\usepackage{setspace}\usepackage{amsmath}\usepackage{stackrel}
eNrsnQV3G9m2rX/Uu+/dce49p0+fhnSHwbHDDN1Jh8GOmZllmZmZmRnFZmbLJFtmtvWmVIla
LSdpx3YcyV5z7KFRKpVKVUu1vz1Xwd4yGYlEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJ
RCKRSCQSiUQikUgkEolEIpFIpEOrra2toaEhDdwwzdwqEomkdRocHHr+/JVEMqVRWzU+PvHs
2QuxWEx/EIlE2qMCAwMfPvw9ISFRo7YqMjIKWxUeHkF/EIlE2otGR8du375z48atBw9+m52d
1ZCtgrG8d+8BturOnbsTE5P0N5FIpF0rKCj41q07ly9fxavm2LmoqGjlVpGdI5FIezRyV69e
B0+uXbvx4MHvmmDnpqZg5O5je7BV2DbYOYlEQn8WiUTai5FjCqbj4xM0x8gptyosLJz+LBKJ
tBcjxxTYp/v3H87MzHzDrWLOyDFGjilXr964c+cenZ0jkUh7NHJK4xQXF/8NtyoyMuqjW0V2
jkQifamRAzpUjZwm2LntRk7Vzk1O0tk5Eom0I21tbbFYXqDZtWs31Xhy/fpNzP9WxikgIBC/
jm346Fb5+vpjy+nvI5FIO6GcSNQoEAiSkpKVxunKlWtXrlzPzs7B/Obmlm+yVU1NTfj1tLR0
VTuH6dTUNMxvamomypFIpC9Se3vHjRu3lJRDYjgy8u2fqOrt7VO1c5ju7e2hP4tEIu1CQqFI
jXLd3d+eJ62tbWqUa2lpoT+LRCIR5UgkEokoRyKRiHJEORKJRJQjypFIJKIcUY5EIhHliHIk
EokoR5QjkUhEORKJRCLKkUgkohxRjkQiEeWIciQSiShHlCORSEQ5ohyJRCLKEeVIJBJRDlpZ
WVEdynB2dnZpaYmZXltb6+rqRvlU95sjI2Ls8tzcPB0MJNJBqqKiMioqmplG9UxISJyampbJ
B2sYDQkJ9fBgeXh48PkC1a+sr6/HxycoR1Pt7OzMyso+IpTr7Oy6e/d+T8/7LQ8NDS8rK8NE
c3OLpaW1l5e3m5uHlZXt8PCw6rc2NzcjIiJdXd28vX1MTc0qKyvpwCORDkwpKal37z7g8XhM
ZbSwsJyYmJienjYyMsnPLxgcHBSJRM+fv+BwuMqvwLQwizFv6+vrAcMjQrmurq7ff39kZWW9
vr6Gt8HBoUDWwsKCsbFxc3Mzs0xGRiab7a36rfT0TABwc3MD021t7TY2touLi3TskUgHo/T0
DHd3TxMTc8abOTg4zc3NxcXFJyYmKZfp7+/v6OhUpZyDg8Pk5PtBS7lcro+P79/+kEjUqEa5
np7eb777fX3923pE/9xWNTY2BgQEhYSExcTEKrxcWEMDp7a2zt8/UC2xVU7DIdvY2PX19akG
kAaVIJEOTKBZaWlZbm4ei+WFt05OLlNTU6AW40yAPoFAgDQN7k41YwXllKen4AN3QjlN8HLY
HX+F/PzeF1BddQhFTDs4OCo/ZUpgYBAM2AfKNfn6+gFib94YDAwMIHOHyy0oKExNTcWny8vL
YWERyPTT0tIRJZVGwUlpfUkk0sFTLjs7FxOWlpbl5RXe3r5SqRQVGQ4NM5Gxoo6DaajssD0w
fpmZWTB7Ci8nUXo5pGOq69zY2PD19XV2dnVwcFYWY2NTwE3JE0ybmZmrLuDq6l5WVv5VdxZ0
EgiE4Daf/74gl1Qbwys9PV35KVOEQqES6aCcp6e8OeDz+XZ29gEBgdh9THt6spiUv7m5paGh
AQksnKqLXK6AuYeHZ0tLq3IzAMbR0VE69kikA6NcRkYmk5a+fPnq3TujpaWlysoq2A/Ailmm
urrazc1jaGgoP7+gsLAQjgWWj8fjM5/GxydGRkaqrhPp2MzMzNTU9JSKqqqqlbkh4+UAENUF
YBeV1ysPTECQWsba3d31+bwboWCmIyOjbt68DWTBrdnY2IL/mMD8yspKfX3D+fn5aYVg6jDH
0tJ6bGwMC1RX1zx//mJ8fJyOPRLpYBQTE5uamsZMw6rBzMDLYRqZF/xVXFw88i9LSyuATvVb
XC7P2NgEn4aHR5qamo+Ojv3tDzU1NatlrDCH33z3v/TqA1LXkJAwZhq0NzExQygwDUrDANvZ
OTo5OQOD7e3tal/Mz8+3t7dn/K3yEi2JRDoADQ8PK7MneLDGxsaVldUPPqe7pKQUWSRsyfYv
joyIi4tLsMBHP92uw3GNFSFSWlxGyFKV0wjFwsLCp767urr6mU9JJJK2i559IJFIRDminIZo
bm5OKBQq3/b3909MTK6vr1dX1xTKVVRf3/DRLyJ6cPjKuysnJiZUb6Hp6uqamZmh8JKIckS5
b66ent5bt+5UVb0/GRsYGFRSUiqRSH777VFCQmJ8fIKHBysmJlb1rj9Mh4aGu7l5JCYm4VMn
J5eVlZWysjJfX3/lMpgpEAgovCSiHFHum6iqqgomraOjY3R0tL9/wMDA0MDgHXPvd3h4eEVF
5djYmJOTk3J5ff13yqf8oPLyCkBM+TY0NGx0dKymplZ5sQZisdiNjY1UF0hEOaLcwQv2zM7O
MTU1/cGD3woKCgcHBwMCgvPyClxc5OCKjIwG5UC8d++MuFweFBcXHxgYqHrlxd/fv7S0TG21
ZWXlRDkSUY4o9801MzNrbGzMXP+NjIzMzc0bGBhknoWxsbGrq6tPTU2DVZNKpX/88QTZq79/
oIuLK9za+vo60AfvNzc3HxAQCOemtmbkuaqU8/T0EolEVBdIRDmi3AFrclJiZmbOnGTLyMjM
y8sH5Tw8PPFWLBbjIxcXt9raWrWM1cHBicPhREZGeXl51dXV5eTkhodHqCSw5fX1DfjTVTsu
cHBwQEZMdYF0WNXY2KRGud7evm++Ve3tHWqUa2trO2p/DRJPcCw5OQXtztu3BkVFxf39/YAY
82lxccm9ew/h6MbGxt++fdsv10Bzc8vbt/qYUq5kelpqamqenZ2DT5HePn/+YmBgYHl52dDQ
uLKyCjNhES0sLFX7MSCRlNo4FGpo4KpRrqW57ZtvlVDYqEY5gUCoLSFVPS22R0kkkuDgECSh
LBYbXg55aHp6uvLT4OBQwH9paclNLg+Uj55hGx8fx0pYLJavrz/cIDNzcHAQbzEzMDAEbpCq
81HW9PR0W2tneVlVfFwSDjYfHx8vtqeLq7OTs72tvYWNnXYXO3vLd0b6ly5dVfLk8qWrxiaG
mP9tt8rQ2OCyylZhCzHn227VDguOClsHa2cXRzc3Z08vTzabHRoanpKS3lDP6+0ZUPaIssNm
1MfHt7q6Go7L3NwcnKf6SNpHkybgNyYlprq5uzu42LizbWKSfUrrE5p687tGS3smyodna0YX
6qbWeVPrXK0uy7KmSl7iubMXP8DkykWdS4LO7EVZ4zfcqiVZU31T+oXzutgeBnHnz+vWilIx
XwuiusGTrHFG5moGpdXdY2Wd4hJBR05+RXRYrKezh6WTq7wbmdycgt6ezz0srOweoaenF6Dz
9vbZfgWBRNqdOtq7o6PiHBxtWb52RdVxneJSHLeo8osy0YJMOCsTzGzxpFu86Q0czxzJWoO2
lyWZqIKboEY5XkcmdvYbbhWiXdeUqka5GmEK5mtJYDk4QlBwqOCAmZMJFmQiHEV4HV+qF3Xn
peQEO7hYurq6ZmfljYrVe0EB1ohppK+hqqo6V1d3Z3fL0roE8XztovywFOEQxRE7sVJ/WAto
Vs6JV6Mcty0DFfMbbtW8TFgrSlGjXLUgGfO1O+Cr9WgcEdslWSNazK6xspTsYDtHC1/vgLbW
930+p6amuri4MV1FkUj7paLCUlt7W78Ql46RkgW5ZxOhFT7EZCPKaUKZXG2Y2eLD4Em3+PVN
GbaOJoGBgXl5BU5OLqurq1QrSfulluZ2JwfnoAj33olyOLdZGX9ytf6I8A0FvmJF1lTF335e
LmtJfl6O8622alnW1NCcpka5usbUZfl5ucNmrZHhgt6rsuackojbt+96e/tRN1CkfdHi4mJo
SIStg3lTXwFq9IyMf3TgxpSxpbreyfKJpfqCqig1ysE1jS3W9UnKx5frDnir8Iu9krLxxfqy
hng1ypXUxWF+32TZwW/V1y7STZ54vsbS1rC0Pq6sLsHcyhz5BVVS0l7U1tppZWWTXx4zKxN8
29TsG/oHZEx2TqZ37t69/+AeAxNlefDw/q3bt929baUbvIM0t9ik6XWui6fV7Tu37z+8r7pV
mL7/4P7tu7ed3C2m1riTaw2H6b+Y2eTbu5hFJnjBrKLNHZmrYQc4env7kqkj7U452fkWViYd
wyU4nCSHqLLs4txXblnEyRPndHQuqSIOReeC3pnTF8q5CXMHfh4Mv1hcG3v65Hlsg/pW6eid
Onm+sDr6MJ2dm1itX5SJgqPcXFiWaHBxQI6v1M9s8RZkosLKWCsrq9aWdqqzpC9SaHCET6Cz
ZJVzNC3cXy0EZ2qN88741dkP6aqyAHFWdkazm/yDt0z4RRhIMyuDM2d01Lbq7BkdE/O30g3u
YWqb0NTmlIYbmb0ZX6pTveYFW4uP0BabWRhVVdJdJaQdaXNz09vLNzbFF62kdJN7xBH34QKr
qKgm5ty5i3/JDfWuXNTRqxGlfCvLhN+t4CZeuKCnlrGeP69b1hC/cFiM3LhiT3kdWa/fPusQ
F83KBOPLH7kCPrZQZ21vlpdbSFWY9LeIc3FyyywMX0SWus4hvqnbORXjxBi5mS3+tzr3Basm
3YSd0z9zWmWrFEZuWv5YwSExcojwwFTF23cvqvhJaG4+RUIsNrXGdXK3TEvNoopM+ozc3b1y
SqNWZM1IBAhuanausDrm3Nn3dk5PbuQufUMjp/QwFdyEC+f1PlxjVRo50SFpX9Y50+tcazuj
xEx/ZKafvegsP003uyVwcrMoyC+mukz6qAL8gxMzAnAsEeI+e3ZOhzFy1vZGs9/OyKmenTO1
1GfOzsFqGsuN3CE5I4fjcFEm8g12YvnZged/e1gCdDC3klWOlb1xXS2HajRJTYnxKSHRnorn
HylR/czZuWjYOV3dy5pg5P58KENu53T1dC/DyJUeIiOHBjctL9jc2gDg2uFNzgDdrIw/Ol9n
am7c1UlDY5P+FI8rtHEwmZUJjs4TW7vKnhoYO3fsp1PvjZwGmF7lxVZslfzS6vphMHKAFVhd
35T6xuB570TZzNYX3Is+riB/50iJqbm5sscS0hGXRDJtbGI0MFU1u8UnlP2tnSuoijp18nyN
SIOeFZVfbOUkYKtK6uIOx6VV+LGe8VIgrqE5DXu0/aLqTnxgUXWcF8ubKjgJcnFyq21MR646
ThzbgZ0bnq2KTfUZX67TnLOXsHOji7XYKvF8zSEwclOwoysNZlb66QUhn7/isINzes7FRWVU
x4+4Ksqr2QGOi/IrDhpxtlki74xOk0vD1AYHTmNqXWO3qkGzA/jXogij2jEA88bytfMPdQam
9nJYSjd5owt1pmbGs7NzVNOPrJaWlnAMDE5XzWzyNCHtglMalJYPaHbBFg7OVAzSVu1TGZmv
mpMJpje54x8yzfh0PxsHY+kGb+93bC7K7/+JDfAPpsp+ZBUVGZtVHLHrpGAfLRyO88LqKGs7
Y3tHazcPR1cPBypHoDi6uNlb2Zp5+dv2TpbObPEX5B0yJxoYvRycrpTuR8sLZzu7JbBxMOno
6Kb6fgQllc5YWJpMrXG/eUdkyFDi0rzfvjUsLa3o6Ozu6e3v6emjcgRKf3dPX1Nza0hwhIHh
q6GZip7x0tf6z4Vd2fO7uuLwqRyB15bl5uZBVf4IKjYmIbvk2xs5JMu8jvS3b/U7u7onJicH
h4YGBgepHJ0yPDIinZmJi0t2dDezsjfKr4hc3NdjcnINmYLQzsn886PkkA6hkZueMTU3HF+q
1wQjFxzlGh0dL5ma6h8YoHIEC5q2oeHhP/54Hhbn/jWaXSTCtaJ0NtuPKv6RUk52flJm4Dc3
cswR6BvkkJdXNDo2RvX9aBY4upERsaOTY4e4QLq1/xfCJIobpy2sjCcmJFT3j44cHR07xSUz
GnAbMCjnF+JIlDvilBseHgHlWgZzp79OZ19o0JOzgtC4U90/IurrG7BzMp3bEmjCfa07oRxq
gXh0VKvLiFi8dxogrROPHcI4HADl0KB3ikudnZ2p+h8RJcQn51fELGrGM91/SzlUgb7+/pra
2qLikuISrSxFxcUNHO7eT161trWXlJRqaRCYOHC43G9COeZuJTsnc7QVRICjIFdX157x8q9x
AuRrUA7zwbcXL16xWF5eXmxtLB4erJcvX4tEjcMjI7um3Nj4uKurm4WFpZYGQREHz5evXjc2
NanF4QAoxyStKdlB1JnwUdDMzIyNvdmUxvRc8beUQ+1OTkmNiIjU6rC7uLjV1tbthXKIj62t
3fDwsFbHwdnZta6+4ZtQblYmaOzJ86ErrUdAnAZ+QJjrogZcXd055VLT0kNDw7S+dtfV75Fy
9vYO3d3afQ+/k5NLfQPnm1BuaoM7tlRn62C9srJCHDj0J+XKOUma09EiUY4odzCUYw42Z3eL
nu4+4sDhVmBAUGNvvuaMP0iUI8odJOXC41g11fXEgcMtFzfnwemqaY0ZgvCrUi42Ns7JydnZ
2cXBQT4C++joKGaKRCLMdHFxRY3D/OLiEtWvSCQSzE9NTVPOSU5O+bASJxbLC5VSSylXW1vr
6Ig9cWUCEhAQKJFMYT7WiWigYD4W8PDw7O7+sy/xvr5+hM7GxhZ/weTkpFZTblEmKqiMTU3J
JA4cYi0sLNo5WU2taVCn2V+Vck+fPj9x4tTdu/dRfv31xO+/P15cXMzPL/j++x9u3ryNmVeu
XPv++x8DAoKUX8nNzfvf//3X9es3Z2dnmTkGBoa//HKcWQnWdvv2XYaWWke5iIhI7Di2XxmQ
t2/1NzY2Ghoafvjh52vXbjDzz5w5j90HdvCVysqqM2fOXbhwkdl3zO/s7NJeys3JhPz27JCQ
MELBIdbgwLCLu/WMjK85/dx+bcrBhDDTmZlZP/74s0jUWFlZefr02b6+vs3NTaAM7uX48ZPt
7R1YZmtry9DQyNbWDgwsKytnvvjunRFAx0yXlpZiJXl5+dpIuejoGD29K8pz776+fseO/Qp7
hpiAYF1d7/FVVFT03XffV1RUYUmg79mzF+PjE4gVl8vD24KCQu2lnFTG7xwp8fambtIPs7q7
et1ZtnMywRGh3PPnL42MjEcU8vHx/fnnXzo7O8vLK0C5oaH3d4d2dHSCcmlp6Zju7e29fPlq
T0+PubmFmZk5swDW8OLFK2YlYWHhP/10rKKiQhsph/z93DmdoKDgmJhYTIPkDx8+Wltb4/MF
CIi7uycwGB+f8OrV63PnLojFYqT2iJiS9jJFt6tanbFKN3l9kxWentQLkwZpclLS1bWfZ5tb
WzrcvW3m99bRtBZRztDQ+NSpM4AYsjN4MNi2zc0tuBFUauXpNUygUqN2YzoyMhpgVHi2sosX
9SYm5KehrK1tlCv54YefLCwskfZqI+Wwj9gR7Bd2BMXZ2aW/X94ZUUMDBxHAfIQFO4igCQRC
JgjweEKh8NBcfZje4A7NVLu6uhBbNEc1NbXe3j77uEIBv9EnyElzbpb72pR79erN06fPcnPz
srKya2pqkJBiZk5OLqozjBmzTHt7O6o8ZjIZ7o0btzw9WZaW1phZVCQfot3ExOzBg9+wkuzs
7IqKyo2NDS29+gCrpqt7aWxsjMfjX7hwEZRjAlJf3wCaISEdHBy6e/c+OD8zM4P5HA4XXk41
Rc3IyOzp6dVeyk2tc8YW6x0c7IgtmiM0soGB+9llfX0dLzTac0nWdEQo9+TJMzs7e7WZ4BUo
19bWNjc3D7dma2sHhzM6Otbb26ejo+vg4Ojm5s5ied26dcfc3JLJWGFv9hh5jaHc5fn5eUyn
p6f/7//+Kzw8QnGYySnX0tIqU1yA/umnX0xNzRXXqhbu3XuAgh/FtzIzM//nf/4ZFRWt3ZRb
qreztz3KVNG0m6L3nXJ1tdywGNbXptz4cp10i7fDs39flXJ37tx7985QbWZWVtZ33/0HQEOO
dvbs+WPHfmXSVScnZ8xRWrWgoODvvvu+r69PX//dH388PQSUCwkJ/eWXExKJvI+1zc1NeNTv
v/+hq6uLz+eDeHy+gFkMof5//+8fzIlKLpd76dJlZOsIF5LZd++M5ubmiHJaqpaWFhh4ZIhE
uX04+7HOLamLq+QnzcmEf8u6r0q51NS07dcEOzo6goNDwsLCQ0LCgDK4F6bWJyYmFhYWKRdD
