBV97nDbMPE5MvDaM/FZ+0cUNXYPufik40U9WXgdmfkcmPgcmPmcWHgdmAXsb/HZ bD0jufkIYdMRsfWH+Lce5+fgJ7rZG8Z463e1N2K9Bq2BB1rBu2LKOB6zrAkFpoGgqox5fcyj POgaWrVm3ef/oyRbYeAm2Polf7J8hbGV03TgkZOTwyssvX79PrB1284rADxWfLZy1Zq12dnZ M4MHgI3te4+JyhugE0wsemTFeQcPql8v6NzBzxUGJ4fdDTIzKyW/AV0HlkN7AqiMROWacpAC ggfY69Q9K8QEAVPCwcaRZwSG8kCfDxxVmYz6yPkjAzFIshhII4gREn058IgwWW1OaQvcBOOE UNUfHhmDJ0B1UaFJ5chpg0YaW/vQbaLfA+8SeNCI0OZMW1m1iHuEQE6cF8dEHA92vAc7zpOT ElPUk0XQje2ek4FRROfQo8CYElZBR3YhV5ykW2ltt7isN+s9Bw6cG7sw3MWbXdCTmddGUNIl r6ytsrGHQPRiF3TlEHT2Cs7vHn6iT45k4bFj4Xdjw7uzCruxCbuz4jw48W7cwp63eZx+PSP9 3WGhTUf4z9ARlLR0vD0MfBxV74fbDvZ3YT+bhZeZ43igLRjobFZTWjxmrokIDGSExo95+YbC BEpgYCAAgN/3Hr3FJgiQwzk0m5VfGqCIu0f8ZPAAryklJSUZGZnftu347vvtYMcVn35++jK9 jIaFlpZWTU3NdODBxYv/Zv2m0IxGQSmNz//3JQy0/t3mXwaHR94x8IChtNApWZEs9tDADukC 9Kon71m9QIUShQMKECdmCR5gK52YC5K9BdSEs87hVthro3EIsZPMDB5IvhjQ3cMwqrAmFUjA 6Kbw0uDjDFAKifIHgQddHzSLzk8HrwtGcUfuCaijah2HbhOeG1Vu36UOHv1Do6o2cTQyOw96 fRgZGaFLwOO8mBYP1VBuMR9KPHNKKFEvLkAdQm7cOBd2vBsLJcyXKyuPnaN7Qv/QU3ndEGZ+ B8+A7KC4Mno+Z1CBUhnnRQmWjvNgF/Zix3sxCjhIKvu29o76hhUw8DvLaYV29o+7+WUy8tiy 4dzZRDzYhD05AKjgPdiEPDjw7lx4j1v3XH8+LrH7NL8AQd7Z3iDQU8/LXvV+hNPwQ0Adz7Fe g9bAA74Z4FtiyjkpVD4eM9SkEvi5hFTGgiHMl4yOjq7fsPnCDeaE0v7te4/9umN/dF7H5l92 MjBLUoEHpA60HCdYyFgFIn+qqalRectD8LB1dANIY+4eCyOra1r48klS8CO3uPptM9Ur40W/ JR8PdKo1qhjjiNsGug4shPlcYH2qoRYY1RMJBIrsBft6pBq0ZsAnBT4jcwaPKZPGotfhUcBj C+pDlvCJKaKKxjPZCgRTxlDldkETxSE2MrpNuAme0nSfJ5hz6ZsLgUBgYmKCMZpOnz4NnlPw vC8aeKgEsb+0QriBlQl1Yxd2ncii4s4s4s6M8xCWdm/tGPaPKOQVcaqq7zOyjGPD+XAK+Uwk hnPlwgEC8eDEA/DwZAVNCdpH3y9taB24K+rgEZTb2ftIVNaZDefKQcko5w5ansgFA+o7g/bZ cZ4Mdy1vs8vo6GoFuOn5O6r5uWjmpUWNj41i/QUtgwfyUoJv4Ckjl76y5szv9rmFVsZkOnMr nBXrGV0ECIFLWMHWL/mXrX+iwQNNHcrKynBli2SQUmQDgA2AHMhWtNcoAA8+fkPQppQqGTQO YIOVXxriB9ne621f1wLH8Zjs40HliUH158/XdcA6uhDdvU5OjIJYVNBNocEDSZ6CBp43Bw+0 5WFya+j0BxA80M8muj7AJCRLwpRJ5ZDbgm4TA48FE09Pz8OHD/Py8sJh0C1btoCvkkU5k+yC RjW9UGYeOzYBD06cNzvegxXwg7Anu5AXp5AnB56S3I1LyDW3uC01txkn7dI5MK6iHcIt5MmF 82LDU1LLUbK0ICM1OE9mfkd7j8zOwSeSRPe45NqSqh5uEWdKfhacG4zHTjF3UHK7uLEKuvGK OWhqm3rYGwW46ng6qESFOLQ0lWPdxJIAD3QEsCkjl85cE6bwpjo0ev4LBh7zKxzcvKvWrAvN aBSVN4ADLnsPn9u3TwCCR2RkJMIV+vr6L9dUVJcR7gPweDERF1FLSwupg3wrAfD46Zdzl29z Red1/Lpj/8GTlwF+fPnVOjY+sQW4qEUBD3QJFWnMYPF4JXhQyWTwgPsiLiILAB7wctDGCirz y+SjI5NTqMAD/cWxi95o8pAKPKXpjKIYeMyXkMlktAuWgMCiRbYBvxNr+1h+EQcWXns2IUd2 ATdWoIIu7ALO7IL2rIK2zIL2JM0wRe0wLpyjjkUcn5gLu6Aju6ATq6Azi6ALi4ALZUXIkUXA kVXQiU3ASUTOV9c8jgfvJKceoqQdzo5zZhUC6sgq5MAq6MgysRenkB1R3sLaytzfVdfXQdXX xSAv6/7jsRGsg1gq4PECFRYM/bKdOYAYUhM9ygwtzMgIOFRsau38Cvi02fTjr8iAy8/b998V VVm3YS8ADzhgAUVXV9fc3PzlH9qGFItH+EuTSHt7u56eHlITeo0C8Ph+yx+AOs5dY/76203+ iVU//b5/575jCxPKg9bAYwYfj8nggXZ+mD14QO8I+KSgbSOIt8Z04IFsBSszgAfSGnhOgSJH BAoKXwkeEI2Q9LvIs4/28WAjeaHbRL8ipnvqMfCYFwEv9tWrV3/wX1mkARfK++Hp0+cFxQ16 Jl6yiiaKShZKKpaKqpaKKpZKKhZQifJmRJKZkrKlDMlUQZlS4aW+rPbPUpWylJe3IMqZKilb EBXIRHmygoq5kqrVy/rKFooqQM21tM29nE19XdQ9HdViI5xbmiuxroGWwWP9OTWoVJ8qKlax sBy8WPzjStCVZ67Z2NYHPnzAn+j5LODPn6/rgPdSbGYN9o+Yd2lubj7w59Fr9Nw+cWVHzlw5 e0Pgmw079x84LicnpzSjqKmpGRkZWVtb29raamhoIOUqGto//LyHjp3454m/Tl28qWcT+NvO /QJ4sf6BBZpFuMDg4RNTBBRdArpmp5DcnoF/v5iqGrtACdkrHSyb2vqp6oAlWM8pbUF2hzUn HwvZq7VzENkFPBegPjgHsIIUtnUPwiOCQmQveCB0kBC4CRZSbQUryHU1tvbB1mDj6MsB1IE+ mcn3BH0m6HKwI9LI8Mjjnv6H6DbhQcGDL2EQNt2dX3LgMfr4SWJuHbgu2jmlJ0+egAf58OHD VOwB/lz0UGP9/Z0PmqoeNJQ/aKx40FA5sZxYh9pQ2dJI0Qf/KiisoKz8u0SvVFDqN6DrU7QF bmoobX9QPfKwH+sRaBw83qogARWx4KULY/fYsOXXE3/dTCjt3/jTrmtcVh8vW37x0lWEJQBX GBoaqqioUJw6/vH0mFJEJGRXfLbyHB3nnmO3bzALmLvHLlu+Qk3HdCEvB8vV8m4Iv1rAzFHL luJ02syS5v4hGnVWTEhIEBAQQBPIIjqaYoLJwoMHJvMuGRkZWlpaFy9enPJlkpaV98nyFUQd u9vsQt9MTJgVVTBQek0hkeS/Wrth255jUrpu6zb97p9Y9fW3m67fZl3gK8XA4z2RJQcegDqW HyTeU/Kl8fMMDAwED9Gnn366iI6mmGCCgcd00t7eXjAh7u7ujo6OKSkpyKasrCzCVAJqTq5j YGDg+I+gG3lDgc6fADbAO+TAwT9FCJLCBElOTq4pKwsQiKvWrCMoUxLAbdl2UF7T9HXBQ1RU 9Ot132/6ecfv+y8cPse0fe+xH37dufAvLgw8MPCgTaFZ59IpBbydENMH1fx08GL5YBYCnsTJ zb5yr9OnT0/eCyDQK3ec7lXwSoGziREBFzubvSZ/wXFycr5yr8kz/dE3k4mJCXuuMfCA0tTU BNDC19cXQQJ7pTCSgA54QK5d+pvpJgfzLQ48p5QYj7yGONldJ8ZDN9ZTL9ZeI8iQaG9EdDAi ORjLOxgrOJooOJoqOtlr+QeYJwVaJAdZJnsYR5qruZiruapK6RNF1IiiaiRRNRNV+0jnzCiX rGjXLD1Fi9MTcu3KdYgo2traAE7Kyspmc+aysrLgx0xSVGtq7+/oGwWaU1j5ww9bpqw8ODyy 5ded33y78au1m4VFJcAD4oiSyMhI8KB5hkSflnXaI+3FYn5/i2QQnVEcVeBl8Aifv3QdPkSf /29VXd0ixErCwAMDDww83lzAa2f16tVUE9aQx3zmbxB+MUWgBpZuk1MQvvL7BbxtXkz4FSMu yu3dQ1uvKv18kSQpO9OOU5puQDnY6zqXwgVWeaBgBTby7SkiUFAC1qk+jiZHLppSJneIm/9S gQ3OIJNxBbmZWyYEe67fW/AAnamhoSHo5a9evAGePrBk/JuNl0lUjlfbTiEUUAdQB5VwR9Vw J7UIZ41IF80oV60oV+1oN50YBDw89eO8DOK8DeN9jO77Gt/3NUnwM03wN0sMICch4BFslRJs nRJikxpqmxZmnx7ukB7hmBHhlImAR7Rbdox7dqxHTpRbpr2ht4ORj56SmZKUlpGadaJ/QVJA YVJgIcAhSCNT5l/LyMj4448/1DT1IHgA3fzDD9P9KxMyixhZuWa4M5EVvR8QEj8QS7zjWAZW tqhmTlnt/v37Nh4R1bV1i/Lvw8ADAw8MPOYFPObWD06ZION18xQj855eoAJOzsHlj2peJDJv Cz0FbL5k/Tm1N2lwzjf8HRZRUVEaTCr05lJWVga+5clkMui7zcT9yBL+5pL+uiJOBA5FFQEz XREHK9kga7lgG2KwDSnEVj50scAjzjM3zis33jvvvk/efd/8BL8CBDxCXBJMNW1U5XR4uQXB T1dISAhcCxpC+PkFdA1NEfBgYmGH3xRzEMesdgp4EBK5PCrBcr1i+nQ1nz5btAjDGHhg4EGb UtnQtfKIPJEc9Z6AB4zkj4TQnyHf38zg8WIiRs0cwlYjh4YTt2FAfgw8MFkUGRsbc3d3l5OT A//oW1cYOW8J4JjllPnICHiYSwVYSAdYSgdayQTRPngkBxWlBBelhhSnhpakh5d624Uaa1r5 OIRnRZdnxVS4WQX+/vsOiBw3bzMcOPgnJzfvdG4erxSlyAYEPFbLpYIVGvz/YuCBgQcmtAAe VMF70QFkSmrbpzRfwPmMk8FjugOBdmZGl8nAg8SyowKPyaNCs79euBcGHphQCZLITF/AQ1/Q k+eOmAyHjrGwt7GIj4mojynB11TM790Aj/SI0ozIssyocggeu3fuDY9JAtQBluu/+46RkXHr tm0bNmyY220U8K2G4HHVpmSLaiZYaR8ao7X/dUVFxSunAWLggYEHJosCHjDJ4JQ5x2E1JEki Ah4weDU6uQ86fyg6nTFaYAWqOL1UWyEnpOQ3oIdj0A1SHRemMECGjWD6IWQvDDwweTHhFBoc HKyqqnrh7F+XL1xX4bbS4/eA4GEg5GWI83rnwUNRSouBkRWaO7Zv3+VhG+xhF6CmoHPzxm3w I3/dsTOjxBZIHUDXkNJWSCWDlc0qGQ29S2/CHQYeGHgsvLxvQy0w6x9ieUDCUwMYCEksQ0ey ffHPsAgcE0Fn8ppMMmhTBo+K33R0MfNgCnrrRUE72BqS4hmdKnE6goIeOxA5kB0x8Hhvpays zNDQ8PL5a0BZr/MKMygqcVrq8Lrr8rm/V+CRElqw4ftNxZWNgDpUNXRZ6bnzEqrzE6sLkmoK k2oyYoqLUuqKU+tK0upL0+u1tbXj4+OHh4enu6v9j568pA4xynKFZDJQuC4bVr/kfiQYeGDg sfDy3jqXgk4ZHS8XqYZ069VN3VRZNtBYQgUecC8YXG545DH8c7p86LMBj/Xn1JBQdUgSMdjg DOCBJGdEdsQsHu+tqLE7892U5rspQ2Q10+R21brrqn3PTZvH7T0ED5bbnIA3AHUA9vh9285o vzQ0eBQm1yLgUZBcZUd2FcWJXzh/wcLCore3d/KNRdxKP5FIAstl4kmfSibDkj16uRh4YIKB BwYeVJ0+TMQD+QHt0QGgAj20ATYhKYqQOmgfDzR4IIiCNDidZWOWFg/YIPr00DvOAB6T28fA 4z0R0EVGRkbKy8uzXxNSYXVSZXMC4KHO4azO6aLB5fI+g4eLecDePQdg+A52zntyYsq596um A4/S9PrSjIayzIaitBpDLbMrl6/w8PDAdG+IMLmUQ8z4TikdrqyUTtmgnPHhhNFjyY22YOCB gQcGHm8bPGB/TWUZgH+SPdPRFg+YWHk24IFYJGYJHq/08YCWCgw8aFNoLY5HWVmZtrb2+TN/ MVziFqJTVGK2w8ADDR5H/zzp4RsMqCMuKWvbb9tz4ytnAx7lWY0V2U2Vuc2hPtEBHuHVBf+m /Vo1MYflM6kUaPH4TjF9DTFtmUTSFzIp4E/LtFYMPDDBwGNmWSoh0+cXPBBUgMMZcL2texAN HsguyFALlXPpdEMtja19cBOAOqrTQFxBQFPgHGAhWIGHmG6oBfHcgA1S0QUaZqi8QeCObwIe jo6ORkZG2HNNm+ABkOPyuRvXzt/kvS5DZLBUYnJQZnZUYXHEwAMBDx1F04uXrkGf0r17DziY eb8ueFTlNVfntwDwqCl8UFv0gEfeEtDF/2SSP5dOXqdAsXgA6viKmPqLRtbKCfCgsy+lnd8q DFeIgQcGHrTJHjSbJO4tgQeaAUDvDPtuHhU/ZLQFVoP9OCiEoTbg1pmdS0G1g6xmM0QnQ0+T QXSyvQI6l6KPizSIPivkhGELSFgz9I7zGxgEE9oBD/x1NYmbhgr0dooM9oqM9hh4UIFHYlDe hu83Qp9SY7L1jcu3c+Iq3xA8uC0zAF18RIj/VcRlh8p96FO6SjaVzr7kD71csL5cMmn0yTMa +a1icTww8MBkccGDahYq7MFh9w2noK4/p2bpk4GuBme7IF05jDj6yum0oJ2Z45KhJ94is2Ze /DNPdvJ0WrCCbhAxy8Byqum0SFhUsISXg4HHOwMeY2NjkZGRIte15eisiTdtSLds5O/YYeAx HXjwsOPEJYmAOpra+zds2BTpnfLm4LFdjQIe64ipy8QSV4jFgfWNMlFXLfNWSqeskEoGS1AS WdGLgQcmGHjMIB09Q6fuWbuF5y+Js32rlv+27sEpy6ubumcfwgvUnK6dyTVfGRwMiV02JUoh gzVTbsUexncJPIaHh93d3S+cuXTrPBvhuh4tg4eZvDsaPCR4FST4FCX5FFnucLLe4ZISUAIq LaiEBg+yirO/ecL8goe/Q/RPP/0KfUp5+XBignLZsRVvCB6JaS+jle7VynKIrDmgnTVh/UhY LhpjmdYaXNrztXwaKGF1rcDAAxMMPGaQpeVcigkm7xt49Pb22tjYAOS4c4GbcNVA9oYVoA6a Ag99KUcVYWMBNnH6v1lOnz7Nys5VWNNZVNtVXNdVUt+la2Sua2ShZ2zhFxoXHJ1sbGGnb2Jp YGJZ86C/9kF/XWt/fduAgBAe7Pg33U12Rm4FgpalpluwbfIbgsfp4+cdXX2gT+kfu/amhBW+ OXjo+FHms2xVy1hHTP1EImm1LGUW7Ta1jAvGuZ9JJX8qmbxVM3uGhHEYeGCCgQcGHphgQuPg oa2tDZCD8QKf2BVD6WuWMtetaA08rt+g4+DmJUgSyXbuIXGZ+dUdBdWdaPAore8ua+gpb+yp aOoFWtncV9XcV93ShwaPhvaBxvbBvJKa6IQ0LV1DQZwwCyvbm4CHl034qdPnoU/p6dPnjTVs smIq3hw8jutRuOIL6WQBp2LH6JqjE3+umJjbQvIpV/GvOG2U++GEScQtgibe/xh4YOCBgQcm S04KCgoyMjKw+7Ao4CFxkXz3gqzYJWOpKxbSVy0WHTyMJdxl7mly3uEPjM1OK3mQXtqaUdqW WdaWVd6WXdGeU9GeV9XxJuDR1DHY3DnY0jXU2j3c1jPc3jvc0fuws28kLSuPjxOnLmvgaR42 S/CQECSlZhUC6nB09Tlz4gLM1fKG4FGa1wKQgxIaXTHtO/nUTYppa4mUebXr5VPprQr+J528 TS1zHTH1q4nJtnu41AkEQlNTEwYemGDggYEHJq8lWByPhQeP9vZ2sQtm4n+ZAfCQvGQuedl8 YcBDmkVv/ZqNU4KHIr8xMx3XpctXhMVlTW08olLLDCzdzvx1TV7daAHAo+FBV3h0vKa2LgMD I+NtFgNlyyj3zJnBQ4hfHPEpDfdMnhfwcIuqAUTxlWwK4I3LpnkXTXLXyFFcSb+USflZJf0n lYyrZnn7tLNg4SHdbCtz26tXrpLJ5LGxRUseh4EHBh60KaNjT3SdEgur2rD/HSYYeCwueJSV lQkJCd0+y7ko4PHl56u3b9mnI+ikzmcHwcNU3EecU+XqxRt3GJiNrd3jc+qSi1pSilrcgxOj 08vXffvdZ5+vDIzJetvg0dU/0j3wqGfgUe/gaHxiipiEJN3NmyRx1RCnxCnBI8T5vqKKJgAP cUkiLwceyU77huDBbFUAB1aumeUZBVWq+5Xv1aI4l34mmQzY44Z5vmlYjWFoNSAQGE29qLyj srhOQ1VLX18fAw9MMPDABBMMPGgKPHp7e1VVVc+fvsR5VlrsvOnCg8efv59e/smn+nj3H9b/ unXzbggeDt5RAngJW/fQxPzmxILmpMJmCB5fr133w0+/GNt4fP3N2h279y4kePQNjfYNj1bV NWnr6hWWlE8JHn+duZqQmptTWPnjlp+TgvPnBTxK8pq/nBhnIXqW7tLIXCaeBHjjjEEOZTqt Qpp9TO1hvewVkpSkLX+Z5h3Wo5SrBlZ2NPV2NPdlpeY/e7Y4kT0w8MDAg2bF1CO1sa0P6wcX RpJy6+ml3KYLL4bd8PcQPCIjIwFyMJ4WEDlrSDhnuijg8cmy5Yzn+BnO8n780cfK9yxE5TRs PKOCE4rPXLz+zdpv165br6JvBcBDTtVQl+xEVDNctfordh78yXOX1n77nbGN+wKDR//DxwMP Hw+OjA2NjA0/GovzyYn2zIDgYaphf/jw8Y6+0YsXr2krmMAkcW8OHkaBFZSZs+KJezUzrcKq 6kvbsnOb6czz4ezaL2VSZL3Kais7C4rbtIOrPpeiIMpPKhkQPDpb+rpb+7vbBl5MRGLBwGOp SH1Tn7ZZkqldelvHEAYe894Pvg+5WmhHYIzT6dK1YDec9gVwwgw5019LfMxjeFjwzKfwgqe1 Rc6YiJ41WRTw0OR1BLwhw6n7v8+/PHr87F0hqU8//dzY3v+7DZv2HjhCUjfRJbvKqOjfE5IU kpBftuwTnLjC9l17v/hylYiU0m/bdrByCwDwsHbx57gnICwugyPI8OPEbzGwBsekLQx4VFTX 6eroK0irKkvrXLhwpbii0cMniMAvi2SnfUPwyM1s2iCfulwiic++cJd65gaF1MM6Wd/Jp+7W oIyqfEtMFXMr3aiYtl0985Bu9jfE1L8tC/brUCa8KAVUocGjpKBSV1vP1NSsqKgIAw/alNHR 8dLKTjf/Qnmd++x4X3a8Hzven1PEX9kg0Te0tLK2e2z8KQYeGHgsjFQ1dgFgOHnP6iCrGdBd 9EbQRhSaVE4v5XbqnhUACVB4T9mvsbUvPKXioqAdl6KPqnUc2PTzdZ1DbGSYjYVZ1gNUg9FN QR238HzQDlgBSvZKA0tQH1Qrrm6/LuIEo6+D9lPyG963G/4+iNAJQ9wJQ/xJI+FTRiKnjRcR PKSYdD9d8SkvTvyjjz4ydQw6dPT05i0/+0TnfLxsmaGNd0JeU2J+Mwu30KrVX+mQnZYtW7b3 4JHzl//+8edfceKk33f8se/QUQAeylomASHRHX2jVQ0dh4+esHDwXjCLx8PR8ZHR8aqa+h9+ 2AKODs4BLyiBJIl7c/C4Z1dIiYUukXTbPN8xsrqupLW+tK2yuPWcUS60eACV9Sprqel6UNtV Ud6hHVy1e8L94xOJpKqabgQ8etoHezsG66uaxAjigoKC7e3tb/s3RpWrpadvRNc8RUEnNjmj 4ck/cd1BV4WAx0C623v7PI6NPY1NqhVXjuAihLILB7AKeVMph3AAFyFEViMmKaP+6dNnNHXy GHi8k/0gkogNBgsFN214ZAzeOiRqOsxmC+o4heTCcpjTjV8tAJ3hRcYkElYD66ARJOcLqOAe UQAUHu6GqNMLVGB2DDzeJWlqajKQdqQd8BCiJ3744YeRmfVfr13PyiNCkNP8+OOPgxKL13+/ 8ceft4YmluiSXb5c9dWqr9ZwC4iBJR0D+w8//rJq9RpevBTAjluMHGjwAMrAxKaua7rA4MHD y6draAqOXlzZiL83n+CxdmKiyjpi6h7NTDWfcrvw6jsWBWuJqRA8NiikGQRXXTTJW0tKZbcv so+t43UuWUdK/WZisq1qUBUVePR1DvV3Dbk4ud2ku5mSkrIwP7mRR2Mh0RU4uRAOkUBOkSCg aoYJBSUv5xR0ByrVSf/S6UF4Pj76fj6Sre2DSnrxnKLB4P5MRg6U+kzcvUAN48TCsnbaOX8s ZPq71w9CNgC9P1WIcmTQBKayhQnaQDUIHlQpYhF4oBpqQcADIgdSQiJHwWaRbLkYeLwbUlBQ cO70Ba7j8jQCHnqC7tyceAAeFm4RR09dWLf++5jshk0//MR6F+8RmvbVmm8++OCD5ctXfPbZ 54raZHo2ns9X/k9Z1/ybtd9+/c26mwwcu/YckFHShuDh6OrDK4CHUcoheywYeGRk5eza/QfE nus3bsoSFOcLPMyDKN4dv6tmRCfV3yTnrZRO/lg8CRCITmBFalYzdC5trupIz3sg7FYK2GOF JCWiqYBLqV5oNdi6UzNrSvDo7x4uyC0C7JGenv5Wf2/Pnj1PyWqU04jmEg1BelU2nA/4kw3n a2qXUdfY+54/ktV13VIqUYA6wG2ZkTq8/717BHj30uuaaOLuYbNa3r1+EKLCZLPDlHlmJ4MH wi0zgwdV2tz159TQbWLg8W5IfHz82dMXWI9LCh7TpxHw0OZ3tnQPX/vtd/sPn/SLL/xk+Qoe vGx4WpVPdE58bqOhjfdHH30E2MPCJQjOagmOz9+85eeNm7fgJRTWfL0WkIlrQCwEj42bNksS 1S5evo6wh4ae6cKAB6COuKQscNCAkOgTJ09lpRVkRM4PeJyfmLryLTH1J+V0SbeSpPTGupJW k5Cq6+Q8SjwxscRPJZOO6GYD/MC5libmtLTWdWcWtkl4lm9STF82EdS0sKJzSvAY6BlurGvp 6ewfHX1bdoaSig5N00QOkQBO0SDwtT6pA/XlIoTeFQtw8s7v6n74Hj6PbR1D9h65nCJ+HMKB s0GO/9w9vC+3WOhdgr+zd35n9/DiXshSBI/CqrbRsScYeEwniMmCyuKBDJpQ1X9D8ICHI3ul v7c3/F0VSpa3U5e5jioIHNWnHfAITasNS6/Vs/ICgKFqaC+nYXby3JXYnMa43EYAHpx8hE8+ WQ42yaoYINNpOflEz1/+e9/BI/sPHbtKxwin05raengExeVXd5jbef2XPczeNnhYWdsxsbBD cwcgkOycvPEnz7ISitIjSt4QPFJTG5ZLJH0kRgmTLulakpjWUFfcCn08TEOqTk0wCSW4h2SS kGtpQk7Lg9ouAB6t9d1ZRW1EvwoYTd3ufsN04DHY+3Cob2S4f2R8fHx+f2zNrQOWTlkcwn4T 3+Yzfciz4/0BfgjJBAdFlj8cGXvnH8PnE8vunoeufoWCMsHchFB2vN/rUsd/7p5YGJ4YGhJd sYh3b8mBB6AO0M0JagZi4DGDID4egArgqEp1UzckBKCWPhkIMwyPjM0GPKARA+3jgbZpgK2H 2MgvzYATB8LAg3ZEVFR0Dm6BhoaGF0/euHtEnf+IHu2AR0haDQSPiMy6M5foVq/5Jjq7ISa7 AQGPrdt3f73222/WrT9x9hICHqnFD1R0zbfv2vv1N+tiMysnx/Ewt/+XPf6+Sa9navv2wONB e+evv20trmwEx1LT1MMLi4yNPwXg8fTZ8ze3eIg7FwNyuGqSG5VUx+9QtFE+bYd6xmHdbMAh 18l5ZqFVEDzSc1tkvcp+UcnYppZx0zJ/l1bWJsV0YfeykAzKWIyUT8UrwWN44JGNjc28uJv2 DTzyCCjikQgEOME26y51wnMyVFIlIiGt/gmNeU7OuwSGFYrKh7IJA+QImDNyTOF3qh7d2NKP gcfsP+cx59JXfKtGFED2QBRyAnQcRUZbYPnM4BGaVI40AiBkSvBA3EVgm6DaYt1wR0dHIyMj DDbQMoc4HuA2Xj1Bz/unNt9hPdoBDxyDnG98EQIewckV56/cRoNHcELx55+vvHSd/iYj5xdf rkKDR0hCgYS8prmj33Qh0y0cvCF7AAUrNs4+bwk8hPDCgDegT+lvv23t6OyB4PFo9LGosHhK aOGbgMdPSpQ093ZhVQA8hJ2KAXj8opK+VzOTCjxqytvJETU3LApWSif/ppb5lVzKJbN8y5i6 pvqey+SCC6b5swIPK1smJqY3YY+2jqGo+9UipFBusVB2Yf85dKAv/U6NEvKLW2GbA+luPaGa 75jmFDxw8syUVo0Al8zA5zkv7AH9TqVUo6vqejDwwMBjvqS9e0jGJBLgBL2UG2LigJAA8AOU gyUszyltAaiA1BkeGQN/ouEBTsKF9hNk6/B/zXR2AdnwWGAT1RAPJksOPO4eUuc5pM33py7t gIc0m87Va38HJJUj4BGZWR+VVY8GD2kl/dVfrdExc7ZwDvpk+XJLlyAEPGaTJE5d15SBiQ3m TJlgD995B4/UjOwDBw9B0wonN6+pmfnjsaeIxYNEkjfQMZkzeITHUZKz/E86+XfVjJ+U0gF4 UA21XCe/DCC2lph6wzzfPKIGGWpxiKunsyxYR0o9bpALlrMBj4eDj2ysbRkYGAYGBl7fyjHq GVTMLxXC9ep5GbPwnJzwOzWxTa8qKqvGf41Mtn03NIdvfWx0hoy8nYKai5FljLRaJCOfF7OA 17zgB6doELdoQGdhAgCAhdR6xT2VGHhgln9MMPD4R+4d0OY5qMN7SJemwIP7prCsqgF6qGUy ePyx788PUELHwP5a4FFc16Wh9y97XLpCYY/5BY/jJ07CObxxSVm7d/8xOvYEDR75+fkszKzZ CSVzAw9F9xLIFdo+5dUFLTWFD2qLHkDwiE1rvGtfBLPTAt2nnbVRIU3MvSwjvxWCR1tDT3tj T1V1F50VJQaIc2LjbMBjZGjUgmzJxcX16NGj1/pNOntlCchEMfL7MgvMy8f7P36non4mwsKl AmveJfCIEz+dL/JLCIldnKDNJ2ysrOVhaBl3l+DH9MbsAZiNRdDr7A3NdPxWwAALqRQ+xK+p IXy3tHw88NrBS+JsCQQCExPTgh1ufPxpb/dwdVl7YWYDbWpBRkNJXnN/78PnzzEioDnwqKmp ubtfmzbB49pfdHa+92cAD2uPiC++XLVu/Xe//LZ9284967/f+Olnn8Vl174WeJTUA/YwQ7OH rYvffIGHu5fvlas3XvqU7vojMyuXCjyePXt+7dq1pJjMrLjSOYDHHbO8NbIp8h4lv6tmbJBP FXYq9oqpkfcs/Vk5HaiCV1lOXgsEDzidFoDHJsW0HRqZ2sFV3smNHA7F60ipZ00oKWt3ambN EjweDT/WUNcAL7rXmuqSX9JiSA5X1IkWkAqi5/VgFpyf73d2vB/ADzlhvSixy7USmxe4M31L 6sB1Fq6UKx4NUBYUENDQM/a1ckzglQi4dddtjqYPnA/HxNjW8YsK2/bdS+X+doFpqlp4bRXu a2w67dKVJ0+e9nQP15S1ZyXVxAcWRbhlhztnhjum06yGOWZEuOckR5ZVFD3o7RkGL1vsn0gL 4EHJwHLyMtcBNRoED21el/PnLwSn1swAHheu3oKGDoAcn32+Eqx8+OGH94QkXhc8Suu7NfX/ ZY8jx054B8W8OXh09Axs3vwD9Ck1MbdhZeN49PjJZPAAPbins392YskcwONHxTS8QxEMmS7j VgLYY5l40lpiqohLcVZOc0NZW2N5OwIezdWdLTVdGfmt7HZFq2RTQE1AILqh1U0NvbphlCEb 56SmWYLHo4ePlZSUSSTS81l/TkTH5fPiDIkqTnqmwZpGsZwifnd4PFgE58X04cMjGXmb28HX wWOBhw/eksb7/OdCWguSEiITJInWlvYx+uYJTPwed+65v9ato4RVx/neYLU4eEZq234e1gt0 5YQfFoWpGpT2vrch4JaogEe8q2OwMLMxMawk0jMXwEaEc2aMW1ace1acRzYtazxYumdFuWSC cwZnnhpdXlbQ0tU++PRdd02nZfAoKysD1MFxQJE2LR4q3FY36G7PAB5W7hErV36+fMVHO3Zv 3Xfw2KXr9EdPXQD4seLTz+Kza18XPMoaeuQU1XkF8DCgOmCP4KikNwQPgrgUSVENNvjrb1vr G5unBA95eXlHa9eclOLXBY+AqOqPxRKVvUqvmuSulUu5Rc5zi6qpLXrgF1/HYk0JW/qXcS7i XJpX+EAzsHKHeuYmxTRxj7KkvAdtDT2O8fV0VoXrSKkCrmUwktjswWOwf9jTw6ujo2OW7AE+ l4pLGhTUnLgF9CTkbCzsY9UM4thw3gy8nm82WcMPgMfZG5q7D+PMbcLe4Yf6fmKhqWVQb99I Vl4jSTPiNrcrPa/HLJDDl13Y7xaX3dG/SNsP8P2+n1dBRncRmWoJUUdjW98RDguyd8b7at94 3t0+XFnUlp1QE+dTEO2WE++Rm+idBzTJJz/ROz/RZymo9z9Lr7w4j5xot9xY74L06MqqkvbH j55gqLDA4DE2NsbBwcFwSOTuPi3aBA9FLvOZwWP/4RMfffTh6tUfbN68fNv2P77+Zt3HHy/7 dv2GDz74gImTfw7gUd7YgxeTkZAmIewREp08Z/DIzi/auWs39CnlE8Rr6+qPjI5PCR7a2toW JjY5KUVZsa8HHuf0swF4nNDLNvQvL8ltpvLxqC9tsw6vBuyBxPFgsyuKymhGnEuhj0dHU29V TTefS+knEwE99CPrZgkeoyNjjx+NjY2O9/e/xvTMJ0+f1da1a+l7kq2DbRwi9clRkspht+66 Mb7+xA3wFQ+og47D5vB5uW37eLYfuBcQkvpuP9etbX3hUTmpGRW9/SPhMaWipOCb3K7T3To2 nC+HsD8Dj8upa6o7Dwls28977BwB3PZHjx5jb8jZyNJyLn1zefToUWFhUUlJWVZ6YbBvkqtt tINZmL1RsJNxiKtZqLt5GFC3payUSyCHuZHDnE1CHIyC3W2jk+/nVlZUl5SU5uUVFBQUjjwa mf3wMebNOwfwIJPJ146ycO/VolnwULtre/HSlenAg6huCgdZVq368OLFD46fOnSVjukOy71v 1n0LCj9etizkfsEcwKOiqZeKPUKjk2cPHuVVDfXNHRA8rl677ujqA31KDxw81NM/NB14wKEW CnjElc0ePPwjKaaMHWoZX0onXzXJNQqooAIPq7Dq6+S8LyfCp4OaJw1y1pJSeRxLYORSNHh4 JDft18k+bkhBlHXyaW2t/a8FHm1tbXMw3tbUtWvqe9wTMnTxuB8QViwoTfFemKXzJOxS79x1 OnFZacdBfvAVz8Gnl5ZZ9u4Yt6ff9HDkcVFJQ1NLN1gffjjuFZjPI+Z7k9sNHfSVDefDIeLP LOBx4ZbuH0fx2/bx7vqTV0HNub6xHXs3YuAxndTU1OBvy8vQ60jd0ZK4qUVk0acoqwFKDRdW DV6pJDYjeXZjebB8fZVjNhCj05Rj0pWh15Zj0rt7RTSvIK+mugYDj7cEHoDtKIMse1VpGTyg c6lHVO5k8PCKzP5y1Vcff7xs05afAWbs3fvB/gOrvtuwaeX/vti99xA96z1QuO/Q0bmBB1Bh 8f+yR0zyLMFDQBC/7ttvDYxMXT19Lv/jU3rs+MmIqFiYJG5K8AC9cHZyEQCP7Pjy2YPHOX1K Unvb4MrK3GZD/3I42sJsVaAfUI6Ms5iGVFWVtG1USIMBxPIKW5X8Kn5RzQAq51vuk9zI61wK nUtjclu7W/t3alLy1WqE1rwWePT29Lm4uMzhV/r48Xjc/QIHl8iW1v6a+i6yfTKbkOctbjeW 6f1O2SY8JJn43M7+rbX7sBD4it9/Aqdj5PO+Ddr2Dzxsbunp7KJMam7rGLJwSGER8AA8Bu4P u7AfgJArjCb7TxK27efZtu8ev6hJXkE19lbEwGNmqa6ukWLQ0uG2NxJyNhR0MhRwUrxjqkRv hqj8bRM5OoOFUdItI/Shp1RlBrLU39qiV5QlrqpJXVadrOJX1cSn2QR2kbyhqcpsAS5Ti8vG FOcucFEmJze7umq2TwoGHq8FHsPDw+dOXmTaL8m1R5PGwYPtbz5NU+fJ4LFr76HPPl+5dccf n3++8rsN31+8+JGh4TJVXc0bd9hA+YZNW+4wcwP2UNG1mBt4VDb38eMIRAVVGPJr3/6DyVnF swEPb7/gnbt2c3Lzrlq1OqewEuzu6Opz9foNJDvtlOABqAOCx+yHWvwmzB0rJJLy0htgdtqo xDp2m4LVMimfSSWvJaYIORUlZzRB51IEPKBzaUFxG96t9Cu51E/Ek35UTlcLqqqq6YZJ4pyT mqDRo71tYPbgMTz0kJGRcc5JbEUJkgzM+MiYXMAOVTVduuT79DxTeU5OIAdgkkv0hnuPi/y+ j+f3/fckiDbllU3v7WPe1T3Y1NwDIASss9y1uMFiwSLg+Te71Z9nZX7fz/v7fh4GDvWY+3nY +/BNwIOV6LkkzvbN+0HwsS/LqqMv4KjNY6vDa2eEc1ZkMFViNIOqQG8sw6yhI2y5AKorYiXH qUW8Y6DESEZOYLKqMJkLXSZJ3NAg0OsIMOsJUimTrsRtHYnbumCFapMAsy6BXpdwTUXrrq2J qKsGlzVZ3BN/g5ibl1tThVk83gp4jI2NMewX4/pDg/bBQ5RJmYsXTwUefnGFq9d8veLTz7b8 vPXzlSullfTbe+irm9a0dN4z9cr0iy1Y/dXX3363YfXX3/7viy/9ozPv5zbhtEMQ8Lgj6T4b 8Khq7rvNwGJCtgHwABDiyLETKdnFrwSP1o6+VatWwVCocILM5s0/1NQ3zwY8XiuOxzk9irmD wzIfgIecawmMHibhWpyY2lBb9CAmpUHAsRjwxmGdbP3Ayg0T4BGd3mgQUnXaKHctKZXXqQQ6 l/qnNjHaFq2SSZH8J2T6S6NHWO3swWPs8XhRYTEdHd3rRvaAwsXFBSixta23sbkbTndz9c0F 7MGKyt4y4UHqe53F/OBpSdCfAmXn0UlKK8aedCDtHf15IW4M7KZ/3dA5c0VlxyHK2NNfN2Td vONHH49h9+cN2aOjZ2nExpwn8NDV43NUZiGrslsaCDmhwYN020AdZxxikxhslfC2Ncw22UjO Vva27ivBQ/iKAvG65nFlu9WFFWtyy/7VvLLV2UW3+Axu4UxXZxWCP9FbV+WVnlCyk7ympsVt q8tnR7pjYoRzFf6blJefW1Ndi4HH2wAPjl3qnLs1lgR46PC5Xjx/xc7vPpXF48CRU3/sPwxU Skk/PrfxloSppc9+c69jApp+tsF5V4Ss9x4+8/1PO/cePEJ29MsobTsvYBeRXgPB44Kg/SzB o7ql7w7jf9gjNbvklc6lx46/DBcG9/r1t63KqmrTgcej0ceB3uGvCx6J9ylTX5dLJMm6FP+q nMZpXRAUW1Od3zLZudQzrvaOZcGHYokT0U1T6K0KXePrJzuXdjT3SflUAPzgci6V86+CRo+O 9oHZg8f42BMSkZSTkzNn8HhBcfx43lRbX5WZBNaDI4vp7zpSPEiF/djx/jc5bY9eIG4/AL7i ea/eIvkHpTx58hR7zBGpEvjCg/MwP5PkmSuKJ/8SNyL7d3X3Y7flvZJ5AQ8ZForFQ1+Qoob/ tXjI3zGSYVc3lXM0kXV422pGdJLn0Za7rf9K8MBfUZC9qXOPXf9vgjmdKEoJ5n+LkPGMujhm vb9FzOj+u/VvUXOwi8QNdU0uG2NRFw1uazMxT/wNDDzeoiwh8IC5Wti5+WeIXEoyj2Umeifm XdB2OCptLA/A4yyfraRRJJ24m5BWsIVfjlN4oaptgrV/jmtkEQCPg2xkEb1QUb0woK8Ej5oH /VTskZZTMjN4SMuSJGVIEDyAAgjZtPmHXbv/mBI8HBwccYLCrwsejOQ8wAafSSbfNM2NS6iD Qy2TwSMsqYHVpnAtMRXUBPUP62ZP51wKwKOzpa+2vkcvovaYYe7yiektmmG1rwUelRVV1tbW z18/SuC/4DE+2qxztoBndWWo/cORp9fpDa4xmNzmsjt1VRV+xR+/QLC0CxscHMGe4sngAbRU dq+5bWRmTgV2Q+ZF+odGVW3iFjH/6SKAB7OOgaCTmbi7KcHNCO+iSG+K7ugV6I2Jtw0XRkm3 jZRnpA7E4iF3XfMU0XJtSu66hKx/NTF7bXz6bR69O/xGa2PTwJ/orWsTM0+SrCSvqQHwsJDy MBRyspTyxl0nToAHNtQyz9Lb28u6S3lpgYe+gMftqyzKupbTgcdpXhu/+xUKFvpneNlP8fDs YzHdP6EOofn7Wc0AeOC0Q4DidSg6B/ConcQe6bklM4BHSHj0/oOHQH26W/Trvv0WIIcQXnhK 59K29o6bdLfiwpMBdWRGzzZXS0hUFQCDj8UT18ilHNfN8o2qpgKPxLQGKbeSn5XTt6tlqPuV 5+S1THYuhZFLC8s6pgQPGGV9nXxaVWPf7MHjyfhTfT39hw8fvu7PMjAwUElJCax0ehBgB/rA U7awuJGezfjyTf2j52S37efZc0RATce9+UHXm/z+HR0dT89CCgoK/vM2rqmZzV6RkZHUIyDt 7a/cS0tLa8oX2sxCIBAmg8fVX5Yd/mHlK/el2hGcwGyubnJaQFFR0de9ky8mIha+ci/wb5rh TiYkJCzkOMt7lasFAQ9TMTcTUVcq8FBkMJW5oy3HpEtk0lsAlWXQId42eCV44K8oyNBpc3Ab