5fP3D+js7ELempmZfQgoh0Q1PDxSeQVBLBb7+vohXR0dHUUcxOJR5SUGeDxQDjHB24mJidjY
OD8//+zs3NXVVa0+L3dkKdfY2Igk5dq1G/fuPeTxeBq1bUKhaH/v+edxRZHx7A1Z+8wW7+NF
xocNw5G2l7Iqa/YNdjp54pyjqzm3PXNeJlCwjp59oGcfiHIHLZGoEUkK+Hbz5u0rV65hwt/f
Hw134SdUWVkJc7X3gtYTamtr6+zsbG/v+FRBKoH21MXFpbu75zOLtbe3d3V1j46O7aTk5Rb5
BDr1j1W0DOR/qnSMFPVMlPaM776IZ6p9ghxPnTx/+tQFPb0rcta1Zc59gnVEOaIcUe5rSCAQ
2NraK/l2+fJVply/fvPGjVufKLfxKb6yX+Xq1ev46b8t2KodLrbDcuXK51Z4+crVm7duPXh4
7/6DPZSH9xDZS5eu4Of09C4rWceT+zqhGuuIcl9EuZ6eHqIcUe4zWlpaqqmptbGxVdDs9hfB
4QMirh1w2fcfBXxAns8UXd3LF3UuXby4h6JzCVhTjRvDukt6V1w8LYWd2bMygXLY9B32L6ft
lEPt3nv/cjh0+/r6tDoOjo7O36p/uSNCORwhr169vX//IbzZl/KNyt4LWIc09sxpHScPi0Fp
JTNI4k76Ci4pLX327IW9g6MjaoIWFjs7B3lfwY177SvY3d3D0NBYS4PwPg7yvoKbiXJfVWtr
a2VlZfr6hshV4ei2WzUkkp8pB2/k9j1j/XaIuwK+Xbiga2z2Nr8ianSxVqK49rqT0W36+vuF
IlEDh9PA4Wpn4TQ1N+99oKvOri4Ol6u1QfhkHIhyX0Orq6slJaXv3qmz7vr1W3fu3MXMjxZQ
br/yR6xn5+fu/nYx7MKtW3d2UrAXOhf0Tp2SXxf4TDlzek8Fa9DR0VOyV8G3Cxd19Cxs3lVw
E6SbvAWZUHl7yQ7H8ELrr+1lX0ZnPpRxIMp9TdatFRUVIYdlWIc0Ni8vTyKRjH9MExMT+Dc6
0ZruWd3d3XgRiUQ8Hv8zEgiE8fEJDg5OmOB/dkEOh1teXrGTEhIcbutoWlgek1UU9tGSXRKW
lB0QleQdk7z7kpjhb2Khf+GCHuPfQDxLW8NqYfKMjC/n2187fdo55UbEYu0t+0U5rQ7Cp+JA
lPvaWllZhq/T1ze4d+9hTU2Npt3rwjyDs28rFLZEJ/nIZN2LMtEnSiNeF/ZWZLL20BjPH/9z
Qkfn0nu+bfHnVfzbLkad5vEF1fh7amu1sVRX14gaG1GX956x1tTWaWkQPhMHotxBsW4lKyur
ublFo7ZKS599mJcJgiLc9A1fMP7tU3zb+UiFpWVlL1++cnZ2dXV108bi5OT8+vXb7SP0fenV
B09PlomJqZYG4X0c3rxtam454lcfmE4SVN8yczY2NpaWliHmqZMjIi2lHJjWO1mG18/z7Yvu
JAkLC6c7SWxsbHfXHzvdSaJRlBsaGjYyMhofn2DepqVlNDQ0zM/PGxqaID5oCxwcHNva2ohy
mkw55nDaYafrdFcwPftwFCi3vr7OPEEMn4Y9vnbthouLG/NRaGh4SUnp2NiYmZnlikLt7R3G
xqZ777NUK1Rfz/H3D9RGytEYXkQ5opxSnZ2dlpaWHh6eDg4OtbW1g4NDXl5sUC43N08mH48j
qry8Ynx83M7OgVleLB61srJeWFg4CpTjcLh77M6LKEeUI8odMOU2N7emp6dbWlrz8vJBMB6P
B3xxOByYNLi1nJwcUM7Hx3dqaur16zdSqTQxMQmUm5mZefz4D2ZouZcvX2PmISabRCJRDkmw
sbHR3NyMaBDldkE5sVgcEBDo7x/g5+fPZnsXFRUxJ3UzMrJwjGGmt7cvkgVkCirH52ZlZSXa
WR8fP6FQxMzs6Ojw9fVj1uPt7QNYaRflUIOwp9h47BQC0tvbh5nY68DAIMxE8fLyRn1cX/+z
D2QccrGxcZ6erJiYWFRYZmZWVrYybmFh4RMTE0Q55eWD0dFRPl+Qk5MbGBjMYnlhNxEokKqm
pratrd3KyoZZMj+/ICcnb3Bw0N1dPvZEYWERFo6JiauoqEQ8LSwsmV41+vsHHBycAMPDSjlE
4OnTZ8zjivj/TUxMR0bERLldUK6xsfGnn37R0dG9cuXahQsXf/zx57i4OMxHA/rzz78wt2cf
O/br5ctXcRxi/vLyMg6tH388hjn41rFjxxkjXVBQ+P33P+jpXcbyZ86cU/aUri2UQ2b0n//8
yOwvNv7q1es4orq7e3755TjCgpm6upewgw4Ojmtra1i+tbX12rUbx4+fQhyw/M2bt8F5zH/z
Rl8ZN0w8fvyEGc71CFJuaWlpeHi4vr4+KSkZjQV2Ci2Cv79/RkYmnBs+Uu02HxbOyMiYsS5o
UJClYofd3N6flGOzfX777VFDAwcZKw4/5bfMzMyRyh1iO1dWVmZsbDIxMWlu/n5Px8cnRkZG
EFUk+ES5Haq5ueXEiVNVVdU45ObnF5AF3Lv3ABXZwMDQyMhkaWkZRSgUyh86MzaRyTsJzwAN
EhIScQzDwJiamj958gzLwwudOnWms7ML68GheOPGLeXAhVpBOdiG+/cfoq4xQ68C7CkpqaDK
yZOni4tLEITZ2dmgoOAffvipoqIKtgR7ff36zY6OTmAf/gQMZLInff13hoZGG3Jtwteh1Sgp
KT0ilFtcXMQBgCMhPj4eVt/DwwOYioiIgHlrbGxC/vX50UB4PL65uSUwaGhoiCYSTkZJORxp
Dx/+Xltbh4z10aM/AD0UNEywgkyjc4gFF/HHH0+ZIVegsLCI589fhoZGoKruLmM6mpRDRS4s
LJZKpTiufv/9Mcr6+jpqKzOuwYfG1PvSpSsKrJnheFPORx1nxuoqLi4G5QQCEdYD13f58hUT
EzMtopyHh+fdu/cnJyex/ciYYMMyM7PgNxCc6ur3t8EDdDCr/v6BIM7x4ydhUZRfx7eYu7kM
DN7p6xtIFYqOjoHpBRUPK+WQs7e3d8DGh4dHwoBhs319fSMjo+BAMB8R+JLTdJtoauGHEXMk
+wUFBcAX0y+98iTVwsICgtzf39/a2oai7Wdfdyjk6bdv30POxbwNCQlLTk6RKUZmAeSJcjtR
S0vLxYt6587pMGkmKm9ubq4iY32riilUWCw2ODj09q2+iYnp9vXAsWAN585dwCsQcf68DhyR
FlEONQuUPnv2PLYfBgyoB9J7enpBucrKKmUKBqPLYnm1tLRiPkzL9vXAjZw6dRYrOX36HDOg
IRzy4aAcnNjkpEQgEOTl5eNIQ7sArwXPprguUNnb27eXmzqALxxj9vaOvr4Bbm4eexw449AI
SEd1A+hev37DnPoICwtnBv8tLCyE7yXK7dDLoWq7urrFxyfExMQ2NTUx80E5VS+HVgM2Bm03
vNxvvz1SzsexjSZ4bW29tLTs9Omzfn4BcXHxKLsbqu8bUo7FYl++fDU2Ng4lLS1dKpWPQtjW
1qbq5RYW5rEM9hHIQXOAlFa1wWWGbTU2Nr1//wETTLQX8LpaevXB0cl+dXV1aGgYiWRqalpg
YAjggyQxMDAYJpbD4Q4NDe19hAs1YZ09PT1qTz0cWSE9f/NGn0lLk5KSzMzM0dCEhIQyA6/g
6PLx8SXK7ZByqLDMAMqqAuWMjExWFeru7rl69TozzhcOeFgUVHAmoXj58jVsG+oyqjkzlOFe
/tZvSDk3N3fVTJxRe3s7KAeAIwgrKysJCYmweeXl5UivHj9+cuvWHcB8dXUN2/yf//zEDAr8
9q2BmZnZHg/vb0458XzNq9cvwDQPD4/g4BAkR2DdxMTE7obZJe1OGRkZkZHRqidV+Hx+fn4h
kyXV1NSonjMhyn1GIlHjP//5HRilNv/VqzfHjv3KdHQPfOnq6jHPLyMrsbCwQmW/fv2mjo7u
L78cZ4buQhbz3Xffd3R0ainl7Ozs4dPUTmUjM8UO6upeQhCuXbsBvFtb2zIGRigUyfs7PXUG
cUCgHjz4TSyWX+X/448nL1681HbKjS7WWVmb7+PdWaRdaHubsr6+vl8rP1KUQ8Vxd/fYjgV4
Ng8PFovlhU+RpChH6JPJO1ldLygoREOPTxsb32e4ra2taGuUTx1qHeUKCgoQPbXjanR0FEmB
lxcbe4qkPicnVxWD4+PjISFhzs4uUVHRSC6YmfB7ycnJ2k45ZKwODnbEmUMsevbhW4mefdCu
a6wkohxRjihHlCMR5YhyRDmiHIkot/P+5fa3z+SDl4uL2977l7O1tVM+46zFtKeRCklEuW2U
KywqevbshZubh7u7VhZXV7fnz18KhaI99hXs7OxiZmaupUFQxkHU2ESUIxHl1KpAb19ffX1D
eUVlRaVWlvKKCi6P19ffv8dxH1rb2iorq7Q0CEwceDx+Xz+NbkMiyn2kFmj72FUoex/Da2h4
WDw6evjiQJQjEeWoHO5ClCMR5agQ5YhyJO2mXLBjfn4xUY4oR5QjHVbK+YY45uTkj42PU30/
spQbEY/a2tk2DxDlSIeQcvMyYVyatzc7YGp6mur70SwjYnFLS7upudGAtBwgIsqRDhnlpta5
/VPlbw1eFRaWAnTjExNIXUfHqRyVMimRiEfHHOxdo1O80OR97WGCiXJEuYMv4yv1czIBty3d
2FTfm+2flpqVnZWflZX3kZIpL0VFJTk5BfLprF2WzMy8vLzCwsLizD2s5JAVhCI/v6igoGiP
McHXEViEd4fryc7Oj49PsbCw9g1x3PlI5UQ5knZRTgm6QWlFXLp3UKRLRAIrIv7jJSbZ28js
TUCYS1QS+1PL/G3BStzY1lZ2hnEpPrteySErsSk+jq7m9i5me4xJXKqPpa2hu7c1gryT5cPj
PAMjXco5cTgAvmquSpQjymlG6spZkImWZI14XdxWMHNN1jK6WHvvwd2imhiZrGNBJlz82JJ/
W/DdwAhXA6OXK7KmZVnj7lZyyMqWrN3Z3cLO2XRT1ra025ggmMuyJn3DF0GRrgjyDr+Fn5uV
8Q/sGCPKEeU0uSzKGkNjPH768eQb/ed4K9lV0z+zxe8cLb558+apk+dBS8BTG0OxvwU+it+R
pXvxks4FvYaWNLzd9eXywuroUyfO37x1C0Ge2eJpYEtKlCPKaWyRbvJ6Jkrv3ruDmnj2jE5u
WcTirgCFb/mHOgNxZ8/qvDN+PbX21c8FaXiZXJVf5nZytzh96sKZ0xdg50C5ydUvjgnCiGAa
GL06e/bi6ZPnA8Nd0SoR5UhEuZ2XJZkIRg50unz56rmzF2HnJr/czsHIdYiL4TQu6ly6dOkK
1kN2Tm7kOjMRDT29yyi6upcbWtJ3ca1zUWHkEFKsCuG9dfu2ws7xiXIkotyXGTkdPVAO9Wh3
du69kTslRyVDy3fGr460nVMxckxM5HbOibFzX2bkJKswci8RUmY9aI8Cwlw0zc4R5YhyGn5G
7vTJ9zVRxc417NzOKYxckdzIXbz0fj1H3s4pzsjJjRwsHBMTPT1MX2poSfsiO7fwwcghpMx6
EGQNtHNEOaKc5hq5ScbIXVJS7rLCzuWURewcUAoj58LkvMpy9r2d4x5FOyc3cgJVI/ennXM2
nd2xnZOscRRn5P40cn/auXDNsnNEOaKcJhs5NTrJ7dy592fndnKf1cwmr2O06JaqkVMU+dm5
c0fUzsHI8TqymDNyqjFR2LkvODunekZOdT2MneuCndvkEeVIRLnPGLmusRLQCSxSo5ye7mWg
L6s4bCeAWpAJfYIdj/96Vq0mMpbj7bsX8uR3jXN0EDe52jC7xbd3MTshj8lfAnL50tUTx89Z
2xvNbPL/9mIrc8bgjcGL7c0QQo2A+4Y4aU4LQpQjymlggZ2IjGchV71586ZaTbx+/QbqkZHp
m7Glus8DSrrJ7RAXPfjt/tWr169eu35ZpVJfuXLthmLNxXWxu75PTBvLzBaf35F58+YthPHq
1WuqscXb6zduoDS0ps/+3Vm1OZkQThh/BMKIYKr+QVgNAv7w9wed4iLp1+xphChH0u6MdbW+
Z7y0b6qc156J+qg8SX7m1IXYVJ9RaU2nuHh0sfbzlgOfDs9WAXRiaY2Lh+WZ0+9PQ124oPvs
+eOeidLusZL+qfJd3CSm1V5uUFqJmAxJq0wtDc5+OKWGxNPQ9PWQtLJztGhQWvG3McECCB0C
2D1e+vT5Y50Luso/yMXTSiytxU8g+BoSW6IcUU4zC/PkF1inSrnTJ89nFIasy1p32B0ZahmS
3zVZi5ef3ekPd5KcP6/78vXTmS3erIx/pNJV5e0fiMmyrMnKzvjMGZ33l2PO6JhZGSzJGhGW
HV6RQegQQLi1F6+eXjivq/yD2P72a7JW/ITmNB9EOaKc5p6d2+J1jBSpUS41L2jpC6/fLcpE
nj62qpR78eoJ6uBRfvwBebqlrZEq5Uwt9UGtL71fDq/PXz5RpRzL147ulyMR5YhyRDmiHIko
R5QjyhHlSEQ5ohxRjihHIsoR5YhyRDmiHFGOKEeUIxHliHJEOaIciShHlCPKEeVIRDmiHFGO
KEciyhHliHJEORJRjihHlCPKkYhyRDmiHFGOKEeUI8oR5UhEOaIcUY4oRzqylAMopja4Uxsc
ReF+qqcdyRpHWXcUbOFoEeXmZcLF94PON36mq3Ds4KxMsKRYZnLP8BxfrpuR8ZnB7vEq7+dz
+SPLID7STS4mxpflnfeCUePL2kE5ZuOX3gdWHltsP2Z+qjdU5i+Y3uAS5UgHTLmxpbo+SVnn
aHHXaEmnuPhTvSaOzFWPL9UpvzIyX60dlFuVM7m0Pi4u1Sc+zTcmxTurOAwY2b6P4PbMJq+c
kxCRwMopCccCqI87B85HauUal9OaEZfmixKdxC6oit4+Ztn0GlfYld3UlzctH6OH0ztRVt+U
uvMW5NtSDtvc2JOTkOHH7GNsqk/XaPH0Ovej29k6WIAFsBgOMzQl40Q50kFRbm5LgHr95Nkj
a3tjKzsjY7O35Q0Js5sCNbOH4sqyEvXkSjd50i1+Q0uap6/tDrtY/LaUYyyZvuFLVFugJjTG
IyU3CBBQIwnDNN9gJxtHk7gEXwdXM3OrdwNTFVPru++fE4bQxdMSUY1N9gmJcs8uCQd/1Mgp
H/0nyj02zXdRJoTxqxWm4KcxoRWUwz8YFOFmYPQSOxgRzwqL9UQrObPF276RxTWxhiavI+JY
geGu+NcqeUkzm3yiHOlgKIeamFkYyvKzW5CJlMgCl1SrCUM5S1tDfmcWPkIdrBEl2zmbKhb7
ipTDNoBRyoLlWb7qlIM7QqKtupjaJmHO6GId2CVeqJXJumWyjmVZk3ihZnSxVhWPqIk5pRG2
jibA/qqsBW8Dwly4bRl7GcEKK3H3tua0pstk/TJZ54qsubE3F7ZZNWVG2KMSvJKyAxYUlKtv
SnNnWx8A5VQjxgRQjXJefnY40v4S2G2tCdqdoEi37JIwxQ52rMta5d3Xz1WrBnZqg9s7WQbE
NffnrclasExuWQTs3y5GeiXKEeV2Tbns4jAvf3v4tzFFQjq+XFdSFydZb5j9MF4MQzkbB2NB
VzZDudrGFEc3849SDl9H1VuWNS59KDiwh2aqVCl36sS5nLJwMGdJZbH5bcPTYFVgkbLMbQg8
vG3UKIdtVltsbLFWrTrDO5lbv4tP9yuujc2vjBqeqargJuSVR06tcuCsUJiTSwhCen4wJsYV
u4zd3IuRY2KLdeobvnD3snHxsOweK8ksDotJ9hZ15wDO+CHwdk3WGhnP2iHlwC7mFJ+ybMna
bRxNT38YC+PM6QsWNu82ZW2q8cevwF/95XTZcr1qxJgAqlEOtnluQ6i6GLOkGuXg35w9LMvr
E3LLIoXd2X2TZUhLATr5Od51DhPYsoZ4B1fzuQ9DxE5vcpEFUMZKOkjKFVXHPHh4HxAztdBH
AoJD0SfIEfWuoSUdaQXgg2WQ31nbGwm7cxjK1TV9knKARlZRmH+YS0i0B1PC4zyxwqtXrynH
GdS5oIc8LiqerVwGxgmW8i/malMAEBmZvsGSTLF1MPn98UNd3UvKgUdv3bplZW+EDVMuA5qh
0g1IK5WAUjiQBhMLfZhPdqADEu3OkSJk5V5+9nEpPqKeHCRZ/I4soI8dYJ9TGs4YLdRBQF6R
Xdbtxcvh50Jj3MGuSn7SxGI9KArKxaZ4l3MT4tJ8kSDz27Jik71TcgKZjJXTku7Ksvwo5bAj
4vkaJN2wT8q4IU988uyRckTvizqXHj/5DTORmCuX8Q91rhIkSTfem1JAplNchFjBnDNBYwKI
YCKkzHp0L1569Pg3WwdTZWBRcHhUC5JVM01QLiLe6/XbZ75BTm5e1vkVkUMzlZiIS/UpqIoa
nK5EYLvHSgurYzCTGQgb8URUZ2V8uvpAOkjK5ZSEu7NtxLM1PROlg9JKzPQLcaoVpaCyVHAS
kMS5sqzwkZ2TKbwcKiAqb40wxd7ZdEb2EcrhUIQVhHFKzg5kSlp+cGSC19Wr15WV6MI5XWcP
i6z8MOUyjNFSpdzkijz3we8i32HK2Gyti+dfx/B68bhPUt4/Va5cpneiDHNU0QQ4wO/ZOJj0
TpYjY1Jc5mtEfSyui60RpWQUhoTFeBqbvSmsigZq2AEOcJ7Yx1VZc0ZhaGZR6Owmf28Zq00Z
Jx6/i3oNt4ZQCLqySuvj8ioikbjB9rT05WMm21/+u0j6gFm5ifrYqIvy1HuhBhucmOmvjFtG
foh8VJoLesrmAzFJzw/BviiXAU45bRmqFwXGlmr/jNhkGRPAp88fX1AZwwt/+thsnepi+C+A
WfwvahlrWl4QthyeDTvYOVocHs9CVg4ao5EyMX/rF+oMj2ds/nZ8qQ4HGxZrGyoICHfF2y8d
N4coR5TbNeWyikJRu3H44SiaWueiCkQksIZnq3CgNvfnwdFxWtOn1jhYJiTKHekPlvQOdAiM
cP3oLRlID1FJcfwvfCio44CnWsaaXYqMtUu5DJbfXrXlt7jIN+l9WZE1sXzt1DJWeb65yVVd
TC3NZCiH6tbYm8cMGYYfyquIKKmPreAlgmNMQgcKDUxVoDJi35u78gAK1HpeW+Yez8sB5gAa
s2t4TckJqm9Oyy2PKOfEA2vMbS3AsqmlPtyOf4gz/JKgM/tTPwovtCC/JebP2CI5BcDVMtYN
WeuSyjL4FalaxqoghrIwAdx2Xs5+RdasFlg1LuFI8A1xjkr0WlAcCVgALhEBBBJxqCg8Gw/J
KVwcjhYkC9zWjDpRqoHRS7R6s1sC8nKkg/NypeE+wU4MsnAYg3JRSWy07zHJ7MGZyjlkUvIb
unjI7HCgWtsZW9ka2TuboW5+9J4BjbvGutqACh6d5N01VsIAEPvS0JrO78xEulrXmKpECiZ6
JsoAcGt7YzCnqS9vTsbfS2yR5gu7srvHS5jruXjtEBcNTFdgDjjAbDYaBWzP0GxVdnE4YgKf
80V3WXzba6wwujmlESV1sUwai/XgsCmqiUGjVlAZrTid+z4OaCWTswNsHE1snUxgYmfkW9hA
lCMdDOWYMZ37p/4yQjGOUpCBef3z/k/5fSP1gs4s1FzJOmd6c6f3kmnCXcHyiv9hMWw240wU
12f/3ItxxTkr0H5WcSpSfsZ+r3cF189syS9hMD+BV9gbeZVX/Lpq9BSj1grhu6a/cBR7Tbgr
WHEk1P15Q84mlxk/V81RI6TYWqZ80eYR5Yhyey84yNWyPObm1e23sOJYld+ov/VlIxHTE170
hBc94UX6tpSj51iJckQ5ElGOKEeUI8qRiHJEOaIcUY5ElCPKEeWIciSiHFGOKEeUI8oR5Yhy
RDkSUY4oR5QjypGIckQ5ohxRjkSUI8oR5YhyJKIcUY4oR5QjEeWIckQ5ohyJKEeUI8oR5Yhy
RDmiHFGOUECU0zTELcua+iXlf+1F83xWceiWrH12Z/2MoRqiOm/K2tj+9qdO/km5l6+fzss7
LBLKuy4/SnAbV1R5xGRN1mJtb3L69AfKndYxtzZYlTXPywTyzp12sB6EbkHRJ5K8z+EPlMMf
5B3gsClrx3zNaUSIckQ5DSwgGK8jq745raAq+tq1P3tEh+UICHcVduTUCFPUhnz6yLG9xumZ
KKvkJwk7sq0djM+dfV+jdXT0Hj/5va4prVqY3DyQP7XGOTqUm5J3yFmMmPA7sgyMXp0/p6sk
/xuDF7z2zCp+UvtI0d/GBAs09+cjgHVNqY/++B0hVf5BNg4m+IPwE72TZRoSW6IcUU4DC4xW
eKzniePn9PTeuzhluXTpyqnT59++ezG+VPf5QZalm7wOcdGt27fOndNVjo+jLBcvXjp79mJx
bexHx0o4rGV2i8/vyEQ0LlzQU4vJpUvy0R90dS81tKTP/t1ogMzYRmAawrj9Dzp37uLtO7c7
xcXSPXQLT5QjHW7KIRtCrnr/wb3zH1IhZYGvQ+UqrIpakIl2ckYuOMrt5PFzaiuRn0E6dcHY
/M30OnfySJ2dW5UDys3L+uSJj8Tk5InzTm7ykQEnVv/+VMDUOtfI9A3C+JH1HD8XEu2+uIM/
iChHOsrn5RZljVFJ7FPbKtHZszrvjF8hFZLsIBuSykdkKL17787FDymV0m+An+WchIWPjbNz
2O2coLE398rVa8qzne+bD93LCAu/M2uH5hatTFlDPMKo5gmRvd67fxfpqoYYOaIcUU5zrz5s
cAemKx78dl85mp4yGyqqiVnYsU8ALUOjPZSXHlQvKUo3eEfxMqtiPC/FMNwX1Myts4cFnN4O
L7MidPiPTMzfnv1woVZ5mTUs1kOjLrMS5YhyGluWYOcS2aqV8YuMnKqdu3P3jvIM+SW9Kxfk
Ri7+CBq593ZOxpfbuSt/2jndLzRyH+ycUG7nVE57Ish372mWkSPKEeU0287x+qcqHjy8r6Ow
c4yRK6z+AiOntHMh0e6nPtwvB+9hYgEjd8TOyG2zc+5sm9MnL/xp5Nwt5YNOfsn9cgjg9DrP
WMXOIcihMR50vxyJKPcldk4EO8fkm2fPXPxSI7fdzqmckRMdUcR9uNja2JvD2Dm9XRk5lbNz
cczZOcbI9UyWapSRI8odmGZmZvz9/aXSGeZtbW0dj8ff3Nz08fH19GR5enphQiwWq35lcHDI
w4OFwmJ5BQYGT05KMLO7uyc3N0+5TH5+YVtbu+ZTDlxCDVpQGbd9h2VV1jy52vDk2aPz5y5e
vHipRpS8JetgRiD9oiKTdcSn+Z45owPXYetkgtUiHd7F9nysCKVb36xST67Wz8j4uwjIoky0
JWv3D3U+c1oHhR1gvylrX/zy3UcYEUwbB+OzitgmpPvJ5H/QvgRWNLtPtxbvC+Xm5uZ8ff0k
kinmbX19Awom/Pz8UUOZKjw0NKT6leHhYQ+5mCocND4+jpn9/f05ObnKZYqKiltaWg4H5bCD
N27cws4yb2Nj49LS0hcXF1+/ftPa2trT01NZWW1lZY05yq/U1NTa2Nj39PSiICwmJqZLS0tg
o5ubm3IZFotdVlau4ZQD38QLNQVVEdHJrOgkr+jkLyvJWX76hs9Pnjh38/aNqCRWbCr7S9eA
kpDu4x/mdPGi3pnT5+1djJMy/Xaxku0F25OQ6SPszlTc6n+gd8AyQ1EDcfUtKfHp3tiSL934
xAxfTz+b8+d0zp3Tcfe2wtvdBQHBtHM2Pn36vK6uHoKMUO9DbBW7U9oQgwx6ZouvHJz6G1Ju
cnLy2rUbLi7va19iYhLKysrKy5dvmptbUIVhXSwsLAFD5VcaGjio1Ioq3JOfX2BsbLqwsNDU
1Ojk5KJcxtfXH6DTUqxhZ8F2Ly/v6OiYurp6iUSCXUMQyssr8GlSUnJ2ds78/LyNjZ3yK6am
pmNjY6qUCwoKUomGX2VlZXt7u7e3j3JmUFAo06BoLOXmZEJOa5qhyRtnJ7e4uMSMjOz09C8r
mZk5mVnZ9+49CAoKzssrTE/P+tI1KEpWYWGJvb3jixcvCwqLd7UG9YJ9SU3NDA4ONzI2Ru3e
RSq9t1sKeeL5aleWhZmZeVhYVFpa5pfHNquoqMTE1Azbj4m9hAIhff78pYOjE4K82z9IJbCK
15iYeHs7R3Prd+3DhfK7lJcPmnKonqh0MBIxMTGojNPT04oqbF1cXIJP4VJQlpeXbWz+XC3+
C/g35VsOh+PvH6hSW4NLSkq7urq8vNjKmcHBoQwTtE5bW1vYkaioGDhYA4N3MTFxCBHmIAl9
9UofPM9Evc3OWV1dff78FTLZwMBAKyurkJBQ1ZUgsPhI+bagoDAlJbWjowPwZOYAiYaGxrGx
sX19fQsLixpIOekmr3Uw7+WrF4WFpZMSyfjExNj4+C7KxORkUXFxT28vVrK7NaBIpqdFjY2V
VVVT09O7Xsn2gk0aGByytXGKSPA4sIu2yOKn17mObmbeXgFi8Sjis7uNRygaONz6hoY9xgRf
R2ARXsn+xRZHy8SkJDEhzdRS/2+fc9kXyk1NTcGVwXQNDg7iLSpaaGg4qAUPFh4eOTMzg7QU
NRr5F6bz8vJBuc3NzZcvUYUDUIXhWAICAlVXCMopaysExCUkJHZ3d7PZ3sqZISFhWko5JJ6g
+uLiEqZLS0vhbJHOOzg44W1GRibYlZWVgyQUDYGBgWFVVXV9fT1eYYYBLsAtNzevqamZw+Gq
Ui49PQMFXk4ZIvhDU1N5U45Iurl5oISFhaelpWFVvb29Uql0Y2ODWVLAb4qMZ6/L2ibXGr6o
04m9P6jF8rWJiU6YnpH2DwzspYyIxQNDg3tZQ19//9DwMNaDiT1uzPZt6+7pNTI2auzNPpgT
70iQS+tj4CuAAuzUXmIyPDKCsseY4OsIArZkf2M7MDgIfrI8vWPTvOf20ILI+x9YbnBw/Avl
1tbWwFGhUJiVlR0WFuGC6ufmASuC2jo6OgoHgprFpJ+oUHFx8ahQTBVGzfX29gXlUB/X19cN
DY0qK6uUVRiHGNIrVGGRqBErR0Kq/EUYm+TklO7uLuWZK4XBC9nJSScNFLJ1pJ+jo2OK5DQF
IUIzoUzGEYrXr/VBP5g6Ozt75bcQZGToiBXCjhAhqVd1d2gp2trax8bGkfYqZ9rZOfT19TMJ
MhodLpeH7yJHBgnxr6Hp8fX1TU5O9fcPdvey6R8rH12snd7kAj6LilO7mMYBsJPOPXZ3xWF4
vsrazry5uRX1aH/BomlFMjUVEBCakOlzMI814R8MjHBJSkqDizvcgRWPjlZX19m7mEu3uF/U
QGNhHNvSLR5itSxrkqxxbW2tYNJQrVJT0/z8/D08PFBHAgODYckwUywWw3UoaxZDOeZqAmiG
OgX/5uTkxHzq4eH56tUbpFdLS0uqGSsgmZ+fX1tbh2ooEAhRADHlpw4Ojk1NTTAnqMKbmxvK
eg0DqaXn5cArS0tr5Jhv3xogqopds1Zmmjdu3M7NlXu5R4/+AAOTkpKjoqLNzc2x2J9pZl39
q1ev8RH4D0LCDG9ubmE+vLGHBwtrZrN90KbAM390A9bW1pHLNDY2AadY/rX+czeWlY2DsZuX
dUC4S2Kmf1l9fHNf3sB0xfSGnHtMmdnivefe6j5c2OqZLLFzsO7rkzfKh7syTkxOxMQkRiV7
HRjlvPztiorKxGOjhzuwwyPDAkGjg7PV1PrfpCE4aHHIzcr4TJ9aMNX9U+W8jszs4rDQaA83
lvXDh7+xWOzg4FCACC4COfHW1tZnqjAslrm5JSoaEi5UQ3g5Cwsrprqhnl6/fhN4hJf7448n
sbHyKhwTE2tmZsFcSGXE4/FevHhfheFt4OuYr2MbYGmwZpgQbJKSeFqnnp4eGFeQKiIiEsn4
yspqS0ur8tPW1lZYLwS5uroG5hYeGO3C/PzCX28+mS0tLcNHWIDH46t+hKYnP78AK9/hxggF
zRHx7IUNUddYSX1zalZxWES8l5efvZ2zKYqjmzk70CE2xSe/MorbltEnKWduj1+UNcq5J+MD
g7u4oI9DrneyxN7RRo1yTHYD8zMpkWhpwcaPjY+pZmcKyiXEpLIPjHLsAPvtlBscGtLeqCpj
q3pWAZTj80VOrtbbKSe/J3mDqzhQRYoH0xp6JkprRSlpecEBYS5O7hZ2TvJjOzDcNaMgpFaU
amVt+XmsbavCvchDUcti5IqFu2tpaVGuob29nTl9B+eG7FVRhQtmZ+fULkEqqzCHw1X9CGkX
qnBNTa1W3zoCXMO+wriiOejt7dWEu4JXZM0gz4fbq4Tym5HkdquM35FVVB0DynkHOLh4WsLv
2TubsvzsQmM8MotC65pSO0aKRhdqsDzTSs4pUl2J/BRfwy4oh+y1praW7Q0j6uPt46uNhcXy
wpGrmoZrAuWAuI7OztCwcDbbW0sDi+3GgVFbV6eMrZJy0xuwag048OYUxyFex5fq2oYKK3mJ
8em+PkGODi5mto4mSFWCo9xzSsPRXvdPV8DRMRnr9CZf7bzc3yo8PAJZraIKm3d1ddFNvx9V
Q0NDWVnZ5OSkxj77wJh86RZPecuu/GTabFVzfx7y2aSsgMAIV2cPS7nlczLFRFCkW3J2YDkn
vmUgf3iuGt9lvoWvS5Wp7t9RDu21q5u7r68fmjktLUhAjIxMUBOV+6UJlBsdG0NGYGhoXCqX
tsYW3sCT5QVHp6Qcjydy9bCdlwnQ1Db35aFFjk5ie/jY2isOS3dvm6hEdmFVdGNv7sh8NY7D
RcUByZx7YU687Pp+OS6Xi7xV9f4u0iF4wksxGgKHaTEXFGfqkBGIF2rahguRC2QUhoZEe3j6
2No6mVjZGYF73kh1U32KamKFXdl9krKpDY7yiygD02XbKTcxOenm5t7U1KS98VxYWLC2toV3
0jTKZefkBgeHaPWxilQOlENTqKRcU3OL/rs3Ht7WTJaBQy4uzbeCm9g6WDC2VMdYu3nFibhP
5Rf0hBdRbid97DC32SsuzjZiYny5rneirKElPbcsAi0p0lt7FzM0rKCfl799RIJXdkk4rz1D
1JNl72g7MDCkRjl3d4+GBo42P8kyoZmUy8nN8/cP0OpjtaqqmuXFVqWcSNRkam5YLUjqHith
7qJR3CHAR1u8w/4WiHJEuV08O8mkugz3mIK3/ZJyUU9OcW1sXKqPX4iTi6eVmZXB7Tt3EhKT
UAGJckS53VEOGauLu618KKLNXd71RJQjyu3X3fjyU3ybPKapZS7Odo0WmZgZcbl81TtX94Vy
Kysr8/PzCwphQnn/89raGmZ/6u4aLKz6mCFRbrsQyYUPQiSXlpaY+Qgp5qyurn70Wwj77Owc
Xr8G5T51jZUoRzpgyn107Ia+qVJHZ7uhoZF9z1jDwyMuXbqCoqd3WUdH948/nopEjTL5QzQl
V65cV+saApqenvb09MLC58/rGBmZdHZ2EuU+qqam5lu37ly5cg2x0tW9dPXq9cTExK0tmVQq
vX37bkpK6vavZGZm3717/9y5C/fuPcjPLyDKkY4O5T51jXVfKMdme4NXgYFBISGhwcEhqIwP
H/4OH1JYWPjrryf7+/v/auEWX716c+LEKRbLCwuj8l64cHFoaJgot10CgQCBsrd3QGBR3r0z
+vnnX5uammDqzp49HxMTq7Y85vznPz8aG5sisG/evP2f//lXZmYWUY5ElNs75cArOAflWxsb
W0APGVNJSenp0+cGBgZUF87Ly//hh5+Ki9/3byMUiry8vEEqotx2CYXC48dPtra2MW8rKiq+
++77srLylZWVixf14uLiVReemJjQ0dFDKJi3ICECy+XyiHIkotzeKefn53/mzDn4t6dPn718
+Qo2A3Nkip5btlMOxg/518zMDF192AHlRGgv7ty59+jRHzDAV69ee/z4yfS0dHZ2djvl+Hz+
r7+eYHoi+npXH4hypKNJOV9fP1RGGxu7u3fvnzp1Njs7h5mfn5+/nXIsFhspLeopUW4nlDt3
7oKhoZGhofHPP//i6OjEXK+ZnJzcTjkejwfjV15eTpQjEeX2nXJeXmzwTabo+uDatRtPnz6X
SqUKyuWBcmrPmyQlJaPCMpcnoJaWVn39d93dPUS5T2es8meu7e0dTp8+yzwuLZFIdHR01a4+
DA4Ooonx8fFj3m5tbVlaWtN5ORJRbr/Oy92+fXdlZUWm6G70++9/dHPzYDJW1Lu0tPQqhUpL
y1ATJybkfVnfuHELn5aVld279+DUqTNqfo8op0o55tFyuF+krrDBsHPz83OXLl1xcnJmAgv/
xucLgDVXV/effjoWHh4BOjk5ufzP//wLbQpRjkSU2zvlsAaAi6Ec5OnJ+uGHn5qbmysqKo8d
O/7rryeOHfsV5R//+N/w8EiFf2t58uQZ6iMWu3PnbkNDw15+/RBTjs/n//jjz8p/p76+AW+9
vX1APDQTysD+61///u23RzJFt+EAHcCIwML4AXfKexeJciSi3F72SCwWd3V1Ke/+XV5ebmpq
QvYK19Ha2tbxQci8mLHPoPX19fb2dqSrCwsLdF7uU0JwEDTVTsCQ2iOSaFC6u7sRQCawbW1t
fX39ym6I+vsHmptbhodH6LwciShHT3jRE15EORJRjihHlCPKkQ4B5QQCofbGUyqd0diel4KC
grX7WK2rJ8qRDgHlPDxZ6ekZvVorDodraWk9NDysaZTLLyh0dnbt1WYlJaWwvX2IciStphwO
YDbbW1//HRydlhYrKxtTU3P54IkaRrnSsvI//nji5uahvbF980bfzz+AKEc6BBmrUCjS3njO