XJew+lvcEq03COaiDLp8rPrXxSyoNoESfraXFg9zSQ8DQUcMPN6eyMvL0x3kW3Lgocpjc+mv Kx7hWVOCR3xu4w2Ci4ln5sjozy9efFDaYKvjnPLjVZ3U4gfn+G3TS1vP8dtllrVZ++dA8Hit oRYIHuX1HX9dvubhGwzYIzWrcN+Bg7XNXRW1DxxcPCeDR1tn/5Vr15lZ2e2dXKrqmmB22imH WmxsbB2sXLOSCinmjvjSWYLH2QnvDnaL/LLMBpugij/UM26a5dmFVuZmNmn7lv+pnbVRPk3A sTgmtaG+tG1K59IHtV0xmS3sE8HSL5nlW8XUNTX0IkMtwVmtvR2DB/RywC4sDiWvBR5kM3JL S8vzOaVG6E+yQ2Jrj7VXgZLGpm5z65gbjJrS8ral5Q1z/tlzcXHB9wMGHksdPD744APIqBh4 LDx4kG4bKvLquRuEuOkFv2111w+xVnYXvaGsPAsfD4nratvJnqvySr7KLER0dXbRmsTMe7dU TijarMoq+Cqr6N+tWUWr0vP+FjSUuo6Bx1sX8P48d/Ivtl2qSw489AU9Fe+SfbzTpwQPq4Cc fcymCXlNV/AkeqnbN8XvSRpFAnUIzUeDB6AO64Bc79jSg2xkj+hiz+ji9JIHswSPutb+ioaO i/+wR1xSlrK69o6du48eOzGbJHFTgkd5RZWYiCSgDgp4JBbPMjutsU8p4IEvpJITE2phyPTS rEYmi7y1xNQPxRJ/UU7X9a9A+3hMBx7IUIuMT/mPKhlg32sWBejstEnFHSsmBmjC8tpmDx7Z Wdm5ublzMHo8qs+mJPKYoI6eUE2kvLNrMDQip7au9U1++Qh4vPNDLfWkHe/2ZWLgsdjgoeum H+KqF/y2FRzFStlN9O9XgwfuirzsLT1JNlNRLrIoJ5WayTOYSDObgJXJm+SYTcX/Y/HwEbom l4uBx3wL+I64cYiLfaf6UgQPAyEvB/XgKcFjL7MpBA+P6NzMkt/zKtZXNRt6xpSwKfiyK/gC 8MBph1j555wXsMuuaL8p4SqiGyqiF8qt7D/7oRYYQKyy8V/2wItKqmrozRk8ysqrLl+6HOgV TgGPxMKM6NLZgEd2Uu2PihSEkHEqhJFLPSOq9mtkXjXONfQvT0tvJLqX/DSRG07eszQzu2kG 8EjKfYB3K9ukmH5UP0cntDqntIPDsXiTUrqUb2V+ZTeMXCoz4WX6m3pmZ9fQLMHj6fjTtra2 2QdRh/JksKNO+hfYdbZaMc/7Lx8DDww8MPCYl6EW6dtacow6coy6C6AyDNoT02lfMdQiek0Z f0VB8pqa1BXVySp+XU1imk0S19VFr6lg4PG2RUhIiGGP+NIFD2MRb2Nhb3uf2MkWj9O8NgA8 AH5IGqqf4WUffPhFdGbUj1d1LHyzAXhY+uXImEYdYDUD4KHtlAzjeHhGF78ueDS0D1Q1diLs ERASPSV4/CWT8ErwuEl3y9zIOjOxMCuhMD2qJCOybDbgIWpXAEhgm3J6dGy1kG3BBlLqH+oZ buFVVD4e0cn13LZFa4mppwxy9AIrqAKIaQZV7VDPhAHEsora0D4e+eWdADw2K6Uf0MsxiKqr auj7VT0T7CjmVzV78Hj29Blgj2fPZhvOCzqUwn6zQXn/s0cDGHhg4EEj4PG+OZdWV9VI0Wvr 8ToaC7sa4VwMBJzlb5oq3DZDVPE2WeGW2WRVnG+daJOseIescPs/J0ClimB5y1SOznBuKn/L RJ3Vmizmoc/naCHuI3hJNicvpxqL4/Fm9g10Bo3e3t6zp86z7VRZuuBhiPPSE3K5dYXxLr+w T3QO2scDgscZXtvEgubj3KL0Urcj084fYDXRc0kB4OETVw7A46drOucF7JRt4t8EPBrbB++n 5uzYtftB1zAVeADegArejcj6lOCRcb8gITI9M6EgE1BHZEl6ROlswCMutgpONtmikAaQA4BH THxNeVZjRXbTdLNaHKNq7lgUfCmdDJ1F92hlrSWlstsVRWc2TzmrBRlqic5v43YpWyefdsKY Mn3mU8nk1PLu1wKP2f9Qu3xlYKdZI74RunYsUfDIq3hQ3dSNgce7BB5LS968H2yobyDyaagL mmjgTIGq40xV+Axno8po5V0YNZhQyhFVeF/qHBpRFTDSFiWr40y0RMjS3MplFWVNjbMNSEgg EJiYmLAfHlqo4nhYW1tfO8TBvkNtSYOHsbC3sYiPsoCZJE5BVJykZWznF5MLwcMxJF/GNBqA h7ZzQkiSoLz5mcKqgwQDsortfQ37JOuA3PCJOB53Vfx1nJN1XZIljCLnAB6+QVG79+zl5cdJ SJM4uHh4+YUAeFiGVAHG0PUqk5IlDT583Ds42t0/AvPIgHLbiNr2zt7QsAhjE7O02NyM+/kA PAB1pEcVpkUUp4eXzgY8oqMqf5kYZFknlzLBHqkX9LNF7AvJAeU5aQ3TgQccaqktbdulQTFc mIRVTfbxoAKP2vresJxW9dAaHteyvTrZH4snfSpJoZ3vFdOTyrpmAx6tD1olJCQGBl5tuBjv e9BqzQZ7TI+/P39L1DF78DByS/n5ug5Y/vsQ3bMCOsujbL9lcIbXerqtBZWtZK90DDyWFni0 dA7wqwd4RxW9J+Dx9OnTgYF+RDo6uhvrW8uL6wuzq7MSSzJiizJiChHNBBo7sXyVZqBWMlAr GVPVnFxnPrQgI7ogPWZCY4syE0ry0ysqShra27v6B/r7gEwswLU/nRCMH+YLPG7/Icq8U+Hd AA8TUR9Tgq+jRqihiuWNa3RMLBwxWbUJeU2J+c0APJIKm5OLWupawdvpg/Ena3MqC+YWMn06 iwdVADHEygGkuLavZ+DR6Nh439AoAh5AL126rKWqlxydnREPqCM/OagoJbgoNaQ4NbRkluCx VYlCHfRmucWpdQnxNTJOhd+RUmHO2c8kk/AORfeT6qcDj8by9sO6lIkw3gn1M4BHSGbLHu1s 2CbQTySSGO2L3VJbBnqGxfwozh6rZFNqHwzOxuIhJCSUlJQ0NDRTvMcngx2gl4TdZSTfLzCO x+KCh7ZDwvKDRLBEswTQsfGneRUPhkfG2ruHLH0yqMwaSbn17hEFYCsaPEBNWI5UJpGjQAXY DmIhmdwaBh40BR7vm4/H4MBgTET8/ZjkUL84O9NAM20fUw0vcw0vSy1vGx0fG913R620vcF1 mev4+rlFp9zPjI9JigqNiwyLAQQyNDj0ApN5Ag/W31XZtqu9S+BhKuZnIRPgZRplZ+ge7BwP FA0eKUUtfUOnwYtq8OGRtwcekCvSSzs6+0aQFyOQ9p5hNHgkRWWlx+WnA+qIz0+LLnhd8CA5 FYJ+/xvZlPi4anSSuLDYalaLfDj+AnSrSrqKd2ledvNrgUdjXbdVTN1fZvkIcpwzzSfH1qNz tXR2De2eYJI79iWzAQ9tLW1/f/+Ojo7pfpzPx0dbDK8gfaUANystg0dKfgMop5dyg3+CdRmT lzNnAWmAP2E5Ah6AKJASsBXgByhcf04NrCPtg9bgjmDJrxbwJlc3/PBxcFQ5HmdFFFKNkqbD wOO9BY83l8rKasFrJKkbOtI3dWRu6iowG8kx6MsxGCBKZDRcSJVjNEAffUr9p7LBXJTeQPy6 FrhYyRtaxNsGHGfx2TnZVZVVLzDBwGN68DAT9yNL+NurhPjZxALwCHG+r6VgKCatYO7oG5tZ lV1eMP5kLXhXtXRJvFXw6Oh9OXu0eYCCyr2DL80dRmQnWCEtLg+AR1psfkpoQVJg4WuBR2x0 xdeylOEVVdciquy0cDpt9P3aK8a5y8T/z957gLVxpYvf+z33frv3+d8t3/9uNutNdu/du8lu yu5m0+zEiZM4jh3b4IILLtg0m14MxnSwqab33nvvvYMQvYvee5FAQkL0KvwdcfDJWBIgMAiw 531e9Ixmzsw5M4zm/OY973lfIiKHUw7VzsntW4JHXFH/JQ8SDGoK9L/0Smwzulu6aHA6LUd2 2pJW2n+slYysGNkSPAIDAv39/clk8tLSEs+bE/l1dKr+bpHSgSKXHmTwAFBBoU0hqIDWD4QN cBmCx/TsInRHxJpBsBYPWBh8gvWAYcDyzuweLNYqsaxP0yRDSj1VXDVeUi1ZXCXWxa+8b5Dx qj7WeEb5wMFjt4Q9q+WWtZ1ckLNqqJNqiKPy2qyWG65IDa456F6xFYSK2OpdtV+r1A3bAA41 uemucdFc9fwTzfMm2meecKuGkKmGEO9NYJeHF83M73q5PAizkfH3UI9SFNKt2Y5zKS6vM3i4 a8a7ayX4GCZ5aie6aEab6dsq3FM5++M5cSmZsJiHADzYUcV6U3cdPCBUUOjT4PIGBoeX1K+/ 4BdnV4NutDCpAhYoya4tyaojJpMK40nEhPrtgoeYa82/ifi8+yCVI0kcBI+QsHJPP2J7zWBj 9YBVTOvnlhX/fs4JDcGIepISCD0c4EGoHpIOaPy1TjECld8blGhGt3V107BxPDjAY4oxq5fY yS78uJTOmN0cPGJiYhwcHAB4LCwscN+ZzLIwFChsuj71GSZk+gEED4ANEDzQemjlAAiBFrCF 0aHAMjRogE+wxi2qDC6gI4BPVAYdhH9p6RizcimSeJAo+SAJpdK7qxwLIERGIzEioWFich5/ DL6sBaCP+p/HDfXdsl4f8GBnp5UPfCrlZXHPhztXi664hYtuoLPOnqurXvBjGRu961vnalE+ b6B92VJBwvHWQ9/b6i+qmo/aLbsHtx3AAsemW+o+YBeNi6aW0r6OKsGmdz1d1CO2m6sFl83B o7Ky8tLn919t8PDQTgDg4aWT5KWbFO2SkxpK8HEI1VEzjI/9iO3ssfTLlr7UXQQPm4haABVa JmbQuKGuqulk4cOmjqQq8LUkuwZSR1F6LSG+tiC2jhC3DfBIiKoKCykNCy0LDyv7T8XUn1/x /UrcMzKiIiqyMjqqMia6Kj2JhCwemmZJWOfSvwhZG0Q0v2VYirjit3rFcDrtbZ/6P2DW/0a3 WCKgMa96mHtWC0/woI1PwwGXpDrK5uCRkZFhZGQEwGN2ljOpysJQAwoURks0QmBwcMADDaN0 DtAgHmwXPOTNEqBBA5bhCR5gGVQEjgkVOX7wI2O0Gf/IWim1eCn1lLuYBL5IxVXAplQ1w9Rc YtfSMgt/GOKyHfBgZ6c1uetuJsEjO60ZOzstIcmrYK81zZfoqOvDZ3Zadq6Wx75vVDa+WUr6 Scvq3yiuuS5jd03R+Y2iavAVu/W3ZaSThj4oO62hqLOjcth2s9Pis1o2B4/k5OQLx8RfH/Dw 0U8OsUqPcc9NDipICy8kD3wF2IO18nNS6RMbE+fLF0Vk5JXMrJ2s7N2sHNzjMwgJGQRSBxkL HqV17anZRak5RWm5xem5xXHJWY6uXi09IxA8AFFck3eCyDHGmCNGVMDl4qxqIomMXDvyomry o2sLYrYNHkdFndh6g61/FXF4/4rjsRvOx26u6xdAbzkj8IiPq8GCx1+FrZNT6lJSSR5RVWIe tb/WKUKkAfXfHxGvedX75/ZsMp2WJ3hMT8x2D0+apHdvafGoq6tTUlIC4MHhX8qaYyKH0iEH ISwY7Cl4WFpa8vN8gKQBkCA8g4S4AlABGmqBYyhwqAUBBvdQC+QKUBiNyyDwoNCmwHo4vAKH WmC9fJ7I0vJKSnabsm4Ke2xFJY4bObAKjSEmdvmkZjL+PMSF36EWMWt7hSAHlWAH5WBHFQ6L h5O2mJm1mqcA1EbdS0/y6VoAMT6y04pYS0nYXdD0vPDoRdVwV75lo3Tb9sJDd85NjzykJdZz tbg8DLWS8XXXiFLGs9PuKngEBgZe/Fz6IICH4Q0ftasWcpd1FUQMEHjo3HK8KyHFka9BSEhY +ooKNmS68k09w3uO9qqRW4KHt14yYA8fgxRfw9Qg8/Qo55y+totwzKUs1zPMK8HbMdhQywSq xB1poAkhWTlxJTnxJbnxpZcvXRG5dEXy7j2k96XkjHTNMmLXo3PQmPOFMaWFyZWFyevIUZhR TXy+DC74S4LHaSmvsJBSONQirRnhH1CMzdUSE1119r4PAI9zMj5Qz8v65mQ0IvA4LubK1juu 5s5ZfS3k4JzuX2mz8eNPT0rtUzq628c2mU67OXjwGcdjanKqvLwcgMfk5CT2nsQ6lGIDhe01 ePAvAAng2AdUUa0wthXrOXigoRPoLwooAq2BWyF4QK5AzqUQPFKJrXAZWk6wXqmwFn4kKLpO Sj1FQjVhc+TAjLzESKmliKvEegRWDo0w8aciPtSyNXhsmp32iair/hUHwajhNWfjW/xmpz2l 43Ekv+IP2aVI38opO5JZdP2+7Q1Zhz9kEP+QU4bdeiSn9KQenp12zy0eF49K7hd4qFwyEzuv ePnMzfNCQueFhO/LKT0xt/EOjkYjHVXN/VnEamRwaB+gdwwy6juGCkpq2cMcwxO9I8zm7pGn gMSVVMD/+rLIFdELd+RvPtK7Z7MlePg9TvU3SgNamS0HwING/mvw08zMqCKgWTHFWbHF2Wwt YVPHc/DITSjNA5pYBjQ/CWh5fnJ5QXI5xImpuSXvkMLxyYWkpMr5xZXUkIqZuSWIHEkhFZTx OVgMXPYdgwfy8SjOan3nvFVeaiMWPJCPRzWxq6aoq61qwM49D2vx4J7V8jfTcgAeQi61W8bx 2BXwWGWtkteEwfjJyxHrULow1MAxFHJAwAPiBOAK7ERXNNQC1oD1oAC2PCgMXUmxAcTgXFq4 Eo3FgJVgd+x0WnBMfqJirrBYPf3jjt6lEqqJd5Ri+KQODscPOc2k2JSmqekF/NnIvxwu59KX t/xvFTLdWUvU4omk/RNJBwGowV0bnas2xnxYPLRFrG4pOJ8zCBDS939BdbzVr1tJSzuc0/Pj 2HROz1f+ji2enXZPwaO4uFjoi9uCBA/Niy4QPMqbRwKj0529QyOT88ubBmvaR9ddLLqwLha0 5j4aB3iw/SuGGAg8oIvFmn/FFKmlO7ew1MXdOyUjl0KfgeDh8DDMTTNuE/AIMEkvjNdhsf5t uOfzcJuUMOusaOe8OI/8RJ+CRB9Cki8hI7w4yj4v2iE/xrEg1qkgK6o0O7o0B2hMGVAUryPJ iQg+xS5IhTkXpnsVRbgSkaEjObiCNrmwbu6IrAFrdgYefzln+Q7Q80CtuPVdIbbGxlSFhJad k/Epym398rbL5uDxoRkbPH50qhEweKBZLVPVscihFCxz+2AcHPDgFg4fDwHLwDDTwqVIRiMR wMMOqOMnxw9VtuPHI6MMQmkv/nh8JcFDAEniTBQc4t1z4lyz91rj3XICLWP5zE6recn8I+eI Nyrqf1dS95OW1r2ZVyZzzeykoc8bJbUvbCqpe4NYdUXREc9Ou6fg0dLScvarKwIAD6XzZrfO yAmdunLuvBCxtq+saQSARzl7KiuF7djZTtkV8BiiTg3T1uN3AfAYZbAjlgeGhIPb4LaI1ENJ I2fNCJ7gEWia3l5z/tmzn9FH34lziQy1yg6zzgm3zomwyY20zY20y8OCR6wzIc6FEO9amOBG THAnQpwItiqCmHFLSIoyvh6eNCOoYmpuCYVJf7b6LDei+uUtHkWZLQAz/PyLSMSugIBinrNa 3hWyDo+o0DRLCo+s0DJP0nqaBMBD2yJZ2zLZzCkLgcdfTMoAeFzzrBMweMDbD+tQSo3V4b5X cfDYRFy880Xl4m7Kx/D0I92uSj5IknyQWFk7dEgfa/h02n0ED8PrjgbSVr6mUT4me66+ptFO uv7ql022zk573lDnqs3j646GV2y51O7JDZcNNtk+ueH88JIZZ5K4Whw8XkpIJNL8/Pp8OgqF cvqE0J6Cx70fdS+cunbh4uXH5nYRyYSSxqHSxmFBggd1YpZMZeYSii2tbIWFhe/dULZW9+MG j0j7qGnm7wF7gM+0AA/+wSPRowhyxdzCcpBNiaaOAegr0wPK0jyK4fqskMrs0MrssKqc8CoA HnmRNS8JHlKPIq4rBdUVdualNgICyU9r5AaPL265GNulJyTUaponnZf1BeCh9TQZgsfxO64I PP5sxAaPW14kwYBHRkZGfHw8BI+NHEoPEXigyKX7UntlTYenf8E91eCLd/3FFKNfnj0AwCjo pOcX95JHpw/dY03AAcQqmgYBeNw3in29wENp3cfDSTWUw8dD95qNzjVrgamhqOOWPh4AHlSE HmtcMOWp6hdMH26w6eFFU/WLpmzw0GKDh5d2LJ6ddteFnSFub8BD6rSmyNXrdyXvu/nHEEmD RfWDxQ1D+wIe7OSwk+ys9EOU8ZCwyBs3b16/eNvbIBELHkFmGTFOEfTRd8AzbHHhl8Up+vyD R5JnETJrYDUjqAJcYQAe4HO3wMPXl/jOecvirFYAHj9Ke6s9iasv6r6nHVWQ0YQFDxnd6Jtq Ie01gwA8tMyTsCHTheT9sOChmyqnEJInGPCAkUsheAy7XuHpUIoVS0tL8BM+yD+ffUwARyaP sy/jyLi7b+5VyQAxpZg7L236EFeJP3PV7todKxw8+GGPianDERHl5fvBjvbOh1fMLSR9beUD bGT9re756V100L/siNRAxMngsuBUX8QJWztvFXHSu+yge8leb5sKdtEXcTS+6eaoEmwp7eus Eib3o3Z1TVVnRycOHrslt4D802DXwSOvpj84viAkoYBQx06VckDAgzE1PzE9z5xZKC2vmppd 5ACP4KeZ4TYpIz2fw3kutJEPcsJc+ASPZK/iZO/iFJ+SVN/SNP+y9ICyjMByAB6ZwRW7aPEg pje/c87SyS2vltBp4ZB57IYzdC41tEw9dtOZI3KphlmisV2GnH7MJuAhEeIOznRk4n+HugYF AB4wVwsAj9E4Q+RQOtdbtV83P5/TaTcSA7csNFVW8NI3QFlZWR1nTNPGJ+OSqi7f9bl2L2zH 7HFXOVZCNf5bIZP3PpY6JazFUVcqsRXGFYGesUjAGjT5F7rIQkOQ4Ief8Oy0e9oPDg8P2z12 c33i72q0psb+zo99D6ga+rB1fXldnbatPs5PfN1NA8CZupkEWOs79/T2kEfIArvgr7xYWVld +VRpt8BD9pRxTjXKSj9g5RocmVbKD3gYWToLEjwmZxbWU9LPLVo/8nXVj4DgEWKRFWqZVZn9 YG7mvyB+DLR9n+gZc0DA46iok6phbE1BR3hY2TvnrZLjatCslrP3vG+oBEPwOCfj88Utl4+u 2GuaJW0OHmbxpG7a/7Az19A19xo8aFSakJAQoI5BQghyKGWWhe3jzc9nALGN5J2L1ruYzW3b 1u/ekbn55frmwa7esWfPVovL2tR0Ii6I+YjKRm7L6wMUBshxSz781GWLv30s+cFn909f5PS3 QZOCsVFYAYSgScEQQuAymTa5s5irhwg8RsenvrvvHZZe95qAx9TkZDGhpIRYVpBdnJqQnxSd mxyTmxKTlxqblxYHNP8AKWhSbN4Ly7HsdvKj7JIxucnROUkxubkZRWXFFSWFZYX5RYWE4snJ SX4ya+PgwadkZmaePy768uCh9L21yPd3r924nVBQD8EjNrvmyFt/5BM8vvrmlLGl876AR0xc grDwBetHPgg8Qq2yY5wSWspvrSz/HDzSwGdDsUycS+a+g4fko3DkXIr02E3nH+95g893haye WKcB8PDwLSzKaW2rGoBDLX8VtsYq1sejv40yOpAOznF19ReUgdJdAY/mFkpuYSd9fIoDPDLS M/T09IYbSzpU3tjEofQQgQfqczeSTZgEbRpnzu6s9p4+yvzCytLScl8/ZXB4fII5Mzs7n5xW I6UUePGu/23FaH7wQ0I17o5SzPkbTp+ceACo4/1P720EHpA3EF08W8tnJ2+WgKKXvFbg8bo5 l7a3dygIG2hdZM9j1b1q++S2o76ovZ4oJiPbDQdB6pYZ4kDb1ouJ7lA1LljqiNhoXrQyuOYg /r1KVXUl/0nicPDYUqanp7//7tTdf5i8DHhInNQUvnjZyMotvawTWTy+//GSrKpOdkXnpet3 NwEPZQ19r5D4lPzq377xZm5po+DBY2Z+aZg8Ki0l424YhcADOpcme4cNdX0NTR8zk0dKU0z3 FzxQHI/E2Jq6wk4SsQsbxyM9iYQNmQ7Bw8Q+w9QhE2vxENMIw4LHQPvoNFOS7dky/9lLgkdz K8UrsEJBO0laPV7/aXZ6dts4fQaBh4mJSWxYQJfu+8ihdHVpn4fIXwY8UBAwOAYBFmAvDKN+ wTWwAIoDBvPYolhkoCv3jCk/8oPZzgZrRscYcwusxpahnLzqsKgsyhhzemZuhEwjU+huPjm3 7vtduxe6Ns02ZgN3jjhx1TgRce8vTmm/94n0e59IAeSAupHFAyaaQacD1gB8Al+xp4yDxysJ HtC51E4+yPkBO0mcE1eSOP1r9gJKEnfFVu+qHT9J4h5eNFNZSxKn88Nj7dMvqM7pxzBJnM5p HpvWksSZmot7uaqH28r6ezyMUhLS21aSOBw8uCUwMHBiYoJjtOXWR7o7Bo+73z28fOV6WGpp VmVvdlUfBA9776h3//ZhQe0AoA4xaSUseNh7hpnaeKQVkiB4BESlAeQgVHU80je9dPXmvoDH 7PxSQ2PLJWERjyfRWPCAzqWFcZaT9D9B/KAOfZwb4bvv4FFL6OQGDw4fDwgeKI4HAg9sHA8I HsNdHSsrb4Kzm2Jo7Qw8SPVDjl7FkqqxUupp4irx4F1b8kGSlHrKwyfp8enNY7QpAB5CQkKd 1meRQ+ny5Oi+/xZeBjxgPwsjfcFkLpA9oCME5Aq0CXbNKAdcKrEVYYm+6wth0vmXxpbe/sHR GlJfflF7HaljaXmls2vYNyhjZmZ+dm7B3TdbRSv0xr1AUdkIDscP6M4hej/4GyHjDz+XYQ+v rBk6tgQP+AmJAjQYLsPrQKFN4eDxaoOH7h1rW/lAc0mvp9I+Di/majG87qgnYelmEOKmH7zX 6mEY+kTOVu8aP0niDHUuW8lKO13TCxLVeUGvaweoitmr3nEECxybrukEyko7wyRxDspBpnc8 XNS2nSQOBw9u4chOC2XHQy131qgjMrMys7IXCx4yKjpAg+ILjrz1x5yKLrkHupdF7+ZXdf/9 o0//53/fFb58w9DcMTm/5h//+qyqjXJbUlZKTjWntPHPf3l3v8BjbmE5NS1d+PwF1ychPON4 kAqVlhZ+CfGjv/UcIdbjlQGPwY5R6nAkPLUJquu2wKOqesDWvUhcJYZXlpAYiQfs8Faq+qmZ OfWBcscPgkPpXgy1QLqAyVmeYbLFYXttjvUo421jJ2VnwUDq6nt8A1Nj4nJJDV2tnZSmlsG+ gbHw6PyhEfrc3FJeYV1pZaeTR5a0csDFu3635KMADUJ3jtsKkaevWH/0pRIaW+HQTYZakMUD nhQK/w44BIFHRz8VoggOHq8WeMAkcR5mEl48ksQpOSZ7FyR55u+1pvoQHbaTJO6koc+bpaQj xNqftKj294RKURm764pOvy+oBF+xW98sqvnewPt5kjh/Q1EXJ5VtJ4nDZU/BQ/xbLUAdERmV GRU9HODx9ckfTe18DC1cT529VFg3+Mtf/Topr1ZeTff0uUtoqMXC0ecPb//J1i3QxTfiq29O 1XaM/urXvymq7dwv8FhYWiktrRC7cTfCLodnHI9Ej5TOumuwgwY6O3WkuVwuOzTmFQCPwc4x xpgLPC/GmA8/4FFW3mfpRAB0AdDi7maJyUBnlyirkeiqeL9U4a8APCZKQ/m8V/d6Ou3uggd3 mlrs184BGk/wgPaBHYDHyspKQ/NgcnpFSERODam/sWVwmDweGUsgj9IJRbVRsdl+gQmxiSUl FR0xiRXi8v43ZcPA/0L4lutn36gD5HjvE2lu5AD696MKP1423Ag8oKEDJqNJJbaiISSwFa4E y7d1I/jPMnNIwWN+cdkmqLC+g/z6gAdMEueoys4Qx50kTuu2uaWqu6XKnquVqoeuxDaSxElK 2p3X8RbSflE1PZVu2SiK2YIFjk3ntb3ALs+TxIVZy/i6P9p2kjhc+AQPNntsHzwSiW3R2bXp 5T3c4PGnP78TGFcgKacuKa+ekFt75K0/FtUPfnPqrLGNOwKP+0qPrt6UUNbQT8mveuvtPwHw +OfHn4XEZuwjeCwusZaWWZnRxVGOuRvF8cgIjGyvEZuf/S9EILSRT+oI+ql++YcaPIa6qJPj htDRlD4avRF4gE9icZe5fYG4ShwbOZRj+ZytKf0wVUY5yMXYsX9ogn8w2NMAYnsEHjA7LRw9 mZ5dRIlodxc8kLR3jsYllpaWN/T2kaPiCFQaMyevPD6xoJbUER2XPUabWFxaNDAOPXPJ6ptz T97/RPq9j6V4IgekDkk5G+/AdI4qwLmgwSCYmwbbYDii9GwtnQ1YcAwrFvxjDZ9OKwAfD5gk zlk9lCtJnBs7SZyIgwBUT2R7SeJ+0HJ/O7v0jxnFGC15O61Q9L7tTRmHt1MIf8wswW59O7Po lK7nSyaJw4VP8FhcXBQ+Lib+kSn/4JFS2pVa2p1W1s0TPKDFQ9vY7twl0cK6wf/67e8yipsf GVoIXRaF4OEeGPfI4Omf//KurVugV0j8Z8e+OggWDwgeyyuslMDCLQOIlabYDrSdX1n5OcQP 1srPBzuECqKjDy94DHdTpxhakD0mqCEc4DE6zMjN7zCyzlvL7pHCJ3JwpAWRfpgmrR7vFVzV 1Tv+qoIHyk6LEtfCeR97BB5AenpHXTzio+MIWXk1ADxS0ojEkjrKKD0mnj0QA9aYWcecPGf6 8VcqGxk6PvhM5u/HFDT0vBYXlw/jY03w4OESUdJPZrwmvQYfSeKeGkk7GEk77rUaSzsaitvq XLXmL0mcpaiS6xmjoLNPAl9QfV/1a1aS9xzPPA7g2HTG0F/ujq3myyWJw4V/i4ehoeGVo3K7 BR4ScuoyKjo+EZn//ed3ciq67kgrid65n1nS8snR43//6FPhyzd++8abgD0AeJTU90vJqYpJ yuWUNr719p/20ccDCx4rrNUQywx+Ipem+WfUFejRRj6B+LG0+MvuBvGCmPhDCh4jPbTZ6VvP J/KoQ/AY7hvPyGw1sMhh+2yo7QQ5OMJjSqunST6Ic/Etbe2kHl7wQLQAX/mx+WThuz8gDR3n TLQeOkLAEOtoFxhui59ctJvLBHMut6DRO4CdqL2zezA7t5Q6zswrqMwrqKKNT9q5JJ88b/bp iQc8nTo+PCr/96Py9xTtZ2bmD+ljDffx2EfwMLhmb6rokOCZF++Wu9ea4J4XZBXHf5K4jx3D f19Sd6Sw5icl1v4hu1T2mtkpfe/fE6vZrh2YTb8vqLyq4IiDh8DAo6ur64dvf5T4lxk/4CEl orU5eFi6BP/rsy8LagdOnb0kJf8wt7IrLJEAZ7UA9gBPiYTsCmJdX0ZRQ1hiHoCQ7JJGY0vn s8IiBwQ8mpqab16/zX/I9GSv4tyI2I7ae8gBdYb5P8Ndws3l2qVpoYcLPEZ6acxxu9XVX6xF jz/R3typZZItqZYMdFfykaHpnGsjNTH2XiUNrZTDCB4HUAYGx2vr+9NymhJSa9o6BuMScgqL ahmM6ac2cTzB48PPZf9+TPHcFf345OKVlRX88YiDxw7Aw/C6o76UpZdxhJdR+N5rhIO278PL pnwkiTPQvmJtdNXhySXrJ5dsOFXU+ck13puMRDdIEteBg8fugwcQU1PTS19K8AMe8jL6m4NH Xk0/AA9tY7tUYtPHnx/HTqf9w1t/+p//fdc9MA5Op716S8LWLRCAx1tv/ykhq+TgWDxkZGQ8 7QNjHPO2FTI9PypuqFN4afGXyAMEjsLQRz/raZStI7gUxhMOPniQ+8bHKVmstTm27e03bslF ikiFiPEXk2p7kbqfO4pYuxJJzRQcPHZFSA0Dnv75Du5ZWXkNzS3dE8wZK/t4AB6ffK2KwOPD z2UAchz7TtXJPYHBmMIfjDh4bAkeDkrBGyeJYw9/CChJ3FVrQ1GnLX08NC6Zqwg9eXiRnQyO W9Uv8F7/cC1JHAQPj50miVNXV3+ZXAyvG3gsLi46OTkB9pD82HwT8JD56uljS9ctwSMhj3T6 vAhH5FJHn4jzl0VNbTzOXriKjVx64849j8CYfYlcuhF4lJSU3pOQzYoujnbK30HI9PyotNLU wNoC69ZKzd5mCXLvOcbop3Mzf1hl/dvy4q+mme/QKcdHekX6WuTbqk1aq6zqi/0aSvyq81Kr czPLMmr2HTzYzqWDI0y6+9Li+6Nj9TmEJnv3HIVHUTdkgq/fD7utuKv4oRwr8SARgI3swwht o7Dw2HLBgEdiYqKjo+Mr+TNfWloZGPqgqNRuhDIxRp20cUyG4PHBZzIffi77vbCOloFPdl7N OH0SfyTuQJq7R/9ywfqJR85rcr6gyzBWsndQ93PSCnDSDHB8FGCp4GGliFVPnmq5B7p2WI8N VWFN2cue68sKHhbbVLC7jaq3q26wo4a/m26I/v2nLa3N/X39fF4uPI7HtsADiqur64WvxDYB D7ETGnZeUVuCR37NQEHtAEeSuE+OHnfzjy1rGmHHKS1v268kcfyAx/z8wukfTufElaQEEHcx V8uPOgRFZ18FhZ95ev6MRPoZ1jDygpGE9YtJ+lGglH6J4W7lvlajtprg9tqQ3QWPoa6GscGE sSGgidThRCbNbIqhNTWhNT2hPcNUW5z/enHhxNzsqaXlkf6h8a4eyvLKckNTv51Lxo17vhfv +N+Sj3q5jKgx4qpx4ipx16T9vxUy/vsxub/+SwK8kus+8RMMeOzuKzDy3wjPIPEMCAYdP3Yl twu3VwkvAZdO6hnb5YPi6pX94yXLT0+ofy+kGRaVN7+wiD8JXx8JDAx8ScBeWloiAxn5SSlk ysgwubdroL66vTS/vji7tjizpiSrpiy7tiznJy3dB61ZU+zyZlqSXV2UWV2UU1NGqCdVt3W2 9w4Pj5DXZGR4ZGSE/QmWwRVYXubX7xoHjx2Ax+LiYl1d3SbgcfuEmr1PzA7AIzm/DvQj4veV 7ytq/M//vusVmnSQwYPFWgX3DwCPzIji3QIPQB1AwUXIj66lMWYLYuv+4z9+dvLkz/T9rfvb FAbaFRhjXzPHjy4v/WojINlIFxf+OMP8cmZyXWeBTgE9DnRuGqMzx6HzxrZ0ebmlp4/a0DIE 75CVlZX2jmFnz6zbMn4X7vjf3Al+xEisIccVSd8T543+cUz+bx8D5FifcKFvHCBI8ECBsLC6 3YPAWSpwxgo8AoQQCAnYMjrOmS/fZo55NJuDB5Syik6/4Jy5uQX8GbgrUt9Bnj8kM4B2tx+c nJzr66bWlvcWpDRmRddkhlXmRVblR1UXRFfnH05ltzwKvBVWgXPJjKgipDX1do6xVlefn/Hq /l7w1wQ8oOwFeMir6X7x9cl7ihoAPCRkVLSfWAkSPECPv0PwiNod8EDUweHjAdbATVgfj6qc 8uaKwJbKoMGOh8PdyuMUoSnGsdmpD7bLDJsra+XX87NfLQCdA/r1NFMeWTymJh5PT+gvL/2T HSptrmhxcXloeJRQVEdnzOQQmufm2L3q0DDNO6Dgrrw/OzamAn/4sRY8U1wlVkTC5+uzj/9+ VHYtfuYLczwFDB4w2YqoVhiMbQ6/vgx4ANJAwbU4MGYHodF3CzxebTEyMiIQCAKrDlAHuP6K FomvCXhQx6j+bmGhnrFeNuGW2r7mmj6W2n62ev52+gH2BgdWA7erDuBTPwCcl4WWn4t5aJRf UqhXTIBLhJdTwPDIMJVKxcHjZcxuHLlaeAqLxdoIPMRPaFu5hW4XPPIqu/7rjd8B8Pjk6PFP jx4/c/7y2QtXBQAesE+HPT5a5hM8JO5IA/AA+vLgAeutaBl7tjb1D8jU7AIAD7gMqoYFduxc 2lGb09sc0Qe0JbK/NbK/LWqgLXqwI3qoE2jMUFfMcHfsSE8suSeut7l3cx8Pct/wBM11Zfm/ IZzMz30P2lxS0ZVX2OgXmOjmGU1q7AH4wZiYLiptnJ2bGyHTPXxzb9/3uSYVeFMuciP8gPG6 7yrHXhb3+upHfZglhOfsTgGDx0ZdOSQQmI5kenYRRs2CZIKGS8IzSGANwAkd50xsjA54HBhF HKV04RgfAQtgL23HdI4aKbQpsF7eLAHVAneEVePgwftU8em0e9kPtrd3KAk91r3k8FjU8ckN Z9M7rvrXHPSvr6vBdQfD604G1xwFo+y6rjui2jfUaw46V211rtiyP7n1Cu9Numub9K7aaV+0 1b9ir3PR1kjUVeK7BxVVFe1t7Th4CECmp6d//PaS5FEjTufSr58aWrhsFzxUtYz+/tGn9xQf uvnHRiXZaRoYfnni+2JS/56CB0IONNQCO3qwkh/wyI5lUwf43C3wAFc1LbICfOZH1/7suZDH Z7ktHvviXEru7ZpiaMHJLEABe0wy7Lva+2tJ7VW1nQUlnZSxqbr6zt5+yvz80gh53CcwvaG5 l7W6Sh2fDAovNLKIl30QfFUqQFQmnCMpqrhKLACSi3c8vjytC9BiI+Q4UOCBHXkBRAHDhqMc JQAPciu6YKI3lLIEO9Ty7HkGW2wSW1QFBBWw/p2L1ig7LdwR1gK3ovVoJUpPj4MHDh4C6wfZ uVrErO0Vg9nZaR+EOKm+GLn0hqvuNRvd6wJSnWvWawHbt5hOqyZszI4hds5Y96S+7vcYXfv6 SMj0kZCJ7vcG3Fu1zhmrXTC2kPR214iwlQ/w1IxWEsaz0wpUwsPDz3576d4xc47ptGoPTbcF Hrlr5g4RUfFPjh7/+OO1NK+0fxe5+uFDXdO9Aw/Ym1MnZqem5wF4zMwuYsEDKJ/gkehT+JLg AavLCa8qbx7Li6yB4FHROAotHnDr/k6nJffVzDAlkfvH0sLnEzRfGLm0p4Pi45/hF5iam19J pU329NPikqtrST1kCt0vMKOhqZc+MUMbZ8YnF1bWdsWn1jw2j5N9EHTpjs8thai7KrHQ0HHt XsAXp7QBbGyOHGz9XAaBx16LpaUlmvXGEzyweWNR1jPIDOEZJLeoMuTLAUdqOMCDYxlVAUOb wn2L6/pQLQhynr0Y5hRVDWpBqWBx8MDBQ6DgwU4SF2B618Nc0suBM0mcg+E9a/+nsf7mMXut gRbxZiqOetdst87Vct5Q77L1bRWP7zzSTrqlYvU7l2Q5SUdZaZfvXJI4Nn3rliKm4vHoIjtJ nJ1igNEtN2fV8LUkcbV4dlpBiqurK2CP+188xYKH+LUH2wIP0Tv3wZPh/GVRYxv3xBwilf4p eFQMDf8/Z8/938zihr0AD2TrAEJjzjX3MuiT86P0af7BIzu2GILHtuJ4cIMHtiWpEetZWaOi S0BFYM384sr+gsfoQPrc9Hnk9TE/I0QbyeRIEtfZSiEQWoLDcpLS6+ubB6vrOodGGBPM2ZDI 3K6ekZa23tCIjMiYLG+/2OCwjJyCeiqNGZ1QdkPK/bp0wG2FCKFbLh8dV94SOWBkiQ8/lzUw CRbMvY2N47GRxQNrEsEaN8BXRYtEZKzgdi7dBDxAMWS7gCHTYVY17sLwgPJmCRx2FRw89hc8 oI+HilXy6wUe8oFmkl5Ppb25wcNEwT7OPSfWNWuvNcEjz1bLg9/stJcsz2t6/jWJ+Ld4wk+a UPjX2DwxKVsxWUewAL5it76bQBB65KG5Bh62Cv5Pbro6qYapbDM7LQ4euyJmZmbnvhWR+fIp Ao8b3yj4xRXwCR4ewUngsaCqZWTh6PfF1yd//otf/PaNNxWV/3t2lv1+XVz65/ruht0FD9iV jzJmqtqp6LkEhH+LR3RMTIBrxMuDB6KO5LCq2fll6M5BrBpOj6oEywWxdevUsR8BxGjDngtz n0HeWF39xQxTktJf+0IcjxdztfR2jRUVtccllnv4JmbmlLe29YVHF3R0DQ8OjyWnEbNyykco 4/GJeQ2NnSzWKpXGkFNxP33B4puzj9/7RPq9T6Q2RQ52/EywoKzhlkeoIxTVHzTw6BygocT3 4RkkbvDA+nhsCzz6RxhoqgtP8PCMKUcmEZh+7nUDDwptCpwyMvscBPA4XLJrSeIUgpzV2EMt HNlpH4s6a998aiLjZHJ/z9VUxlnn9lNDUQf+stNa3ZRzPGEdfsIy7Ce1Cj9hESJzx/q+uN2J p8Hsr9itlmFgl0cX2SHTXR+F28r7e2hGbzc7LQ4euyX29vZnvjsvfdwUgof0CcPb4vf4AY9U YtORt/6oa2Iv/0AXLFg6+cEkcSFxOY90jq2w2BnWVlb+X/K4JqlzYNfBAzZ+kMl+ZNEn16mj f2Zhc/Do7e07d/ZchE8CAA/+Q6ZzgAesgjm9OLuwHB1UCatOiqiOC65A3h2wjIAjl/Y2A7Cw Wl7603NHjjcnxzWHuzt5BBDjlZ12sIdWXt7pG5DhF5QRm1g6QmG0d/SHhKcWldTRGVMJSQUx 8Xl9A6O9/RTlhz4/CJsf++7RxonJ1pHjH8fkVB+5Vda0C/iu5h88ICqAfh86e8CSblFlEAkA ivD08UDLoAD0TUVVoIOYeOWCBehxyhM84AKoJZXYejAtHnAACKscSWo4LilHSaBw+ImjMEAy dGTkSwMK8wyEgoOHIMBDMchFg0fIdHaeuOsuepft9UT2Xi/bG1x12jxeOtbiIfzA+f2IrA9C MzCa+X5Impi07V0pu/eDUj8Iy8RufT8sXUjDXfPiWsh0dnbaneRqwcGDW0gk0vz8TlJBRURE APZASeIufH/9sYXLluBx7pLoz3/+iw//+SmgjtjM8pLGIQge5c0j1i4BR7/436Sk/7PuV7D8 Zg858OXBY316SAM7/nZZM3V0kAnbD5bB0wl8wgIbOZfOzM4rKipZGtnDoZY4t4Ltggc8fpIb sZc8FRZUmBRUCcAjOagiJawKIQdoDyxGiGPnLRUMePS1kBhjGqyVXz/PZ/fuONlpsGNgw8il