zMxSxvqV1NDAoYyVRFcf6OoDXX0gypGIckQ5ohxRjihHlCPKEeVIRDnNpFx+fr6bm3t8fAJz
7/3w8LC3t4+XF7urq5tZYG1tLSwsPDIySrVr9I2NjdLSMjc3DxbLa499oB1WynV2diKMCKZY
LJYpekGPi4tHqAsKCpXLlJdXuLq6qfVB2tnZ5efnj/lpaenKTtSJciSi3K53x9ra5l//+vel
S1eYvkcyM7O+++77H374qazsfRdAra1tP//8y/HjJ7u733NveXnZzs7+xx9/vnbthp7e5Z9/
/hUY/NTwEEeWcsXFxQjj99//mJubJ1P096Kjo/vPf35na2uvbCmePn32X//135GR0cpv5ebm
njhx6sKFi4gtwv7y5WvlU3VEORJRbndydHS6fv3mo0eP6+vlD92zWOxHj/5ALUMFYRZgs33e
vjX4/fdHkZGRzJyUlFTU3+TklNXV1dnZWUtL66dPn++6x7nDSrny8nKE8fHjJz4+vnhbXV39
22+PwC5nZ1dmAYFAcP/+QwsLy2fPnjNP5Q8ODp09e97ExGxiYhKxRYujq6u3F6tMlCMR5WSK
fs9QEx0cnMLDI5C0GhgYMp1qMpRbXFy8fftuRUVlaGgYquTa2jpmYhmmDw1GqI9wd5Sxqglm
GGH09vY1MjLB26CgYEdHZ4QazQqzgIeHJ3xda2vrmTPnmHuBgLVjx35taWlVrmSPo6QR5UhE
OQi554sXL2HPYMl6e/tev36TlyfvIpihXG1t3Y0btzAxMDBw5sz5pqZmTD979oKpuXT14fOU
gzHLzy949ep1X1+fubllamrakyfPGMqhXbh7935lZRWmYZ7ZbG9MxMXFnzt3YXh4iK4+kIhy
+0s5VD3g6+XL1yEhoQ4Ojo2NTSdPnkGGhU+RXiHtCggI9PJinzx5OiwsHDPfvTN6+PB35Rq6
u7tLS0t3becOMeVOnTrD5wtsbOxg5N68Mejo6Hj69Jm9vSPTfPz660kYacT23r37v//+WHFS
Lg9errm5RWmSc3Nz1fpqJsqRiHJfKtRBeLOFhYW3b/V1dHRhJ7q6uk6cOFVf34BaduvWHeSn
ICHoB8vx6NHjjY2N7OycH374KTExCWSbmJiAFYQDkUimiHLbKHe2t7cXIUVg37zRn5+fRwwR
SXzq6uqO2Do5OSO25uYWCCAamqmpKUzAJ4+PjyO20dEx//jHP4uKiohyJKLcXiiHOsUM+mBr
a/9f//XfXC4PFfO77/7T0NBQVCS/Sjg4+D6Bwtv//u9/VFRUrq+vg40//njsypVr58/r/Prr
iZycXMpY1VRYWPTvf/+nt7evvr7+//yf/wugYebt23dtbGxBs+PHT0ZGRjFLgn5wfWAdphFJ
NDFgHWKL4CPOyj6ciXIkotzulJ2dDVcmUzzz6O3tMzMzOz097ePj29/fX1xcgpq4sfH+FhHM
xwIVFRUyxV0QJSWlnp4sLNnS0kLn5bYL+SmCI1UIcePx5JdK4+MTENW+vn4Wi616m1xaWnpY
WASaD5niRjv8roeHZ15ePjOHKEciytGzD/TsA1GORJQjyhHliHIkohxRjihHlCNpGuVmZmc9
PDz5fIH2xnN2ds7KykbTKDc2Pl5QWBQQEKjVx2p9fYOHJ4soR9JeyolHR+MTEh4+/M3MzMLN
zV1Li7m5paWltUb1FQzk4tVWfifhU+0NrIuL6+vXb4OCQ4hyJK2mnImpGY/HHx4e7tdavX2r
X1NbOzwyopKGf2PKDQ0PC0UixFYsHtXewHp7+7DZ3kMqJpkoR9I6ysH/2NjajY2Na3U8HRwc
m5qbARZNo5y94vZd7VVyckp8fMLU9LQysEQ5kpZSTq13Mq2TnZ09kKKBlLOzd9DqwCYkJMbE
xE5MThLlSEQ5ohxRjihHIsoR5YhyRDmi3OGgXEBAoJ3dx2t3Xl6+qan5HvvoPrKUW1lZMTIy
Bnk++imb7b3v9+YR5UhEuY/KzMz8wYPf1Gaurq6mp2ecOnXm7t178/PzRLldCK2Dru4lLy+2
2nypVOrl5f3vf/9gv9/WkShHIsp9VDY2tk+ePFObGRsbp6Oj9/Tps99/f7ywsECU2x3lbty4
5efnrzbf1NTs1q07t2/fZTotIcqRNEE8jtA/1GVR1nh0KFdfX49fjYqKRmUkyu0j5ZiuXWDn
DAwMEXmiHElD1NLc7uFjOy8T7fo40TrKMQoMDCLK7buXY/TixStbWzutoNz0Bnd4tsbZxZFQ
cIjV3dXr4WU3JxNOrjYcSso9e/aCKPc1KHf9+s2goOCPfvry5WttoZx0k9c3WeHm4UYoOMQa
HBxxZdnNygSHknJgzoMHv3Up1NkpL8oBHYhye6Qcoufo6PQhtp19ff3KQWy1iHIzW/zOkRI2
m00oOMSam5tzcrGe3uBJ1g6nl/v3v384duw4yk8/HUNRDrbCZntfvKhH11h3p8XFxVu37iCe
TGy///6H69dvYSbz6cOHj0xMTLWCcnMygbArJzgohFBwuOXkbD8yVzO9wT18lAPTiopKyhQq
LZWXmZn3w0nDflRVVe2xj+4jS7mNjY26urqSklImtsXFJbW1dcxg0zJFd/SNjY1aQTn8KSW1
CUmJqcSBwy1fX9+WgYJZGZ+efSDKaay+EuUWZKLYFN/ysiriwOFWdHRctSB1QSYkyhHljh7l
Gl1ZVu1tncSBwy00ZFGJ3gd5y9xnKCcWj2p1MO3tHTSTctre81JSUvK+U06y3iBZ49o6Wu37
6VmSpkksHrNxNJ3dOrjLrJ+inLmFZVtb+7z2am7e3MxCMylnZm6JzdNehYWFR0VF7y/lZrb4
HSPFXl5eBIFDr62tLScXp6GZ6ulN3gFTrr9/ULWvYB8fX0NDY2trGy0toLSFhWVnVxfTCbkK
5RIPknJe/vbFxeWqPaJ3dXdbWVmbm1tqaWCtrGzevNEvKi4eGx/fR8rhH8kri0pNySAIHAWF
h0fWCA/u1Bwo1zdVamtv1dXdqwoETPf09nb3aG/pAbRVx+tBmZRMRkbGRiezlg7knAAo5x3o
kJdXNDo2ptwGZquwedob2L7+frXADo+M8PlCO0fzqQ3Obii3Kr/04M62aW1pJwIcBYmETR7e
tgsHYjZQkBrjsLSxN62padheGbW9qNZEBeUkzs5uueVh8wfSiOBXYlK8ggJDVTsPPxyx3R7Y
zMw8N7b17m4PQOaC/MXG1lp5Awzp0AuZwaC0SnpQSSt8Y3KOv7WVA3IQgO5w8E2twJpOS6X5
eUUm5vqjCzWSdc4BBHZ6g9c+XPDm7RuBsHFySsKMmXj4yvjEBPydgYFhjShxdou/y3S1PDoh
Ppnq/tER/u68sugDu9I6udaAvNXT19bS0raultPXN4DSe1iKfHf6Bzu7euLikl++es5rT5+T
CSaWD+gSNuxcXkX46zdvMtJzurp7+/oPW2zxWl5ebaBvFJXE2p1DRjYxJxPaOZn29w1S3T86
GhkZNbcynl7nStY4B3Z2Dq1wRlGwhY2RlY2Fq7uzq5vTISnuzk4uDhaWpm5sq/aRAjniDrBj
KwZ0gq5MJ/nwsKbYkkMWW2tbSys746LaqLndPn+NLzb3F7i50EP6R04BAcGK24NFB1YZcYjO
ywlQ1zdV2ic5VKVXUjI4UzEj40u3eAeMuPe3SSh+ekBafsgCKy9TpZK1+l23HZOK6w6ePnY8
rpBq/VHTQP+QtZ2J/Ma5A3xyX5m9okgOUWF25yB77ftoIyI5jIGdkgd294forPw2uRI7O3uq
8kdTbJY37NziAdo5KlQOtKzKrzuw/R04DXyq70dT4pFRUzPDyZWG6XUu1Qgqh68syIS89ixn
Jxeq7EdZKSkZCekBywc7EgQVKgdzwWt6nWduZTjQP0Q1/ShrY2PDwsKqY6RkXiYYp6pB5RCV
JVljUmZQXEwCVXNSR3uXuZWRZJVzkF1rUqHylXNVkaAzx8rCZt+7TiVpqbIycwPD3dD2HeR4
EFSofK37arZ4owt1JqZGI8OjVLtJSrFY3gWVMcsHOyA1FSr7/9TbOnd2S+Dgal5RXkP1mqSq
lZUVKyubWmH6El2JoKK1RbLGQa6KxCQuNokqNWm7pqdnzM3NhV25BDoqWoo4JCPx6f6BATRK
F+mTEo+MmZmbCDpyCHRUtO6+kUWZKDEziM32pYpM+rxGxWMWFlaV3GSATrJGFyOoaHoZX66X
bvHmZMLQaM8Af3JxpB1pfn7e0dEpuyRyQdYo3aTbS6hodJmXCSdXOO5smxi6NY70JVpfXw/w
D/bycxhfqj/IYQ2pUPmiE3HIOFr6CyysjAvyi6naknahgrxiS2uTpt58HEvTZOqoaFKZkwlm
ZcKckkgbG5uurl6qraRdq7u7z8HOMTSaNbZQtyhrPJiOvqlQ+UyRbvHQ7Lb2F9o5mYWFRq6s
rFA9Je1dWVl5VtZmJTXx0+vcRZloilhH5Rs91AC+DUmrw2O97OztG0UtVDdJ+6iJcQnaTRs7
i/zy6PFl+aPQszI+PRFG5WDuEpmXCXHI9U1WRMR5WVlb5eUWUpUkfSWNjU5ER8Vb25r//y1f
N+PG4z3Agu4ruLgb7cmOIuoiYAX67s8ZYOH2FbS9+vSpq5unzurs6OrYs2v/r1+/RnPiKKA1
ePcOdCVfX19fW1f9lj2Lrj3c8+YnaGcNMEECkyWw0AOmT9CJ1r9Ogy9jHUWjiAACJhXQcXB/
zwATD6TZ9un/+aefjp2+thnYeGtta5g1a+6Z0+dHs94ooD948ODx5k3bpk6d1t7VMnFa68ad
849f3HDjyd7HH468+AaskU99+Hf2/SgaRYQQMKm8+Hbi4dvDVx7sOnBq9fJ107v6Gts72ubP
W3DwwJFPnz6N5rVRMODgz58/d27fO3L4+Lq1G+bOndvW0VpTV11VXV5YkldYnDuKRhEuVFSS
V1yWX1NXVddQ09fXs2DBoi2btwObbU+ePBvNVpgAADfb3Qk=
eNrsnQVYHHf6x7metHe1VK5tHHdd3HaXZY31mRXcHQJBAsEhgjtrWLRpY40QJ+5pFFjYxUKa
5urX1NL04vOfBWp3aa/t/xJ26ft5vk+e2WFm9jfvbz47ml0MAwAAAAAAAAAAAAAAAAAAAAAA
AIDfL7dv3zp88OjubQd2b4dAdDvb9nfvPnzlyhXQ9qcYGRybafY0LdmQEguB6HToScaW/s+m
p6WDtj+FumeEHGz2+qeSFVfFEIguZ90/Q5JW2WdmZIG2P4Wmb9RXZNo6irT0CiAQXU7biCha
ZpuVmQ3ags4Q0Bl0hkBAZ9AZAgGdQWcIBHQGnSGgM+gMOkNAZ9B5uqUPkfUj8gFEqvp+pFSF
SL+fQDAxwURkql+xZHw5Pz+NtG88KugI0Bl0/h+4LO8X1B5nVRxhN/Yg8nFV5RpU1ito7pl0
ufkir+poQOUJds0pdsURVu1ZPj7yFyxZ0HyeW/c2t/lnp2lRaZdfd5Lb1APmgs6g8/9vv6zi
Ztc5kdlz3Bjz6NnORafwjUdY/qabL8sm5xBPge+L1cL6vb6MkLn2Hi+bOL1CYBmHKOmKK+LO
dyQrxkQKXP9+tH10/OVVcceYeMUVkVIj7HhH3DkmrNrum9BOrFOJOi6LO65IOsdEMq2/aPsV
fGJJ27Cw+Rg1pdaz+ABjwRKf8gtI67AIH98+IsQPDGQaYftlcSf+chiVgs6gM+j83yIdEMqO
ED18TZJ2ctv6OJmdnvlH+XUHyNzQuXOtTDIO8ZTqifogrVfQguW2rDjnGg1uK1rXTQ5KtmAW
uJW9jTQf8w+vcuRFmzIS7UU51tQct7y3iMJkm4RNAbX7yGnrKFUHaUkNBFGyBbfQo/IS0nyC
Gp5tRY+zWbibXSy3NjR8SbDcK62OXNuPlK1y848wDaonNWrQ8s3eEcsduJEW4R3U5oHftdGg
M+j8i6JCFL3sxAJrd5F5SJ1HzpYAuRqtP80u3030Q2zT93IVP9C5sNKOk+RSNyxRnqXxuPO8
g829ubMcEzzL1jsbEg1DqxxcjF7xW0RgBc52S3SML7F2iXVOb7Sj5ziXvOlGoM6WVLvSaSYh
DZTsNhdaqj0SOc8t0j6rw9WbbBhR48og26evdXMPMguuc+OGGolWU7NLjK2FlvHl9h4+ltkH
tMcJoDNoCzr/l+CHyiNo7VFmXrubJ32+aHUAflTcfsaPyLX+oc7KMbSgwo6T6FI3Gtiy28PC
6RWvKAtGtCk3z7dwnav9AreGgQAJzTrzID9vuRmtgqQ85UeUOCTU2nOKXIvecGem2lVfFi5M
sBEt9s1e7xVW5y6OmmsvssrdSAyKdMjfTkZ4DuF5puRCr5UfhRQq7ezzPDLKLTm15A4NU+Br
kdr1XUtAZwB0/smD7fp9RLTMOXsbs+4wDUk3pctoHVfEyuMkT6rlgt0/0PkKmrfEhhFFqB2W
yI6RqYhF4iZG0Vqv8DbakjcI5vHO1eeoPE+LtD2czCITdi1ZeojoKbCPq7Rl5DoXrHWlJdgs
VwuSI63FGW6cNENiiVd2rTWBb5a+zofNNY2TebD87ZNlDoQw66zt1NAkY3ozOavMjFlBlF+g
st3NQGfQGXT+JQfb0h52VrMTiTnXlW0U1ESqvoTIB1D5GZokyzXvME8+eYiLKIaRJR3uUeU+
dQNCpQZZttbNnzXHKdgqdQendrdPQJVv3QVmXIpL/mFukZIQvYYmPUGVFHhmr/KIkvku7SJG
VLlX9wtyl7klKan5Kwje7Hm0NCvmYqeCg4yoDAt6qn1omlflJV5mtR2BOYeZ41bZixS3EqJW
UmUXmTHJzosPfNcS0BkAnX/2RpUaVWjGo0a1V557tCOVg+PD303Wg+/KtdNMvMRnwSdQ4rP0
I1IV2qpBtMoPaWeR4ZPh6k0sAR9Wa2894zOOX6xG5WrtxwX+J4VG2IpPgP9pUIi/r2IQlfZp
J1OOt+T75UwsVgVXtkFn0PmXSy34RbeS/22W/8/bPYrFgs6gM2wwENAZdIZAQGfQGQIBnUFn
COgMgM4Q0Bl0hkBAZ9AZAgGdH6/ORIlZ51WhXI1CILqcFe9IYpV2oPPPoO4dtia/WHrYJ3+X
NwSiyyk7RGIXzkxOSgFtf4qPPvqYj3CFQVw0EPKrExiGioL5UIfHE3wr5aGsjo4O0BZ4FHz5
+Q0oAgBMD8rLyy9cuAB1AAB956uvvpo3b15ubi6UAgD0ne7ubgMDAyKReOfOHagGAOg16enp
uM4vv/zy2bNnoRoAoL/885//dHBwMBhn2bJlUBAA0F+OHTtmaGj49NNPz507NyYmBo63AUB/
uX79ukaj4XA4Fy9eHB0dvXv3LtQEAPSa0NDQb775BuoAAPrOvXv3goKCPvvsMygFAIDOAADo
DiEhITduwHOeAKDf4BZ/9NFHCIJcvnz5008/vX//PtQEAPSUPXv2GBkZPfPMM/i/ERERt27d
gpoAgJ7yzjvvzJ49e+IxksLCQigIAOg1UVFRuMszZsw4deoUVAMA9JpNmzbhOvv4+MCRNqA7
3PrX7a8+/+YG5FdG0z/y4vMvL0heePPLW1CNxxB8K7154xZcdfwZrr37HsHdliIgkHmQXxku
YZbxC06+Zn58qMbjCEXg7OZnXVFRAdr+FAM9I67c2dIhVv3FAMivSsMlVsFWSvUZfACq8Tgi
G+SGNJqmLUgHbX8K7fdsi03bxrQ/Kwz5tZH1ayPtE0ApHkPaL4tj5PA92/9NZ/ja/EfxA80Q
+Np80BkCAZ1BZwjoDDqDzhDQGXSGQEBn0BkCAZ1BZwjoDDqDzo8mUtXkfWeZarJ6ky/H70RP
TvPdvekfv/zhNBDQGXSe8jRf4tWeYlcdY9ee48vHhW06z60+zq46wWnuQxT4mH5UpuLXHGdX
n+bJBlAZ7m8Pv+40pwofc4YnHZh0HAI6g85TGRXa3s8OjjU0953lwp7jHGaZ1s2XHyF6+L5q
z5jjQp/rn+dWdg5VngtIyLN0Zs5xYhsHtfnLxtDsPDMbj9ecWXMcWKaRK+gyDQrFBJ1B5ynX
uaOPwRJbhqxirfpAXCS1c070qNzt5cayKzqHtPUFBMaYccq8U8ut/dPca/rRuh3erCxCyQVu
aryZuILcdi2wepMHJcC66Dyq6Id6gs6g81TrrGLyAs0CyrxL9vpH5pj75PnW7vH2FDiUnkc7
rogqV7swo0xoYWap+3gdQyh+ptx8ni8b5qckmjLSnAt205KX2voHOi7rQeUqqCfoDDpPsc6d
/QF84RwT3zneYkNShlPpObR5p5eHwHHJJeGKd8XL2wjMaHNWgnniLm7nqFAxKFT2CWQj/AVJ
881dZnqKDD3DbDP3cBRqKDvoDDrrwsE2PQC1DHudvfr9wPYRoXJIVL/dw4lilbEvoHovmRNp
Ftjil1lp4x3sWHSEVbzWnb3YZUkvLyXGTFLt1/GPoM5RkWIAag46g8668B+ptCfIkYudkzax
FIPay1nSAbTlCNmfO4cQMMeFMZ9X7VOjEiousJMLrVzxMUKzqLV0+aggZ6lTfJu/VI3CNW3Q
GXTWqcg1Pz7z7UNwteXae8qoQq29LSVVIQrN+JgBfIz2tpRMrX0JpQOdQWc9+M/O2u8xEPzb
8yH/OQYCOoPOENAZdAadIaAz6AyBgM6gMwQCOoPOEAjoDDpDQGcAdIaAztNMZ6LErOMdoXwA
hUB0OZ1XJLFKO9D5Z1D3DttSXl52glTcTdSdLD9CLTvop1NN+n2mpJu47Ai19ABZJ7aK4xRe
6eyU5FTQ9qf48MOPWBwGX8LkiXQmYqYniUDnkHSoSb/XcIV0Es2TJfDXhcbwxcwAHlWpVIK2
+sWirMU7tu+COkw5d27dS05M7bnYB6UAfhuff/65jY1NREQElGLKOXPmzBNPPLFmzRooBfDb
6O7uxjchExOTzz77DKoxtTQ3NxsYGCAI8uDBA6gG8BvIz8/HN6Gnnnpq586dUI0p5NatW25u
bnhfzJgx49q1a1AQ4Nfy6aef4vtlg3Gio6NhpzCFXLhw4Q9/+MNEX7S0tEBBgF9LT09PQEDA
7Nmz8f1Camoqfh4NNZkqNm3axGAwDA0NbWxsSkpK7t27BzUBfhX/+te/bt68GRUVdfz48S+/
/PLu3btQk6niq6++unHjRmZm5oYNG7755hv9P1L6Bhscwr66ox28cxO7/j52H479HgeJiYm9
vb1QB10gPz9/9+7d+r8e97H2NOxZG+zYR9pX/ziDbSrG4HDjsRAfH3/+/Hmogy6Qm5vb1dWl
3+vw2WVseSz2/F8wA1vszD+1Yz7pxdbkYNdvQP+CzqCzXnEPk+Vi/igWz8eetMJOjet85zPs
6Gbsg0+hfx8DYampbw8OQh10Qufi4q4DB/R7Hd69ht14gHWVYH8wntRZN1GrsWPHpl9quNyh
9vZpuWp6l9zg4K6KCj1ehUuXJmVZv1jXdaZSMQMDCOTRJdfAoEuvV8HWVm90TknBTE2nXz5+
7rlbc+dOy1XTpzg6Yh4epbNmHbGwwJyd9XIV8JafOPG9zgZGOq3zgwfTMglxcefPnZuua6cv
2bd3r1wmo9NoSYmJ27dtu3/3rl6uyHesXYgZvIwd+wSuhzxmYhMSzn13ygNMEfVNTQbfwubx
7uv7+rynxroOYNdvQ8/CjarfIdeuXZsxYwbu8l//+tdp8SQJADr/fnnw4AGKorjOM2fOvH79
OhQEAJ31mrVr1+I6L1y4EEoBgM76zpUrV/BdM/zHcwB0/s189NHHo4NXRzTvTHkGeofTkrJ2
b+/WhcaMqN+5MnLtyy+/BEFAZ705Y72PkSjeHjwjX6G5LzrVEZqTxJZEkcXUtwQ1J0ksbH1n
5ufngyCgs75w/w7mz/OouUhtG0OVI8iUp+0y2qoDzcCz6j1xbJv1wvQMEAR01iOd6QLvipNU
WT/80hD8qA3oDDqDzgDoDDqDzgDoDDqDzgDoDDqDzqAz6Aw6A6Az6Aw6A6CznujcJ5CO57f4
8ptn/G+LBZ1BZ9D5V+vchygGUfkAIhtAFRpUrvq5ifFp5N8tvw+Rq7+dUY3K/jcCIvIBVKZC
pCoEdAadQedfpbO0H5WfprED5xEC5rqy5geUeS49K8DdVA4JZbi8GnwAlQ0IO96RrBgTtw4L
Fjc7Rq7wlw4g+N5TMSgoecODicxxYRqKa4m1vYi0D1EOi1a8I24dRPGFywdFbaPiDvylGmlR
oe0jovYxSeeoUIq/tQptG5OsuCJWDiDNPQLpAIq/RceoUNnLzniDlL/Rf0G5b2UPotBo37pj
RIivVNuwqP2yuHNM9PMfOKAz6Pz71XlAKD3k60oxT3yLUXuMKo41peYTW1Scws2U6kuCmp20
wi3M6iPU2GLH4FpivVqQvtgkoNJXpkYVQ2jVOjdisFXSRkZFFxFNsojfHNAxipSt9RAXOGXv
ZCs0gmXbyelK97Bil7wjvJYzzPS1vrFVThFtfo39QnkPK6PWKWi5R+lJvnJQ2HyaHlfslLye
WbvD08b7777ZLplySr1G2HzMP7rQIaKD0niOvWgDMaGeENzgU3kekalAZ9AZdH6ozkRvvl3u
SaTzXXHNOldWvH1hF5EdaZp7DsnLs2eIHMMyrQPirNzY8+gyv6ylFrxaokwj6hjhxSda8QpI
iqtipQZtOM2uO8cvWePsIjThLLAghVhk7A+Ijp9lF2QpCDXyCXMvetNlvvdcVq61O8swfjNt
YaENCTXyD5pHiHWtvsiOijP34Ri6ITaxDS6O1FfdQsyoVMeyY3REaOwfb02JMWdl21rT55LS
bYjcOfxGP/zz5JefsIPOoPPvS2eebc4xQfs74vpN7qwE27ztJEGSReEltGiJEyeYkNTskdjs
6kp/xSbfK7PcclxnYfsoLyHZRlzqp3hHhJ87t46IWwc4kSnzac20jR+JIvItfGt8ExeZBL7O
bj1CYvjZp69ytY93rrssTF9sKql1Jfu/ahlgRA6c7yxwKN5F9KJbLDwswD8Wmo/4cYpso6Ve
QoSQ0elkIXFseD+4aaMn0XLm/HD7gl7x0npLWqF7U78QdAadQeeH6HzQ151pnXWY36piR2aY
M/OJzaf8aEGGSbtZKamWXkRjQoBVyiZK6AIj+xyPtDJzThV+sC1UjqBLZI6uEutFR/jSM4z4
ckLWroDUIlO3XK+WC0wkzpjTSk7MMg56PaB5pzeD4rBwpYtdsnP1AD8py0TS5MENMQ9ewWg4
4h8t86s9TvHzN4laQ82R+izq9KSmm4uWuXDZTjkb3B1plnmnePlNju4+80zj7PPOIQWVFvRi
D9AZdAadH3YpTCg/SSHTZtrS5jjT5pAynYtOIx2D3IRcE3vyXD+JpTjLRZBoQuCa+IeY+GV5
LKizC5b74btjqQpV9nNSq+09SLMIlLnMbNdlF9GWk1RBtJG9/+yAxW6VFzipRZbRG1nN+0jC
YJecNz198z1q+vnpZVYR6+iVGzypAa850udxa8ktg0hhi5OHxysOXJv8/cy4RaY23rP9A12r
VPxFS23d8OVH26au8qQsJuSfRUqkdsJaH9AZdAadfypNF7g1J9hVJziNPYj2PlQfIuvl153i
NFzgS/sQaQ+v+gSn4SK/+RK/uQfPtzOqEEW/oP6kdsZmfBaV9o6V7KJ24qY+RK4SjE+vnbL5
kqClRzA5PL4EuRppfJtdfYor7dfek5IPCOpPceovasdLL/HqznAbL/JbxsfXnWTXnucrBhB8
ado3/WEDQGfQGXR+yD4akY3nu10ebrF2jEo7BtdtclilHf+j3WLff8yo+v7ldxPjM373tMn3
I384Y59g4i2+X4LqB8tXae+LTd6J/rcGgM6gM+gMD3kCoDPoDDoDoDPoDDoDoDPoDDqDzqAz
BHQGnUFn0BkAnUFn0BkAnUFn0BkAnf9DZwbiXXue0T4qah0SQr7LqmuB8e32oDPorE8638Wc
fayilRZp65xT1xAg3yVzk6tf2otJiUkgCOisR5SVlcUnxOlIklNwgRJ0pDFx8XGbNm0CQUBn
4DfyAEoAgM7TgVu3blVXV2s0GigFADrrO2q1esaMGXB8C4DO04A1a9YYGBikpaVBKQDQWa+5
f/8+n8/HdX7ttdc+/fRTKAgAOusvly9ffvLJJ3Gd//SnP23ZsgUKAoDO+suGDRsMDQ2fffZZ
/PQZP97Gd9ZQEwB01t+9c29vb3R0dENDAz4MOgOgs75TWFjY3d0NdQBA52lAbm5uV1cX1AEA
nUFnAACdQWcAdAZAZwB0BkBn4BGRkpIyMDAAddAF4Mo28Jv58ssv1Wq1SCTatGnT8PDw7du3
oSZTxfvvv49/qMbGxspksrGxMSgI8Gs5c+aMwbf4+Ph88cUXUJOpQqFQ/OEPf5joi/DwcCgI
8Gu5ceOGh4fHxCaUlZUFBZlCRkZGXnjhBXhmG/j/UFlZiW9Czz///NGjR6EaUwuCIHhfGBoa
fvLJJ1AN4Ddw4sSJp556ytLS8tatW1CNqaWjowPXOSkJvm0P+I3gFru7u6empkIpppyhoaGX
X35548aNUArgN1NStOTwwWNQhynnzq175UsrR4evQCn0gg8/+JDGpHBEVLZQV8IRUn38Xehc
ou406fcb1J/M8GDwSDrSHq6YSqETz5+/AOY+FHXvsD317xVn/MoOknUn5cdpS49QdKpJv9Mc
Ipcfoy49rCubR+0FqrPohW2bdoK5D0XTN0oUm3W8g8oHEAhEx7P6PQk10WjHlr1g7k/p7Csy
bR2FXzeD6EFWXBX7xxuCzqAzBHQGnSEQ0Bl0hkBAZ9AZAgGdQWcI6Aw6g84Q0Bl0hmjTI5D2
o51XJSvG03FZKMNHqtC2IaGsb3IaqQppvSzW/nVUKIWKgc6gs65G2o80HvaXpFsy4szpcRaS
SmJtv7DlODVxNaninECmEkgHUGkPO22ZLT3OPLjer16F4iOhbqAz6KyDkQ+iy1cSLDxM49eS
cl735PBNJI20xt3uhHirxSeQVg2qvBgQkWNJSXNMkrlywkxELeQWXPA+KB3oDDrrns4atGKd
i42noajcJa6eEICYRbQzGvd6eKXZ5p9E2keFy1e7kjm2pX3i1e+KG49Qc7fSG3sR0Bl0Bp11
Vmdrt3mCPGtbm2edUz3l1wKbt7t5LtDq3DGKlipd6IGuDWMiea9AMSJq06D46TbUDXQGnXVT
56WrXDxC3GUfB9W+4eLFt8w5KZTudvfMcFiqCnzjk2DpLh9ygNmCo+jr70mqd5PTX6dq985Q
OtAZdNZJnZetcnYREio1ohUjvMg4I59F3rXd3k7Uv7sGmlKjLOLWUNKa7d3YhtQoY2+eadQ6
mkyNQt1AZ9BZF69s9wkaz7CXdLOa+rRXuZtOMUv2MhsucEs2ERe0eqUovfP3c5RqwZINxBSl
V95ONu4ynDiDzqCz7hqtQpSa8ePnHoFsAFWqEWkfohwStY1ooxhAWvoQxfhL5SAKh9mgM+gM
gYDOoDMEdAadIRDQGXSGQEBn0BkCAZ1BZwjoDIDOENAZdIZAQGfdRN0zQgoyXftPSec7Ip2J
eDwiiI50x4qrEh3pkQ1fhNBTDbdv3gPmPpTR4bFZZs9TYoxI4YY6EkqkiV+Ese6053cev0hj
Wqw5OUInthBanPEs67/u3dUN5j6UO3funHv7wtEDp48d1JXs3Nrdveuw7rTnd57Nb25HuYHd
u47oQmOO7j/99qlzN76+AebqCxs3bhwZGYE66AjHjh2zsrJ67733oBTAr+Xjjz+eNWuWVCqF
UugI6enpBgYG7e3tUArg13L48GF845FIJPfv34dqTDlffPGFm5sb3iMCgQB6BPi1xMfH4xvP
iy++ePnyZajGlLNv3z6DcWbOnDk4OAgFAX7VvsDS0nJi+1m5ciUUZMopKip66qmn/vSnP+H/
dnZ2QkGAX87GjRv/8Ic/TOhMpVLv3bsHNZlCHjx4cOLEiV27dpHJ5DfffLO/vx9qAvxyxsbG
Dh06lJWVlZKScvr0aThZ0xHCw8Nv374NdQB+A2vWrJHL5VAH3dlHBwcHX79+HUoB/AZaW1vr
6+uhDqAzADoD/3NCQkI+//xzqAMAOk8DQkNDb9yA5yoB0Fm/qaysdHZ2fvHFF+3s7FatWgUF
AUBn/aWjo2PivuETTzyxZw/8t0QAdNZjxsbGDA0NcZ19fX1v3boFBQFAZ70mJCQE1zk7OxtK
AYDO+o5MJnvmmWfOnj0LpQBAZ33niy++iIqKgjoAoPNvY9XKVcuXVOpIlpQsD5aE4f/qQmOW
lVVUVlRfu3YNNAGd9YL7dzEHNwt+8bzgKougiqlPcKVlVIN9UKVONCaqxXqu2x+3v7UTNAGd
9UPnOxgD9WnoZa64KukYE0N+mPWfhTBSjbvegi/mBZ31Rme6wLviJFXWD19+Dt+zDTqDzqAz
ADqDzqAzADqDzqAzADqDzqAz6Aw6g84A6Aw6g84A6Aw6g84A6KxDOjf3CORDQuUg2tKDv0SU
wyJFv0CmFrZpkPEx4+nRjmkdRKU/nlExLF4xJpJODA+J8GFZn3a4RYW0jgrlqsl5pQNo+zuS
FVclbfi7gM4A6PzIdJZrBMvWExdtoDcPoNKLnMWrvUuP85Z1kRI2MmUaVIFHjSqH0KqdpMyN
1JZBkWJgvAF9AkU/v3CFm6TBt64PVaqRsjc9A2u8qy4gcryF51k5MmLFeQFut2xQ2HiMGrXI
MiDJbsHmAKkaAZ0B0PnR6Iy0XhGkLzDn5/u0fxy6eogVFDM/ajOnaq9f8pYAhYa/bAdtyQFW
oxopqLUip9rn72BUnObJcKNVSOcQLyz4JYMnX8k4gqwc4SK+z/zJYl7BGWHHmKhqraMlYaaw
g9nxjqjlMJkVb87NI8SU2fuHmid1sZX/a6NBZ9AZdJ7UeQzJzjN3ZRiLywhBi61cGXOTd3EX
K5wodaT8Jgd34jxv7jxCjmeuws6FPYfEnevMt8s/zMf32h0abuQC09fMXuatZsiPEQluL1kL
zfNPCVeMchNz7JB0O3SRe+NVNCvXiprs3nQ1aOUYumwrOX8vS9oPOoPOoPOj0nlRnrmzvyGS
7yjMtHCmzk3Zzc1qsndNt6OEWGccFlS+TnBMc81qtPFNcWpQs8X+ZmFKhnxY2KFmh6fZ+IZa
UBe5L6yzp8SbBSRZLT4rVnR7kaJsst70ocdYpnWzF2TaiUspiqtCaR9+Qi1S9gua4WAbdAad
H5XOgoxsK1EZsQM/2B5mh6cYJ2znZDc7uC3AVbXJfVvUtN3NPcsts96WXewuHeKEsCyj2yZ1
Dkm24RV7hkTNNnc3iaxw5i+wKjiP5tdbmTq+4s6fZ2H/KrOFkl/j4BvhWDkcuPoKUrKRuHhH
gHQA9s6gM+j8yHTOtOTleDYNi+Xn6OIYI1xnXF7XUq+s5XZk1NyfP9sk2SWr0Zax2LVZww6k
W0S2TuocFG8lrPeLSX7lzxaGmeu9+SmWi3bQAlOtEvfwO0ZFjft9qBGOxQeo4gxzT4EJLcSY
FGadeYCrBJ1BZ9D50VzZlvYLag8ylx9it6gQaQ+vvJtefZZfe5xZdoxbs58cuNCahM51zvWs
OslafpjV0sev2MmoPMmTqhAZPtzNLD/Oqz1Mz98d0Hies3w/s+Y0p7I7oFmFyvAJ+vlVO5h1
PYj8PGuRwiNB6lN6hCeHK9sA6PzoHiPR3lNGFeqJu8yIXIObqL3L3KHm5cgJfpGmlAzH/EM8
hUaoGDdRPojK+7VzNWtvcuHDiPYm9RCKC65Qay3GR357exrBJ5b24Z8YKH7W3D4qUqgRuO8M
gM5T8lSYXCPUft0HrqFuP4oGOoPOoDM85AmAzqAz6AyAzqAz6AyAzqAz6Aw6g86gMwA6g86g
MwA6g86gMwA6/xKdGYh3Yz9z1T8knVfFU54VVyUrdKAZE9nwZQhjgVHXZvjheNBZP3hwD3Px
tPcOmUWJMfSLmvrQ481ocaa60BJtY5KMZ1o/uWfnPtAEdNYXei71HthzbP/uo7qQRen5dZXN
OtKY7l1Hjh0++dVXX4ImoDPwG8jIyGhqaoI6AKCzvnP9+nW7cW7fvj1NVumbb7B7D8bPau5j
N29it+5qf4L365vY3fvQ3aDz9Ka7u9vAwODpp5/WaDTTYX3eKsVcKFj/V9rhr/sxL2csrQvT
rMdsXbDtw9DdoPP0Jj8/H9f5iSeeWLJkiZ6vyhfY2grs5Sew5y2wvhvaETdVmOGr2IIubGA1
9twr2KYh6O5HQdO6dctbW6EOU84nDx48b2pqMI49hfK1Xq/MznKMGIDRXTAzAtY7vnd+8DGW
FoptU2OfXcIk8VjvdR1q7ddfY01N0yOnJJLDAsG0WR39zXs5OTlPPrnQwABP+SuvfFZaqrfr
Uo8FCbANO7C9xZihDdaj8xfGGQzMwAACgfxk/vInLJGAOXjqgc5xcRiKTo9ccXIasbObNquj
7+k3N//A03M6rAubjcXYY/b6oPM0onnt2gqFAuqgI6SVlLx18OA0WZn1C7H5NqDzY72y3dZW
39AAddARcnNzu3bsmCYr0x6BPTsLO/8FdOtjY+XKlS0tLVAHHaGgoGDfvunyjHTPTqxein1w
C7r1MTA6Orply5aEhISwsLADBw7cuXMHajKFfPzxx7t27eLxeDk5OXv37v3888+hJsAv5+jR
o88999zEjU6RSPTgwQOoydTqbGxsPNEdrq6uoDPwq7h58yaBQJjYfrZu3QoFmXJSU1MnumPh