vMCDMTY1QZ0aHWZUV/f4BeXWNw2A9pdXtZaWkWZm5onFtRnZJQNDoyMUupZByCkh8y9OavJO TLaGHP86rqCp711L6tyX3wIHeEAX0I2GWpDDJ/QvBSUbOykoCy0cDeEGD3hYCAnYKiDAgK9H fjCDuWt57giKgX4Wm+sWruRu7T6CB7wyPJUjaAnytuVWsAnNQYby7X0vniXhRd5f8OgnM45L eLhFl7924MErV8tjUSftW08tlN0tlPZcLZXdTWQdNUUs+MlOq3XZ4ryO9xduCV+6xP2krvHH 7SNVr1pcV3Y9xl4Tj9ka/4VTjLSE3UsmicPBg1v4jOPBLaurq+w4bmQyBA+5byyvnLuZVNS2 OXhEppU6+UQ7+0ZnFDfDXC0IPMpbyJ5B8Z7B8dlE15nnNv/pua86BvN3DB6wNx8eXvflGB2f GSSzwaOoYRQOtWw+nXZ6Zl5LS0tV4WEWmzqKM6OKox22l6vF0LoIHD/cqSzJvWjdyhFUER1S kRRUlRRWgagjLLoUgYcALB79bYRJ+g3kOzo/89XYYMDWIdM3Bo8J2jRzfJpBnTQxc4yKLXD2 yg6LrSyrbM/KKQ0OSxkYHB0apqk88vtBmAd4QOT49ISSgUlQY0vfPv4Wtpurhee7Nj+RSDcq A17zx5mzO656S8cHAYMHdvYNUmzLsdN80BQhLHugktB7E66E84gBw8DyBwE8XkPn0k3AQ/+q vbmyU4pPYbIXYa81xbsw1C5J7ZIRP9lpAXh88zTk/eTi9xOIP2li0QdRuYrXLS5oer2XWAi+ Yje9H1cgJueEZ6c9OOABZWZmBrAHAA+lbxxUvnN00Y7cVsh0DvDAxvEYGLVeej6Rc3xSsrW/ eVvgsY4co1Owcx9jzI0ymHCZSCKPT86hoY2NAohNzcxpQuqIKYbgwTZ3bHOoBYIHqCvClTg9 t8S2eIRUUhlzsCUpQdVTc0sonAi4nntq8eio6yL3uk0zzyLf0SnGjaGuHH5ztWwFHuTnUlHV GhRe+MQiNiS6srNneHJqdnhkXOWRLxxqwSQmkwPI8cVJVRPL0PaOwS1vNktLS/DMPDjgcdhE 0OCBPF6gXwpU7olCHCuh4wqHNQOu5MYMgGooJCwOHgcEPAyvO+nefeqo5e+g6bfXCmqxVHXT EDHnJzut5mVLk0u2pmefmp7jUIvH1x2NLttyrWer0TUH9YumnNlpcfDYV/B4thZbzMXGS/4b a+VvHDTPu7npRW0XPJQskwF4OEWWQ/CQNIqDzqUN3R2X1LXhi/kK6zejDEMNh+TY/JbNwcMl sQ104jTm/CB1CoDH8NAkeXQdOfrJk6MDTI7RDZ7gMT278Jw6iiB4JPoURNjk7sDHAzuNBUl2 WFXS8+ClgslOSxvWXGX9AkUonaDK9LeVby9J3MbgQSXTyRhhMpmASHv7aVHxFRXVPc/YQWDm NfSCTgk9B4/PZf5xTPHr0+rWDtG9fRT+wQDPTnsYwWMjxuC5EvrPcIAHRySTrU8VB489Bw+b jbPTuhlcd9S9Yqt7xU4AqnfV7nkcjw0VgIe2iJWasLHGRTOe+nBNN9qkedliLTttpINSEDs7 rTAOHvsPHkAqKytPnzwr+a2uyreOqt85Sp7U0TS0SCps5gc8xB/HmvgU/CDv9zSAeFrBD4DH aUU/NKvFIpBo7B0+NXsK9phP/c5nlPpsDh5sh425pcJ+5uDYzPziSn//JPgcGmbOzC2t4wdz ijI+Bzv9iWm2fws3eIxQxjQf6GVGF0HwSPApCLfO2Rl4pPmve5amBFXMzS8vLrGQiSM3ohrU DsADfO4ReAx0eE9Qr688d+SYnTo+NmjR3diyk+y0vMCjqa5VTlY+JCQEUQfnM6pnrLKmp6is 7YF26JmLVgA8Pvhc7th3ao7uCYPD1G3dZjh4vALggY0SzxM80KgKdlwGzhJCM4kOJnjc0Y88 FPcBiUQqL38pd5T29g7li4+NbrmYSbibirsb33HTFLLSFLZGqnXB5icVfv65h2qtuZVqX7DR vmD7QsP4VrCv3lV7SxlvYzFXKxnfez88rK6p6mzvfIbLvoIHkPr6ejExMdHvZFW+s1c+aXvt e2nhi5c9Q1M2Bw8j73wRjbCyphEEHg7hpUfvuh6963ZdM/yBbaq0SbyabZq6XVpLb8TC0l+t Ar76Xlb8pIzMCWn9/OoibvAAvfk7X0sC2ICMMTw6NTLAHB6dpmAMHUPMmdFJJgIPnhaPjCgi oA4IHvHeBWHWOS8DHnA6LeINbHbavMiavbB49Ld5Mcauryz/Go2qTFBvdjfUbity6ZbgERed ICIisgl1IOntpwaFEm9Kupw4o3v+ij6hqGFnYICDx2EEDzR6AsOdbQIe07OLPLkFSyNgPfK/ PSDgAVs4Oj71mvQa4+PjUYFxsYHJbA1iaxx/Git4DUxiK3Y5MClm25oYG5S03v7A5MiAWMoo hU6n4/yw7+CxurpKoVDAj/3syQuyJ00efO/88LrlZeEr9+VVEwsaNgIPRcukvKq+KxphADy+ lvb8ywWbq4/CQ7MaVG1Sw7Mb/ZJqI3MagVoFFUHnUkN3g5C0r2rbjgAFT5eZ+R8odL/uYQoW PFwT29CIRv/AFGV8dn15lNlPZqLen85k2zo4wINYXGpt7JQRSYTgEW6bHeeRH2qVvSvgwZ2d dtfBo7shbJwstrz4O0wEsA8p/Y+76kt2EDJ9E/Do7x55qKYhKytbU1MDkYNKpc7NzW1+kwwO 0zNyaumMHT6fDx14iGqFocjqYBlN0wCdFHbO6Y48RQ8BeECX0aN3XNFXDmDYxLmU+7LAYLBY 19NNUuwRCIRdeazhwlOWl5cnGBMTdIwymAdVJ9YUu7xTXTtTxpqCK7CysoLfCfsOHlAWFxez s7NFRUXFv9fQ+NHF/kG4hpzB+bPC+qa2yYRGnkMtSpbJJj4FMXktQen1IRkNR++6mvsXAvBI JLadUfTPq+7Nr+79UckfgoeGfXpsfsvgWPTk7NWfcqqyfjM5Iz00VoSGWuYWlgFmjDHmn2c/ mR4ZZqKQ6TA7LczVgsCjurb+iZHxVZHrbjb+EDyCn2aGWGSFWmYdfPDoJIXSRm4vvcgb5F7D jtqil8nVshF4xEbGi4iIODg4IEPH6OjoltSxK2BwuMADpYRDnSboTGGAdDhqADaB3pbnvIxX ADywik1yxw0eHESh45zJ7TLa0U/lPjIM8brvMjE1b+qTxx2oBBdcnq1lYnV0dMSvw96Bx7M1 X9ORkZGGhgbQH6n/4GJwzcteO0DmrpLqfS1u8IjKbfqLsHVZ04i2c5ayVYquS3ZmebeqTQpA jtqOUQP3HItAYkBynbpdWmBq3UP79LPKATKmCY8c0o298zuHekcZ9ovLf0W97dLy32hMB9ek emTWwCpo2xiDPVeRAzxSM7LkFRSEhS480TZPDs1LB9QRSQy3zT744NFSmTg2KLm0+Aa6Aguz fxkdeNBek7MrSeJ4gkdNeb2SklJ5eTmiDjqdDv7pArhXDyl4YLtjFHoUO46wd7L2f1mFBkl2 QNpnUivg6+qzdWWtKXvbytpasLyyylp/jwNLu2LxOPKDGTxf7phgHBYP9HUTRw5oLMKyx1bR SwQ0znKInEtxEbDgcTwEAB5Q5ufnwVsw6JUennaR/9HUUi7I1yw+yCY5yDYZgEd8diUEDxGN UAgennHVADzAJuhcCsEjIrvxulb4PZN4wCcP7dKsg4ti85tj81viClrOKQcg59LBUeLkjDSL 9RvY+S4ufzDGiOeZnRaAB9biEZeYcumCyO0bd+1M3NLCC9Mj1jSSmBxECLHMPJjgUUso6iS5 UgYkFube/sm+MfsXSr9qW3X27man5Qke2Nkr4F88MzMjsHtVkNlpdxE8AGzAKKMQNmC4dUH1 mGycYEzPsVjL0OLBerbyDJEHIIvn1uK5+YWpGbbNamVpcWCENr+y9PIWD3i+PvGV3D4bHOCB oqjxwx5AUNTWbU11wcEDFxw8Xm3wgG9bQMDrsAiQU2KPLts7qkfYKIUG2ybfE5P/8cxZVQ1d W4+wb+95AvBQtkpWs0v3jq9xCC+9phlu7l+IZrUcE3dr6KYC8IjJb0ZxPLDgAZ1Le0dGxxj+ cwun10N/s34/NatBYTRvBB4pIQUulr4+9qGpYYS0sEIAHinBhOTAggjH7EDT9CCzjIMDHtW5 eX2tOjTyeSxssO0b82+PDUo2V2TuenZaDvAY6KR4uftirRxzc3MMBgMaOrAhrzlCU0JPBmwn AjsXMm0SLfM/0HAYwQPrEol8EtAcjc0dFV5e5haWYhLyOtkTlllsn6iZmytrRMFiLUEmAZ/z i4uMybnlpaXwTGJ5M3uGYHVbj71fDH1yes1O8rLgMc6cRddho8iliMGwET84IpdyCPYa4uCx LXn5WS244OBxYMEDyeLioqurq5CQ0M3TsqrnbLSEPLSFPbyeRj5Wt7x3R/6tr5Ru35U8dt3U 1DPj8zuuADyQxcMioFDaJP6dizaAPW5oR2wOHmg67RgjennlvzHjLx9NzdxsblMMCla5dEFE Q1knJbgAUAfQ1FACW8PAZ2GcZ16IZYa/UVqASfpBAI/yzLyWSsehznvM8aNY2GCxfjFJPzbc o9xckbgX2Wk5wKO/nRwZEisqKqqpqQmHz7inrkDeAPwAJy9gE8cjIMGCByiDwGOjkNevmMUD dEywO0YXB6xBcz22nKOxEzMHe0iFZeQQ7R+ZvzaCsgJunlHapWE6s6yiDRDj/OxyTzc7gsr8 0nJiZkV9W/8glSqu69g9wp7j7BqZq2IRBIrtgDy4p6UgSEBpaDYCj2cvjtSgleBa9Y8wsLVg Z8rg4IH3g/gFx8GDW5aXl5ubm62trQF+XD8tpXreSvuCp6tOTJBN8pdX7Iy1Pd87rasgaxKS 0XD1Ubh1YIGQvMuPsu4PbFMjcxphrpaHdmlfiLudVQ44t6ZfSrhvHrm0uz+gueXLpaV/w/ba QBnUD3tar5FKtQuSgwB1+OgnB1tkBBin+z1OBdSxv+BRV+jT0/RgbOjs/Oxb2DYvLrwxOnCj q8G8sTR+77LTcoBHR0Ofp4uPiIiInp4e1tbB7cuNTTjC8fYK3+ixfetrCB7YE+cYbtgjfw/o xtHU1XtCzGx0YhYs51Y2s6l1VcLaN7G5a3B2flHXJvaEmHlSXiMoP0Cm6tqGrjxb1naMdo/J AWtG6NOf3DKg0CdXnm3b6rF5HI8to4phZ84iCwnY652L1jDBDdZZdyP/UiMjIwKBILB/9OFy LsX7QfyC77sEBgZOTEwIoKLV1dXp6emenh4vLy/wBv1I2EXnopf+Ve8vz9q46cRYGUaHOaaG OaVpaYUE2iVIicmeEroH/l9C54Rl5JVk5JW/vfpQQdsSWTxE1APsnDzsnD3tnT3NrezlFVWA KiiqWFjbx/vlJPjnBjnHGWiYuFr4Z8Q41pep9bVfZNLf5YCQleWfk3v/QSJezwk3iLL3Fzx4 lCSnNJVaDHaITY7/k6Nty0u/Yox9PdCu0FTqX5pG2rvstNzg0dM8ZGluAxARPL2RlQN6dExN TXGb36HFA73Co8cvnEMKC6De4fW0eKAktuBCwby0cCW8YnwGxdqOsOEwsaj+W0nb+QX29BAz 32T2TbUirmjss7Sy0DtAfe+czr+umYupezxbXWZMTalZBM6xWFqOMd5JRFB+cnbx6G3DPgqD 9WzbLqY8wQOQJ7c7KE/wePZi1HR4O22UeI4jMAgSPDst3g/iFxwXJCwWC3Re0O8UiO4lLz0R b6D6V3ys5EI9DeMei/o9ueEf7pIeAdQ1w9821t7IC6iDsbfb0+Aoj8xooJ5Z/nbRWiqGUPXU jJ3NfNlq7utlEwrBA2hiANC8xMC8JKBB+XHeOTFuKZlhFhVZ4n3NX0wx3uTo6+em/+9Q12ek QrGccNOsEKuMIMeXB4/CuNDyDLfWSrUu0v2uehk65VP66KdTjL9xVL2eEW/ivZGe6+01JtW5 iQLITrsReID/C4DD1tZWLHJMTk5uNHUF6+OBLBtwnAV+hZ4eryd4YLtISF/YkOCwd971OB5r bqOsHvL417fNugdG2f1+egl0LrUNTKtt7e0ZHv/qrpWyUcxNJRfW6kpOcX1WcX3fCFXJyHOY Ng7KF9d3nVe0np9f2AF4oBAlHLYIbOgSSAvoKwd4TM8uok2QXlBWX+z1BHzCM1HLvoBHRdPg xNT8obgt8X4Qv+Cvp4C35sXFxZmZGQAhTU1N5iYWajI694Q1H11xhODx5Ka/yZ1AW6UIR7Uo V+0YN91YD704H+NEH5NEH+MET8N4L8N478cJviaJIXZpQINtUoMsU4KsUoOtUwPMk51Uo50e xDirxbg9ivPQTXDXjnd7FO+uGe+uleChneCpneilk+SlmxRgFBVl75Xq97QwXr0m725L5YX+ ti/Hht6bnnhzeuL3gEM4zCMzzN8jZdL+TB3617oOA/2YtqbTzLdnp47MTa+H1Fic/83s1B8m x/9Kp3wCqIPce3q4W3ikW7i7Qba7UbazTq25zKy2wLs0LZUQW7WnuVp4gkd9WXtCZJqznbu1 hW0JoRw7YwX8a+h0+vT09MLCwuZOhrDjWFxaeWSfduQHs8ZOtufAbd0IsAw+oYLlx+7ZYH1T NwX0GqWkfrDsFlkG1gsqfNbWYmlpefPmzV08IOArpNOzC2j9OHMWXKXiuj4IYLv/+2L/xFjg r661Lzg2d2iEtrjEntUyNn5lena2b5g6t7QcnVpu5pqYklfHYq1OTM4sLS11dQ6NMyZXV5dG RqgxWWXdI7Rnz3bkXbpngi7mljl8BQweJaR+cFeLG0Th/SAu+AU/RDI7O0sgEMTExM79cEH6 wkP9G55GtwKMbweaiAWa3AkyvRtkJh5sLhFsLhnyVCrEQjrU8l6o1f0wK5kwa9lwG7lwW/kI O4UIO8VIe6UoB+UoBB4u6rEuD+NcNeJ4goe3XrKPfrKPQYqvYeqWPh7xblF5kXb5UXb50fYF MfaV2dot5ZItFWxtrQQq1VbF1orMpyXJzqUpLvsSuZRP8Gip7g32ibgnJQPjgGHHUzYJe745 eKBl+ArPkZUDvu3C91zwogp4g+csmP2VVzVk+sLSyjI7Ogfb4rHIWoY2jEZSTyaxMbOg6nkp OM12mbW6zFqfb3uIAzPiSeI27wePHDlCeC7cM1xIJBKBD5mf57Tw9PX1bbkX98g+hULZci9Q hmMvUPuWe1VXV3OfPj+nBq4Ax17gKvGzI3d1bW1tH3/8MQ4eB1bm5uZGR0eJRKK5ufnAwMBB A49DETKdH/CoL+0QEhJSU1OLj4/H8gb4aTOZzOXl5e3+42rbhpHFGyAHHDrhGEABBbBrCNU9 4RkknqPzOHjsgf0DcgUAD8nVVdby8sIUczExpcInvNDdP4dJn2OtLK/Nt11mF1tlsW0lzwQS Eg4Hj/2Qc+fOYTNlc9/zgEx+xodwz0oA13zLvbh758DAwC33AmW4IWfLvUCPz/Pe2FLAFeDY C1wlfnbk+VQB699//328iz+4j8jV1dnZWTr9pxzr4GX8wpmrsiLaurdccPDYMXhU5DVkxOWj q4r13xgbG6NSqTMzM6zD3dXg4LF1bwxDpg+P0k2cMz4XsfjoivHn1y31rOJaWwdftVMVLHj0 kxnHJTzcog9HcAwOuwRu8dhriwdYDz7x/h0rgplOu11ZWVmBEyhAz5iXl2dtbS0qKip85rLU 5Qe6Yk44ePAJHsT0Klc7b9l7CmfOnMHmkMWaOBYXF/FfwWsFHo1dw//f58rvn3/8nbj1vy5b //xjFe8YIg4euOCCy2sOHhyyvLwMOkrAnK6urmJiYiIiIgrXdHDw2Ag8ogKSdTQMAKqBCwUe vykpKQMDAzt24Tg4kpiYuKe9yWsCHu395N+dUA7LqFxeXCqp7H3vwuPkwgYcPHDBBRccPDgE vJhPTk6OjY3BkQKsP6TWHSu1W8am971fW/AoyazPSyqH4AEuSHx8vL+/P0pYj4ZUNpkSe1gs EocrSdzBBI8BMvPICQ0RBU+XgIIb6sG//Ey5rY+Kg8fLSHsf9T+PG+q7ZeEdCi64vErggbV+ zMzMjI+PUygU2KVmZmaCh4zomkhdUda4a2arFPLKg0dcUIanfeATHTOxW+JCQkKANMi8ZHR0 lEajTU1NcUccxcHj9QSPxYUFFdOIhxaxNgG5mvYpKmbR3T0jOHi8jOBJ4nDB5dUGDySrq6vY 93foiQpe9g0NDc+cOUMkEhF4OKiFvzLgkRCcI3bz7smTJ2VlZcGjFfAGNp45djBlcXFxfn7+ VXIZxcFjV8BjaXHR3Dmyu3e8vW+otXswKrksv4j0qp0qDh644IKDx94LHIsBb/fIEoIE9NFC QkKiF+/cv6GqfEfHUNbOVNHNXTvuIINHtE96sFv8U0N7Uz1rJQUVdC4DAwOAqbgtG2NrIsgk 9Th4HFLwoDIYobGFbR1DJbWtpKae7KIGYkXr/NIcQBL2nNrVV+FUBZyrBQcPXHB5PcEDydLS Eoy6CTpiQCOov87Ly4uPj3d1ddXT01NSUjpz5kx3dzcCj0f3jC3UPNn60Etg4BHnneNvH+3v EI3AIzO8TERE5OTJk5KSkqCRoLX+/v5lZWU8x1CAgNMEJzs3N/cKjKTg4CEY8Cis6jR3imdM z66wfyyr8ZnlviGZlLFxdhCPVwU8BCwVTYMAPO4bxeKXAhdcXk/w2Eiw4UG4xdzcXGlNZGVl T67J1Ys3sOChIfP4keyayj3RlHvy9JGLo0GAk2EAFjxcjINdjYPdTIKdjQJ0VUz0VE2BYsFD 4tY9idv3IFoAAQuwUmxLOOKIIqHRfgotzmKxXgfSwMFjL8AjOavawjmuf4ganUisKO9MyKpJ yqqqqGxZu7EOWpT0w8QehyVXCy644OAhYFlck6mpqcnJSWgVAZ04z46eY0TD9UXR1NTkZgYl jKCS2AJ5a4KN37WJQIMGk8mcmZnBo20IADza2tq4gym9KrK6HjJ9eSmTUFta1TZKpg8O08gj o40dvcSalqq67gVwj8FA6WuhS3H+wAUXXHDwEIAAIJmYmADdPY1GI++lwHnBiC6AcAf0w0XA 4PFKCwuCB405ZWAXVVjaMjU5s8JiMZmT/f1Uv/CcyIRCCo2+VpAdLh0Hj23J6PjUd/e9w9Lr 8EuBCy44eOwFmfAUbBkIEpsUWFxc3EFKFFxw8Hh58OjqHdU2DconNrW3DYbF5iVmVFRUdccl l+cSG8vrOmZXWAsrK7ifx3YFdy7FBRccPHDBweP1kdXnummh9aGWtIzqtKyKwWFaTUtfcRu5 tofa1jtGLG/s6h+NS6+o66XWdjD7yfOz8zBt3GElEAKBIMjHGg4euOCyLVFTU+POv4MLLjh4 HCLwYP0EIAgzuLHhZ4sr4n6xRUGxxKbO0bYBZsvIfNPQRM/YRE5RfVZeXWJmVVUnjdjMKGgg 13bR24en5pfmDyl64HE8cMEFF1xwwcFjr4S1CkljgbVCZi629dNbeqkdg4zukckeymQPebKf OkOmz4PeeIR2TVTdzco9k9QyVtM6lFnUQizv7uqj5+S1ZOc02brFh6XWtQxOF7SMOsS2n5NL JDUNrK4uHEa7Bw4euOBySGV6drG2bRjoHh0fHPnDq/ZAN6+CQpsCv2ugGxXoHKDBdkIFXw/s JYXnaxVAAMuiWmFgGXxuucttwT7QdJwzQaXg86BdPZhgek+Pf3hntZCZC1W9E3lN1JyGsdwG Wk4DfU3BwlhO41h+0yjojXsGLpk5J7kFFpRWD1fUU9KLerLKuuvaKKRWakY2KTGr1iU4I7di SFQz/79PBR8TdkpJLWCx5nDw2FLmF5dtggrrOw5xBkZccDkgAvpHgPGgD9o78ADHB8oTPAD2 wK4ZKCgDO2ue8r2sNzwO1CM/mIEdDyZ+YM8FNht8brnLWUW/PW0VQLvwDBLH9dyyYa+kReWQ xfFYi7lRUj/sk9pa2EkvaqcXNo4Rm6jEJvA5SmweBctFQJtpZR1U0Bt39pxNzq9PzKyOz6jJ Lh+JJZJjigdKGsiFFe1eoVnVLRRCRYtjUMl15ZibClb6RkapaRkrK6y1MZxVTsXBAxdccHnl wANuhT01P+ABSoIFoAA84NcDyB4HEDyQ3QmtAdcNtPAgG45w8MBKXnXvSemoO0aFEYTBktbJ 4mZmcQujuIVW1EIrbmYUsb9OlrQyQG88RL7iH1NeWtU+MDxRVt1d2TTcSV6oaeyvaujxicpu H2J2DowVlDbllzX5B/qG+Pr39fSsIcYyO5o6VlcP+pwswYOHS0RJP5mB9xq44LLX4LHdgRiO 8ltaPOB62EFvCR6oB69uHoKH5RjFgLWDt3vu9/2NTgRu2rILRkfgODhY09RN4R880JgRT/DY qJE89+JoHjwFniUR4PHzv9uolj0dksPBY3Nhzo5HJeZckbH9VsLbKJDknNzvmNjlmNTulNLp nNLjmjpgGtqg71UCemPy2BUn/9SY5NLWdmpDbV9kNMHEKr6Q2NzaRrF2j0/NI1XV9xaUtQQl EpoHGVWkMSpjDhpWYHSP57rCjjK2eqDnvOA+Hrjg8uqBB3QDgP07WGjspGC9F7Dv0bAv5igP DfubgwcHV/APHkDkzRKwLQfVYWvHei/A0Ry4CRwBdtCgLnguaBM4IM+qQXnsEVCN2H2x4z4b gQcogMpjLxHc5dhdNzScBL6mEltR7dhhJuz1hw1AZwGKmXrncR+fo/EQ1TicT0B12Lbpu2ai hsGLiW0bN9fh4LF3wloL87WwONvb1Z6YnOISnBGU1R1ZOBSe3xde0BtZ2B9BGAonDEUV9lv5 FoDeeHDkQkx2TX0PndTa3949VlI/6BKQWVTe1NI2QuoaT8qprGzoLq/qik6rKCANWgW2+MdV jDNmO4cn2gd/0o4hZufQRNcQvY8ySZ9ZZq0+T38MFlhrM2sOwEAMDh644HKQZZM4HhuBB1oP Oi+4DD5hX496f9Afoa/c5WEPtXfgAZ8D8MhoGRwBEQjsu0HfCncEX7HtR41E5wXUM6Z8o6ph /wsKY3eHuCJjEodt20bgAdoJFkAVYIGDmsDCkR/MwEoEM9hN8AjYdkKiQG2ABcCZWgYUcB8f LCNsAAuQr7ANQ1cPHAEcE3yCxkC6QI0Be6HaD6BL6qsKHmsWB9jFs8hjcxXN42Xt4xUdzLI2 emnruha3TpR3TFV3UBIzy0Bv3Ddy2SKgWtOhJKu8r7Gd0k9eItPnqxo7a5oG+8fmalr76zuH 0gtqajroFn5ZEoZZLhHVBc30/HpqAUbz68egFjRQi1vojT2MUcYc2xWE3RDWAfEAwcEDF1xe MfCAPQ56JQc91CW1IPjT4+gTYRnu8rAf5wCPpm4Kz2kpOwAP7JEhXSCTBTwpaIXgeEmH7YQe DqB7RTiE+ISjXnAK8AjcgyOoC56eXeC+FJv7eEBjEbos0OKBjA/ovFDt07OLWDsPB/xw8xLH 8bmHWrAN4z53SEHoXNCF3egq7aLs9ayWw2fxYK20DVJJfcyKFlpRI5XYTCU2ja8p7bmONfTP RaeV1TT2gN54YORSeHrHI+tiK/+K4prh0GhiQnZjSf1IXtlgSnZ9am59clZdbkVnUEJtYGJ1 YFJtVdckoZX+4gE5dDy/YaysY6S2a5zURWODEOtAXBkcPHDB5VUCD9BNoxdtqMgJAfWwsAzc kWd52PlygMc7F63Rq/dLggfqlFHtyPUUNQa0E1UHFTUGgseWAMZh5IECeQZrxsHCxibgAY6G pvBgj8DhXAoLgBPk7uix7eRuMxwx4T7+5uDBPaUI/Jt4boI17il44NlpOWRx+Znc0wxh9axI wlhFD72slVbcQgVaxPYsHQefFe3jFc0jsSmlLZ0joDdu7rhg6llGbCAXNQ2T2odTsyvTipur O0Zr2unVzdS0/IbweGJLH7WsdrC7fyIgutAnqb0QHKFzoqRlvKSFBrS4ZXxN1ysqbR2v7pqO KBg+K5csrhVBHR99tsQ6CJ4fAgaPw5urBfxsgW4SrGC7B6luHuLnaKAM3EsATIitiJ/zBa9y sBh6pxOAgP4IO7UQBw+ODnecOQunjVj6E4rr+qA2dLInsEdlN4D139330nZMBwtukWUblQfa P8LgAI/yhgG4Cdy6LwMeZQ39kGGgNwJoD1iWMIzG1g6qyCrtgGcXk9OA3bS4tALBg0ybhAcU eRgCSl7XDOWoF57m0TuuqCTWxBGSVgu+TkzNwdOHD6WNwAM20ie+El4WDovHt/e84MFBs8HR gDZ3jRp55MDaQYPh1gfWyfD68/zf/eWCNc/jbw4esGEyJnHrPd3Syp/OWcCvOHjss7nj2coq a6W2uV/FNOrEnYArDzPtozu907o9kzvdUzrd0zr8MjsyKsmAH3KLW/KIHaA3bh+4ElsyVNVF q2oj17YNkbro1R2Mug5qQ8dYXRe9rnuisLY3Lbe2trG/e5Da2Dnw1Kv0gka2nE2xW3q3Z1q7 V2oXUO+1T68UoJ320S0/Kib/U9jz/G1r/cdWRCJhfv5ApIYX/KwWyvjU8spumnuauingOQaU w0F9d2XzYAUmXrngCQBfWMBj59v7XsjBbKODXNUIAQ8lflhlE5928JyJzm7YLbLiNsVvDjx8 +gC8jIDnMOh3gK73WfX98MH++swl3BI84H8NKfhfQP8NaGaH3gXoAiLzAvaO4i4PHRe3nE6L fUNHDdgIPFAZrKvDM8zwBPRSgM6Q2B2RhwYsgL1XkYUEKE9I5janYK8bWAN+g9j5NRuBB9Zb A9WIwAOZZThm63DUjm0n9+8a3NU8j4/+C5v7eKCrgWxBOHjsr7B9KVZZy0tLw/29GbklYVnN KZXDaTXk9GpyWvVIRnV/Vee4TyQxjUhq7aUTitpAb1xUdyazrK+ufaR5cLK4jVbQwh5GKW2h 1nczqtqGajuHG3tp1Y3DecSGqrru+lZqVGplQTPNO707tZaaWTeaCT5raRm1tPSasbRqcmbt aFrNWFB6m7tHiKeLc3ZW1tjYGIt1IMZaAHXs6agch9R3kMHNr2iRuIvHFED3t2VHDB6MaCQa PsZ5PoH56c23BR7glLE251cPPATwtDzU4IFFDmyUUY5ZKgiD0S4cToYc5WEHt3nkUrSVQ7lL ojhjUM8p+XNAAsesFuy/m2NaB/SIgBYPOPbBMceEQ7CzWrBHRv078ohAtz3PyKWohbAN2MsC zwhtxc4R5q6d+x+BCsubJ/A8/rPnozwIabhntSAAY+8eW859LqjGLQOx4uCxm+jxbHVyfr6l b6KsjV7WzgAIUdy8NhTSPF7VOVVY3e/ik9DRx2juoBWWNTf2PA1O8X3qVfrIoSowdyCrnpxb T8utp+aSxgoaxso7R0uaB0id1MYeRnZJa3Jue2hcXXouKY5Q1zC8sDbOQl37hOMstLWK6MWt tJJuakkjrbC8u6uHApPGrLBeu+S2e+HjsXn3B37F8HUjMrMeO4iA9eniGFZAu4DfO4djGz/M sMm8e+xBwtLrsEeDLvfw0QQagFqIeAA8xKCLO2oVKAD6C/Dk5DgdnqcPFJ0gOhT2aJuAByiA mgcH37mvPCzwyD5to9qxXQO64GAlnCOJrQIdBL7kovkLoDz34A7PcwGSX9kNi2Ev7CsGHvzc ii8Tx0PAAqNYbNQwrI0L+XjAqTdbW1nXinHPJAXHxI7C8HN9Nt+60WTVTTbxefwtz5TPS7Gn goMHVpYWl5p7qNW944QmOofPZ2ETraydWVhHLmkYaO6drG6hkDr6usgzhEaqkV/tRzdjP7+T qOVVo+9L0vOtBarrU2MYUOOS1BaQ3eGd0PHYqdjErSwgtbWqYySrvKW6e3oj59LCZmpB82hh 83hJG72mm15cP0Slz7122CFw8ECmWmiBBN0QUA6LBHJvg0827C5Yp3T+wWOTl3TsQc4q+qE2 oMluqFLumYNYMzXchA0RwF0dOi+0O6wX++6GFjr6qZuAB9ayjQ1TiTUCo6MhBMIa2DkaiU4Q yy3YKrCefki53R15ngsEDEWLRNSwQx3E4GXA41UVDudSXA6I7DV4JCYmOjo6HparwZyZE5GP e+zXUNL5/7d37sFVVHke9z+namfArXJ2tGpntBQc1NHCUSlhZyQlpeyMCzgIjkhE16AriouE AIpCCPIGuQl5EFDCU4KARh6KPBRCEsIjiIDkKYFCzOURcjFjDI5A9pf8an/183Tfvp2b5HIf 30/9Cm5u9zl9um+f098+53d+x7enwrfryLlm+6rZdrb8u7/su72VdYVl3gPV9flHLiQvLOk+ ZPXY7N0fFHybtbY6b/fpvN3ej3Z/S5ZX7M3bc3bT3pqtJac27D3zzqbS9ftPzv2w7Nlpnxce rd9fdaHwaC3nbFqz9vDuqvLuOnZ+Wm75XY8uX5u3/4cf62Ptzgyl8BABwMqhR3wGSQ4ycWtn pcEO9vopL0lYD3CntEvhIY5hAX08RHjIKC0/smXI23banQzHU+HJ6MnL8wqtPg/SV8AdHbyS V5Nlkh2f49INJQ7Cg4ok+ct8BEN4sKi7td8sw2mfD0r/Wictcv7cj6EP0X/UUslfwk3QZw6V aR1eN86FrxsLD94kR/fXLwThAeEBwl94RBaXr/z05tydtz7yzhOvfbqu6BTJj91ldUVlpDTq dpXWFZTWFR09X1B2fnvpubm5Zb2Hbbqu18IHnlmbs6V6f0XdvvILtLXw6PmiFmseQCk9U3j0 bNGRM7tKawsqzxZUnsnN/6bH0x/GPb9pxorSLV/W7T7qKyqtK2RrPpCPrbD8/LqS00MnFdz4 5+z7B76dmpn+9fGKWPst2Mdj5Mz1IRAe/O5Mjx7uQH4wIZu73JvUlLcmFbXAmkQHWdIP4kFJ K6Rv31Z1+IvSYys8rF4c2nnM2GqcrIOPhxGcQQs//e7PGdJj2tnHg4MnSBREQ3joiAq8Sa6k 7UkZgsE4hKgXa/eRPqK/c+GtLDykYAFnXkB4RBBUWx99JQfXAcIjvLl0oqr8zbdX3N4v84H4 D0dnfJGUdWBM5qExGYcSM75ssUNjsw48Nj7/170Xd/lrzpjskh1H64rKfTsPO8TlOLfjyLnP v2q2wvKzuTuqew1deUv/Vf1f256Y+cWYjIPNmac3Zz4mg/899Gr6oZ7xa7o+OO+J/5k5MSUl Z/GC6uPV+G06TnjoTng2eiyyb5V+nOnA0dYk4o6lH8QygUV7agVUHf6EhzXKQduFh3MvkBY5 boSHhFIU53x/woMf9xJfWj/onYMP6EO4FB7+zgXCAwAIj3Dghwvnv9i/J2vB8ldGZ418fcGI N1JHvJbx4vj0F8bOfz4p7fmk1OFjZg9I8AyIf3vk2Kyhb3y2dNuJomMXCsvOBxQeBeV1uytr J8zfmzgx7dlXZgwZ4Rk+Pmv4uFTONiHRwzY80fPcqHlPPj8lcdzkebNSVue+d+jw0Ybvf8BP 09E9HrYyQAIo8biG6AeHJM5DLaI6nENM2AoP6yyYjuvxEMdX6SXgfoNX52zwJzwkgCQPP2nX WeuVl1ESfz0eVhXX9P8xneQQpBncCA9/58LKB8IjDKFfKmg3G4e00bECGoRHFHKl6WJD4/GK 0o0f5mame9JS56Slzk1Pm5c+f17G/HmZ8z2ZmanZizKzsuanZ+T0GvxulwErR3j2flxyZm/V d82xxcrOF5c3255mq2Urpn+/9m0+cOal6Ttvemhx8ox5Oe+kL3lnceb8tOac097OoGzTU9kW pKflZGYtzlm4fNXizz/fdvJszY+XLzZdufozakMcx+NETV3PYVkZ77fnULs8jHiyv8yYkAc6 uxkcrvRaZQk7QsjT2UjS1OK+GFB4yAs+T8MXcyk8JEIjB6lmJwr3woPL7+DjQVt5YILdTmSY g5trvg5rth7yJzzk+c5eFrY9HuyDQfmTCtJ9SnJ0OSntZ6IXLNOHsPZ4yCZ/Ph76XLgAUSM8 ogb2tCGrvdAQdFrrfR7cnG5dT8m0pOE5ZdqMyb+0M485stFnCREG4QHh8TPd0bIqyqVLl8+e O1tRUVlaWlrWQnl5eWVlBVlV1dfHqo/Rn+UV5Ws3bhnwYvZNjyzqlbB+2tryZTuOL992cun2 U8s+O7Vs+6nlW0+t3P7te5/VrMg/NW3N0fue+uD6Bxb87YVZ6Z75u4uKqqurKyuIcvq32RTV x74+efJkjdf7fcP3LWvHhMWkligImS4tjzEDoskSuUinkkeh8b2RxE1cC73ek15f0qXwaPr5 /BSZoOFGeFAbyHEXrbNajPU05bg6ZoIckZ4FDkMtegTKVnhIhjq0lz4pYwlR68XUh9DCQ1xt nWe16HPhAkB4hKHw4N8oOOGhHcLbLjyst42xVI2/W1cclbW1ak5uFJOXl9ehTxN6ZBcXR5J/ +JUW3Ox56fLlGu/JjRvyJkzOenBIZu9nMp5MWvb3xPcGjVn9eOLqQYm5jyfm0ufBSasfH5/b 66n53f8y/amXp06bPfXjT9afPn26NUUKiysTBcJDYjvYvqTwognUmMxbUWD71mOd6SBJ6F1G miOHEOISbNwwf+9ZnIkRx4NDXlD7Jktp84iPEcncGshi6YYS7mmxvTgSSUO/1knQDDpNOX2H kOkSK4N2lgLowtAO/A6Y9/lX+uh09TghbdWXznox9SE4BIdsIu3BP4dtHA/bc2lScTz0a2wb I96DNsJTsdo3bVuEB92WW3ZXGEvKykAn9xOKDjGm29MmcUGH8AhZj0pkrdXSKv55qen0uQt7 9hQsW54zbcbsSSnTJ6dMeytlSou9NXnK1GZLmTppyqzJKSkzp05PfXvWp1s+Plt35tLlyOtw wyJx4YZLdxEAIvHeZnnAscJkPjtpQuNupz9ZYepodVpaHK708lZb4SHJ/bmF2IapMYSHrbAJ 6EAOIDyC6RtpCSpK1tDY8M03J0pKSgoKiwqI/HyyXWS7drIV5BcU7NpRWLDrwIED5+vqmsJk udlIEB5DJ+SiEhnNIDuoSOTqWA4SDqJVdcjAhDzc9biGhMk1JpfZdmvopXINrycdhU+Hi/cn PGRGla3wEBcs3eMRoTFhIDzCWntcuSIDIVcuX7586dJP9vyT/7t0KYI9i0K/SBxpj9O19ahE 1mZQhps7dD0FAMJEeEgEOe04JA7ePI2FezwM4UFS4YY+b9EmPRTCm/R0Kh3szrbGUUUbn/qJ sWidFEa/CIiPBy9eL1UVXkMQHiAihAfw1yxjViCwMmrUKK/XGx13uLXHQ/cqGMJDD75Yxzv6 j1oqLzLWGdbi26PXl/cn9fUyRk0W51JZmU7gpd8cVisAEB4grISHr75xyqLt8PEDwCVRE8fD QXjo4DB6NpZ0KWjhwVFfZIVrvUlPVdNrG/kTHiRyeE1Y2xC70p1iKy1oq8iP/V99gxu1qWXW SYeudQ7hAeERHHAuDR/Ywc+2p4UjZmizXdlT5u/Qy6m8YwIIj7YID4ZnY8kgiFYX7ASSMHmd VXhIz4lx91oLIz4eFSfOcnJxBdFlE4cT50UQlm4owY3ahNVpAYQHCIS1S1nPHbaGJdFtryyn a3gGAgiPNgoP66iHNX4L7dkjPsO4FUWTGDPCbCWxdi6VUHu8p1E2qQtcMNpZSigxPbbtqcKN CuEBIDyAS+HBvdmPjV6uw4/LBEPu0NDvnroppjafd6DWGMIDwqNdhAd9aawKRPekITzk/rSO p4gO4Rz8+X9q4SFyhQdcnNdO0jNuRJP/o+EiblQIDwDhET6Nre2a9S0vYhf1EAa3rtY9+Xvb wQ7GNrCSGz9V3ZxKh7PRsMs7o26obQe+dUQv5wKD2BQeHBmPrPZCAweLE88K3iTB9lkw8PQu CWHHaeVWH/LaKt6BQ+XrTToHw3FU4JB04jXKScjopjXKxq0Wb92YX6ozJ6PdcJ9DeIDWEhcX t2TJkpAdLnacS6lF0p7zMkOWGi5usp6dtEYGOHTob2NEQ79YSWMomVDLySHTdSod9Z1zsJ1R qPXDiW/rHIRHk13XtG2IszVbD+kCo35BeAAIDwgPAEIDPZ3poU8SS0QFv17JOMXwlHW621ZG NGS8Q4aeSVQY8QQkE0oS/8Zq/ZTXqaTb2Vl4kNhIyd5mHdcWJz2JsMQFkwmMnETLD16dlqWU fmcEEB4AwqOD8ufvA+Lz+XSq5ORkN6mMF3OqjG5SWccR3CSkE7GeHWkt51S2YiwuLs5NOYO7 kta5S3SVWnslQ8yeIyd99Y1RXwf10AM/uI1F3/7RcFGCIrJHPc8T1HMGtbO9eOzz6iTyufZC g0MqIyqjVXjI4m5aJ1idS0nP6AEdHbhJ9+f0iM/Q69QDCA8A4dFe0PPO1jGAF6cLSGNjozW3 gBw8+LN+XVIvblJZH81uEtKJWM/O4/E4p6IdrKnoKe+mnMFdSWuLRFeptVcyxKqDnlMJyWuj vg7So1/Ggv0tc2+dRSjxjqxBF7V/ne1Ksno6oSEhHIQH943YCg/e5BDKgA4n8oOTS/eLdv4H EB4AwgOAq0WMOJfyabIPBq9f2VrhYZUQboSHVa4EFB5cqoTJ6/TyEzqVeJb6GzrR8a5PfFtH kkO0FrQHhAeA8AAAwiMEeFYW0Gne2m/Wtj1VG/NL//Olxa0VHrUXGu4a7KHP/ztr/dINJWR9 R7xLfw5puXT+hEfNue948SxJ1Tsh243wKD125oY+b5HlfLTfmv/hSq8Uhv4cnrKOduD8M1bv 5k1csFWbDxZ8cfzjgnJ2eV358Re459tdeLjp1bR2bFImblLZdvYGTGU7ehuwizj03eZWCZeb mxvKbvPgrmSHdpsbng8uL6a125yubffu3SE8QBhyoqau57CsjPejf2FHGYOgD+waKrMF9Zqb xpQT/lNmwhqzWiQigc7ESMWzC/Wh/QkP7poQ94wFa4o5H54zaBSMA1kbnq7WgrHEwvpZHYob Py6rKxc9TdyksnVvC5gqLi7OmiqgU1zoHQWtEmLAgAGhdBQM7kp2qKOgVYy5uZhWgcQ3WLdu 3VBDAbiK2EbYCAJ/kUDcHFr7tbb72dkWLIjSAgAAACBCmZmzQyaVyJpZ1oAbAAAAQCxQfvzs v/R8c0LGp7gUHYQOq6jnmwAAAAAxCNZq6Wg25pdyOGgO+4x5JQAAACA8IDwAAAAAAOEBAAAA gGgidiKXAgAAACBMtEcsrNUCAAAAAAAAAACA2OF0bX3vhIWIpA0AAACAEADnUgAAAABAeAAA AAAAwgMAEN34fL6HH+lzTeu57fddjTVqAQAAwgOUlZVd+4trg3isjBuXhKsX9WzevLlL11vS 3n19X+X77m1OVtJ//OkB68rsAABgpfHHn2Yv3fllRQ0uReyQl5d319139unba+X6We4fLq8k xd/f417SLbiA0dkUNDaStvxT3P2bixa2SnLcfmfXfv0f9Xq9uIYAAADaV37krJl6z7135eQs xtWLMkhP3nf/PaQtg5Ac6OgAAKDHA3Sc/PisJGfAoIcHPzHQ5/Ph6kUH+/btveMPt7nXn5Ac AIC2AB8PEIT8mO4Z3aXrLcXFxbh0kQ4JyH6P9S08shKSAwAA4QHCWX5sLlrY/Y93wOM0omFX 0g+2pUFyAAAgPEBEyA94nEYo7l1J0959nSTHb37zbx6PZwcAICZp37H1UAoP/HYRxKuvvnrt L64l+bF+RwY8TqOMVrmS9h/Up0fP7jAYLGbtli6/e+GF59uxCQrZWi30LOvU+Vf4BSPOpntG w+M0msjMymiVKykMBotxmzRzxNPD4iOxuSPhQU8x/IJRbPA4DWeqqqpmzZ758uhhqYsmFJeu wu0K82fTPKMmTn9xybpp7Zjntn3vUp7tni0sQoWHt7b+5RkffbTjKIRHe1nuprmtql+0J+1P lb19izF3wVjKlgoTynPfeXDZxOkjRo99cdGihefOncPjPrLcOWBXxeIe7vHbm280rAMr6ZfL nHego19zzTUjEp9sx4Mu/3AGB0Bu32xhESo8QubjEc7Cw6jy1A6s25oadG5jJv53q+oX7Un7 t3tT0/3ebpQtFeaqXFI4fkSiOwfsqhhXVW4EOlp43P3H3wdsmiA8YBAeoREezUtc3X4zf2ij DIDwgOMH3Dlgra2q9G8IjtXpul9CeMAgPMJHeCxcNbnZh3/wQ1xBqKZAeMDxI0LhFWafGPqo y8hgsPAUHnEP96DvxyY/918D4+hf/jJlzkj6ko3aK909S3/Kl5xW+m8pOR+ImhrOM6DwkANR hnqkZuCQh+X7T4qy+XvOnw5nLQyEB4SHwZcVNSQ8Rs5cD+HBwoNlACHVmWofV2GuVgtWJBuu FHor1UpDeEj19ze0KsKDjshVlWztpx7eSoeTL8moMNZGif+k5LwPlzxMhIeEGtu6dQv0QGgI boVZWBgKD26aeAduUuTNSHfPUiuks5LxGt6Bc5aWLaAA0AeVTER7UMJO1/1S8pdiW1+g9HlB eEB4YFaLbUVLnvkS1V/+LLWM64uuyKwQRNJLReattL8WHvEJ/XirIVdshYduK6R66mFf3iRK w+gRlarNfTXhIzzY/ja4L+KMwY8U5sbHQ/oNpNY/99JAakPovYP/pIZF3jX0416y4lZC99/S iw/9S5qB0vKfzu0h/UtH/KQo2zgEleG9DbO5weE9uXGD8IDwgPAIQngIXKmlG0FqClVV3pN3 kEZAejvpG/ogwoNkjJu6Jm8irHaoxaDP9/X8g2gb6czkZkReMSJLeGzalQV3U/iRwhyEh2DU cXkPMjQA94haa70kN9oEq48HfRaTlyOjYbEqik8Ks6mto+/1nhAeEB7uOVFT13NYVsb7xRAe t91+M9URa7cGyw+qlVLRuCrRW4mtbwYLDxInRqPB0kXXdH7psFZY+izCo7maF2VTtaXdjCNG lvCAu2lHO3V07tyJ2gc0kpE71EI1l00aH6OOWwdljAd6a4WHfufSvawOwoMkhx5qgfCA8IBz adt9PKT/kAWD7sw0xkz9jcyy8BABI/0Vuvbp1sBZePAcf12AyBUebP0efyhCe+3Q4wG7Kj4e boRHcD0eInX04Iuz8KAPvXrfY90TwgPCA8IjaOGhfaukW0PGO3RVchYe0uOh3byNmu6vJ1OE B28Sf1FrC4AeDwAfj9gRHuwzRl9K68HDr4aPh7Pw0H2wbqbT6maHM+RN8o7Gf/IYMcGertRg 6oYUwgPCA8LDQXhozw3ZJHNJdFUSxy3ZSq8MelZLq3w8bIUHNyPSUBiNjOFVbkwEho8HZrWg wYwy4SFPc54Sa/VFDyg8brjxet4h4KwWW+HBBaBMqLUxjk4vR+Iiy2WD8IDwcBYeQyfkQnjo wRTx8ZBxFl3RuCpJI8DfcF0zZrWIGHAzq8UqPCQ5z6g1hlq4N0YfHbNagLh8II5HpBgPpxpd o3pSm35Yc4AO3VLprUZW3Cmhe0gGDe3rZjqtzpZ926TZiU/oxz4eY5OfM/aUbl7+UhdGSgLh AeEh2uN0bX2MCw9teiKJTLDl7416bW0EeFaL1C+eCOMcA9mo11yePn95gLWNeLzTB67Xsqex lYsqjQwXDHE8YhlELo1WY4fz4FZ2CDqhntXinD9+IAgPTKdtu1FV0j6i7dgIuDHK2SFz561X 3RC5FB6nMBgMwuNnXbL1jVMWbc8vqYbwgMGVFB6nMBgMBudSWCQaVqeFxykMBoPwgPCAhcZe SYq/v8e9cCWFxykMBoPwsLLnyEkSHgnJayE8YO3lRzpuXBKe8vA4hcFgEB4O2sNX3wjhAYMf KTxOrRb/3ACquTAYLGbtli6/Gzbs6Qid1dKp86/wC0acTZ41En6ksexxOicr6d9/e+NNN920 ZMmSHQCAmMTr9UZoW4ffLoJITk7u3LkzCY+AffLwI410j9MPtqW56Wsl+fH0sPjjx4/jugEA AGhfffjnB3uR5HCItgo/0qjB5/P1e6yvS3dTyA8AAABXS3LAjzRq2Ldvb6vcTVl+DH7i8YMH D+LqAQAACIK8vLy77r7TpeSAH2n0EUSA06meUbff2bVf/0chPwAAALRWcvTp28vlCy/8SKMb 9vogUUES1L0Nefavd9zRDQoEAACAg9i4/tf/OnrCM+4fLnDngPCA8AAAAADhAQAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA wJn/A5vjFyA= 0 0 m -1 0.333 l -1 -0.333 l h 0 0 m -1 0.333 l -1 -0.333 l h 0 0 m -1 0.333 l -0.8 0 l -1 -0.333 l h 0 0 m -1 0.333 l -0.8 0 l -1 -0.333 l h 0.6 0 0 0.6 0 0 e 0.4 0 0 0.4 0 0 e 0.6 0 0 0.6 0 0 e 0.5 0 0 0.5 0 0 e 0.6 0 0 0.6 0 0 e 0.4 0 0 0.4 0 0 e -0.6 -0.6 m 0.6 -0.6 l 0.6 0.6 l -0.6 0.6 l h -0.4 -0.4 m 0.4 -0.4 l 0.4 0.4 l -0.4 0.4 l h -0.6 -0.6 m 0.6 -0.6 l 0.6 0.6 l -0.6 0.6 l h -0.5 -0.5 m 0.5 -0.5 l 0.5 0.5 l -0.5 0.5 l h -0.6 -0.6 m 0.6 -0.6 l 0.6 0.6 l -0.6 0.6 l h -0.4 -0.4 m 0.4 -0.4 l 0.4 0.4 l -0.4 0.4 l h -0.43 -0.57 m 0.57 0.43 l 0.43 0.57 l -0.57 -0.43 l h -0.43 0.57 m 0.57 -0.43 l 0.43 -0.57 l -0.57 0.43 l h 0 0 m -1 0.333 l -1 -0.333 l h 0 0 m -1 0.333 l -0.8 0 l -1 -0.333 l h 0 0 m -1 0.333 l -0.8 0 l -1 -0.333 l h -1 0.333 m 0 0 l -1 -0.333 l 0 0 m -1 0.333 l -1 -0.333 l h -1 0 m -2 0.333 l -2 -0.333 l h 0 0 m -1 0.333 l -1 -0.333 l h -1 0 m -2 0.333 l -2 -0.333 l h 0 0 m -1 0.333 l -1 -0.333 l h 0 0 m -1 0.333 l -1 -0.333 l h 0.6 0 0 0.6 0 0 e 0.4 0 0 0.4 0 0 e 0.6 0 0 0.6 0 0 e 0.5 0 0 0.5 0 0 e 0.6 0 0 0.6 0 0 e 0.4 0 0 0.4 0 0 e -0.6 -0.6 m 0.6 -0.6 l 0.6 0.6 l -0.6 0.6 l h -0.4 -0.4 m 0.4 -0.4 l 0.4 0.4 l -0.4 0.4 l h -0.6 -0.6 m 0.6 -0.6 l 0.6 0.6 l -0.6 0.6 l h -0.5 -0.5 m 0.5 -0.5 l 0.5 0.5 l -0.5 0.5 l h -0.6 -0.6 m 0.6 -0.6 l 0.6 0.6 l -0.6 0.6 l h -0.4 -0.4 m 0.4 -0.4 l 0.4 0.4 l -0.4 0.4 l h -0.43 -0.57 m 0.57 0.43 l 0.43 0.57 l -0.57 -0.43 l h -0.43 0.57 m 0.57 -0.43 l 0.43 -0.57 l -0.57 0.43 l h 0 0 m -1 0.333 l -1 -0.333 l h 0 0 m -1 0.333 l -0.8 0 l -1 -0.333 l h 0 0 m -1 0.333 l -0.8 0 l -1 -0.333 l h -1 0.333 m 0 0 l -1 -0.333 l 0 0 m -1 0.333 l -1 -0.333 l h -1 0 m -2 0.333 l -2 -0.333 l h 0 0 m -1 0.333 l -1 -0.333 l h -1 0 m -2 0.333 l -2 -0.333 l h \renewcommand\rmdefault{cmss} \makeatletter \leftmargini 1.5em \leftmargin \leftmargini \leftmarginii 1.2em \leftmarginiii 1em \def\@listI{\leftmargin\leftmargini \parsep \z@ \partopsep 3pt \topsep \z@ \itemsep \z@} \@listI \def\@listii {\leftmargin\leftmarginii \labelwidth\leftmarginii \advance\labelwidth-\labelsep \topsep \z@ \parsep \z@ \itemsep \parsep} \def\@listiii{\leftmargin\leftmarginiii \labelwidth\leftmarginiii \advance\labelwidth-\labelsep \topsep \z@ \parsep \z@ \partopsep \z@ \itemsep \topsep} \makeatother Some Preliminaries \begin{itemize} \item This description corresponds to the {\tt RU-RAU-split} branch for RAN infrastructure components (located in {\tt targets/DOCS/oai\_L1\_L2\_procedures.pdf}, editable with {\tt ipe}) \item we describe \begin{enumerate} \item node functions \item current functional splits and packet formats \item RAN procedures \item process scheduling \end{enumerate} \end{itemize} NGFI Harmonization in OAI \small \begin{itemize} \item New descriptions for OAI RAN infrastructure Node Functions \begin{itemize} \item{\tt NGFI\_RCC} : Radio Cloud Center \item{\tt NGFI\_RAU} : Radio Aggregation Unit \item{\tt NGFI\_RRU} : Remote Radio Unit \item{\tt 3GPP\_BBU} : Baseband Unit \item{\tt 3GPP\_eNodeB} : Complete eNodeB \end{itemize} \end{itemize} \small Source: China Mobile - {\tt http://www.windriver.com.cn/windforum/download/wf2015\_networking03.pdf} \small\begin{itemize} \item Current OAI implementation (RRU/RCC) supports either \begin{itemize} \item IF5 time-domain fronthaul ($>$ 1 GbE required) \item IF4.5 split (FFTs) (280 Mbit/s/antenna port fronthaul – 20 MHz carrier) per carrier/sector \item Soon IF2 (NFAPI) \item IF1’ for “PDCP/RRC” soon (3GPP Fh-C/Fh-U) \end{itemize} \end{itemize} NGFI split points OAI RAN Software Architecture 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 528 64 m 528 32 l 640 32 l 640 64 l h 528 64 m 528 32 l 640 32 l 640 64 l h 528 101 m 528 48 l 736 48 l 736 101 l h 392 376 m 392 296 l 512 296 l 512 376 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 392 376 m 392 296 l 512 296 l 512 376 l h 136 312 m 136 272 l 200 272 l 200 312 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 624 336 m 624 336 l 624 336 l 624 336 l h 608 336 m 608 336 l 608 336 l 608 336 l h \tiny\bf LTE\\ MODEM 576 384 m 576 336 l 640 336 l 640 384 l h 624 336 m 624 336 l 624 336 l 624 336 l h 608 336 m 608 336 l 608 336 l 608 336 l h 624 336 m 624 336 l 624 336 l 624 336 l h 608 336 m 608 336 l 608 336 l 608 336 l h 624 336 m 624 336 l 624 336 l 624 336 l h 608 336 m 608 336 l 608 336 l 608 336 l h 96 408 m 96 360 l 208 360 l 208 408 l h 624 336 m 624 336 l 624 336 l 624 336 l h 608 336 m 608 336 l 608 336 l 608 336 l h \tiny\bf LTE/NR/NB\\ PDCP 128 320 m 128 280 l 192 280 l 192 320 l h 624 336 m 624 336 l 624 336 l 624 336 l h 608 336 m 608 336 l 608 336 l 608 336 l h \tiny\bf LTE\\ RRC 112 464 m 112 440 l 648 440 l 648 464 l h 432 224 m 432 224 l 432 224 l 432 224 l h \bf OSS/BSS/MEC 192 296 m 232 296 l 232 404 l 256 404 l 144 288 m 144 320 l 384 368 m 448 368 l 384 352 m 448 352 l 152 456 m 152 368 l 304 456 m 304 408 l 456 456 m 456 416 l 600 456 m 600 409 l 512 368 m 576 368 l 512 352 m 576 352 l 88 384 m 8 384 l 128 264 m 8 264 l OAI Functional Splits 576 384 m 576 336 l 640 336 l 640 384 l h \bf\tiny LTE-L1 192 368 m 96 368 l 192 368 m 96 368 l 192 368 m 96 368 l \bf\tiny Management \bf\tiny data (user/control plane) \bf\tiny configuration 576 384 m 576 336 l 640 336 l 640 384 l h \tiny\bf LTE\\ MAC-RLC 288 432 m 288 432 l 288 432 l 288 432 l h 240 460 m 240 40 l 520 40 l 520 460 l h 384 416 m 384 416 l 384 416 l 384 416 l h 560 416 m 560 336 l 656 336 l 656 416 l h 88 456 m 88 40 l 216 40 l 216 221 l 216 261 l 216 456 l 100.8 456 l 88 456 l \bf\tiny Radio-Cloud Center (RCC) \tiny\bf Radio-Access Unit (RAU) 136 248 m 136 208 l 200 208 l 200 248 l h 128 256 m 128 216 l 192 216 l 192 256 l h \tiny\bf NR\\ RRC 128 229 m 112 229 l 112 261 l 112 360 l 488 368 m 488 304 l 504 304 l 504 368 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 624 336 m 624 336 l 624 336 l 624 336 l h 608 336 m 608 336 l 608 336 l 608 336 l h 624 336 m 624 336 l 624 336 l 624 336 l h 608 336 m 608 336 l 608 336 l 608 336 l h 624 336 m 624 336 l 624 336 l 624 336 l h 608 336 m 608 336 l 608 336 l 608 336 l h 384 368 m 448 368 l 384 352 m 448 352 l 576 384 m 576 336 l 640 336 l 640 384 l h \bf\tiny NR-L1 \tiny\bf NR\\ MAC-RLC 488 368 m 488 304 l 504 304 l 504 368 l h \tiny PRECODE \tiny PRECODE 576 384 m 576 336 l 640 336 l 640 384 l h 624 336 m 624 336 l 624 336 l 624 336 l h 608 336 m 608 336 l 608 336 l 608 336 l h \tiny\bf NR\\ MODEM 512 368 m 576 368 l 512 352 m 576 352 l 560 231 m 560 160 l 656 160 l 656 231 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 624 336 m 624 336 l 624 336 l 624 336 l h 608 336 m 608 336 l 608 336 l 608 336 l h 624 336 m 624 336 l 624 336 l 624 336 l h 608 336 m 608 336 l 608 336 l 608 336 l h 624 336 m 624 336 l 624 336 l 624 336 l h 608 336 m 608 336 l 608 336 l 608 336 l h 336 264 m 536 264 l 336 248 m 536 248 l 576 384 m 576 336 l 640 336 l 640 384 l h \bf\tiny LTE-L1 576 384 m 576 336 l 640 336 l 640 384 l h \tiny\bf LTE\\ MAC-RLC 488 368 m 488 304 l 504 304 l 504 368 l h \tiny PRECODE 576 384 m 576 336 l 640 336 l 640 384 l h 624 336 m 624 336 l 624 336 l 624 336 l h 608 336 m 608 336 l 608 336 l 608 336 l h \tiny\bf LTE\\ MODEM 232 264 m 256 264 l 256 424 m 224 424 l 224 316 l 256 316 l 64 264 m 64 264 l 528 288 m 528 208 l 736 208 l 736 288 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h \tiny\bf NR\\ MAC-RLC 576 384 m 576 336 l 640 336 l 640 384 l h \tiny\bf NB-IoT\\ MAC-RLC 128 264 m 8 264 l 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 576 384 m 576 336 l 640 336 l 640 384 l h 624 336 m 624 336 l 624 336 l 624 336 l h 608 336 m 608 336 l 608 336 l 608 336 l h 624 336 m 624 336 l 624 336 l 624 336 l h 608 336 m 608 336 l 608 336 l 608 336 l h 336 264 m 536 264 l 336 248 m 536 248 l 576 384 m 576 336 l 640 336 l 640 384 l h \bf\tiny NR-L1 488 368 m 488 304 l 504 304 l 504 368 l h \tiny PRECODE 576 384 m 576 336 l 640 336 l 640 384 l h 624 336 m 624 336 l 624 336 l 624 336 l h 608 336 m 608 336 l 608 336 l 608 336 l h \tiny\bf NR\\ MODEM 528 288 m 528 208 l 736 208 l 736 288 l h \tiny\bf Remote Radio-Unit (RRU) 336 72 m 576 72 l 336 86 m 576 88 l 576 384 m 576 336 l 640 336 l 640 384 l h \tiny\bf NB-IoT\\ RRC 128 264 m 8 264 l 104 360 m 104 88 l 120 88 l 192 88 m 256 88 l 528 64 m 528 32 l 640 32 l 640 64 l h \tiny\bf NB-IoT\\ L1/MODEM 224 384 m 208 384 l 192 240 m 256 240 l 232 240 m 232 168 l 256 168 l 224 192 m 224 192 l 224 192 m 224 192 l 224 312 m 224 72 l 256 72 l OAI Functional Splits \tiny\begin{itemize} \item OAI currently implements the following entities in openairinterface5g \begin{itemize} \item LTE-MODEM (eNB 36.211 OFDM modulation/demodulation) \item LTE-L1 (eNB 36.211/212/213) \item LTE-MACRLC (eNB 36.321/322) \item LTE-PDCP (eNB PDCP/GTPU 36.323) \item LTE-RRC (eNB RRC/SCTP 36.331) \end{itemize} \item Each entity comprises \begin{itemize} \item a northbound interface (backhaul/midhaul/fronthaul and configuration) \item a southbound interface (midaul/fronthaul and configuration) \item one or two management interfaces \item Three computing nodes \begin{itemize} \item {\bf Radio Cloud Center (RCC)} : multiple RRC/PDCP entities \item {\bf Radio-Access Unit (RAU)}: multiple MACRLC entities with medium-latency midhaul and L1 entities with low-latency fronthaul. \item {\bf Remote Radio-Unit (RRU)}: Equipment at radio site. Varying degrees of processing elements depending on fronthaul/midhaul interface. \end{itemize} \end{itemize} \item Each entity has a configuration which is a local file or received via the management interface \item default interface between all entities is implemented using a UDP socket. Transport is configurable via a dynamically-loadable networking device \end{itemize} 288 192 m 288 64 l 432 64 l 432 192 l h OAI entity 336 171 m 336 208 l 384 171 m 384 208 l 336 171 m 336 208 l 384 171 m 384 208 l 240 80 m 288 80 l 240 80 m 288 80 l 16 0 0 16 288 224 e 16 0 0 16 288 224 e \tiny\bf Northbound interface \tiny\bf Southbound interface \tiny\bf data \tiny\bf data \tiny\bf in-band configuration \tiny\bf in-band configuration \tiny\bf OSS/BSS \tiny\bf FlexRAN 240 80 m 288 80 l \tiny\tt .conf 511.895 513.539 m 511.895 14.2386 l 734.284 14.2386 l 734.284 513.539 l h 511.895 513.539 m 511.895 14.2386 l 734.284 14.2386 l 734.284 513.539 l h 511.895 513.539 m 511.895 14.2386 l 734.284 14.2386 l 734.284 513.539 l h 16 432 m 16 112 l 192 112 l 192 432 l h 16 432 m 16 112 l 192 112 l 192 432 l h Functional Splits (Current) 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} MAC TX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PDCP TX \end{tiny} \setstretch{.5}\begin{tiny} RLC TX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} MAC RX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PDCP RX \end{tiny} \setstretch{.5}\begin{tiny} RLC RX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} RRC \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} GTP-C \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} GTP-U \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PHY TX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PHY RX \end{tiny} 384 432 m 384 384 l 384 432 m 384 384 l 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt rf\_device} \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} MAC TX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PDCP TX \end{tiny} \setstretch{.5}\begin{tiny} RLC TX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} MAC RX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PDCP RX \end{tiny} \setstretch{.5}\begin{tiny} RLC RX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} RRC \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} GTP-C \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} GTP-U \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PHY TX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PHY RX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt if\_device} \end{tiny} 3GPP\_eNodeB 3GPP\_BBU \tiny to MME \tiny to S-PGw 384 432 m 384 384 l 384 432 m 384 384 l \tiny to MME \tiny to S-PGw 160 112 m 160 112 l 160 112 l 160 112 l h 144 112 m 144 112 l 144 112 l 144 112 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt USB3 or PCIe} \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt NFGI\_IF5 / ethernet} \end{tiny} 16 432 m 16 112 l 192 112 l 192 432 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} MAC TX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PDCP TX \end{tiny} \setstretch{.5}\begin{tiny} RLC TX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} MAC RX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PDCP RX \end{tiny} \setstretch{.5}\begin{tiny} RLC RX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} RRC \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} GTP-C \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} GTP-U \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} upper-PHY RX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt if\_device} \end{tiny} NGFI\_RCC (IF4.5) 384 432 m 384 384 l 384 432 m 384 384 l \tiny to MME \tiny to S-PGw 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt NFGI\_IF4p5 / ethernet} \end{tiny} \setstretch{.5}\begin{tiny} upper-PHY TX \end{tiny} 384 432 m 384 384 l \tiny to NGFI\_RRU 384 432 m 384 384 l \tiny to NGFI\_RRU or RRH\_gw 384 432 m 384 384 l \tiny to RF Device 1.83417 462.604 m 1.83417 50.8252 l 207.006 50.8252 l 207.006 462.604 l h 1.83417 462.604 m 1.83417 50.8252 l 207.006 50.8252 l 207.006 462.604 l h 16 432 m 16 112 l 192 112 l 192 432 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} MAC TX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PDCP TX \end{tiny} \setstretch{.5}\begin{tiny} RLC TX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} MAC RX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PDCP RX \end{tiny} \setstretch{.5}\begin{tiny} RLC RX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} RRC \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} GTP-C \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} GTP-U \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt if\_device} \end{tiny} NGFI\_RCC (IF1'') 384 432 m 384 384 l 384 432 m 384 384 l \tiny to MME \tiny to S-PGw 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt NFGI\_IF1pp} / ethernet \end{tiny} 16 432 m 16 112 l 192 112 l 192 432 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PDCP TX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PDCP RX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} RRC \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} GTP-C \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} GTP-U \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt if\_device} \end{tiny} NGFI\_RCC (IF1') 384 432 m 384 384 l 384 432 m 384 384 l \tiny to MME \tiny to S-PGw 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt NFGI\_IF1p} / ethernet \end{tiny} \tiny to NGFI\_RRU 384 432 m 384 384 l \tiny to NGFI\_RAU 384 432 m 384 384 l \tiny to NGFI\_RAU Functional Splits (Current) 1.83417 462.604 m 1.83417 50.8252 l 207.006 50.8252 l 207.006 462.604 l h 16 432 m 16 112 l 192 112 l 192 432 l h 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} upper-PHY RX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt if\_device} \end{tiny} NGFI\_RAU(IF1'') 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt NFGI\_IF4p5 / ethernet} \end{tiny} \setstretch{.5}\begin{tiny} upper-PHY TX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt if\_device} \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt NFGI\_IF1pp / ethernet} \end{tiny} 384 432 m 384 384 l \tiny to NGFI\_RCC 384 432 m 384 384 l \tiny to NGFI\_RRU 1.83417 462.604 m 1.83417 50.8252 l 207.006 50.8252 l 207.006 462.604 l h 1.83417 462.604 m 1.83417 50.8252 l 207.006 50.8252 l 207.006 462.604 l h 1.83417 462.604 m 1.83417 50.8252 l 207.006 50.8252 l 207.006 462.604 l h 16 