woVQDeDXUlxcjG88L7300tWrV6EaU86OHTvw7njyySePHDkC1QB+LWfOnMG3H/z0GUqhC3zy
ySempqYmJiZff/01VAP4DZBJ5I0bN0IddIT09IXFRcVQB73gxo0bLc3SmoqGmkqdSNXyWj5H
uHBBto6053ee2soGHgsJEoXpSpMqGhrrm9977z0w96EM9o/MtH4yqMpMVKYTES8xi6hxCC63
0pH2QMJr7MOq7HSkMWF1lrNdnti+ZReY+1DUvaN+weZrP5Z0XBFDIDqe9Z+HMhYYd70FX8z7
cDR9o74i09ZR+EpnCHzPNugMgYDOoDMEAjqDzhDQGXQGnSGgM+gMgYDOoDMEAjqDzhAI6Aw6
P8IoBkWtA0hzzy+dHp9SNihacUUk7xsf1gg78WGVdlg6IGwbQqXfTikdQDve0f7oaqsGegF0
Bp0feWS9vKLNvou6OYpvf0Jd2o8o1KisH5H2ITIV0tInkA+gsj6BVIW/1E4g70fKt/gE13iV
n0eUGrRmDzms2rPsFF8xiNYf9M/YQmvs0xot16BNR6jhOdachQ4Ld7MVaugI0Bl0fpTpQ5S9
nJDM+VQZrXMY1dqtRqVn2aW76NXnBNJLvPrzPGkvv+40t+GSoOUct/5tXrMKaR9Gs4vmGxg8
G7qes+o9YVL0a3+Y8WL8HsHaK4LkEhMTV9OCE4K2YWFDNwmJM2XnEcILbYgim8xdHDkYDTqD
zo9Y54g8E1YrvWMI3yOjjcf9+bHGDsw5lBSnzHYXRqFr2V5fF6dXhEr/lDx7STVFOixqH0Ky
Km1nzX2BXEtW9ND9Wa8a+c5JPYi0n6BIcm146dbBK2krRgUJJZbei32U14JWjiGl60kFe9my
fugL0Bl0fkw6K4eRjFJT5wx3+ZAgNteMWOIiTrANzbezmvm092JHTqZ17FYufmrcNshPW+bo
I7EgpztntBBoiWb0OLP0g/zSVkdyilv+G27kEKdaFT+6xJLZylh5GcXfpe2ySNEvaOmBmoPO
oPOj1LmHE55vyl/HXv9x0NoPRAvzjTwLvVd/IEldYuG+nFhQa2njPY8RbmHLnOkRbld2Uajs
R7Q6l9r7Z3rEZRhZucwTFblKMs0X7GRGx8yd5zXLnTXTmDA/ZTsnp8HWI9mt5WrQKu3emZy3
h6M9E4eag86g8yPTubWfG5k+x4hhzEm25Jd55m/28Qs2IkaYEAPN0/bzqlfZPT/zxdBVPj5m
Tzul+yguC6V9Wp1TC20oi3wXVRk98cLLkev8QtPNQmsIzCTnZecErUOCxTUOnMUeNSfpwfFG
HuHmjEgTr2D7vAM8+QD0BegMOj/KK9sqQeUeSlKze0ydW0I7ua4Prd/nF1fvvngPW65BW86y
CzdSq87xlndRyk7y5KrJWaoPMksPcBpOMnM20+ou8Cr20ZceYCw9xcXPjmUDqPQ8e9lBZlO/
UPo2M7XZLabRq/gED65sg86g82OIXCPsuCzG0z4ilPVp7yPjw62a8dvHKrR1RChXIYohkRLf
t3578itTo7ie0n60bViIH0Lj4svxMRM73x6BVIX/VTs7PkG7dsnj80KpQWfQGQI6A6AzBHQG
nSEQ0Bl0hkBAZ9AZAgGdQWcI6Aw6QyCgM+gMgYDOU4S6d4QcbPb6p9r/Pq8bkax8V3caA9H2
yHh0ojEbvwxlLDDq2rwHzH0oI4OXXzN7mp5i6B+nE6ElGLFSLXSkMRA8ASnmzGQzXWlMmvFM
m7/s3gF754dz6/atgwcO79zSvXOrTkTe2O7t5qcjjYHs2tadHJdekFOqI+3ZsWXf/r2Hvvji
czBXL/jHP/4RHx8PddAdkpOTc3NzoQ7Ab7k0p9FERkZCHXSEjz76yNTU1MjI6MaNG1ANAHTW
a7q6ugwMDP7yl78cPnwYqgGAznpNYmKiwTipqanTZZ1uY3tWYOnpWONG7Kv70MWg8++Ejz/+
2MLC4oknnvjjH//o6en56aef6v0qPfgKq4jBXpqBzZiBPT0D4xdjn4PRjxD16GhodDTUQRf4
8LPPdnR3sxAku6Bg94EDn339td6v0vv7MQMDLLQNe4BhqxZgBq9g3dd0tKmffTYNMvz228nB
wdNjXfQ+X36J3b5dvmjRka1b8QHsiy/0fo3+9TG24yB2bfxzaUsR9owhdvA9XXR57Vrs+een
Qe4/88w3f/7z9FiX6ZF/Pfnknb/9bZqsztLySV+GdmGWL2D+RZhuXrA3NNQeRUAgkJ/LE9iN
G9jIIczsBcwEwYZ09XGUsTFscHAaZGz37nyBABsamh6rMw1SFxt7SC6fJqszMoJpdmJO8zFS
DvYFXB155Fz5+OOwpCSog+6QUVi4tbt7mqzM/X9gfjO1++iQbKyqHFtaiQ18BF38KLh161Ze
Xp67u/trr71GIpF27twJNdEFcnNzu7q6psnKXHoDM34Vm/kq9sxfsT//GXvqBWyTCrr4kdwS
fPAgJibG4FtOnjwJNQGd/8fcuYV9fRO7+V2+we7BfedHxd69e2fMmIG7zGQyb9++DQUBnQH9
5euvv7a1tcV1rqmpgWqAzoC+k5iYiO+gL168CKUAnQF95+23z4pEYqiD7lBaWnrk8BGog54c
395oa+1orpM31+tEivLKaH6slgaFjrRH2qjcu+dxf5XN5s1v6U4FiF6UmIgEHWlMU51cIWv9
4IMPwNyHMjgw+prlk+JlpkihiS5EVGoRWmGvI40RlpqREl+mMsiPs0ce3MMc3CyY2bPRYp3o
FLw7ApdY6UiPBFVYzCI80bVlF5j7UNS9o37B5ms/Cey8Iob8W1a/F1R2hCgJFTzOHrl/B2Oi
Po19ASuvQaf8ezZ8HspcYNz1FnyT58OB79n+mSjUaN5OL3HI49aZLvCuOEmV9UOnwPdsg86g
M+gMOsPWAjqDzqAz6Aw6g86gM+gMOoPOoDPoDDoDoDPoDDqDzqAz6Aw6TyOdewSK4cnfBu28
LJT1CVr60dYRoVyNKgaQ76aRDwqV6l+2EfYhylGhXKWdq7kXaR39duGj4wv/X3Q9vljFiFDb
vJ5pqfP3RWsfQaU9AqlaqNSgeI/Iv11lbWGHhMoBpPm/VgCfHe/QIaF0fBjvnbYrksmFD6PS
3v9ZjygHf1l7QOdHqbNMLShb6yHOteNn2ga1kOp60aaj9GwFZflhxrLjHGmfdnZZv2D5VlLe
ngCpCpENaLcrmQrBh7UbQ58AH8D/nRyPb6jnWYtb/cpP8/FhRR8vt91NmGOLLzxESqzrRfCR
2in7EXzJE9undNxxab/25YTv+AK1f5rY5r+dTDs8MX4AVfRz85Wkor0cmQaVDYzPqPp2xoHx
Zar0Vme8wj2cRUoX4SJbfpZ9wmpayxBavYu8aAut6mDA8qOcloHx0l3i5mwk5x/m4iv7fY/0
T/YIPqzttfHxcjXScIS2aAOl9hIy0TvplQ5oFt4jdvGv01vGZ/z3Hun9vkcmekc20Tvji53o
nYlVmOypAUTRw8l+k7hoP1c5iE6877czavtL1j/Zy6DzI9YZ3xFwI9E5XlF2SS2ufhHGbAVN
diYgW+4bGm/KK/Np6McVQxTDgpQsw4BKonJEWHeUWdYd0IDvec/zcNekPfzGs7yWfqT2GHPJ
voDGAaH8FJnuYp62m6cYFHb00Cm0OW6RthGVTow4U04TRdovqD/BwjdLaT+/6gBj2TGu1kd8
2zjHXnaQ1dSr3TxaLnCW7GVUnOLJcVt7eOX7GRUneNotpJdX3s0oP8VXanh5MmLhXk7zJX7d
SdZSvD0XtYbiMy7fz6w+zWu6yNdTnaX4h9UJClkyk7TYNbXBwZdqmbqNU7efsvgtUliiJSPf
t2lIiAvScZ5OjjXlrgpYOTbZI42XBI1v85rxJfQK6s/wpAOCifEtQ6KadQRytFXJOSF+0NWw
14fk+Hd6HiFqmR0ZtUp8g4n3SN1x1vIjHFkfv3I/Y/lRLt4GvFOaz3KWHWI14r2vRhpPscr2
MmovTBZ56T5GzQU+3jst5zhLuxk155E2FTfrdWLWPg7eRzXHAvAZm/BPgAGk6TRryYGAunO8
ph7Q+XHorBzhxoQaUlKdFrR5sMKNgt5kSff7Cdgm1nbPmZAsi99GWvEjvRFBWr4p0kKq2EJE
Qo2IQSbcMhdxvn36UUHDNh/JIteCLT78RBMiaiJaRqo75c8jW2Xs1ercfpHKkNimHRB13Y9Y
KrcnJLhl1Vu7UGZTsp1ji+x9/Gc5iEzD3gyQnaUL4owsvWfSa0hN5wKSllh7BhuRw50K9wek
19u6BMy1RyxTdgfkLLfxZM91Epln7qMlxDumb6IvSLfyohkS/GcTC7zrL7GiF5kQePPcyMaB
1RTpiPBn9gg6rfNJCj1yHmOJZ6bUyUNsnXWIX77WWVxo4+P4/Ewvq5KzSOuwqOMCg55qKX4z
oHaPLzPMhCg0EVc6ixPtFx/h1+/2Zhd4FLzpIww3IoqNec1+S95wDUi1LcV1HhbW7vARiG2r
rkXsvC1JijYTVvhmVTgQPOfQMpyjKuzxrnFhm8ZtYLacoQUmzLf0mMVbRqw+ThWnmBMDDVnF
7suOM8NSzV15s71DCWWH6OG5Zi7s2S4xhCXHA0KXOQavIkekzXcXGroS54qbqE2nqeyg+Q68
+R6oUfx2TpsGAZ0fi85zHbkm/Cxrd7859GJy5TYfdoC1OMYiopnSMiCoxz/z+/lpheaSRg9U
ONuUNJ8imWPoNJ+WYitZ7rtQRhA3+4ZJXjWlzPcTzzF2MkzbQhZSrSd07uhlBHBmW9HnUyKM
XSSmMduYmUUmpEKfxgM+DjTzrONI1VpnL4FTapONQ4rzsoO0jK3UvCZbK+uXfSJN7O3/Ts91
FcTNdYy2DVnukrDZP0QyxyPWPryEkLnLL5RrFb+aGhdhzlxEaj7m6xRnHbHckRnlWDXIj40w
4xaQpKN6q/Npf3rgTOdwK3ShuRN5TuR6ZrHUll9MCEq351X7y0eQhvN8+Wk6I90qaI1/cOxM
Q7/5FPHs+cS5zAwrtJm8qNYxXOmNisZ7KnDOPGfj6DoCZ6HdhM6NB4h+Ti86i00oQfPdxHZF
J9npqZbUZJ+6g94eEtOFx4W1bxAIKQ6JZbaUKIeS/Yy8NeSYXKNZrrMpYYZmLq8J6t3J5Dn0
RU7BBR5F6719eDP9shzFy9wKu+m8bCuO1EcSPS94A6tc4eLPdoyttvYrIcouMASh88PWs9oH
QedHr/MwJybMPHkLvwuLrFQ4efGcS7t8eTwbNNw8tsO/WOrkzJwTUOiVWGoVVOPCCDSmlnkX
vkVKkJOL13pQBDOdmNZ5R+lBAXNZZd4Fm4mJLb7L9vvx/Sb3zvjBNkNgwihwz1zjm7MzQHkZ
ySgyQ1ooDV0eFlzr0sEgxU4vCt0+psLSOcddPiKqO8vOKrX2ZFpmbKNmyDyyNlPzVnpENriL
ki0YuR45K71im9yD0s1ZS10DUZuktf7x0bbB1XTlGbJ7ul1ovj07xk1+PTA7y1ZUTGrR272z
/AiZnmmV3RO2FwvJzDRmVZGKZPZIiZM42U7YSCtaS3AOmENf7ETJsAlcQZYkzKUu8yneTExo
I+at96H7zbSS2BXtpbKDjfxLvIu24D1FWtzuzPx271y/15fhNy9Y6pO50rfoMLfzGj810UZU
SKnZ5e4RbFGsDm3f7+mQZBeRbUWPc20eEzeeZoSnzXdLdync6pck9czdSUtvdotrcOWGmgY2
EzOV7rHNbsxQ/JPfl5dnw5X6RCw0Sz3Ar+5wYyNOEUvMmY3UtVf4EQtNw9ezYO/8eM6do8Sz
bJnG3HRL/PM5sJ1Ru9WbSbMNyzRzRmwKj/Gb8fPQAX5qjgm/0XdxI8E/0JSTYEbK8azvYXH8
Z8ziODWPovlN9qRIc3asOWuBe/lRCtvTIn3P+MH2Jao/zzJ6I3flNUnr4PhBe55JQBVR0csK
izbzlZj5hhgxaim1+4m+gUYenDmEZNfS3WRhoillgZW/2CZtnV90oYVnuDmZZyoq84jMMPcL
MfcNNeXXeUg4VvGrKLGhVqKlVPlJokOMbfoWP0mqCS3V0tVxNqvAT6a/e+dT/hT0FcdgS/4C
c1+uVdZ+bnGTDbvYOaHA2o5hU3CS19wjUJymURItRK8zCjucvAPNuDFmjEK3mktsPmXGbD6h
ZUyYV+foL9H2lF+hV94KZ3qiTcnkwbY3i2VReEm8ckyk1KDtY7zkWCvuQpJskB2YYeYmNqUI
jQTN5OrdvszAua6s2d6pTovWefqHmnFSzKnpDou2kflhpsQ4C3KYWbjMA0k2JSZY+LItUjuJ
rCwrVpN3SLJxwl5epdKFFkAo3OVLCTKlp5o5EWdFbGTD3vlxXNnuF5RvJ8XVuUZUuCSspTYN
oM2nWSVvMauPM9LaiUtPCxTaa6eCqn3UsiNcxQCvoMM9ssaz5DhfOYRU7fQv3s+W9qMKFS9v
lUdktWfpCb68l1u6kVZ9lq+9DN7DLdlGW36SJ528KCqo7qaWHmLL1ELpOWZanUvsSkpDL9qq
QSq7SNH4Yo/ytJvcfkpUpUvqG4yWQWHLaUZyvWuswq9+QCh9m7Gg1jW6g9LQxy/fSq84wanY
QV96kCu9yM7byajr4ZescUfSzFy9DQNrqbIRoVQfr2xrry7yitf7xFS7RFS4Zm4NkA2j9Ufo
pQdZDSfo6Uri0lN87cXkXl7xbtqS0/zWAV5ex3jlj/NbNYLyHbSi3WypGlX0f9tTJ/nStwNK
dtHrLyEyFdL0Nrt0C632ouDbK8/8yl30sj1s6aBQfpaZWusS306p70WVg3iPEKPrPIqO8tuH
kaUbfCKr3HL3shVDaG03JabKZcFGhmxQWLefEo0Pv8nAt5CyvfTSI+zle6iVZ/mNxwJKtgY0
93Ky6h0ZMSbuPKPkXdxWNej8OO47ywdFHWNibYbHbw2rEOWQ9v5C+6hIrpqcBhdQe59Xe08Z
n1I0cYdRPijETZy4m9k6oh0/fqsaUQxP3jnS3o7EF9UvmLxB/N1yxm+GtuHvOKJ9x2bcL20b
Jhcr0wjxxrSN3xXFJ2vHJxu/Z/2DWRC5drGIfBBVqLWtasNHnqFHZlmSQ4xZRZ4VFwRyFaK/
952Vw5M90jaEamuF77LV2htAkz0yfkNfqREq+scrPzpZ+ckeGZzske96qkWF4jviyfvOKkQx
9IMHAPBq4zXUTPYIXur2bx8PmNgqtD2Cl2u8PRN9Pdk7Q9oF4r35XU8pNNoHFeQaoXyipy4L
a/eSRLHG5CDT0Ba/BtV/uVcFOsNTYf+2X8MP71uHRa1Dkx8m8FTY1Eaq3S+I2kZEysH//rwK
6Aw6w0Oe8JAn6AwBnUFn0Bl0Bp1BZ9AZdAadQWfQGXQGnQHQGXQGnacT6t5RcpDZqvfFbSMi
yL9lxTuSkgO+4sf+tfkM1KfuIkN7rxZ64cdZ90kwPcWo6y3Q+Sd07huZT3g6eY19XKudLiSp
wynzDW9daUynA79sNpX5WH/U5v5dzMnTMqTBNKFdJzoleYVzYoejjvRI2hsEE9Jftm3eCeY+
lM8++yw7e9HChRk6kvDwCCtLK91pD5729vbH3Cm1tbW6s/qhIWEJ8Qm60x6c0dFRMFcv+OD9
D+PjEqAOuoNS0drdvR/qAPyWS3MaTWRkJNRBR3jw4AGbzY6IiIBSAKCzvtPf3//CCy/Mmzfv
+vXrUA0AdNZrVq1aZWBg8Je//GXXLvhJZQB01mPu3r3r7+9vMM406pS72MF12OI8bMVR6GLQ
+ffD2NjY/Pnzn3zyyb/97W9EIvHTTz/V/2sB/8JaUrGXn8X++lfs6dewrDXY7QfQ0Y8O9eho
aHQ01EEX+OzGDdXgYFBERFV9fa9G89WtW3q/SvevYF6mGL0cw25hIdbYn1jYh/d1tKk3bkyD
DF24kBAaOj3WRe9z8yZ+wL0kJ+fAtm3YnTval/q+Rtg9rFeF9WuwRSJsphHWdADTzZ1zZyf2
979Pg9x74YWvnnpqeqzL9MjXf/vb7eeemyarU1gybsv7mJCEvTobW7gO+5dO+lxcjBkYQCCQ
n0tQMPbdKcP2Euyvf8d26OoDZr29+p2+Pqy//90dO0r4fHwAU6n0fo2mRRqjoo40N0+T1bm8
B3MjYSv7tL5cbMOe/xO26hJcJHkkVykw7A7+mXT5siQmBj8A+hdURDdYWFS0Zf90ecjz+kVs
/jPYfApWXY1RzLA5DGzsBnTxo+DevXtFRUWOjo6vvPKKp6fnkSNHoCa6QG5ubldX1/RZn8uH
MKaN9sDbKQw7fw3699FRWlo68dDCH//4R41GAwUBnR/NnuNf2JdfYregbx8tKpUK3zXjOkdH