432 m 16 112 l 192 112 l 192 432 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt if\_device} \end{tiny} NGFI\_RRU (IF5) 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt NFGI\_IF5/ ethernet} \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt rf\_device} \end{tiny} NGFI\_RRU (IF4.5) 384 432 m 384 384 l \tiny to NGFI\_RCC, NGFI\_RAU,3GPP\_BBU 384 432 m 384 384 l \tiny to RF Device 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt USB3, PCIe, CPRI} \end{tiny} 16 432 m 16 112 l 192 112 l 192 432 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt if\_device} \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt NFGI\_IF4p5/ ethernet} \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt rf\_device} \end{tiny} 384 432 m 384 384 l \tiny to NGFI\_RCC, NGFI\_RAU 384 432 m 384 384 l \tiny to RF Device 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt USB3, PCIe, CPRI} \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} lower-PHY RX \end{tiny} \setstretch{.5}\begin{tiny} lower-PHY TX \end{tiny} 16 432 m 16 112 l 192 112 l 192 432 l h 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt if\_device} \end{tiny} \setstretch{.5}\begin{tiny} upper-PHY TX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt if\_device} \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt NFGI\_IF1pp\_4P5 / ethernet} \end{tiny} 384 432 m 384 384 l \tiny to NGFI\_RCC, NGFI\_RAU 384 432 m 384 384 l 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt USB3, PCIe, CPRI} \end{tiny} \tiny to RF Device Functional Splits (Current) NGFI\_RRU\par (IF1'') 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} lower-PHY RX \end{tiny} \setstretch{.5}\begin{tiny} lower-PHY TX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} upper-PHY RX \end{tiny} Some Notes on usage of splits \tiny\begin{itemize} \item IF4p5 corresponds to the split-point at the input (TX) and output (RX) of the OFDM symbol generator (i.e. frequency-domain signals). According to NGFI, IF4 is "Resource mapping and IFFT" and "FFT and Resource demapping". We currently do not try to exploit multiplexing gains for unused spectral components. So, IF4p5 is simply compressed transmitted or received resource elements in the usable channel band. \item The simplest deployment for DAS (indoor) is one NGFI\_RCC (IF4p5) and many NGFI\_RRU (IF4p5). Spatio-temportal filtering (Precoding, later) is done in RCC and RRU perform IFFT/FFT and signal generation/acquisition. Fronthaul rates in this case are feasible with 1GbE copper links. This allows for PoE in addition to fronthaul data. \item More complex indoor, for instance with RCC in a common data center with outdoor RRS, could be \begin{enumerate} \item RCC-RAU with IF1'', RAU-RRU with IF4p5. Spatio-temporal filtering is done in frequency-domain in RAU along with full TX and RX processing (L1/L2) for the indoor RRS. Note that IF1' fronthaul on TX to RRU would be difficult because spatio-temporal filtering should be used. RRU does only IFFT/FFT and signal generation/acquisition \item RCC-RAU with IF1', RAU-RRU with IF4p5. Here RCC does L2, RAU does L1 and precoding for RRS. \end{enumerate} \item A massive-MIMO solution would consist either of \begin{enumerate} \item an embedded RAU with processing (Spatio-temporal in frequency-domain, lower/upper PHY TX/RX) like the IF1' DAS solution above \item or more simply a high-speed fronthaul (IF4p5) with an RAU for multiple sites \item directly connected to RCC via high-speed IF4p5 (several virtual cells, precoder and IFFT/FFT in array). \end{enumerate} \item RCC solution with IF1'' would cater to evolved-PDCP for heterogenity (4G,5G,WIFI,IoT) \item Currently supported node functionalities \begin{enumerate} \item {\tt 3GPP\_eNodeB} \item {\tt 3GPP\_eNodeB\_BBU} [NGFI\_IF5] \item {\tt NGFI\_RCC} [NGFI\_IF4p5] \item {\tt NGFI\_RRU} [NGFI\_IF5] \item {\tt NGFI\_RRU} [NGFI\_IF4p5] \end{enumerate} \end{itemize} RU - L1 negotiation 64 448 m 64 256 l 256 256 l 256 448 l h 64 448 m 64 256 l 256 256 l 256 448 l h RRU Entity RAU/RCC Entity 544 192 m 544 256 l 256 320 m 448 320 l 448 288 m 256 288 l 544 192 m 544 256 l \tiny\tt .conf \tiny\tt .conf \tiny\tt fronthaul data (IF5,IF4p5) 256 320 m 448 320 l 448 288 m 256 288 l \tiny\tt RRU control/config \begin{small} Control and Configuration protocol \begin{enumerate} \item RAU$\rightarrow$ RRU : heartbeat (capabilities request) \item RRU$\rightarrow$ RAU: capabilities indication \item RAU$\rightarrow$ RRU: configuration (band, dl\_Carrier,ul\_Carrier, dl\_RS\_EPRE, rx/tx attenuation) \end{enumerate} \end{small} During steady state, the control port manages the link quality and status (packet losses, synchronization state, start/stop, etc.) \begin{small} \begin{itemize} \item IF5 interface \begin{itemize} \item DL subframes with timestamp (16-bit samples) \item UL subframes with timestamp (16-bit samples) \item optional A-law compression (13$\rightarrow$8bit) \end{itemize} \item IF4p5 interface \begin{itemize} \item DL packets, ofdm symbols with frame/subframe/symbol count \item UL packets, ofdm symbols with frame/subframe/symbol count (16-bit) \item UL PRACH packets with frame/subframe count (16-bit) \item optional A-law compression (13$\rightarrow$8bit) \end{itemize} \end{itemize} \end{small} RU - L1 data plane 544 288 m 544 256 l 704 256 l 704 288 l h IF5 Packet Format (16-bit) 64 352 m 64 320 l 224 320 l 224 352 l h 64 352 m 64 320 l 224 320 l 224 352 l h 64 352 m 64 320 l 224 320 l 224 352 l h 64 352 m 64 320 l 224 320 l 224 352 l h 0 16 32 48 15 31 47 63 64 320 m 64 288 l 544 288 l 544 320 l h 544 320 m 544 288 l 704 288 l 704 320 l h 64 288 m 64 256 l 384 256 l 384 288 l h 384 288 m 384 256 l 544 256 l 544 288 l h 544 288 m 544 256 l 704 256 l 704 288 l h \small Destination Address \small Source \small Type (0x1234) \small RF Config \small Address 64 160 m 64 128 l 384 128 l 384 160 l h \small Frame Check Sequence 256 240 m 256 240 l 256 240 l \small Timestamp 5 63.5079 m 5 46.9999 l 645 46.9999 l 645 63.5079 l h 64 256 m 64 224 l 384 224 l 384 256 l h 64 256 m 64 224 l 384 224 l 384 256 l h 64 256 m 64 224 l 384 224 l 384 256 l h 64 256 m 64 224 l 384 224 l 384 256 l h 256 240 m 256 240 l 256 240 l 166 304 m 165.917 272.508 l 166.247 272.508 l 486 304 m 486.316 272.508 l 485.986 272.508 l 486.316 256 m 486.646 224 l 485.657 224 l 486.316 256 m 486.646 224 l 485.657 224 l \tiny $I_0$ \tiny $Q_0$ \tiny $I_1$ \tiny $Q_1$ \tiny $Q_{N-2}$ \tiny $Q_{N-2}$ \tiny $I_{N-1}$ \tiny $Q_{N-1}$ \tiny \begin{itemize} \item {\bf Type:} 2 byte (16 bit) field that specifies the RoE protocol \item {\bf RX Config:} 16-bit. Currently just antenna index (0-7). Can later be used for gain/timing adjustments. \item {\bf Timstamp:} Timestamp in samples of the first sample of the received packet. \end{itemize} \begin{itemize} \item {\bf data block :} Uncompressed IQ samples, 16-bit resolution for each real and imaginary component. $N$ complex samples per packet. $N$ can be configured at initialization. \end{itemize} IF5 Packet Format (8-bit) 64 352 m 64 320 l 224 320 l 224 352 l h 64 352 m 64 320 l 224 320 l 224 352 l h 64 352 m 64 320 l 224 320 l 224 352 l h 64 352 m 64 320 l 224 320 l 224 352 l h 0 16 32 48 15 31 47 63 64 320 m 64 288 l 544 288 l 544 320 l h 544 320 m 544 288 l 704 288 l 704 320 l h 64 288 m 64 256 l 384 256 l 384 288 l h 384 288 m 384 256 l 544 256 l 544 288 l h 544 288 m 544 256 l 704 256 l 704 288 l h 384 256 m 384 224 l 704 224 l 704 256 l h \small Destination Address \small Source \small Type (0xBEEF) \small RX Flags \small Address 544 288 m 544 256 l 704 256 l 704 288 l h \small FIFO\_status 544 288 m 544 256 l 704 256 l 704 288 l h \tiny SeqNum \tiny rsvd 248.997 435.732 m 248.997 403.732 l \small Word0 5 63.5079 m 5 46.9999 l 645 46.9999 l 645 63.5079 l h 64 256 m 64 224 l 384 224 l 384 256 l h 64 256 m 64 224 l 384 224 l 384 256 l h 64 256 m 64 224 l 384 224 l 384 256 l h 166 304 m 165.917 272.508 l 166.247 272.508 l 486 304 m 486.316 272.508 l 485.986 272.508 l 486.316 256 m 486.646 224 l 485.657 224 l \tiny $I_0$ 248.997 435.732 m 248.997 403.732 l 248.997 435.732 m 248.997 403.732 l 248.997 435.732 m 248.997 403.732 l 248.997 435.732 m 248.997 403.732 l 248.997 435.732 m 248.997 403.732 l 248.997 435.732 m 248.997 403.732 l \tiny $Q_0$ \tiny $I_1$ \tiny $Q_1$ \tiny $I_2$ \tiny $Q_2$ \tiny $I_3$ \tiny $Q_3$ \tiny $I_{638}$ \tiny $Q_{638}$ \tiny $I_{639}$ \tiny $Q_{639}$ \tiny \begin{itemize} \item {\bf Type:} 2 byte (16 bit) field that specifies the RoE protocol \item {\bf RX Flags:} overrun indicator. should be '0'. \item {\bf FIFO status:} 2 bytes. should be '0'. \item {\bf SeqNum:} 1 byte. Sequence number of the ethernet packet. \item {\bf rsvd:} 1 byte. shoult be '0'. \item {\bf Word0:} 4 byte (32-bit). should be '0'. \item {\bf Timstamp:} Timestamp in samples of the first sample of the received packet. \end{itemize} \begin{itemize} \item {\bf data block :} Uncompressed IQ samples, 8-bit resolution for each real and imaginary component. 640 complex samples per packet. \end{itemize} 384 256 m 384 224 l 704 224 l 704 256 l h \small Timestamp 64 256 m 64 224 l 384 224 l 384 256 l h 486 304 m 486.316 272.508 l 485.986 272.508 l 248.997 435.732 m 248.997 403.732 l 248.997 435.732 m 248.997 403.732 l \tiny $I_4$ \tiny $Q_4$ \tiny $I_5$ \tiny $Q_5$ 64 160 m 64 128 l 384 128 l 384 160 l h \small Frame Check Sequence IF4p5 Packet Formats (RAW) 272 512 m 272 512 l 272 512 l 272 512 l h 64 352 m 64 320 l 224 320 l 224 352 l h 64 352 m 64 320 l 224 320 l 224 352 l h 64 352 m 64 320 l 224 320 l 224 352 l h 64 352 m 64 320 l 224 320 l 224 352 l h 0 16 32 48 15 31 47 63 64 320 m 64 288 l 544 288 l 544 320 l h 544 320 m 544 288 l 704 288 l 704 320 l h 64 288 m 64 256 l 384 256 l 384 288 l h 384 288 m 384 256 l 544 256 l 544 288 l h 544 288 m 544 256 l 704 256 l 704 288 l h 64 256 m 64 224 l 384 224 l 384 256 l h 384 256 m 384 224 l 704 224 l 704 256 l h 64 160 m 64 96 l 704 96 l 704 160 l h \small Destination Address \small Source \small Type (0x080A) \small Subtype (0x0021) \small Address \small LTE PRACH Configuration \small Reserved \small PRACH data block (one antenna) 64 160 m 64 128 l 384 128 l 384 160 l h \small Frame Check Sequence 384 160 m 384 128 l 704 128 l 704 160 l h IF4p5 PRACH Packet (RRU$\rightarrow$ RAU,RCC) \tiny \begin{itemize} \item {\bf Type:} 2 byte (16 bit) field that specifies the RoE protocol \item {\bf Subtype:} 2 byte (16 bit) field that specifies the packet subtype \item {\bf Reserved:} 4 byte (32 bit) field reserved \item {\bf LTE PRACH conf:} 4 byte (32-bit) field that details the configuration of the LTE PRACH packet \end{itemize} \vskip 3pt \begin{tabular}{|c|c|} \hline {\bf field (0 is LSB, 31 is MSB)} & {\bf description}\\ \hline rsvd (0:2) & Reserved.\\ \hline ant (3:5) & 3-bit Antenna index of LTE PRACH packet\\ \hline RF Num (6:21) & 16-bit field indicating the Radio Frame number of this received PRACH packet\\ \hline SF Num (22:25) & 4-bit field indicating the sub-frame number in the radio frame for the LTE PRACH packet\\ & Valid range of 0 to 9.\\ \hline Exponent (26:31) & FFT exponent output (0 if unscaled) \\ \hline \end{tabular} \begin{itemize} \item {\bf PRACH data block:} Uncompressed IQ samples \end{itemize} 64 256 m 64 224 l 384 224 l 384 256 l h 64 256 m 64 224 l 384 224 l 384 256 l h \tiny RE 0 (Real) \tiny RE 0 (Imag) \tiny RE 1 (Real) \tiny RE 1 (Imag) 166 304 m 165.917 272.508 l 166.247 272.508 l 486 304 m 486.316 272.508 l 485.986 272.508 l 64 256 m 64 224 l 384 224 l 384 256 l h 64 256 m 64 224 l 384 224 l 384 256 l h \tiny RE 837 (Real) \tiny RE 837 (Imag) \tiny RE 838 (Real) \tiny RE 838 (Imag) 166 304 m 165.917 272.508 l 166.247 272.508 l 486 304 m 486.316 272.508 l 485.986 272.508 l 6.00001 47.492 m 6.00001 32 l 646 32 l 646 47.492 l h 528 16 m 528 16 l 528 16 l 528 16 l h 560 16 m 560 16 l 560 16 l 560 16 l h 64 224 m 64 192 l 224 192 l 224 224 l h 224 224 m 224 192 l 384 192 l 384 224 l h 384 224 m 384 192 l 544 192 l 544 224 l h 544 224 m 544 192 l 704 192 l 704 224 l h 64 192 m 64 160 l 224 160 l 224 192 l h 224 192 m 224 160 l 384 160 l 384 192 l h 384 192 m 384 160 l 544 160 l 544 192 l h 544 192 m 544 160 l 704 160 l 704 192 l h \small Gain 0 \small Gain 1 \small Gain 4 \small Gain 5 \small Gain 2 \small Gain 3 \small Gain 6 \small Gain 7 272 512 m 272 512 l 272 512 l 272 512 l h 64 352 m 64 320 l 224 320 l 224 352 l h 64 352 m 64 320 l 224 320 l 224 352 l h 64 352 m 64 320 l 224 320 l 224 352 l h 64 352 m 64 320 l 224 320 l 224 352 l h 0 16 32 48 15 31 47 63 64 320 m 64 288 l 544 288 l 544 320 l h 544 320 m 544 288 l 704 288 l 704 320 l h 64 288 m 64 256 l 384 256 l 384 288 l h 384 288 m 384 256 l 544 256 l 544 288 l h 544 288 m 544 256 l 704 256 l 704 288 l h 64 256 m 64 224 l 384 224 l 384 256 l h 384 256 m 384 224 l 704 224 l 704 256 l h \small Destination Address \small Source \small Type (0x080A) \small Subtype (0x0019) \small Address \small Frame status \small Reserved 64 160 m 64 128 l 384 128 l 384 160 l h \small Frame Check Sequence \tiny \begin{itemize} \item {\bf Type:} 2 byte (16 bit) field that specifies the RoE protocol \item {\bf Subtype:} 2 byte (16 bit) field that specifies the packet subtype \item {\bf Reserved:} 4 byte (32 bit) field reserved \item {\bf Frame Status:} 4 byte (32 bit) field \end{itemize} \vskip 3pt \begin{tabular}{|c|c|} \hline {\bf field (0 is LSB, 31 is MSB)} & {\bf description}\\ \hline {\bf ant} (0:2) & The number of Antenna Carriers represented in the packet. Antenna numbers \\ & range from 0 to 7 with valid inputs being 0,1, 3 and 7 (1,2,4,8 antennas)\\ \hline {\bf ant start} (3:5) & starting antenna number\\ \hline {\bf RF Num} (6:21) & 16-bit field indicating the Radio Frame number of the UL\_RE samples\\ \hline {\bf SF Num} (22:25) & 4-bit field indicating the sub-frame number in the radio frame for the UL\_RE samples\\ & Valid range of 0 to 9.\\ \hline {\bf Sym Num:} (26:29) & Symbol number. Valid range of 0 to 13. \\ {\bf rsvd:} (30:31) & reserved\\ \hline \end{tabular} \begin{itemize} \item {\bf ULRE data block:} compressed IQ samples (8-bit A-law). $N$ is the number of resource elements $N_{\mathrm{RB}}^{\mathrm{UL}}$. \end{itemize} 5 63.5079 m 5 46.9999 l 645 46.9999 l 645 63.5079 l h 64 256 m 64 224 l 384 224 l 384 256 l h 64 256 m 64 224 l 384 224 l 384 256 l h 64 256 m 64 224 l 384 224 l 384 256 l h 64 256 m 64 224 l 384 224 l 384 256 l h IF4p5 Packets : ULRE (RRU$\rightarrow$ RAU,RCC) 256 240 m 256 240 l 256 240 l 166 304 m 165.917 272.508 l 166.247 272.508 l 486 304 m 486.316 272.508 l 485.986 272.508 l 486.316 256 m 486.646 224 l 485.657 224 l 486.316 256 m 486.646 224 l 485.657 224 l 258.16 141.771 m 258.16 141.771 l 418.597 191.907 m 418.597 191.907 l 429.181 79.9357 m 429.181 79.9357 l \tiny RE 0\\Ant 1 (Re) \tiny RE 0\\Ant 1 (Im) \tiny RE 1\\Ant 1 (Re) \tiny RE 1\\Ant 1 (Im) \tiny RE 2\\Ant 1 (Re) \tiny RE 2\\Ant 1 (Im) \tiny RE 3\\Ant 1 (Re) \tiny RE 3\\Ant 1 (Im) \tiny RE $N-4$\\Ant $R$ (Re) \tiny RE $N-4$\\Ant $R$ (Im) \tiny RE $N-3$\\Ant $R$ (Re) \tiny RE $N-3$\\Ant $R$ (Im) \tiny RE $N-2$\\Ant $R$ (Re) \tiny RE $N-2$\\Ant $R$ (Im) \tiny RE $N-1$\\Ant $R$ (Re) \tiny RE $N-1$\\Ant $R$ (Im) 248.997 435.732 m 248.997 403.732 l 248.997 435.732 m 248.997 403.732 l 248.997 435.732 m 248.997 403.732 l 248.997 435.732 m 248.997 403.732 l 248.997 435.732 m 248.997 403.732 l 248.997 435.732 m 248.997 403.732 l 248.997 435.732 m 248.997 403.732 l 248.997 435.732 m 248.997 403.732 l 272 512 m 272 512 l 272 512 l 272 512 l h 64 352 m 64 320 l 224 320 l 224 352 l h 64 352 m 64 320 l 224 320 l 224 352 l h 64 352 m 64 320 l 224 320 l 224 352 l h 64 352 m 64 320 l 224 320 l 224 352 l h 0 16 32 48 15 31 47 63 64 320 m 64 288 l 544 288 l 544 320 l h 544 320 m 544 288 l 704 288 l 704 320 l h 64 288 m 64 256 l 384 256 l 384 288 l h 384 288 m 384 256 l 544 256 l 544 288 l h 544 288 m 544 256 l 704 256 l 704 288 l h 64 256 m 64 224 l 384 224 l 384 256 l h 384 256 m 384 224 l 704 224 l 704 256 l h \small Destination Address \small Source \small Type (0x080A) \small Subtype (0x0020) \small Address \small Frame status \small Reserved 64 160 m 64 128 l 384 128 l 384 160 l h \small Frame Check Sequence \tiny \begin{itemize} \item {\bf Type:} 2 byte (16 bit) field that specifies the RoE protocol \item {\bf Subtype:} 2 byte (16 bit) field that specifies the packet subtype \item {\bf Reserved:} 4 byte (32 bit) field reserved \item {\bf Frame Status:} 4 byte (32 bit) field \end{itemize} \vskip 3pt \begin{tabular}{|c|c|} \hline {\bf field (0 is LSB, 31 is MSB)} & {\bf description}\\ \hline {\bf ant} (0:2) & The number of Antenna Carriers represented in the packet. Antenna numbers \\ & range from 0 to 7 with valid inputs being 0,1, 3 and 7 (1,2,4,8 antennas)\\ \hline {\bf ant start} (3:5) & starting antenna number\\ \hline {\bf RF Num} (6:21) & 16-bit field indicating the Radio Frame number of this DLRE packet\\ \hline {\bf SF Num} (22:25) & 4-bit field indicating the sub-frame number in the radio frame for the DLRE packet\\ & Valid range of 0 to 9.