R9+/fx8KAjoDenz6fP++n58frnNHRwdUA3QG9J2Kior58+ePjY1BKUBnQN8ZHBxMTU2FOugO
paWlhw8fhjroBTdvfr1yxWp5c7uiRSdSW9EYH52ilHbqRHua21tlnQf2H3jMnbJ9W5eypUOh
G51C9qHiPaIjm4e8qb2jbeVHH30I5j6UoYHR1yyeRIqNubk6EX6eqajYSkcaI8g38Yl9icp4
rF/99+Ae5uBqQUufxcvTiSIEltkKiyx0pEdEZWYzHZ7o2robzH0o6t5RvxDz1/8Z2PmOREey
Qmdasua9oCVHiZLH/sW8TNSnSRWw6lqgjnSH7vTIhi9CmQuMu97aA+Y+FPjafPjafPjafNAZ
dAadQWfQGXTWKZ1lA4i0D/8XVWi0kX/7pjL15BgFPoEKkWu+fan50c/ca2dUo/gSQGfQGXSe
Yp17+PWnuE2X+LXHA8p20Yp20CrP8JUaFB9fc5SJjyneQS09wKo7zS7bSS3dy1i2l168g151
hjfhL/5RUHeMuaSb1dSHSEFn0Bl0njqdpf2o9BRFwLLP30GhMWdZ0+Z68uZ6xdimdfPkJ8h+
zjNsmPO8kPnERS65b3pT0Xm27i/Mdn3VjWeasJ4pV6P4/rpuN5HDnm3lOT9QSVcMo1LQGXQG
nadQ55N+LF+bRZt9/RCbjIOCNf8QZiyxIca5Vx4kUv3mJe3mynv5zZfwKZGOK6KcegufSmLH
mFgxfrCtGBWWtztSwi34i2xoZWTFmFAGOoPOoPOU6szxs815i+gvtEnbw227LG7a481LsMre
RqLYPWtGnu0aMA8t92seFLYOIlk1Fj7LffD98sReGN87V+30cnZ73ohtu+S8QNbDbwadp6/O
eL8rBn5wXUX98LeQqhDFf2y3MjXyw+stE5Npz9dUiFyNgM7/e51FtpkHBavek9Rt8mBF2i3e
RmQyDFP28pQqQdOl8VJofqSzbABtOUrhR1hEdRDFkvmObPOUTQEyzSM/gwadp0RnaQ+/+khA
9Rk+7qBUJag7zqo4xm3+j+uf+F8bz3EqT3Fb+n44kl97jF13jv/9SHyyC7ymi/zGU+zl+9hN
qsd04WX663yCzHCzyt7k60M1lkjJJVuIgnhTdrlf40FfkteclP2CjsHJq9a4zhnlpq4lXt/p
3HSYzObPD1vjn5JnOOOl55BOhnwQBZ2nn87SAVR5nu7v++z8UOeGIUlbD41s+Zwl4tIwKm4f
EbWPilrHNxKZRrjiXUnpSoJjtkfziLhNu9tFlJfFHYMBQWzLmA6G8rKobVTUjo9RcxManRK3
cpr2+CXX+DUOaxfSPiLU7v1VqPaHvIe1L+Uq0PnXdBP+qfg2PSHHc8khRvhCcw/E0Asx4lV4
V/UJW475Ry12KjjO/+7AST6AlKxzC13tj7dK62wfgo+p2OpFCzYkpzmnd7hHtZHrepBHfccK
dJ4SnRVnaTTOs89YGBe+LWrc4TL3xb858d0aBnlJBVbufKOQFnLzIFq+zs1fYOzJm2eX51W8
zj1+NVXaw0rK8Sg9Qgtm4TrTl3f5MIONiHG2aW1u9vbPmCYSijf6pdb4Ld3pyxPN84i3XXSI
jx/y8RbbM2ONfFKcSk/x5f9TBab/jao+RDkilKmQ1lFRx2Xth2TbkFA2flLTOiLCPx6bf3QG
JGzVID8+JxJOfK4qh4RKNQo3qqarzvIT/uxMIxeOUcR66qJia2+qESfMLaHBxjneMfcNL0aY
SaDcix9kHqEghqQY2S72zFhmzljiI+uhczwt0rdTwwTWCe2U+EoCusSZK5rtGW5JiTbkdlKX
ylz93Y3deGaSet8FlTaukW6lm92MSEZRa4iisHn8JopCg4LO8FQY6Py/1tmPlW0hWOZECzcn
JdpK0p2QcII43YjXRt/8sSiqzJoQZ+kRR6i6HFT5pot7kefC5RacGlKbOgDxt87cqdU5VkqK
b3GJaHTnS2Z7xVpzFltF7uHVr/YgW898TWRXog5aedqP4Wu3cLWbYzKhclCYVWzKqyfJ1aDz
5Hlx67BQm0FU9lPnID3aU2Dl0PgJb4+217QT9z18Jy7/j0e/pP3Id5c6J6NCtG3uQ/C6yfpA
52mk8zEyJdk06nUi6bU/vsS3SatyCRAQkqR2zlF2aa1utFCTsE5fNMRMUukpiplnke6Rr7R1
ElkmtzgRbIzTd9GCmZZR5a6+IXOZ5Z4xGUYEkSkt3si/llQidaV6mnijZshSz9hSK7d499JN
buYRDkv7BAuyDVk1oPPESbGg4VRA3npSxkrf7M20RhX60KsK2kuUx5hle1mNfdrHOJtOs0p2
M+suCf5dW/zlRW7VkYD6i9//CR+oP81edpz7w8uV+GR153gtF7glexmVZ/lSFeg8LXTGP6Xf
ZiS0ehQcYaUW2wY1Ucq3+SVV+TWpuWnLbH0kppHt/i2Dwpoub16wKSPVTrKC1nKeEZZsxkiz
jyjxXHqClV3ulbcrYLHUkRxqKix1CpF6Zylc2Iudc9aRU+v8Kg6QReFGxDTH/OOC5iOUwBZi
dZ+gZKVb6iaGDM6d+5C2IUFGqeVcx1nkaFNfkRG1xLvy0vjj1oNCJR71xH0BpPUKkr5gzgsv
vZp2BFk1hqQunP3nebMXHkPwk2jtZEPa57fxXXDbmFh2lMyPNcs4hKwYFeG7XXzX3zEmzGm2
c8z1kg6LWscX2/6uaFm7S3CFT+NFdnybd8FxftvI+Ntpn/FG5Jrx4SGh4v93nxF0npr7zn1I
65AQ3x6Ul8Xtw6hMjbaO4Ad1iHJE1HlF3DZ+gKe9kHJF3DEmbh9EtRvhmLhDeylbe2VGMX7V
WjGknVh7MXwY3xJEHaNCuQZVjqDyARSfsfOySNGPH+Ch7eOPF8oHRcr/9S1pfdV5kJ+cb+u/
2G/Vl6EdF/xpTJP4Lezmo/6hCcakCMu4jUxcUmmfVufMdMNXXnqOJmN2DgQgfs//2dU46yh/
yVpnD/Yc7zhC6SlBywkqP9qYIJjrJjbL7mamVTvlHuPXrPeJKfBNUzgQ8r3rT1BDMs28xSYh
9d7C4Fdnm87N2EKNkHotPsjKXmbtxppDX+ZddY6TXmkTEGfmwzWJeZ0hU//2+4ygMzwV9jvU
OaXQlpzpKxsTtY4K0habSaReIaHzHQKMaUGzZ7mYLT4tXP1u4JqPhFmLLElMQ2qie+E2b3+2
kW2qfVSjG51nmvAWNX6hZUCac1ixFbXYe3GroxfXNGs3VRJjmLSfXyEl0FmE5DYn12KfpW+5
I6XO0Yst7ByNBbHmzHiXumP+3gmW9IU2nkK7vD1+gkgzzhJPYeRs6nKf7OV2PkzH8gGhQgU6
g86g8y/eOxfie2dy5yfBK0c4EVHmMVIPP95cjwT70DLHwFKPTJkbNdiYXegem2ETtMiRl2nu
E24mKieQcuzQDDsqh9D8WVjLJhdajAktwTRqF/J6D1WYZpnR5R+UaJJ2HK1pc2GhLiltTm4l
XkWdbmHLXaMLrAgEU3GStaTAR3mJ7pdi5RJm4lpEfvNfQXm5dsxgB0m2eeJeXtMGDzrNYWk/
6Aw6g86/VOf2IX5yroUlyzrtDWJskZV7lNOyM+zYhVacPLcMhQu3zKt0HyPndVLhPkZCvHnQ
Mq+wlJkGBi+lrPbxSLIOV3hyJUbCWnc0zIyf75lUY+eT6BBZZOlINcw5xApLmOubQQiONnbn
OifLHRwLPZJSjNwDbZMbHF1c53NjzYki25JdZM94S06BI4lrES11pYSaoQ0+wUmGkds4datd
yT52oDPoDDr/4iAKNbJ0vSc9ypQSbkpf6LT4EFcxJGw5TY9aaOoXY5OylSUfFLYOizquoKWd
3ou2MJa96SHIcy8/wYxv8y05I6ju8mZEmrIKvSovocpLrLhCa0qKTViDV8VFpHqrFzfSXFzq
mt7qX7yDHP0GvaabjB9j8/MJ0RXuuZtIoXmOaW9SEjuJxad4pe0E/3BTiZLSeImb2+aRf5TX
2O2fUkWqUf3221igM+j8e7tR1dwjkGuEK66Of2XfmEg5gGhvK/ejbVfwMeLWby8YaicbEio1
iHxQ1HlFJFMhbUPaB2VlGqH2e/Yujz8ehh+6XxavGL8gKdM+lyvqvCppvyxqHUblamH7ICod
EOJjtE+UXRYpNcL2MbFSg+LLUfQjimER3oaOYVTap72qqb1uOYC2jgqlcGUbdAadIaAz6Aw6
g86gMwR0Bp31TufeUVKg2cr3RJOP+EJ+kM4r4uL9PuLH/rX5DMS77gJj/BQVeuFHWfdxMD3Z
qOst0PnhqPuGjVyfSVvvlLTCUReyYLVzziZfXWnMGgK6fC4twO+x6nwXI3hbRUjNU1brRKcs
XOeettZVR3oka7OLGeXJbZt2grkP5fr162lpC5JTknUkwcFBlpYWutMePDKZ7DF3Snn5ct1Z
fQ6HIwmU6FCPJCcPDw+DuXrB++99EBcXD3XQHepq69e/uR7qAPyWc3mNJjIyEuqgI9y9e9ff
359MJj948ACqAYDOes2lS5eefvrpZ5999urVq1ANAHTWaxQKhYGBwRNPPNHa2grVAEBn/eXW
rVseHh4G49BoNPzAG2oCgM56yuXLly0sLJ555pkXX3yRRCK9//77UBMAdNZT8N3xzZs3s7Ky
Nm3ahA/cu3cPagKAznpNXl7e7t27oQ4A6DwNyM3N7erqgjoAoDPoDPyeuXr1amxsLNQBdAb0
mjt37gwODm7evJnL5fb29l67dg1qAjoDesrdu3fT0tJefPHFv/71r3//+9937NgBNQGdAf1F
JpNNPLTw/PPPv/POO1AQ0BnQXz744ANTU1Nc5wULFkA1QGdA3+FwOH/84x/XrFkDpQCdAX1n
w4YNBALh+vXrUAodoaCgYO9e+DIf/eD+/fv/ePf90cF3L+tGtm7aSSUFjGqu6kh7rgxfu/7p
4/5s+efHH304qvlwRK0LSY0IXi1t1JHGfDg88OHVK7fv3AFzH8qVsasmNrNJEnNfVFfizjUi
Ci10oSVEkYULc744UPRYu+TBfQ8/2tP+wU8zI55mhE95/uwX+CQ1RBdaog075mkL52MH94O5
D0XdM+IjMlrxPqIcFuhCWkcQ7e8p6EZjOq6ghfs90UDuY+2Su7dtAoQGmz4z6H5gsPfu1Gf/
A4N993WiJXhOYQai/ENb4MuOHg58z7aufc82rrMDW2yw7j2DHTcMtn8B+VEO4TrnHt62CcwF
nUFn0Bl0Bp1BZ9B5euss7Uekff8/X/oQ+cC3C/nh8C+bV6b6pW2WDaC/buG6rvOXBjtvGuz6
xmDHV9qXXV9NDvz2/HAJ3y5cm5sGXV/+aEr8Jf52eHb+knf8cnL6X968nf/X3nuAVZWlaaPv
nX/uzJ2emb/vzPx3pqu7q7urrLLUKktLy4yoKJLDIeeckZxzTpIElYyiIBmUHEUyCAKSJQoq
KjlIFjh373PAwtLqruqectBa77Oe8+yz99prr/Wt9a7vW9/69jmzb3koofPPT+fAu8KBDSJ/
C52D7gn71goFNYuy/iFUxK9WKLDhR3JZ9EKdoE+l4IWmH8HlVlG/Cj73O4LUDPAh0DnjBXJm
EduFiDakTtLH6aNIGfkbuDyNm2N0CTdZx7cmkfAQUa2IaEXkA6SMv06uSdyaQNJTxA79OdK9
SjcnkTKE+Me4+SMyZ71A0iCu9rGqQej8rujczAhpF1BT3aF2nZca8OwzoV0SUf1SEd1iF1sY
Yay/CQ5upf/n9xL12SsZxfpbYfovhvskI/vov/oN6RR3DfvqPz79L+VkwejHkq5hu3+/8z+V
UwTDH4iFdbOKYv0vcGivRGSfZBTrlkvt4hG9kpEPJSP7JfxyTmiHHfdtlYh8SGeIZP9rcItY
BJ1ZMryL/m/ioPuilzvEvNM5OAV+v4P7E5VU/ld/bfze0nkG2ZPwjgKPErhEwfDH9XEEXYf6
JeQyUfySVoV5KyhmonCZplvuCu2Xpr7mvKDngaJVFFLZVpFJKc1ZFDDpS0VriMqGfCDiJpG7
hMR74OMFhyzOyIPLFBcfIm+ZzkaXuYSLebDNxuV6mN1B3ip9bxETeYu067uIejpFyQX6TPEa
8ldwtQgOBQirhGsu0hdoRz1VSN4CzdbcZRSu0jlz51hTxBRtDMTdg6AivpGEWSXy5gmd3x2d
OwQUJLYpRPOEdND8Da7jN/D9+pTy59KBpwKqedRDjjpUi12q4FIO5/Qo49Ww2cWt9qVRlkBg
Gbea+W4e3T0m2UIRvRLOoV/98//9T5yuJyIfMVSVfve/f/P/KqUJRTbz67l/zaX8udTFUxca
+A1svhHU2X5cf69djYhX6lFpi13cMtsVw7nPF54yiOF0TDqparaHV327sCuHf7v4pSpuaYPt
J/S+Ugo+6lbLuNzKCOtiWJ/fwyG1W9ryc+GQM9Rc8X7TOXsBIengNUXkMArHYXQRro24EAN+
BTDMoJ2I1BE4h0HEEHrpSBuBWxQ0XSBkieCHSO2GVgiUbCAZhBuTuDkIM0+IO8D/IaIzIOaO
2EmauddvQ8YAoc+ROYW0CdrwvtEEBRNIuOJKH9QU8Ud+mGfCvg7hRdD0gLgF3Eth7AWVq0if
QeQdSOtD3AdXHkFfG9s5YREP71Kas9a+4NeEcxWypuCdDC0vSJjAs5m2rimC5y0hKAF8+tD1
gmIa8pcInd8lnZWkP1O6QtP5Uoe4z60jAqZfydnv3P3VJ/qpZxR0dqrG8zoH7eU5t0faavtu
oW28sh/vFP1cK/jA4a8/lgk75VMrEtYlZnt5/74THx8w+9Y568RZ9T99y/iT5i1B/0wObp2v
5ex2fHP6j/rJJ/j2/Y7H4ZC82fYjxofPuXy2W3S7TvCB00JfyFjt4jf/Ws9lz/5vtmmGHTgo
+ZlCEs85t53HDb/VdNnxDe+nZuVi4e2Myx0Mz8QD3+z69U6l/V6NjOBGkfeZztPIWYCDB7Ru
0YOfvYClzviH45QSHBNw/Bw0rkPBFQa+OCoBl3JIikAhFDqOOBmCmFJ8IgKzFEhpwbQAZtY4
qQIxDezWgusNyJxfp3NCLU4dwwEGOCXA6Yi4MeiZ4ZAKZC1hdQsm7uC2gd5FcEXC3g3HzGDm
g6+UYZcCESV434WBPzQuQEgSsjFw9IaoFcy8oegBC6qStnCPBb8RXOugogWhAFi4gd8CCdRS
fYbWzrEV4DiEfQaIpSz8CZbxT+j8zuj8uWosH2XohvWKe6UcU3Lfr+a868s/fqyRJnw+8cBZ
k938el8pXDjOUP5ot9R2EcMdZy326Qcd4Bf4xrNLMrxNNLSTYX1h3wn1b6TO7RJU3iFssEfC
eLtaCr9PFoeU5wE1+517OH+vHsspJbXHoVEyvJiTl+srRYddchdPXR2WNLDdxqX6majdXj3X
bwXlDoc9FBEx2yl8kVPWdJtavnhsw2kxk52mdxgRXeKBhZw88rt0rhw+JfmHA4q7DHMEQzsY
77F2zlmE2wUo3qAtasowzmH5mrzDoOCPokVagUqEwiQWlgE4LASbImicw4UniMzHYX9EleOg
M1IX4ewPvevgkwKnDhTtoRAEjxuQ3qDz9RLImyJijLbPb71A7jyCbkHSCqqesMmEbQRUYuCa
DN5oOAdBrxAJVdhnh+QZmJnBOhfWcbCMgwgDYtEIiIZxHHxioeIKBWucq0UzE/JukI6HsRuc
OpFcDnFDXGM9Je0BpMxhnwVRbZw4B/cm5C4QOr8bOod2CsgJ/UHA5ZhjNrdbuYCRxeeHxXaZ
xB45uudj6TC+yHY+Pu7/85tT2x1qBDVsvuD14HRPP64SfNQ85OAZzt0uLWIhLTSdLc9/fUT9
iJnvp3//j//C43lcyehT5SQ+c6/PdijuNos5eIz7dzIRHAyuP4kHHNdx23VU56C+x45Dyl+Z
x3Hwi2+XMNspYPG1tv0+HsaBiw8EeXW3C0ec1nXawWV31DT46yOMzy3KxSg6B2QdO3r8c8pg
UNf5/T//5/9RThEI6xR7j+mcNY9rZeBRgU0BQktoani2wS8MUu7ImYSIPb5VxTFr+OXgrAz0
UqGsAd9eXEzHfh/aDN5tjYQpWLtCOwn6jtBJQkQl9FPhHw9RF1yfpMOuKGNbRAEutYhoREgD
kp/QFNa7CmN78DjAJBACdtC/DK5wOJ6HRiZiivG1I5LGYGAIk0gcV4dRBvTNcNYf5yMh6QCz
81Byh1EQuD1xKR+ChrApg541bO8jNg9COiw6LyClBWfl4VQJaxv879/BtIJekhM6vyPtLGxk
t+Og0B8Oi/7xtN4hp6yTQnKfcGl9KXbuK90EvuhHYho6H+/RPHypXzKo9LS46ieHBLcpXzvj