\\ \hline {\bf Sym Num:} (26:29) & Symbol number. Valid range of 0 to 13. \\ {\bf rsvd:} (30:31) & reserved\\ \hline \end{tabular} \begin{itemize} \item DLRE data block : compressed IQ samples (8-bit A-law). $N$ is the number of resource elements $N_{\mathrm{RB}}^{\mathrm{DL}}$. \end{itemize} IF4p5 Packets : DLRE (RAU,RCC $\rightarrow$RRU) 258.16 141.771 m 258.16 141.771 l 418.597 191.907 m 418.597 191.907 l 429.181 79.9357 m 429.181 79.9357 l 5 63.5079 m 5 46.9999 l 645 46.9999 l 645 63.5079 l h 64 256 m 64 224 l 384 224 l 384 256 l h 64 256 m 64 224 l 384 224 l 384 256 l h 64 256 m 64 224 l 384 224 l 384 256 l h 64 256 m 64 224 l 384 224 l 384 256 l h 166 304 m 165.917 272.508 l 166.247 272.508 l 486 304 m 486.316 272.508 l 485.986 272.508 l 486.316 256 m 486.646 224 l 485.657 224 l 486.316 256 m 486.646 224 l 485.657 224 l \tiny RE 0\\Ant 1 (Re) \tiny RE 0\\Ant 1 (Im) \tiny RE 1\\Ant 1 (Re) \tiny RE 1\\Ant 1 (Im) \tiny RE 2\\Ant 1 (Re) \tiny RE 2\\Ant 1 (Im) \tiny RE 3\\Ant 1 (Re) \tiny RE 3\\Ant 1 (Im) \tiny RE $N-4$\\Ant $R$ (Re) \tiny RE $N-4$\\Ant $R$ (Im) \tiny RE $N-3$\\Ant $R$ (Re) \tiny RE $N-3$\\Ant $R$ (Im) \tiny RE $N-2$\\Ant $R$ (Re) \tiny RE $N-2$\\Ant $R$ (Im) \tiny RE $N-1$\\Ant $R$ (Re) \tiny RE $N-1$\\Ant $R$ (Im) 248.997 435.732 m 248.997 403.732 l 248.997 435.732 m 248.997 403.732 l 248.997 435.732 m 248.997 403.732 l 248.997 435.732 m 248.997 403.732 l 248.997 435.732 m 248.997 403.732 l 248.997 435.732 m 248.997 403.732 l 248.997 435.732 m 248.997 403.732 l 248.997 435.732 m 248.997 403.732 l 640 128 m 640 32 l 704 32 l 704 128 l h 640 480 m 640 176 l 720 176 l 720 480 l h 328.159 119.72 m 328.159 15.3556 l 554.022 15.3556 l 554.022 119.72 l h 96 784 m 96 496 l 224 496 l 224 784 l h -192 928 m -192 944 l -192 944 l -192 928 l h 96 784 m 96 496 l 224 496 l 224 784 l h \begin{small}L1 Instance 0\end{small} LI instance 1 \begin{small}MAC/RLC/PDCP Instance 0\end{small} 364 518 m 364 518 l 364 518 l 364 518 l h 96 784 m 96 496 l 224 496 l 224 784 l h 128 768 m 128 704 l 192 704 l 192 768 l h \setstretch{.5}\begin{tiny} DL/UL Scheduler \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} MAC RX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PDCP RX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} MAC TX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PDCP TX \end{tiny} 180 460 m 340 460 l 180 460 m 340 460 l \begin{tiny}1ms TICK\end{tiny} 392.067 448.35 m 232.502 360 l \begin{tiny}$\mathrm{DCI}_0$, Transport Blocks\end{tiny} \begin{tiny}$\mathrm{DCI}_1$\end{tiny} \begin{tiny}$\mathrm{DCI}_2$\end{tiny} \setstretch{.5}\begin{tiny} RLC RX \end{tiny} \setstretch{.5}\begin{tiny} RLC TX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PHY RX $n$\\ $\mathrm{eNB}_0$ \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PHY RX $n$\\ $\mathrm{eNB}_1$ \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PHY RX $n$\\ $\mathrm{eNB}_2$ \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PHY TX $n+4$\\ $\mathrm{eNB}_0$ \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PHY TX $n+4$\\ $\mathrm{eNB}_1$ \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PHY TX $n+4$\\ $\mathrm{eNB}_2$ \end{tiny} 234.502 211.006 m 387 210 l 243.386 213.48 m 243.386 213.48 l 232.502 250.102 m 387.004 250.371 l 232.502 310 m 387 310 l 232.502 346.88 m 387 347 l 336.917 451.424 m 185.872 274.589 l 232.5 410 m 386.079 409.083 l \begin{tiny}Transport Blocks\end{tiny} \begin{tiny}Transport Blocks\end{tiny} \setstretch{.5}\begin{tiny}CQI/SR/ACK/NAK/PHR\\Transport Blocks\end{tiny} \setstretch{.5}\begin{tiny}CQI/SR/ACK/NAK/PHR\\Transport Blocks\end{tiny} \setstretch{.5}\begin{tiny}CQI/SR/ACK/NAK/PHR\\Transport Blocks\end{tiny} 180 460 m 340 460 l 180 460 m 340 460 l \begin{tiny}1ms TICK\end{tiny} \begin{tiny}$\mathrm{DCI}_0$, Transport Blocks\end{tiny} 184.502 313 m 332 313 l \begin{small}MAC/RLC/PDCP Instance 1\end{small} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} MAC TX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PDCP TX \end{tiny} \setstretch{.5}\begin{tiny} RLC TX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} MAC TX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PDCP TX \end{tiny} \setstretch{.5}\begin{tiny} RLC TX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} MAC RX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PDCP RX \end{tiny} \setstretch{.5}\begin{tiny} RLC RX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} MAC RX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PDCP RX \end{tiny} \setstretch{.5}\begin{tiny} RLC RX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PHY RX \\ $\mathrm{eNB}_0$ \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PHY TX \\ $\mathrm{eNB}_0$ \end{tiny} \setstretch{.5}\begin{tiny}CQI/SR/ACK/NAK/PHR\\Transport Blocks\end{tiny} 128 768 m 128 704 l 192 704 l 192 768 l h \setstretch{.5}\begin{tiny} DL/UL Scheduler \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} MAC RX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PDCP RX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} MAC TX \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PDCP TX \end{tiny} \setstretch{.5}\begin{tiny} RLC RX \end{tiny} \setstretch{.5}\begin{tiny} RLC TX \end{tiny} RU/L1 Instances and Component Carriers 96 784 m 96 496 l 224 496 l 224 784 l h 96 784 m 96 496 l 224 496 l 224 784 l h 364 518 m 364 518 l 364 518 l 364 518 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} $\mathrm{RU}_3$ \end{tiny} 144 480 m 144 32 l 176 32 l 176 480 l h 176 432 m 176 432 l 192 464 m 176 464 l 190.041 464 m 190.041 464 l 190.041 464 m 190.041 464 l 192 464 m 176 464 l 192 464 m 176 464 l 192 464 m 176 464 l 192 464 m 176 464 l 192 464 m 176 464 l 192 464 m 176 464 l 192 464 m 176 464 l 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} $\mathrm{RU}_0$ \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} $\mathrm{RU}_1$ \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} $\mathrm{RU}_2$ \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} $\mathrm{RU}_4$ \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} $\mathrm{RU}_5$ \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} $\mathrm{RU}_6$ \end{tiny} 144 464 m 129.959 464 l 144 464 m 129.959 464 l 144 464 m 129.959 464 l 144 464 m 129.959 464 l 144 464 m 129.959 464 l 144 464 m 129.959 464 l 144 464 m 129.959 464 l 144 464 m 129.959 464 l 144 464 m 129.959 464 l 144 464 m 129.959 464 l 144 464 m 129.959 464 l 144 464 m 129.959 464 l 144 464 m 129.959 464 l 144 464 m 129.959 464 l 640 400 m 640 400 l 640 400 l 640 400 l h \small\begin{itemize} \item {\em Radio Unit} (RU) is \begin{itemize} \item an entity managing a set of {\bf physical} antennas. It can have a {\em local RF unit} or {\em remote RF unit} \item performs precoding of multiple eNB TX streams and OFDM modulation (TX) and demodulation (RX) (part of 36.211) \end{itemize} \item {\em L1 Instance} (indexed by {\tt Mod\_id}, or {\tt enb\_mod\_id}) is a separate set of threads and contexts for the eNB/gNB procedures. There is one MAC/RLC entity associated to all :1 component carriers. \item {\em L1 Component Carrier} (indexed by {\tt CC\_id}) is \begin{itemize} \item a software entity managing the L1 procedures (36.213,36.212,36.211) and can act on \begin{itemize} \item sectored antenna component \item Rel10+ component carrier \item virtual cell for DAS or Massive-MIMO array \end{itemize} \item each L1 instance is managed by one or two threads which operate on a subframe (TX and RX) and can have a {\em local RU} or {\em remote RU} \item if a remote radio unit the eNB performs the 36.213 specifications only (HARQ, etc.) and connects to the remainder via the IF2 midhaul interface. \end{itemize} \end{itemize} RU/L1 Instances and Component Carriers RU/L1 Instances and Component Carriers \small\begin{itemize} \item RU may have both an {\tt if\_device} for fronthaul and an {\tt rf\_device} for interconnection with a local RF unit \item if the {\tt rf\_device} is absent, it must have a southbound fronthaul interface (either IF5 or IF4p5) depending on the local processing of the remote RU \item if the {\tt if\_device} is absent, it must have a southbound RF interface and {\tt rf\_device}. \item three types of L1 processing are performed by the RU \begin{itemize} \item subset of common L1 procedures from 36.211 specifications \item fronthaul compression/decompression \item framing \end{itemize} \item on TX \begin{itemize} \item A-law compression for (NGFI\_RAU\_IF4p5, NGFI\_RAU\_IF5) \item A-law decompression (for NGFI\_RRU\_IF4p5 and NGFI\_RRU\_IF5) \item OFDM modulation and cyclic prefix insertion (for NGFI\_RRU\_IF4p5,NGFI\_RAU\_IF5,3GPP\_eNodeB\_BBU,3GPP\_eNodeB) \item Precoding (for NGFI\_RAU\_IF5, NGFI\_RAU\_IF4p5,3GPP\_eNodeB\_BBU,3GPP\_eNodeB) \end{itemize} \end{itemize} RU/L1 Instances and Component Carriers \small\begin{itemize} \item on RX \begin{itemize} \item A-law compression for (NGFI\_RRU\_IF4p5, NGFI\_RRU\_IF5) \item A-law decompression (for NGFI\_RAU\_IF4p5 and 3GPP\_eNodeB\_BBU) \item cyclic prefix removal, frequency-shifting, OFDM demodulation, PRACH DFT (for NGFI\_RRU\_IF4p5, NGFI\_RAU\_IF5, 3GPP\_eNodeB\_BBU, 3GPP\_eNodeB) \end{itemize} \item On TX path \begin{itemize} \item L1 instances/component carriers operate on a set of logical antenna ports (0-3 for TM1-6, 4 for eMBMS, 5 for TM7, 6 for positioning, 7-8 for TM8, etc.) \item each L1 instance has a list of RUs and the logical antenna ports are mapped to the physical antennas attached to the RUs via the precoding function \end{itemize} \end{itemize} \small\begin{itemize} \item Example configurations \begin{itemize} \item {\em itsolated eNB:} one instance and one or several component carriers (multiple-frequencies or antenna sectors). Potentially multiple radio-units (for CoMP). Here there is a common MACRLC instnance driving multiple L1 procedures \item {\em indoor DAS system (RCC split with L1/L2 RAU) Multiple layer 2 instances each driving one or more component carriers} here the RAU implements multiple L1/L2 instances and precoding function. Usually with IF2/IF1'' xhaul to RCC or potentially also MAC/RLC in RAU with IF1' xhaul to RCC. \item {\em massive-MIMO array} same as 2nd indoor DAS system (i.e. integrated L1/L2 RAU with array) \end{itemize} \end{itemize} RU/L1 Instances and Component Carriers 288 384 m 288 96 l 672 96 l 672 384 l h 301.83 142.941 m 301.83 103.286 l 648 104 l 648 144 l h 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt if\_device} \end{tiny} 301.83 142.941 m 301.83 103.286 l 648 104 l 648 144 l h \setstretch{.5}\begin{tiny} {\tt NFGI\_IF4p5 / ethernet} \end{tiny} \setstretch{.5}\begin{tiny} upper-PHY TX (212,213) \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt if\_device} \end{tiny} 389.83 375.941 m 389.83 336.286 l 616 336 l 616 376 l h \setstretch{.5}\begin{tiny} {\tt NFGI\_IF1pp / ethernet} \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt if\_device} \end{tiny} \setstretch{.5}\begin{tiny} TX PRECODING\\RX COMBINING \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt if\_device} \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt if\_device} \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt if\_device} \end{tiny} \small\begin{itemize} \item Example: RAU with {\tt NGFI\_IF1pp} xhaul (MAC/PHY split) northbound, {\tt NGFI\_IF4p5} fronthaul southbound, 2 vCell logical interfaces (2 L1/L2 instances, or 1 L2 instance and 2 CCs), 4 RRUs with {\tt NGFI\_IF4p5} \end{itemize} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} upper-PHY RX (212,213) \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} upper-PHY RX (212,213) \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} upper-PHY TX (212,213) \end{tiny} 184.83 261.941 m 184.83 128 l 272 128 l 272 261.941 l h 184.83 261.941 m 184.83 128 l 272 128 l 272 261.941 l h 184.83 261.941 m 184.83 128 l 272 128 l 272 261.941 l h 184.83 261.941 m 184.83 128 l 272 128 l 272 261.941 l h \setstretch{.5}\begin{tiny} $\mathrm{RU}_0$ \end{tiny} \setstretch{.5}\begin{tiny} $\mathrm{RU}_1$ \end{tiny} \setstretch{.5}\begin{tiny} $\mathrm{RU}_2$ \end{tiny} \setstretch{.5}\begin{tiny} $\mathrm{RU}_3$ \end{tiny} 184.83 261.941 m 184.83 128 l 272 128 l 272 261.941 l h \setstretch{.5}\begin{tiny} $\mathrm{eNB}_0$ \end{tiny} 184.83 261.941 m 184.83 128 l 272 128 l 272 261.941 l h \setstretch{.5}\begin{tiny} $\mathrm{eNB}_1$ \end{tiny} RAU Example (DAS) 168 416 m 168 32 l 576 32 l 576 416 l h 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PHY RX0 \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt if\_device} \end{tiny} 176 176 m 176 136 l 552 136 l 552 176 l h \setstretch{.5}\begin{tiny} {\tt NGFI\_IF4p5 / ethernet} \end{tiny} \setstretch{.5}\begin{tiny} PHY TX0 \end{tiny} 184 360 m 184 336 l 552 336 l 552 360 l h \setstretch{.5}\begin{tiny} {\tt if\_device} \end{tiny} 184 408 m 184 368 l 552 368 l 552 408 l h \setstretch{.5}\begin{tiny} {\tt NGFI\_IF1p / ethernet} \end{tiny} 184 264 m 184 224 l 552 224 l 552 264 l h \setstretch{.5}\begin{tiny} TX PRECODING\\RX COMBINING \end{tiny} \small\begin{itemize} \item Example: massive-MIMO RAU with {\tt NGFI\_IF1p} fronthaul northbound, 8 L1 component carriers,1 L2 instances, many local RRUs with {\tt NGFI\_IF4p5} southbound \end{itemize} 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt if\_device} \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt if\_device} \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} {\tt if\_device} \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PHY RX1 \end{tiny} \setstretch{.5}\begin{tiny} PHY TX1 \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PHY RX7 \end{tiny} \setstretch{.5}\begin{tiny} PHY TX7 \end{tiny} 184 320 m 184 288 l 552 288 l 552 320 l h \setstretch{.5}\begin{tiny} RLC \end{tiny} 184 280 m 184 248 l 552 248 l 552 280 l h \setstretch{.5}\begin{tiny} MAC \end{tiny} 376 208 m 448 208 l 184.83 261.941 m 184.83 128 l 272 128 l 272 261.941 l h \setstretch{.5}\begin{tiny} $\mathrm{eNB}_0$ \end{tiny} 184.83 261.941 m 184.83 128 l 272 128 l 272 261.941 l h \setstretch{.5}\begin{tiny} $\mathrm{eNB}_1$ \end{tiny} 184.83 261.941 m 184.83 128 l 272 128 l 272 261.941 l h \setstretch{.5}\begin{tiny} $\mathrm{eNB}_7$ \end{tiny} 184.83 261.941 m 184.83 128 l 272 128 l 272 261.941 l h \setstretch{.5}\begin{tiny} $\mathrm{RU}_{0\cdots 15}$ \end{tiny} 184.83 261.941 m 184.83 128 l 272 128 l 272 261.941 l h \setstretch{.5}\begin{tiny} $\mathrm{RU}_{16\cdots 31}$ \end{tiny} 184.83 261.941 m 184.83 128 l 272 128 l 272 261.941 l h \setstretch{.5}\begin{tiny} $\mathrm{RU}_{32\cdots 47}$ \end{tiny} 184.83 261.941 m 184.83 128 l 272 128 l 272 261.941 l h \setstretch{.5}\begin{tiny} $\mathrm{RU}_{48\cdots 63}$ \end{tiny} RAU Example (Massive-MIMO) 330 430 m 330 390 l 380 390 l 380 430 l h 232 384 m 232 256 l 543.99 256 l 543.99 384 l h 96 136 m 96 48 l 540 48 l 540 136 l h 88 192 m 88 80 l 248 80 l 248 192 l h 88 192 m 88 80 l 248 80 l 248 192 l h 153 232 m 153 176 l 228 176 l 228 232 l h \small\begin{itemize} \item IF5 transports packets of size equal to a subframe and corresponding to a 1ms chunk of signal in the time-domain. This is done via the functions send\_if5 and recv\_if5, in the layer1 transport procedures ({\tt openair1/PHY/LTE\_TRANSPORT/if5\_tools.c}). A timestamp is given along with the samples, corresponding to the time (in samples) of the first sample of the packet. \item each block can be compressed with A-law compression, yielding a compression rate of .5. \end{itemize} RU Procedures (NGFI\_IF5) 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PHY RX $n$\\ $\mathrm{eNB}_2$ (211,212) \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PHY TX $n+4$\\ $\mathrm{eNB}_2$ (211,212) \end{tiny} 144 480 m 144 32 l 176 32 l 176 480 l h \setstretch{.5}\begin{tiny} $\mathrm{RU}_0$ \end{tiny} 371.001 106.337 m 323.502 106.337 l 323.502 106.337 l 371.001 106.337 m 323.502 106.337 l 323.502 106.337 l 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PHY RX $n$\\ $\mathrm{eNB}_1$ (211,212) \end{tiny} 371.001 106.337 m 323.502 106.337 l 323.502 106.337 l 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PHY RX $n$\\ $\mathrm{eNB}_0$ (211,212) \end{tiny} 371.001 106.337 m 323.502 106.337 l 323.502 106.337 l 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PHY TX $n+4$\\ $\mathrm{eNB}_1$ (211,212) \end{tiny} 371.001 106.337 m 323.502 106.337 l 323.502 106.337 l 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PHY TX $n+4$\\ $\mathrm{eNB}_0$ (211,212) \end{tiny} 371.001 106.337 m 323.502 106.337 l 323.502 106.337 l 132 294 m 132 208 l 384 208 l 384 294 l h 144.991 145.396 m 289.432 145.382 l 144.991 120.982 m 289.432 121.382 l \tiny {\tt RU->ru\_time.rxdata[0]} \tiny {\tt RU->ru\_time.rxdata[R-1]} 153 232 m 153 176 l 228 176 l 228 232 l h \setstretch{.5}\tt\tiny slot\_fep\_ul\par36.211 153 232 m 153 176 l 228 176 l 228 232 l h 184 268 m 196 268 l 184 244 m 196 244 l \tiny {\tt eNB->common\_vars.rxdataF[0]} \tiny {\tt eNB->common\_vars.rxdataF[R-1]} 273 269 m 412 268 l 415.263 120.984 m 575 120.608 l 153 232 m 153 176 l 228 176 l 228 232 l h \tiny $\mathrm{Alaw}^{-1}()$ 56 128 m 110.531 128.542 l \tiny from IF5 {\tt if\_device} 680 104 m 680 104 l 680 104 l 680 104 l h 544 324 m 544 144 l 576 144 l 576 324 l h \setstretch{.5}\tt\tiny P\\R\\E\\C\\O\\D\\I\\N\\G\\ 632 360 m 632 188 l 660 188 l 660 360 l h \tiny {\tt RU->ru\_time.txdata[0]} 700 264 m 735.133 264 l 632 264.556 m 671.833 265 l \setstretch{.5}\tt\tiny do\_ofdm\_mod\_rt()\par 36.211 \setstretch{.5}\begin{tiny} {\tt openair1/SCHED/ru-procedures.c} \end{tiny} 517.232 240.387 m 576.078 240 l 576.078 240 l 517.232 240.387 m 576.078 240 l 576.078 240 l 517.232 240.387 m 576.078 240 l 576.078 240 l 517.232 240.387 m 576.078 240 l 576.078 240 l \tiny $\mathrm{Alaw}()$ \tiny to IF5 {\tt if\_device} 56 240 m 356.214 240.281 l 700 264 m 735.133 264 l \tiny {\tt RU->ru\_time.txdata[T-1]} \setstretch{.5}\begin{tiny} {\tt recv\_IF5()} \end{tiny} \setstretch{.5}\begin{tiny} {\tt send\_IF5()} \end{tiny} \setstretch{.5}\begin{tiny} {\tt ru\_fep\_full()} \end{tiny} IF5 RU eNB end \tiny $\mathrm{7.5kHz}()$ \setstretch{.5}\begin{tiny} {\tt ru\_thread()} \end{tiny} \setstretch{.5}\begin{tiny} {\tt ru\_thread\_asynch\_rxtx()} \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h 96 136 m 96 48 l 540 48 l 540 136 l h 88 192 m 88 80 l 248 80 l 248 192 l h 88 192 m 88 80 l 248 80 l 248 192 l h 153 232 m 153 176 l 228 176 l 228 232 l h \small\begin{itemize} \item IF4p5 transports packets of size equal to an OFDM symbol (for DLRE and ULRE) indexed by the symbol, subframe and frame number. This is done via the functions send\_if4p5 and recv\_if4p5, in the layer1 transport procedures ({\tt openair1/PHY/LTE\_TRANSPORT/if4\_tools.c}). \item each block are compressed with A-law compression, yielding a compression rate of .5. \end{itemize} RU Procedures (NGFI\_IF4p5) 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PHY RX $n$\\ $\mathrm{eNB}_2$ (211,212) \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PHY TX $n+4$\\ $\mathrm{eNB}_2$ (211,212) \end{tiny} 144 480 m 144 32 l 176 32 l 176 480 l h \setstretch{.5}\begin{tiny} $\mathrm{RU}_0$ \end{tiny} 371.001 106.337 m 323.502 106.337 l 323.502 106.337 l 371.001 106.337 m 323.502 106.337 l 323.502 106.337 l 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PHY RX $n$\\ $\mathrm{eNB}_1$ (211,212) \end{tiny} 371.001 106.337 m 323.502 106.337 l 323.502 106.337 l 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PHY RX $n$\\ $\mathrm{eNB}_0$ (211,212) \end{tiny} 371.001 106.337 m 323.502 106.337 l 323.502 106.337 l 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PHY TX $n+4$\\ $\mathrm{eNB}_1$ (211,212) \end{tiny} 371.001 106.337 m 323.502 106.337 l 323.502 106.337 l 330 430 m 330 390 l 380 390 l 380 430 l h \setstretch{.5}\begin{tiny} PHY TX $n+4$\\ $\mathrm{eNB}_0$ (211,212) \end{tiny} 371.001 106.337 m 323.502 106.337 l 323.502 106.337 l 175.991 137.396 m 575 138.93 l 175.991 112.982 m 575 114.329 l 153 232 m 153 176 l 228 176 l 228 232 l h \tiny $\mathrm{Alaw}^{-1}()$ 56 120 m 141.531 120.07 l \tiny from IF4p5 {\tt if\_device} 680 104 m 680 104 l 680 104 l 680 104 l h 544 324 m 544 144 l 576 144 l 576 324 l h \setstretch{.5}\tt\tiny P\\R\\E\\C\\O\\D\\I\\N\\G\\ 700 264 m 735.133 264 l \setstretch{.5}\begin{tiny} {\tt openair1/SCHED/ru-procedures.c} \end{tiny} 517.232 240.387 m 576.078 240 l 576.078 240 l 517.232 240.387 m 576.078 240 l 576.078 240 l 517.232 240.387 m 576.078 240 l 576.078 240 l 517.232 240.387 m 576.078 240 l 576.078 240 l \tiny $\mathrm{Alaw}()$ \tiny to IF4p5 {\tt if\_device} 56 240 m 356.214 240.281 l 700 264 m 735.133 264 l \setstretch{.5}\begin{tiny} {\tt recv\_IF4p5()} \end{tiny} \setstretch{.5}\begin{tiny} {\tt send\_IF4p5()} \end{tiny} IF4p5 RU eNB end 153 232 m 153 176 l 228 176 l 228 232 l h 111.191 120.045 m 112 70 l 142 69.9344 l -36 68 m -36 68 l 175.991 112.982 m 575 114.329 l \tiny {\tt eNB->common\_vars.rxdataF[0]} \tiny {\tt eNB->common\_vars.rxdataF[R-1]} \tiny {\tt eNB->prach\_vars.prachF[0$\cdots$ R-1]} \setstretch{.5}\begin{tiny} {\tt ru\_thread()} \end{tiny} 330 430 m 330 390 l 380 390 l 380 430 l h 232 384 m 232 256 l 543.99 256 l 543.99 384 l h 96 136 m 96 48 l 540 48 l 540 136 l h 132 294 m 132 208 l 384 208 l 384 294 l h 96 384 m 96 148 l 544 148 l 544 256 l 224 256 l 224 384 l h 444 164 m 444 84.382 l 522.222 84.382 l 522.222 164 l h 132 294 m 132 208 l 384 208 l 384 294 l h 444 164 m 444 84.382 l 522.222 84.382 l 522.222 164 l h 153 232 m 153 176 l 228 176 l 228 232 l h RU Procedures (NGFI\_IF4p5) \setstretch{.5}\begin{tiny} $\mathrm{RU}_0$ \end{tiny} 144.991 145.396 m 289.432 145.382 l 144.991 120.982 m 289.432 121.382 l \tiny {\tt RU->ru\_time.rxdata[0]} \tiny {\tt RU->ru\_time.rxdata[R-1]} 153 232 m 153 176 l 228 176 l 228 232 l h \setstretch{.5}\tt\tiny slot\_fep\_ul\par36.211 153 232 m 153 176 l 228 176 l 228 232 l h 184 268 m 196 268 l 184 244 m 196 244 l 273 269 m 412 268 l 415.263 120.984 m 575 120.608 l 56 128 m 110.531 128.542 l \tiny from {\tt rf\_device} 680 104 m 680 104 l 680 104 l 680 104 l h 632 360 m 632 188 l 660 188 l 660 360 l h \tiny {\tt RU->ru\_time.txdata[0]} 380.13 336.98 m 149.46 336.349 l 632 264.556 m 671.833 265 l \setstretch{.5}\tt\tiny do\_ofdm\_mod\_rt()\par 36.211 \setstretch{.5}\begin{tiny} {\tt openair1/SCHED/ru-procedures.c} \end{tiny} \tiny to {\tt rf\_device} 58 240 m 114.121 240.053 l 380.45 296 m 149.46 295.058 l \tiny {\tt RU->ru\_time.txdata[T-1]} \setstretch{.5}\begin{tiny} {\tt ru\_fep\_full()} \end{tiny} IF4p5 RU remote-end 153 232 m 153 176 l 228 176 l 228 232 l h \tiny $\mathrm{Alaw}^{-1}()$ 153 232 m 153 176 l 228 176 l 228 232 l h \tiny $\mathrm{Alaw}()$ \tiny $\mathrm{7.5kHz}()$ 153 232 m 153 176 l 228 176 l 228 232 l h \setstretch{.5}\begin{tiny} {\tt recv\_IF4p5()} \end{tiny} \setstretch{.5}\begin{tiny} {\tt send\_IF4p5()} \end{tiny} 485.71 128.939 m 581.963 129.331 l \tiny to {\tt if\_device} \tiny from {\tt if\_device} 58 240 m 114.121 240.053 l 131 344 m 131 316 l 276 316 l 276 344 l h \setstretch{.5}\tt\tiny ru\_prach\_procedures\par36.211 440.514 328 m 477 327.572 l \tt\tiny ru\_prach\_procedures() 153 232 m 153 176 l 228 176 l 228 232 l h \setstretch{.5}\tt\tiny rx\_prachl\par36.211 199.412 220.391 m 200 104 l 236.674 103.978 l 178.262 196.069 m 179.06 92 l 236.674 91.6468 l 65.0054 121.159 m 65.0054 121.159 l 65.0054 121.159 l 65.0054 121.159 l h \setstretch{.5}\begin{tiny} {\tt ru\_thread\_prach()} \end{tiny} \setstretch{.5}\begin{tiny} {\tt ru\_thread()} \end{tiny} 65.0054 357.66 m 65.0054 357.66 l 65.0054 357.66 l 65.0054 357.66 l h \setstretch{.5}\begin{tiny} {\tt ru\_thread\_asynch\_rxtx()} \end{tiny} \tiny to {\tt if\_device} 485.71 128.939 m 581.963 129.331 l 175.695 380 m 176.42 128 l OAI IF1pp Interface \tiny\begin{itemize} \item OAI IF1pp is the interface between the 36.213 Physical Layer Procedures (HARQ, SR, CSI, etc.) and the transport/physical channel processing \item it can be networked, although this is not used as an xhaul interface at the moment. \end{itemize} 96 384 m 96 320 l 640 320 l 640 384 l h 128 368 m 128 336 l 352 336 l 352 368 l h 128 368 m 128 336 l 352 336 l 352 368 l h \tiny {\tt phy\_procedures\_lte\_eNB\_TX} \tiny {\tt phy\_procedures\_lte\_eNB\_RX} 96 384 m 96 320 l 640 320 l 640 384 l h \small PHY transport and physical channel procedures \tiny {\tt common\_signal\_procedures()} \tiny {\tt pmch\_procedures()} \tiny {\tt generate\_dlsch\_parameters\_from\_dci()} \tiny {\tt generate\_ulsch\_parameters\_from\_dci()} \tiny {\tt phy\_config\_dedicated\_step2()} \tiny {\tt generate\_dci\_top()} \tiny {\tt generate\_phich\_top()} \tiny {\tt pdsch\_procedures()} 175.695 380 m 176.42 128 l 175.695 380 m 176.42 128 l 175.695 380 m 176.42 128 l 175.695 380 m 176.42 128 l 175.695 380 m 176.42 128 l 175.695 380 m 176.42 128 l 175.695 380 m 176.42 128 l 175.695 380 m 176.42 128 l \tiny {\tt pucch\_procedures()} \tiny {\tt process\_Msg3()} 175.695 380 m 176.42 128 l \tiny {\tt rx\_ulsch()} 175.695 380 m 176.42 128 l \tiny {\tt ulsch\_decoding()} 175.695 380 m 176.42 128 l \tiny {\tt extract\_cqi()} 175.695 380 m 176.42 128 l \tiny {\tt get\_Msg3\_alloc\_ret()} 175.695 380 m 176.42 128 l \tiny {\tt lte\_est\_timing\_advance\_pusch()} 175.695 380 m 176.42 128 l \tiny {\tt lte\_eNB\_I0\_measurements()} 175.695 380 m 176.42 128 l \tiny {\tt process\_HARQ\_info()} 175.695 380 m 176.42 128 l \small {\tt 36.213}\par {\tt openair1/SCHED} \small {\tt 36.211/212}\par {\tt openair1/PHY} 120 528 m 120 0 l 592 0 l 592 528 l h 180 524 m 180 476 l 588 476 l 588 524 l h 248 520 m 248 483.903 l 400 484 l 400 520 l h 180 493.216 m 180 452 l 536 452 l 536 493.216 l h 404 480 m 404 472 l 404 472 l 404 480 l h 340 488 m 340 464 l 444 464 l 444 488 l h 312 456 m 312 432 l 424 432 l 424.001 456 l h 144 448 m 144 360 l 536 360 l 536 448 l h 144 260 m 144 116 l 536 116 l 536 260 l h 144 344 m 144 264 l 536 264 l 536 344 l h 128 440 m 128 384 l 224 384 l 224 440 l h \tt\tiny generate\_dci\_top() 0 424 m 0 32 l 48 32 l 48 424 l h M\\ A\\ C 64 416 m 172 416 l \tt\tiny DCI\_PDU 128 440 m 128 384 l 224 384 l 224 440 l h \setstretch{.5}\tt\tiny dlsch\_coding()\par36.212 64 416 m 172 416 l \tt\tiny DLSCH\_PDU\_0 128 440 m 128 384 l 224 384 l 224 440 l h 64 416 m 172 416 l \tt\tiny DLSCH\_PDU\_1\_0 128 440 m 128 384 l 224 384 l 224 440 l h 64 416 m 172 416 l \tt\tiny DLSCH\_PDU\_1\_1 312 456 m 312 432 l 424 432 l 424.001 456 l h \setstretch{.5}\tt\tiny generate\_pcfich()\par36.212,36.211 304 408 m 304 384 l 400 384 l 400 408 l h \setstretch{.5}\tt\tiny generate\_dci0()\par36.212 408 400 m 408 352 l 520 352 l 520 400 l h \setstretch{.5}\tt\tiny pdcch\_scrambling()\par pdcch\_modulation\par pdcch\_interleaving\par36.211 \setstretch{.5}\tt\tiny dlsch\_coding()\par36.212 \setstretch{.5}\tt\tiny dlsch\_coding()\par36.212 268 426.729 m 293 426.729 l 268 399.17 m 293 399.17 l 405 397.373 m 421 397.373 l 294 320 m 294 296 l 392 296 l 392 320 l h \setstretch{.5}\tt\tiny dlsch\_encoding()\par36.212 268 399.17 m 293 399.17 l 408 322.774 m 408 288 l 520 288 l 520 322.774 l h \setstretch{.5}\tt\tiny dlsch\_scrambling()\par dlsch\_modulation()\par36.211 405 397.373 m 421 397.373 l 294 320 m 294 296 l 392 296 l 392 320 l h \setstretch{.5}\tt\tiny dlsch\_encoding()\par36.212 408 251 m 408 144 l 520 144 l 520 251 l h \setstretch{.5}\tt\tiny dlsch\_scrambling()\par dlsch\_modulation()\par[2-4 layers]\par 36.211 405 397.373 m 421 397.373 l 294 320 m 294 296 l 392 296 l 392 320 l h \setstretch{.5}\tt\tiny dlsch\_encoding()\par36.212 405 397.373 m 421 397.373 l 268 399.17 m 293 399.17 l 268 399.17 m 293 399.17 l 552 428 m 552 428 l 405 409 m 600 408.924 l 520 381 m 600 380.885 l 521 292.923 m 600 293.648 l \tt\tiny openair1/SCHED/phy\_procedures\_lte\_eNb.c:pdsch\_procedures() \tt\tiny openair1/SCHED/phy\_procedures\_lte\_eNb.c:pdsch\_procedures() \tt\tiny openair1/PHY/LTE\_TRANSPORT/dci.c 360 104 m 360 104 l 360 104 l 360 104 l h 144 344 m 144 264 l 536 264 l 536 344 l h 128 440 m 128 384 l 224 384 l 224 440 l h \setstretch{.5}\tt\tiny dlsch\_coding()\par36.212 \tt\tiny MCH\_PDU 294 320 m 294 296 l 392 296 l 392 320 l h \setstretch{.5}\tt\tiny dlsch\_encoding()\par36.212 268 399.17 m 293 399.17 l 408 322.774 m 408 288 l 520 288 l 520 322.774 l h \setstretch{.5}\tt\tiny dlsch\_scrambling()\par mch\_modulation()\par36.211 405 397.373 m 421 397.373 l \tt\tiny openair1/SCHED/phy\_procedures\_lte\_eNb.c:pmch\_procedures() 64 416 m 172 416 l 128 488 m 128 452 l 172 452 l 172 488 l h 140 472 m 140 472 l 140 472 l 140 472 l h \setstretch{.5}\tt\tiny UL CNTL\\36.213 188 476 m 188 460 l 316 460 l 316 476 l h \tt\tiny generate\_phich\_top() 172 468 m 188 468 l \setstretch{.5}\tt\tiny generate\_phich()\par36.212,36.211 405 397.373 m 421 397.373 l 445 457 m 600 456.672 l 520.262 58 m 600 58.7558 l \tt\tiny openair1/PHY/LTE\_TRANSPORT/phich.c \tiny PHICH REs \tiny PCFICH REs \tiny PDCCH REs \tiny PDSCH REs 104.077 0 0 104.077 528 236 e \tiny PMCH REs \setstretch{.5}\tt\tiny generate\_pilots\_slot()\par generate\_pss/sss/pbch()\par36.211 248 488.695 m 248 488.695 l 248 488.695 l 248 488.695 l h \tt\tiny openair1/SCHED/phy\_procedures\_lte\_eNb.c:common\_signal\_procedures() 401 507 m 600.424 507.963 l \tiny CS-RS/PSS/SSS/PBCH REs 576 332 m 592 324 l \tt\tiny openair1/SCHED/phy\_procedures\_lte\_eNb.c:phy\_procedures\_eNB\_TX() eNB TX Procedures \tiny eNodeB\_3GPP or NGFI\_RCC\_IF4p5 232 276 m 232 240 l 240 240 l 240 276 l h \tt\tiny IF2 split points 232 276 m 232 240 l 240 240 l 240 276 l h 521 292.923 m 600 293.648 l 521 292.923 m 600 293.648 l 539.766 93 m 539.306 79.0026 l 340 79.7439 l 447.064 116 m 447.064 92 l 632 92 l 632 116 l h 304 384 m 304 320 l 368 320 l 368 384 l h 225.588 267.631 m 225.588 257.004 l 451.999 257.004 l 451.999 267.631 l h 286.577 417.212 m 286.577 407.581 l 412.989 407.581 l 412.989 417.212 l h -66.4757 363.53 m -66.4757 358.467 l -65.4632 358.467 l -65.4632 363.53 l h 330 430 m 330 390 l 380 390 l 380 430 l h \begin{tiny} \tt {\bf phy\_procedures\_eNB\_TX}(sched\_subframe,eNB,abstraction\_flag,r\_type,rn) \end{tiny} \begin{tiny} eNB instance and component carriers \end{tiny} \begin{tiny} subframe where TX was scheduled \end{tiny} 293.168 472.33 m 189.522 511.272 l 372.849 474.127 m 310.542 512.47 l \setstretch{.5}\begin{tiny} Flag to indicate 212/213 Split\\(transport channels, no 211 procedures) \end{tiny} 432.16 473.528 m 526.22 499.29 l 27.6629 0 0 27.6629 531.612 404.032 e 526.819 478.92 m 598.712 484.312 l \begin{tiny} Experimental (for relays)\end{tiny} \begin{tiny} \bf\tt Check for dead UEs \end{tiny} 304 384 m 304 320 l 368 320 l 368 384 l h 340.45 451.636 m 340.45 417.212 l \begin{tiny}\tt eNB$\rightarrow$CC\_id==0?\end{tiny} \begin{tiny} \bf\tt Call eNB\_dlsch\_ulsch\_scheduler [MAC] \end{tiny} 340.45 451.636 m 340.45 417.212 l 340.45 451.636 m 340.45 417.212 l 340.45 451.636 m 340.45 417.212 l 418.155 336 m 528 336 l 528 248 l 340 247.665 l \tiny no 225.588 267.631 m 225.588 257.004 l 451.999 257.004 l 451.999 267.631 l h \begin{tiny}\tt is PMCH subframe?\end{tiny} \begin{tiny} \bf\tt Call pmch\_procedures \end{tiny} 340.45 451.636 m 340.45 417.212 l 340 97.4877 m 340 52 l \tiny no \setstretch{.5} \begin{tiny} \bf\tt Call common\_signal\_procedures\\ (CS-RS/PSS/SSS/PBCH) \end{tiny} 417.889 180.561 m 540 180 l 539.532 116 l 352 0 m 352 12 l 384 12 l 384 12 l 384 0 l 368 -12 l 368 -12 l h eNB TX Flowchart 225.588 267.631 m 225.588 257.004 l 451.999 257.004 l 451.999 267.631 l h \setstretch{.5}\begin{tiny} \bf\tt Call get\_dci\_sdu [MAC]\\ dci=first\_dci \end{tiny} 368.672 502.411 m 368 524 l 304 384 m 304 320 l 368 320 l 368 384 l h \setstretch{.5}\begin{tiny}\tt dci not empty and DL dci?\end{tiny} 368.672 502.411 m 368 524 l 368.297 357.206 m 368 380 l 260 356 m 260 328 l 476 328 l 476 356 l h \setstretch{.5}\begin{tiny} \bf\tt Call generate\_dlsch\_params\_from\_dci\\ dci=next(dci) \end{tiny} \tt\tiny no 260 342 m 240.242 342 l 240 472 l 368 472 l 445.666 417.484 m 512.662 417.484 l 512.662 303.725 l 367.862 303.725 l 367.862 288.454 l 260 356 m 260 328 l 476 328 l 476 356 l h \setstretch{.5}\begin{tiny} \bf\tt Call phy\_config\_dedicated\_step2\\ dci=first\_dci \end{tiny} 272 200 m 344.961 161.229 l 416 200 l 344.961 235.739 l h \setstretch{.5}\begin{tiny}\tt dci not empty and UL dci?\end{tiny} 368.297 357.206 m 368 380 l 260 356 m 260 328 l 476 328 l 476 356 l h \setstretch{.5}\begin{tiny} \bf\tt Call generate\_ulsch\_params\_from\_dci\\ dci=next(dci) \end{tiny} \tt\tiny no 260 123 m 240.242 123 l 240 252 l 368 252 l 416 200 m 488 200 l 489 96 l 345 96 l 344.862 77.0895 l 272 80 m 272 48 l 416 48 l 416 80 l h \setstretch{.5}\begin{tiny} \bf\tt Call generate\_dci\_top\\ Call generate\_phich\_top \end{tiny} 368.297 357.206 m 368 380 l 352 0 m 352 12 l 384 12 l 384 12 l 384 0 l 368 -12 l 368 -12 l h 344 24 m 344 48 l \tt\tiny yes \tt\tiny yes eNB TX Flowchart 240 96 m 240 56 l 496 56 l 496 96 l h \setstretch{.5}\begin{tiny} \bf\tt dlsch\_eNB[UE].subframe\_active=false\par [no PUCCH ACK to be checked in TTI n+k]\par UE=next(UE) \end{tiny} 288 464 m 368 432 l 448 464 l 368 496 l h 288 464 m 368 432 l 448 464 l 368 496 l h 368 528 m 368 512 l 288 464 m 368 432 l 448 464 l 368 496 l h \setstretch{.5}\begin{tiny}\tt is dlsch\_SI active?\end{tiny} 368 528 m 368 504 l \setstretch{.5}\begin{tiny}\tt is dlsch\_P active?\end{tiny} 368 528 m 368 504 l \setstretch{.5}\begin{tiny}\tt is dlsch\_RA active?\end{tiny} \tt\tiny no \tt\tiny no \tt\tiny no 368 528 m 368 504 l 456 480 m 456 464 l 648 464 l 648 480 l h \setstretch{.5}\begin{tiny} \bf\tt Call pdsch\_procedures(dlsch\_SI) \end{tiny} 448 464 m 536 464 l 536 448 l 536 432 m 536 424 l 368 424 l \tt\tiny yes 456 480 m 456 464 l 648 464 l 648 480 l h \setstretch{.5}\begin{tiny} \bf\tt Call pdsch\_procedures(dlsch\_P) \end{tiny} 448 464 m 536 464 l 536 448 l 536 432 m 536 424 l 368 424 l \tt\tiny yes 456 480 m 456 464 l 648 464 l 648 480 l h \setstretch{.5}\begin{tiny} \bf\tt Call pdsch\_procedures(dlsch\_RA) \end{tiny} 448 464 m 536 464 l 536 448 l 536 432 m 536 424 l 368 424 l \tt\tiny yes 256 232 m 256 208 l 480 208 l 480 232 l h \setstretch{.5}\begin{tiny} \bf\tt UE=first\_UE from UE\_list \par [list of UE with t-CRNTI or CRNTI] \end{tiny} 288 464 m 368 432 l 448 464 l 368 496 l h \setstretch{.5}\begin{tiny}\tt is dlsch\_UE active?\end{tiny} 368 528 m 368 504 l 368 528 m 368 504 l 456 480 m 456 464 l 648 464 l 648 480 l h \setstretch{.5}\begin{tiny} \bf\tt Call pdsch\_procedures(dlsch\_UE) \end{tiny} \tt\tiny yes 448 464 m 536 464 l 536 448 l 536 432 m 536 424 l 368 424 l \tt\tiny no 416 88 m 416 88 l 416 88 l 416 88 l h 320 32 m 368 16 l 416 32 l 368 48 l h \setstretch{.5}\begin{tiny}\tt UE=NULL?\end{tiny} 368 72 m 368 56 l 320 40 m 224 40 l 224 168 l 288 168 l \tt\tiny no 352 0 m 352 12 l 384 12 l 384 12 l 384 0 l 368 -12 l 368 -12 l h 416 40 m 640 40 l 640 24 l \tt\tiny yes 512 48 m 512 32 l 544 32 l 544 48 l h 528 80 m 528 48 l \bf\setstretch{.5}\tiny IF4p5 \par [All Frequency-domain Signals are created] eNB TX Flowchart 130 527 m 130 -1 l 608 0 l 608 528 l h 388 288 m 388 208 l 584 208 l 584 288 l h 141 449 m 141 361 l 580.427 361 l 580 448 l h 464 428 m 464 396 l 576 396 l 576 428 l h 462.358 361 m 462.358 287.368 l 602 287.368 l 602 361 l h 462.358 361 m 462.358 287.368 l 602 287.368 l 602 361 l h 492 200 m 492 16 l 596 16 l 596 200 l h 130 202.157 m 130 16 l 484 16 l 484 204 l h \tt\tiny openair1/SCHED/phy\_procedures\_lte\_eNb.c:phy\_procedures\_eNB\_RX() 0 424 m 0 32 l 48 32 l 48 424 l h M\\ A\\ C 64 416 m 172 416 l \setstretch{.5}\tt\tiny RACH Preamble 534 125.858 m 688 126 l \tt\tiny ULSCH\_SDU(UE\_id) \tiny eNB\_common\_vars.rxdataF[0] \tiny eNB\_common\_vars.rxdataF[R-1] 273 269 m 412 268 l 273 245 m 412 244 l 184 128 m 184 100 l 276 100 l 276 128 l h \setstretch{.5}\tt\tiny rx\_ulsch(UE\_id)\par36.211 208 240 m 208 128 l \tt\tiny LTE\_TRANSPORT/prach.c \tt\tiny openair1/PHY/LTE\_TRANSPORT/ulsch\_demodulation.c 393 285 m 393 229 l 552 228 l 552 284 l h \tt\tiny lte\_eNB\_I0\_measurements() 280 32 m 280 199 l 308 199 l 308 32 l h \setstretch{.5}\tt\tiny ulsch\_extract\_rbs\_single()\par36.211 332 32 m 332 199 l 360 199 l 360 32 l h \setstretch{.5}\tt\tiny lte\_ul\_channel\_estimation()\par36.211 332 32 m 332 199 l 360 199 l 360 32 l h \setstretch{.5}\tt\tiny ulsch\_detection\_mrc()\par36.211 332 32 m 332 199 l 360 199 l 360 32 l h \setstretch{.5}\tt\tiny frequency\_equalization()\par36.211 332 32 m 332 199 l 360 199 l 360 32 l h \setstretch{.5}\tt\tiny lte\_idft()\par36.211 332 32 m 332 199 l 360 199 l 360 32 l h \setstretch{.5}\tt\tiny ulsch\_XXX\_llr()\par36.211 332 32 m 332 199 l 360 199 l 360 32 l h \setstretch{.5}\tt\tiny ulsch\_decoding()\par36.212 332 32 m 332 199 l 360 199 l 360 32 l h \setstretch{.5}\tt\tiny ulsch\_channel\_compensation()\par36.211 476 118 m 504.475 118 l 564 220 m 564 220 l 564 220 l 564 220 l h \tt\tiny ulsch\_decoding.c 476 118 m 504.475 118 l \tt\tiny ACK/NAK,RI,CQI 131 344 m 131 316 l 276 316 l 276 344 l h \setstretch{.5}\tt\tiny pucch\_procedures(UE\_id)\par36.211 153 232 m 153 176 l 228 176 l 228 232 l h \setstretch{.5}\tt\tiny rx\_pucchl\par36.211 476 118 m 504.475 118 l 551.76 312.126 m 687 312.231 l \tt\tiny ACK/NAK \tt\tiny SR 440.514 328 m 477 327.572 l \tt\tiny TRANSPORT/pucch.c 373.112 244.28 m 373.112 316 l 344.968 268.786 m 345.381 316 l 131 344 m 131 316 l 276 316 l 276 344 l h \setstretch{.5}\tt\tiny prach\_procedures\par36.211 405.275 413 m 464 412.625 l 440.514 328 m 477 327.572 l \tt\tiny openair1/SCHED/phy\_procedures\_lte\_eNb.c:prach\_procedures() 153 232 m 153 176 l 228 176 l 228 232 l h \setstretch{.5}\tt\tiny rx\_prachl\par36.211 \setstretch{.5}\tt\tiny E\_PRACH>Lmin\par36.211 \tt\tiny LTE\_ESTIMATION/lte\_eNB\_I0\_measurements.c eNB PHY RX Procedures 0 416 m 144 416 l \tiny {\tt eNB->prach\_vars.prachF[0$\cdots$ R-1]} 160 268 m 160 128 l 0 296 m 0 264 l 736 264 l 736 296 l h 0 296 m 0 264 l 736 264 l 736 296 l h 0 296 m 0 264 l 736 264 l 736 296 l h 0 296 m 0 264 l 736 264 l 736 296 l h 0 296 m 0 264 l 736 264 l 736 296 l h 0 296 m 0 264 l 736 264 l 736 296 l h 0 296 m 0 264 l 736 264 l 736 296 l h 0 296 m 0 264 l 736 264 l 736 296 l h 184 128 m 184 100 l 276 100 l 276 128 l h \setstretch{.5}\tt\tiny rx\_ulsch(UE\_id)\par36.211 \tiny$\mathbf{R}_{r,l}=\mathrm{DFT}_{N_{\mathrm{fft}}}(\mathbf{r}_{r,l}\odot\mathbf{F}_{7.5}),r=0,1,\cdots,R-1,l=0,1,\cdots,N_{\mathrm{symb}}-1$ (\tt\bf eNB\_common\_vars$\rightarrow$rxdataF[][])%,N_{\mathrm{fft}}=2^{1+\left\lceil\log_2 12N^{\mathrm{RB}}_{\mathrm{DL}}\right\rceil$ 153 232 m 153 176 l 228 176 l 228 232 l h \setstretch{.5}\tt\tiny slot\_fep\_ul\par36.211 144 440 m 176 440 l 272 328 m 272 328 l 144 440 m 176 440 l \tiny $\mathbf{r}_{r,l}$ \tiny $\mathbf{R}_{r,l}$ \tiny $\mathbf{R}_{\mathrm{ext},r,l}$ \tiny $R_{\mathrm{ext},r,l}(n)={R}_{r,l}(12\mathrm{firstPRB}+n),n=0,1,\cdots,12N_{\mathrm{PRB}}-1$ (\tt\bf eNB\_pusch\_vars$\rightarrow$ulsch\_rxdataF\_ext[][]) \tiny $\mathbf{\hat{H}}_{r,l}$ \tiny $\mathbf{\hat{H}}_{r,l} = \mathbf{R}_{\mathrm{ext},r,l}\odot\mathbf{DRS}^*_{l}(\mathrm{cyclicShift},n_{\mathrm{DMRS}^{(2)}},n_{\mathrm{PRS}})$, (\tt\bf eNB\_pusch\_vars$\rightarrow$drs\_ch\_estimates[]) \tiny $\mathbf{R}_{\mathrm{comp},r,l}$ \tiny $\mathbf{R}_{\mathrm{comp},0,l}$ \tiny $\mathbf{R}_{\mathrm{comp},0,l}=\frac{1}{R}\sum_{r=0}^{R-1}\mathbf{R}_{\mathrm{comp},r,l}$ \tiny $\mathbf{R}_{\mathrm{comp},0,l}$ \tiny $\mathbf{r}_{\mathrm{comp},0,l}$ \tiny $R_{\mathrm{comp},0,l}(n)=R_{\mathrm{comp},0,l}(n)\dot Q_8\left(\frac{1}{|\hat{H}(n)|^2+I_0}\right), \hat{H}(n)=\sum_{r=0}^{R-1}\hat{H}_{r}(n)$ \tiny $\mathbf{R}_{\mathrm{comp},r,l}=\mathbf{\hat{H}}_r\odot\mathbf{R}_{\mathrm{ext},r,l}2^{-\log_2|H_\mathrm{max}|}, \mathbf{\hat{H}}_r = \frac{1}{2}(\mathbf{\hat{H}}_{r,3}+\mathbf{\hat{H}}_{r,10})$\par (\tt\bf eNB\_pusch\_vars$\rightarrow$ulsch\_rxdataF\_comp) \tiny $\mathbf{\lambda}_{l}$ \tiny QPSK : $\lambda_l(2n)=\mathrm{Re}(r_{\mathrm{comp},0,l}(n)), \lambda_l(2n+1)=\mathrm{Im}(r_{\mathrm{comp},0,l}(n))$ (\tt\bf eNB\_pusch\_vars$\rightarrow$ulsch\_llr) \tiny ${\mathbf r}_{\mathrm{comp},0,l} = \mathrm{IDFT}_{12N_{\mathrm{PRB}}}({\mathbf R}_{\mathrm{comp},0,l})$ \tiny 16QAM : $\lambda_l(4n)=\mathrm{Re}(r_{\mathrm{comp},0,l}(n)), \lambda_l(4n+2)=\mathrm{Im}(r_{\mathrm{comp},0,l}(n))$\par$\lambda_l(4n+1)=|\mathrm{Re}(r_{\mathrm{comp},0,l}(n))|-2\overline{|h(n)|},\lambda_l(4n+3)=|\mathrm{Im}(r_{\mathrm{comp},0,l}(n))|-2\overline{|h(n)|}$ 280 32 m 280 199 l 308 199 l 308 32 l h \setstretch{.5}\tt\tiny ulsch\_extract\_rbs\_single()\par36.211 332 32 m 332 199 l 360 199 l 360 32 l h \setstretch{.5}\tt\tiny lte\_ul\_channel\_estimation()\par36.211 332 32 m 332 199 l 360 199 l 360 32 l h \setstretch{.5}\tt\tiny ulsch\_channel\_compensation()\par36.211 332 32 m 332 199 l 360 199 l 360 32 l h \setstretch{.5}\tt\tiny ulsch\_detection\_mrc()\par36.211 332 32 m 332 199 l 360 199 l 360 32 l h \setstretch{.5}\tt\tiny frequency\_equalization()\par36.211 332 32 m 332 199 l 360 199 l 360 32 l h \setstretch{.5}\tt\tiny lte\_idft()\par36.211 332 32 m 332 199 l 360 199 l 360 32 l h \setstretch{.5}\tt\tiny ulsch\_XXX\_llr()\par36.211 304 236 m 304 236 l 304 236 l 304 236 l h eNB ULSCH Demodulation eNB PRACH Detection 0 296 m 0 264 l 736 264 l 736 296 l h \tiny$\mathbf{R}_{r}=\mathrm{DFT}_{N_{\mathrm{PRACH}}}(\mathbf{r}_{r}),r=0,1,\cdots,R-1$ (\tt\bf lte\_eNB\_prach\_vars$\rightarrow$rxsigF[])%,N_{\mathrm{fft}}=2^{1+\left\lceil\log_2 12N^{\mathrm{RB}}_{\mathrm{DL}}\right\rceil$ 0 296 m 0 264 l 736 264 l 736 296 l h \tiny$\mathbf{R}_{\mathrm{comp},r}=\mathbf{R}_{r}\odot \mathbf{X}^*_u[i],r=0,1,\cdots,R-1$ (\tt\bf lte\_eNB\_prach\_vars$\rightarrow$prachF[])%,N_{\mathrm{fft}}=2^{1+\left\lceil\log_2 12N^{\mathrm{RB}}_{\mathrm{DL}}\right\rceil$ 0 296 m 0 264 l 736 264 l 736 296 l h \tiny$\mathbf{r}_{839,r}=\mathrm{IDFT}_{1024}\left(\mathbf{R}_{\mathrm{comp},r}\right), r=0,1,\cdots,R-1$ (\tt\bf lte\_eNB\_prach\_vars$\rightarrow$prach\_ifft[]) 112 460 m 112 400 l 176 400 l 176 460 l h \tiny $\mathbf{r}_{r}$ 144 440 m 176 440 l DFT \tiny $\mathbf{R}_{r}$ 268 480 m 268 452 l 300 452 l 300 480 l h $\odot$ 176 428 m 208 428 l 208 456 l 268 456 l 208 428 m 208 400 l 268 400 l \tiny $\mathbf{X}^*_{u}(0)$ \tiny $\mathbf{X}^*_{u}(1)$ 284 480 m 284 468 l 284 372 m 284 384 l 268 480 m 268 452 l 300 452 l 300 480 l h \tiny$R\times\mathrm{IDFT}_{1024}$ 300 456 m 336 456 l 300 456 m 336 456 l 268 480 m 268 452 l 300 452 l 300 480 l h \tiny$R\times\mathrm{IDFT}_{1024}$ 268 480 m 268 452 l 300 452 l 300 480 l h \tiny$\sum_{r}|\cdot|^2$ 268 480 m 268 452 l 300 452 l 300 480 l h \tiny$\sum_{r}|\cdot|^2$ 268 480 m 268 452 l 300 452 l 300 480 l h \tiny max peak in size $\mathrm{NCS}_2$ window, keep delay 412 456 m 440 456 l 412 400 m 440 400 l 500 460 m 532 460 l 500 460 m 532 460 l 500 460 m 532 460 l 624 456 m 672 456 l 624 456 m 672 456 l 268 480 m 268 452 l 300 452 l 300 480 l h \tiny max peak in size $\mathrm{NCS}_2$ window, keep delay \tiny\tt preamble\_energy\_list[]\par preamble\_delay\_list[] \tiny $\mathbf{r}_{839,r}$ \small\begin{itemize} \item PRACH detection is a quasi-optimal non-coherent receiver for vector observations (multiple antennas) \item correlation is done in the frequency-domain, number of correlations (in the example above 2) depends on {\em zeroCorrelationConfig} configuration parameter \item peak-detection (for delay estimation) is performed in each NCS time-window \end{itemize} 268 480 m 268 452 l 300 452 l 300 480 l h $\odot$ 340 416 m 340 340 l 564 340 l 564 416 l h 268 480 m 268 452 l 300 452 l 300 480 l h \tiny$\sum_{r,l,i}|\cdot|^2$ \begin{tiny}$\stackbin{<}{>}\sigma^2[\mathrm{dB}]$\end{tiny} eNB PUCCH1 Detection 184 128 m 184 100 l 276 100 l 276 128 l h \setstretch{.5}\tt\tiny rx\_pucch()\par36.211 153 232 m 153 176 l 228 176 l 228 232 l h \setstretch{.5}\tt\tiny slot\_fep\_ul\par36.211 144 440 m 176 440 l 144 440 m 176 440 l \tiny $\mathbf{r}_{r,l}$ \tiny $\mathbf{R}_{r,l}$ \tiny $\mathbf{Z}^*_{l}e^{-j2\pi f/16},-3\leq f\leq 2$ 308 448 m 352 448 l $\odot$ 308 448 m 352 448 l 392 484 m 392 456 l 328 448 m 328 400 l 352 400 l $\odot$ 392 484 m 392 456 l \tiny $\mathbf{Z}^*_{l}$ 288 496 m 288 496 l 288 496 l 288 496 l h 308 448 m 352 448 l 412 408 m 412 392 l 464 392 l 464 408 l h \tiny$\mathbf{\hat{H}}$ $\odot$ 420 392 m 420 376 l 384 400 m 384 368 l 412 368 l 428 368 m 464 368 l \tiny$\mathrm{sgn}(\mathrm{Re}(\cdot))$ 444 368 m 444 352 l 464 352 l \tiny$\mathrm{sgn}(\mathrm{Im}(\cdot))$ 532 408 m 532 408 l 532 408 l 532 408 l h \tiny PUCCH1 (Scheduling Request) \tiny PUCCH1a/1b (ACK/NAK) \small\begin{itemize} \item PUCCH1 detection is a quasi-optimal non-coherent receiver (energy detector) for vector observations (multiple antennas) for scheduling request. Care is taken to handle residual frequency-offset. \item PUCCH1A/1B detection is quasi-coherent based on a rough channel estimate obtained on the 3 symbols without data modulation. \item In both cases, correlation is done in the frequency-domain \end{itemize} \small\begin{itemize} \item Threads (all in {\tt targets/RT/USER/lte-ru.c}) \begin{itemize} \item {\tt ru\_thread}: Thread per RU which sequentially performs \begin{itemize} \item read from south interface (RF or IF fronthaul) \item RX processing for subframe $n$ (if necessary). \item wakeup eNBs that are waiting for signal (if necessary) \item wait for eNB task completion (if necessary) \item do TX processing for subframe $n+4$ (if necessary). Note that this can spawn multiple worker threads for very high order spatial processing (e.g. massive-MIMO or DAS for UDN) \item do outgoing fronthaul (RF or IF fronthaul) \end{itemize} \item {\tt ru\_thread\_prach}: Thread for PRACH processing in remote RU (DFT on RX, IF4p5 RRU) \item {\tt ru\_thread\_asynch}: Thread for asynchronous reception from fronthaul interface (TX direction in RRU). %Allows for some jitter so as not to block the RRU real-time processing. \end{itemize} \item Synchronization on fronthaul interface \begin{itemize} \item {\em synch\_to\_ext\_device} : synchronizes to incoming samples from RF or Fronthaul interface using blocking read \item {\em synch\_to\_other} : synchronizes via POSIX mechanism to other source (other CC, timer) which maintains real-time. \end{itemize} \end{itemize} RU Threads \small\begin{itemize} \item Threads (all in {\tt targets/RT/USER/lte-enb.c}) \begin{itemize} \item multi RX/TX thread mode (optional) \begin{itemize} \item {\tt eNB\_thread\_rxtx}: 2 threads per CC/Instance which do both RX procedures for subframe $n$ and TX procedures for subframe $n+4$. One operates on even subframes, one on odd. This allows 1ms subframe processing to use multiple-cores. \end{itemize} \item common RU-eNB RX/TX thread (default if single RU/eNB) \begin{itemize} \item calls {\tt eNB\_top}: procedure per CC/Instance which sequentially \begin{itemize} \item blocks on signal from RU \item RX/TX processing for subframe $n$ and $n+4$ \item signals completion to RU \end{itemize} \end{itemize} \item {\tt eNB\_prach}: Thread per CC\_id/Instance for PRACH processing \end{itemize} \end{itemize} eNB Threads 400 400 m 400 388 l 520 388 l 520 400 l h 400 432 m 400 420 l 520 420 l 520 432 l h 400 448 m 400 436 l 528 436 l 528 448 l h 400 448 m 400 436 l 528 436 l 528 448 l h 192 388 m 192 364 l 272 364 l 272 388 l h 32 480 m 32 464 l 112 464 l 112 480 l h eNB Timing (multi-thread mode) 32 480 m 32 464 l 112 464 l 112 480 l h \tiny SF $n+1$ 32 480 m 32 464 l 112 464 l 112 480 l h \tiny SF $n+2$ 32 480 m 32 464 l 112 464 l 112 480 l h \tiny SF $n+3$ \tiny $n$ 32 480 m 32 464 l 112 464 l 112 480 l h \tiny$n+4$ 32 480 m 32 464 l 112 464 l 112 480 l h \tiny SF $n+4$ 32 480 m 212 572 352 480 c 384 464 m 384 464 l 380 472 m 380 472 l \tiny\begin{itemize} \item The current processing requires approximately 1ms peak in each direction (basically 1 core RX, 1core TX). The current architecture will work on a single core if the sum of RX and TX procedures is limited to 1ms. It can fit on 2 cores if the sum of RX,TX and PRACH is less than 2ms. \item three threads, RX-TX even, RX-TX odd and PRACH. RX-TX blocks until woken by the RU thread with a new RX subframe $n$ that is linked to this eNB process. The RX-TX thread performs ue-specific processing for subframe $n$ and then TX common and ue-specific processing for subframe $n+4$ (frequency-domain generation only). This insures the data dependency between TX $n+4$ and RX $n$ is respected. The duration of this thread should be less than 2ms which can compensate some jitter on the RX processing. \end{itemize} 32 480 m 32 464 l 112 464 l 112 480 l h \tiny SF $n$ \tiny LTE HARQ periodicity (FDD, TDD can be longer) \tiny PRACH $n$ 32 480 m 32 464 l 112 464 l 112 480 l h 32 480 m 32 464 l 112 464 l 112 480 l h \tiny $n+1$ \tiny $n$ 32 480 m 32 464 l 112 464 l 112 480 l h \tiny$n+5$ 32 480 m 32 464 l 112 464 l 112 480 l h \tiny $n+1$ 124 424 m 172 416 152 392 c 204 424 m 228 424 236 416 c 192 396 m 196 416 l 32 480 m 32 464 l 112 464 l 112 480 l h \tiny $n-1$ 32 480 m 32 464 l 112 464 l 112 480 l h \tiny$n+3$ 32 480 m 32 464 l 112 464 l 112 480 l h \tiny $n-1$ 32 480 m 32 464 l 112 464 l 112 480 l h \tiny $n+2$ 32 480 m 32 464 l 112 464 l 112 480 l h \tiny$n+6$ 32 480 m 32 464 l 112 464 l 112 480 l h 284 424 m 308 424 316 436 c \tiny $n+2$ 268 452 m 276 436 l \tiny RU thread \tiny RX-TX thread (even) 400 448 m 400 436 l 528 436 l 528 448 l h 400 448 m 400 436 l 528 436 l 528 448 l h \tiny RX-TX thread (odd) \tiny PRACH 192 396 m 196 416 l 96 384 m 96 320 l 640 320 l 640 384 l h 96 384 m 96 320 l 640 320 l 640 384 l h 96 384 m 96 320 l 640 320 l 640 384 l h 96 384 m 96 320 l 640 320 l 640 384 l h 128 368 m 128 336 l 352 336 l 352 368 l h 128 368 m 128 336 l 352 336 l 352 368 l h 175.695 380 m 176.42 128 l OAI IF1'' Interface (can be NFAPI) \tiny\begin{itemize} \item OAI IF1'' is the interface between the 36.321 Medium-Access (MAC) Layer Procedures and the 36.213 Physical Layer Procedures. It links several PHY instances to one MAC instance. \item It is a configurable (dynamically loadable) module which can implement an (N)FAPI P5/P7 or a simpler interface. \end{itemize} 128 368 m 128 336 l 352 336 l 352 368 l h \tiny Random-Access \tiny Events \small PHY procedures \tiny {\tt initiate\_ra\_proc()} \tiny {\tt terminate\_ra\_proc()} \tiny {\tt cancel\_ra\_proc()} \tiny {\tt phy\_config\_dedicated()} \tiny {\tt phy\_config\_sib1()} \tiny {\tt phy\_config\_sib2()} \tiny {\tt phy\_config\_sib13()} 175.695 380 m 176.42 128 l 175.695 380 m 176.42 128 l 175.695 380 m 176.42 128 l 175.695 380 m 176.42 128 l 175.695 380 m 176.42 128 l 175.695 380 m 176.42 128 l 175.695 380 m 176.42 128 l \tiny {\tt eNB\_dlsch\_ulsch\_scheduler()} \tiny {\tt get\_dcii\_sdu()} 175.695 380 m 176.42 128 l \tiny {\tt get\_dlsch\_sdu()} 175.695 380 m 176.42 128 l \tiny {\tt rx\_sdu()} 175.695 380 m 176.42 128 l \tiny {\tt get\_mch\_sdu()} 175.695 380 m 176.42 128 l \tiny {\tt SR\_indication()} 175.695 380 m 176.42 128 l 128 368 m 128 336 l 352 336 l 352 368 l h \tiny PHY Config \tiny Scheduling \small {\tt 36.213/36.321}\\ {\tt openair2/LAYER2/MAC} \small {\tt 36.211/212}\par {\tt openair1/PHY} 96 384 m 96 320 l 640 320 l 640 384 l h \small OAI MAC interface \tiny {\tt phy\_config\_mib()} 175.695 380 m 176.42 128 l 175.695 380 m 176.42 128 l 175.695 380 m 176.42 128 l 175.695 380 m 176.42 128 l 175.695 380 m 176.42 128 l \small UL-Indication \small Config-Req \small Schedule-Resp \tiny Northbound interface \tiny Southbound interface OAI IF1'' Interface \tiny\begin{itemize} \item The PHY end uses three basic messages \begin{itemize} \item {\tt CONFIG\_REQ}: this provides the cell configuration and UE-specific configuration to the PHY instances. This comprises the following FAPI P5/P7 messages \begin{enumerate} \item CONFIG.request \item UE\_CONFIG.request (**not used in OAI PHY) \end{enumerate} \item {\tt UL\_INDICATION} This is an uplink indication that sends all UL information received in one TTI, including PRACH, if available. It also provides the subframe indication for the DL scheduler. It maps to the following FAPI P7 messages \begin{enumerate} \item {\tt SUBFRAME.indication} \item {\tt HARQ.indication} \item {\tt CRC.indication } \item {\tt RX\_ULSCH.indication} \item {\tt RX\_SR.indication} \item {\tt RX\_CQI.indication} \item {\tt RACH.indication} \item {\tt SRS.indication} \end{enumerate} \item {\tt SCHEDULE\_REQUEST} This message contains the scheduling response information and comprises the following FAPI P7 messages \begin{enumerate} \item {\tt DL\_CONFIG.request} \item {\tt UL\_CONFIG.request} \item {\tt TX.request} \item {\tt HI\_DCI0.request} \end{enumerate} \end{itemize} \item The module is registered both by PHY and MAC and can implement different types of transport (NFAPI, function call, FAPI over UDP, etc.). During registration, fuction pointers for the different messages are provided for the module to interact with either PHY or MAC or both if they are executing in the same machine. Note that for a networked implementation (e.g. NFAPI), there are north and south components running in different machines. \end{itemize} OAI IF1'' Interface \small\begin{itemize} \item The PHY-layer timing is assumed to be \begin{enumerate} \item wait for subframe indication $n$ from HW \item trigger PRACH if $n$ has PRACH (parallel thread) \item trigger UE specific RX procedures for $n$ if $n$ is UL \item assemble {\tt UL\_INDICATION} and send to MAC \item wait for {\tt SCHEDULE\_REQUEST} \item do TX procedures if $n+4$ is TX and RX programming if $n+4+k$ is UL \end{enumerate} \item The MAC-layer timing is assumed to be \begin{enumerate} \item do all UL processing for subframe $n$ if $n$ is UL after unraveling of UL\_INDICATION in MAC module \item wait for call to {\tt eNB\_dlsch\_ulsch\_scheduler} \item do DL scheduling for $n+4$ if it is DL \item do UL scheduling for $n+8$ if it is UL \item return from eNB\_dlsch\_ulsch\_scheduler \item let MAC module form SCHEDULE\_REQUEST \end{enumerate} \end{itemize} 96 384 m 96 320 l 640 320 l 640 384 l h 128 368 m 128 336 l 352 336 l 352 368 l h 128 368 m 128 336 l 352 336 l 352 368 l h OAI MAC 128 368 m 128 336 l 352 336 l 352 368 l h \tiny Random-Access \tiny Events 128 368 m 128 336 l 352 336 l 352 368 l h \tiny PHY Config \tiny Scheduling \small {\tt 36.321}\\ {\tt openair2/LAYER2/MAC} 175.695 380 m 176.42 128 l 176 496 m 176 384 l 400 384 l 400 496 l h 176 496 m 176 384 l 400 384 l 400 496 l h \small RRC 384 384 m 272 144 l 384 384 m 384 144 l 384 384 m 528 144 l 608 384 m 528 144 l \small RLC 176 496 m 176 384 l 400 384 l 400 496 l h \small Preprocessor 160 256 m 528 144 l 272 312 m 608 384 l 472 504 m 472 232 l 152 232 l 152 40 l 728 40 l 736 40 l 736 504 l h \small {\tt 36.322}\\ {\tt openair2/LAYER2/RLC} \small {\tt user customizable scheduling module} TX Precoding \small\begin{itemize} \item Spatio-temporal filtering for muli-cell (vCell) and multi-user transmission. Input and output are frequency-domain signals. \item can be applied to Rel-10/11/12/13 physical channels and Rel-8 common channels \begin{itemize} \item UE-specific precoding (TM7-10) \item vCell-specific precoding (PDCCH + TM1-6) for groups of UEs \item PMCH vCells \end{itemize} \item Precoding applicable to \begin{enumerate} \item indoor DAS \item outdoor co-localized arrays (e,g, Massive-MIMO) \item outdoor CoMP \end{enumerate} \end{itemize} 208 480 m 208 80 l 512 80 l 512 480 l h 128 448 m 208 448.44 l 128 448 m 208 448.44 l 128 448 m 208 448.44 l 400 160 480 192 528 160 400 160 400 160 u 400 96 448 128 512 144 576 96 496 80 400 96 400 96 u 480 160 m 480 160 l 496 160 m 496 160 l 400 96 448 128 512 144 576 96 496 80 400 96 400 96 u \small UE \small vCell \small vCell TX Precoding 608 516 m 607 37 l 679 37 l 680 516 l h 632 360 m 632 188 l 660 188 l 660 360 l h TX Precoding (to RF device) 208 480 m 208 80 l 512 80 l 512 480 l h 128 448 m 208 448.44 l 128 448 m 208 448.44 l 128 448 m 208 448.44 l \tt eNB[0] \tt eNB[1] \tt eNB[CC\_max] 128 448 m 208 448.44 l 128 448 m 208 448.44 l 128 448 m 208 448.44 l 128 448 m 208 448.44 l 128 448 m 208 448.44 l 128 448 m 208 448.44 l 128 448 m 208 448.44 l 528 464 m 528 416 l 592 416 l 592 464 l h \tiny\tt rf\_device[0] 528 464 m 528 416 l 592 416 l 592 464 l h \tiny\tt rf\_device[1] 528 464 m 528 416 l 592 416 l 592 464 l h \tiny\tt rf\_device[N-1] 192 432 m 192 368 l 272 368 l 272 432 l h 192 432 m 192 368 l 272 368 l 272 432 l h 192 432 m 192 368 l 272 368 l 272 432 l h \tiny\tt common signal precoding(vCell)\\ PBCH,PSS/SSS,PCFICH/PHICH/PDCCH\\ PDSCH - TM1-6 \tiny\tt UE-specific signal precoding(vCell)\\ UE-RS,PDSCH - TM7-10 \tiny\tt PMCH precoding 145 413.44 m 192 384 l 145 413.44 m 192 288 l 145 413.44 m 192 192 l 145 349.44 m 192 384 l 145 349.44 m 191.982 288.048 l 145 349.44 m 191.982 192.084 l 145 157.44 m 192 384 l 192 384 l 145 157.44 m 191.982 288.048 l 145 157.44 m 191.982 192.084 l 400 384 m 449 447.637 l 400.059 384.077 m 449 431.796 l 400.059 384.077 m 449 383.637 l 400.059 384.077 m 449 367.763 l 400.059 384.077 m 449 143.57 l 400.059 384.077 m 449 127.637 l 400 288 m 449 383.637 l 400.001 288.002 m 449 367.763 l 400.001 288.002 m 449 143.57 l 400.001 288.002 m 449 127.637 l 400 192 m 449 447.637 l 400.001 288.002 m 449 447.637 l 400.001 288.002 m 448.966 431.763 l 400.001 192.005 m 449 367.763 l 400.001 192.005 m 449 143.57 l 400.001 192.005 m 449 127.637 l \tiny phy\_vars\_eNB.txdataF \tiny phy\_vars\_eNB.txdata 632 264.556 m 671.833 265 l \setstretch{.5}\tt\tiny do\_ofdm\_mod\_rt()\par 36.211 TX Precoding (to IF device, NGFI\_IFv4p5) 208 480 m 208 80 l 512 80 l 512 480 l h 128 448 m 208 448.44 l 128 448 m 208 448.44 l 128 448 m 208 448.44 l \tt eNB[0] \tt eNB[1] \tt eNB[CC\_max] 128 448 m 208 448.44 l 128 448 m 208 448.44 l 128 448 m 208 448.44 l 128 448 m 208 448.44 l 128 448 m 208 448.44 l 128 448 m 208 448.44 l 128 448 m 208 448.44 l 528 464 m 528 416 l 592 416 l 592 464 l h \tiny\tt if\_device[0] 528 464 m 528 416 l 592 416 l 592 464 l h \tiny\tt if\_device[1] 528 464 m 528 416 l 592 416 l 592 464 l h \tiny\tt if\_device[N-1] 192 432 m 192 368 l 272 368 l 272 432 l h 192 432 m 192 368 l 272 368 l 272 432 l h 192 432 m 192 368 l 272 368 l 272 432 l h \tiny\tt common signal precoding(vCell)\\ PBCH,PSS/SSS,PCFICH/PHICH/PDCCH\\ PDSCH - TM1-6 \tiny\tt UE-specific signal precoding(vCell)\\ UE-RS,PDSCH - TM7-10 \tiny\tt PMCH precoding 145 413.44 m 192 384 l 145 413.44 m 192 288 l 145 413.44 m 192 192 l 145 349.44 m 192 384 l 145 349.44 m 191.982 288.048 l 145 349.44 m 191.982 192.084 l 145 157.44 m 192 384 l 192 384 l 145 157.44 m 191.982 288.048 l 145 157.44 m 191.982 192.084 l 400 384 m 449 447.637 l 400.059 384.077 m 449 431.796 l 400.059 384.077 m 449 383.637 l 400.059 384.077 m 449 367.763 l 400.059 384.077 m 449 143.57 l 400.059 384.077 m 449 127.637 l 400 288 m 449 383.637 l 400.001 288.002 m 449 367.763 l 400.001 288.002 m 449 143.57 l 400.001 288.002 m 449 127.637 l 400 192 m 449 447.637 l 400.001 288.002 m 449 447.637 l 400.001 288.002 m 448.966 431.763 l 400.001 192.005 m 449 367.763 l 400.001 192.005 m 449 143.57 l 400.001 192.005 m 449 127.637 l 448 544 m 448 544 l 432 544 m 432 544 l 624 432 m 672 432 l 624 432 m 672 432 l 624 432 m 672 432 l \tiny NGFI\_IFv4p5 \tiny NGFI\_IFv4p5 \tiny NGFI\_IFv4p5