nXVK1eKoVzPjcrPo5XaGy41jcr5cntlHj8vvNCngM7+wzyRfKLCAU1D6jyd0vxSx3qMdd5zB
8cdDYp9w6O9xqBe19fniW/6POYQ/l4vk9sk6rnH5qFXUcXWXExfbhdQDD2hlCoXePStj/MUR
id9/I/qZVaVYWDvjUquo89UDXEJ/OGP7rZ7/Ie3IUwGtYj9+x2rrucKmkT2LsHzaSD4jRxM2
bRbh+bBOQ9YkTJNgnQllIwjZQskXtsVwjED4Y1ypgdotxDZDOR7JU/BPhss9WhuqGeKUBqyr
cb0W5ilImKRN99QuKOuASx6nFejk0UBfFVMBnwn8HyC+AbIWUA6BYQmCMuByF/FNUE6kHeAe
UQhohMMFcOtAxRsaKYhtgaIFNM7DMZteyBvY45QMLAtxcxTO1xHQi8QGmEUhgbVqyHqBiEKI
qoBxHs43aDWdMkO77Aid38FGVZNoSJdERI9EeJcEpe8utYmF9UiEPRAP65GM7BY1d9+1+9Sn
RreFw9pob3ZYl0R4t0Qoy7Md2iV2caME+q5O+mRkr0RIK7XOpf3htPebVVREr1Ro7Wlhri/N
S0Sj+yUi+sTM3XYIeR8P7ZdmPzG0Q+xyu1joAzGqqNBO8fBOUZcbh4WUP+cQ/kTU/Zhvi9gl
Fm2pYsO66QJDH4iHtDHe/33nadohlv+STnkLtDM5c37dLqU+c9mXlpC/jJw55CzRjMicRf48
7dnOX6TzU7fnzNIn81iF5M7Rx7msom5NsrKtoODl+iMolmXO0Weo42zWXfRzF5E3R5sKVDl0
ftbTsxfpDNQSgLqXMtqpurEz04sC1hY5dZIqh7KrqQUCtWqgKJzByp+xydHHrjx9yxxxhW2F
qLBLLaLeedwO+QIXW/+2MikyNgn7lAgENIhS+pRKAdUCPtVCwT+gW6kMfmU81vEnLVPP+jcy
qGqQqDASFUbo/N/A6HZadV6kI8co7SlOa0ZKn/41/GJQNjnN5VbqdsZlqpx2RnDTnwlUox/3
1z7rw6UzpUApfZfHSjnzPyG8hNK2GazPzB+O62AHfVGPyJoldP4g6fxKXQZW89unnDKLO2GR
wu3X9FdqTKoc/yoB37tCXrm8XhXCF1tIzPZP4vI0UodwuQq+JfArwaX7SJv+EQFdVJ5xXBuk
N7KjuhD7/AcCNdkRZeNIHkB0H7219GNCxQid30M6U6taC5/tfzjyEafsp4f5PxH3OO7XJk6t
tcO7xCmahHSKh7HW3WzlSy2u6VCuFlqzh7GOWetcRkinRPSAmJH9dsnLnNYXjlveFAhnBX2F
d4tfbhW92EItzKkyaQPgUjOh89sStXz2i8Z2bgjpQlALaqFIekGvrNkpd5YOFGGHYFHr2ew5
+pNewDKR04MTdvBqgnMegh7SAV30mnqZrhWl6+kVNLXIXUTAVdiWI7YBziW4Obe+6M6ZW1+b
57GeQi2TbxI6v990DulgGHlt57rMnbKgHFN14qTS5+eyeI2cd55Q+EIp6pS579cnFbYJ+5/w
bxUPKDzJI/fHA9rfON8VPZ9+jI/x8SGNr0wKhMI7RU29dx+U/vQg328lQk9Y+XIYhXEou3zJ
p7iNU2G3dano5WpuMfVPDyhsF3f51qGSEdrKIHR+g84L8IoEdxCSh5HwmNakWZPwDAevKiQ9
YFuJy2XQzEHWGJxi4VMDq0DwakArHund4LSBVyPsMqEfCj4VnJEFjxkiHtD72nSeOKQ8hsBJ
fCUFr3y4lOBGBxR0waUCzybE36f3wkR1IOyOK8PIfkHo/H7TuZNh6v35Lukdav4HpfW3nzHd
71LMdVbwI5FLXGbeX+0+8DtuzW3b9n0kHnhC3vIzDssDSh57VcIPcwttkwo6Yejz5UGlb20T
D3IofnkukVOI8XvxyxzK4rskjb8+Jvp7uaiTiorbBQ2PaHjuOmV1xCJkz0G+PxkWM8LbCZ3f
SJQm9YvCn47glCxOSkMzARF3cEYVPmUQ0YJgHLxu4EgwckegbgntaOiEwDwA3/DB8zZOu8Cv
Frw20MpHXDNUzCERhegqqF2AeSD2nqF3vc3N6cCSgDhIuUHKEpJRCEoCjw1sYnBaDG4lEDGG
XBYrhpzQ+f2ms5nX559y/1FQf6eg6X77MtFLladENLdbVoqaOH3+p9PbpJ32ipnsNY45zq/9
J5l0kcQRmcCbBz8X2+XQLhNdcZLv5FcqbjtOOxyJeCpj4bFDOvyYqtxX0mZ7hQ13ObaK29rt
FVbeJ2b5mVKG6I3Ws5LGXxgWihI6v107e0ZBJB5lTJoLpUyabpwe9IFjNKQS4JWAU5EonoaO
AzQuwSoGlsE4JACPQprOvnch4gqbJoQXwyALeUxcKYRhOCwv4iA3PDvh6gbLUkRmQsIKvPrw
GELjAs7aQdEfSk7IWIK2H8RTCZ0/AGPbwHXb0fOnrj+VvfJQklrkBt0+wSf3iUGJqFvkfi6F
3abJnJL235pm8ihbf35Qd4+IwS5R70OCEp8JOR1Ssf3ikPYhl1tHOeW/kA86dIbnNyJBx5TF
donp7+bR3G7TwDA3/lJA5aB2wG4OvX3aXl8eFPjUuIRo57dq50V4XsY3hvAugEc2vGsRUQFR
LZjHQ0ATkqkIz8K3irC6Dl45CCjRMdUuCeDkg2UijtnAuwaCtjipj5MarHepKNvbBVw6cEnC
8dOwqoGbG0R94RENaU8oOkDQG04Xwe8I+2sQN0bqDJRdIZy0/r4VofN7S+dLrQynxCPqCWep
A3rTqoURVM1jcPEQtcgNbxc29919QvZTEWrt3CIeXH5GXO8zTt39TncZgYUnxZU/PWnyjW2Z
SPgDhmPUt1yqXwhb7zXNPmsdyGESxakfftSjkeF6heNc2Nng+/yqtrs4ZP6wT3ibWRmh81tf
Ip7HlTKI6UFQh07CXrgyiuhCKJjiqAoEE1E4BVMPOsjTMhkBFVA3g7w7TMIRUA3zLET2wuEm
5O0hogsRPch6IayRziPnBuPLCOhA3F0oecI1C+6VSBmArg2EjHGhC/EtcExF+jQ88+BQz4oe
IXR+j+kc3ERHZIVvfuWB9Vr05RbRoPuM0G7JqIdSkV3r29ORfVLRffSli23iEf1SUXScGP3C
csgDiah+ycheydA2RkiXOHsX+xI1VzwQj+gTc4s/LCDz6THBTyV8jvtthIEROn//BwSyFmgW
sN9ZLl5F1jSyl1DJhN1ViCXRvuhC9hvKy7RlXsh6A7pgld6hLliio8LylugXk9klFK3S3u+i
V3lm6Zg06piyAXIX6AoXsrLR5+dotzbbPMibo6tBXGHvNZ1/7tQsGlgr4J7P41rEf6GZcamF
bFT9xJQ2ipQxEhVG6LxF0sVmxuV2MXbkGAkj+ekRJn/7j4wROhM6k1/y3Bp0JjHbHx6d7/ec
kP78ymOJUNY7RyRtTlF9kvaFHJLy75zOglJIHkMB6zcKSNqcqCW/tG1JehJh7lvR3ty17dC/
mqbuPxe7bysko/iDNjdPbJHKGCd8K+Xzx7P8p94tnZf/eOgk7LPhXQavO//zKbCG9nJvhZpQ
KfgeDkoUpJI/tXk7xsbGtLQ0NTTVt0iSkBL/Ysf2rVMfdU21wMDAd9wpjk5OqhpaqppbInGc
OMV1lmeLVIZO6uqdHR2Eue8Fnjwe0lDXJHLYOrCztvLz8SZyIPhr1vIdHcrKykQOWwTT09N7
9uz5+uuvl8lfKhMQOr/nKCkp+bu/+7t/+qd/qq+vJ9IgIHR+r2Fvbw8WXFxciDQICJ3fX0xO
Tm7bto1N5yNHjszPz38oS4h+5pUrzLZh0sWEzr8cPHny5MKFCxwcHHJycuHh4ePj4x9Es1aY
bgwmwIxoIF38c6P12TNxLS0ih62ANdanoavrzYqKV1/fezzIZP4GTPyaGd+6dSvZ1cXU1PwA
0qSkZOn27R9GWz6EpKVVt3fvIx4e6uBDaE55GlNNlLnzG+Z//Yl57f7WpbOiIm0/kEQSSX8m
/fP/xTx2jplzlfnZp8wrjVuXzk+fMu3t3+/k4EClMT29jD17mI6O9Nf3vUUfRCo+erRLSur9
b4gDU+oE85+3MUvGmEOZzN//gRnbRtZTPzf6Zmak9PWJHLYO9J2dk0tLP4SWBCgx8b+YX+xm
fvIR8+//nvmbr5mJ90n//kxYWlpKSUkxNTXdv3+/v79/XV0dkclWgKWlZUZGxofg0E69xFSU
Z4oxmCe/oem8V5BZ0EX69+cS98qKrKwsNpCfn09kQuj8s2Agg/nFTmZaH+ncnxXp6en/8A//
QHH58OHDMzMzRCCEzj8LXs4zh4eZ8yQK/efFyMjIzp07KTrb29sTaRA6E7zvUFFRoRT07du3
iSgInQned6SmpnJwcCwuLhJRbBHY2Njk5uYSObwXWFtbffpsrLt/q6TCknoDU6e+wYktUp/e
gbGpqel33Cnj45M9D7dKj8irGASHxG2VEdI39nhobOUlWfa+HX39j/d/9f8pi/xaWWBLJFWh
f1MS2CqVURb6tSTXr+XlJN9lj6yuMXm5OeR5f60suCWEIH36H+V4/nmr9Ijorw999eui2+WE
uW/FvfsDmoJg3gezesuk2i1Tk3o8S4Cc5Nl32SOLL5kS/LtWCraMHO5upR7pgIsC4lOKCXPf
isaWQU3hf2DWgVlK0hupCg9joSjL/47pLC2050U2mOWkC95ITXBSQFJ6CWEuoTOhM6EzoTOh
M6EzofOHQ+cKMCtZqeKddFnFppFc8RNHNZW57EfnrPxLmX8hdC7b6N/KDQFu/lq+6WvFGwIs
J3R+z+i8kI/hdDxNxWg2qwd/1v66g8VCrNxhDaoyrBRh8fZPuHcqFwu3fwSjK7BWjNEMrBA6
l2KtBDNZeJaGp2kYz1//+pT1dTIfczl4mo6JLIzexPAtvLyzweU7tAAXb//o+ZPQ+X+czhR5
s6DLAdHTUOSD/BlkhmC5ih7nzEYw77G6tZZ1XLs+/unj+o0ZvobudLrwKtZxA+uzjHXjPdZB
Oetk48YsUYm1TKh/AhNz1vksSOyGoimrwHpWthrWLXWsq+yn1LKOG1gH+UjwQnMm6+s91mc5
yx3KrlI1qzIsLi/nI04eQofgaovl6l82nevR4wqhXZDlgSIP/IPR7giBryDP+hoegCJbyHPh
6G6cOQ4DJTwuXO+stHMQOAwDI0yXvUNGEzr/jXROheoZ3L1Fs6POFIZimK3DdALOq8DdACNF
aPOHjTyu+mCtBhPX4SQJD2OM3sFMPPKDsVKBRle0XUH5JXio4KofPfmnGMBWB48KwMzDdV3Y
q6ExhfWsaqzchPq/Yzsfxmsxdh5/+HfwG9O3pFvAWgGZ4TRnrzrAk3q6KaZL0Xse4ZowUUTW
NTBLkBGIlgSUeuGSJpy1MViI8Wg4SyLQHDfDNyaNaizGwV4YwRbQUMZ8zS+bzvfQZAotcYyV
YrWU7uVqXejKYaYcq3c2pug8uo/iYzcmbcrkLoAtN8KNYaSB3sJ3tQojdP7b6ZwJuT3g4wTv
PpzmQPkNrGbBXQCastDmgNZZCH0LO23YSqEpEoaSOG+HaBVYOaDdGyaaWKpBNBeSHGHCgKwy
7mej1ATnFOEnjxvuiNSFhABshcAngvZ8eotzPgmBXBDjwt1YpGiAcRJqThgIg5MuwlTBOITm
SHAdha8DguTg6YEEUcjzIdUZkqJovgY1JcT6wZAbXva4IAI7aTiKIcoRzgwI6LC2UFmNWsiF
PS927kNlGq1Z1sftL5XOHXY4/geIn4bMadTcQpsVjnwCyTOQOYOaRJbQcuGkgcRYlnXEsrTX
7uCaJHbsREo0Lc8VYmy/L3ROg+ZZ3E3DXRvICuJ5NeYjIbMNRipwUIS/GS6rwVUDF41x0wza
SphtAjMBvGq44wZnI9qWSxTCLWdYaOEqpUBbcIUPUf5gtoGZDZMzkBKDkwqMddGTR0/+s/EI
YiDKGE5acNCCmxG07fAwAglOuKIK/u2oCoWeASbvYjYaIpqIUEBqAJidCDmBbA8Y6CDeD76q
6CpHnzW0vwK/Cv3QvgvQMt4w9cuQpIEAF1yRgSwvbvhipeoXTef75tARx+N8zOTjZR3uGkBf
Fs8LMZOHlyUszZsDRw0kXGctWMrozzxjnDdHtCnEeeDrhuXKd2VvEzr/zca2wkk05NBcCGXA
0BAzqfBgID8Ozb6IN4bPORQG0crO8Rx0JJEYgkITaJmg5zIURFAWCeN9iHOGkRouR9DhZzlq
sNBDlgOiHeGriQs+eHwFsR4YKabp/CIO7tyoCsfuf4W4ONJdoWCFdDmYaKHOF9J7UHABUnxI
CsFNPVjbI1kWpkpoioCqAGojoaGCGG94KqClGPcNYMoBPQaKwhGpBikDlqIpo1fQ4cII8Ea3
P7b/K7TMsVT7C6ZzAxqMoM7ANNsl0oBKLWjJYqFmY21SQU+8Fkq4FvMdna9Jw0oXT2Jw8r/A
LYcFQuf3gs4VtD/qsgF6c2kuTFyFtx6eFONxKLR5oMZAww0UWUNJAO4WGC1B3yVonYGRIh5k
06y5pgIdCfip03Z4jCsK4+lClm7hojykhFCaiIUUuIhAgRcpIViuoIfTQjrSjfA4EwEiuOiL
zkgEBeJpJM7xwE4DflqoCYYIP/1Eax1MVCBHCnKHoSCJpCjaDR7qhLIo3HLC4G30e+OmE/rC
4SAGuZNgGG8Y2xV4kQRPGaiII9MbMW54XPAD3Pkl0LkW/b4It8Js2bprscsTkfZYrNhgaDnt
r7jhjPKU7wi+nImrClAWoefhNBt0Zb+r5TOh89+4UVW2YaPe2XBWl214qmvX/Vf0cTWr39nn
aza2L2s3srGoyt7doI9fnazYyFO5aTfzlfu6atOWd+26j3otASKK6Cpad3enUJa5AyvmvGpd
cdC3sJ3VrKoWOcBMFsoSSIna9JTKjXrWsG78JbvC7rAkUP0DX1+NgerX61OxSYDVxLNNosI2
DZVX6c0zb6S1YgxlYGljY/rFLXqv+e0jv4z2dT+OQ/VltCX/Vepjq9H5TVm94675M9nePCZ0
/kXRuWKT8n01DCo2vpZvnHyl2cs2hTBtYtxf4GkVS7NXfRBBnuy4rLINKf38Ma7rj/vzAYGV
m7R59Yb3+8fPGITOHwCdK1AfAN8AlBtBlAOyZyDLj5wE9AdA4Cjr62lcdUagCqRPgPcIJLno
LbClyncbg7R16FxOWxrXtCBykhaOlBCSw/GSPR82bMTzsGN46jZoUr8Rn1O+cbJqw5C+t+FG
qGPlYU+V7OMqlr3NWhaFyNMbhdTjzHTQnrWx5HkVMrQxtWbrQ0Yeo6wnluhDkR9Dr0quZZV2
dyOqh13huo3AntvI8MGdRNYxOzSoaiPKqH6jhoTO7wWdK5FnCzkr3BCDvSXm7mC2APMVyDbG
aVXMlWIuD3P5mCxAjx+EpVCdgIkCrJW920puHTpX0Ju/NooICaPjXuhJjx8DJWAWocAGoQ4Y
vo35ZHrnKCWQte9WjrseCDZCVwYdBHI/CPOleJKAuiSMxyPXCUn+WK1EVwDCTFmewArc80Oo
Ke6nbCjlQhicQlQgnhXQAWAaCli5h6FIhJqg6JUXgkXnGEng31GUSB9r7MTHv8NgCTou45Ix
bl+lZ4+BEGQ74aIVevOwlo3aQFwzRMZFupJVoWhJw2ACsn1od1x9Csvd4YgrLrh3GS9K3pi9
CZ23Kp2pXtN0QJoUjn0LHQasVDFWgWorfPYldMRgoIjWTHoaX4iBmjYGiv5ag/mDoXMRXMVw
mguaQvR2uZcL5sqRroZzwjBmQF0WxjJQEIOyGHJuoNID0iLwVYKJKiouwPYQrTFvmkPFDjla
4DmDpDCaywbHocMLB0vUnYcuA9YSUD6DlmyWBi+EBT+yr9NuxtVknJdGdjAdC2QuB2Ve3Ihm
aViWPk0wA+d+XPHFcDi0T0DtOGrD6FgCDxVIHkVnFqJOQuIsXJWgrINGP4gehbM6dE4gPwDW
mogIxVUNHBeArwr0lZBshXOy8FaA0B50FL6x4iB03sJ01rBHijSMddB8He2xWKpCkQVOS6M5
Fi3XMV1EW2sz0VDRRG/+O4wk3Jp0zoOLMny9UWgErgNoKaLPSO4FQwCGotAWgqsqTYdLFrgd
AT8ZRF+jB7+9GuyMcP4sxiuRbw89R+QaIvgCmO24pQUdHfpgrgShp3GSA8aSkOOjNxDp9S+L
zpkxLNqmIVAB5zXoiddYCircCAxERyiSXXD/Oq5Zw8YITnoI0IKnEjz4UR2JW65IMgTXb1B6
A3GSyI6mjWfP47hiAn9TMB+g2xGe+rDURkwYrhjDPoBujrsEFA6g6iZ97H2WFShI6Pye0Dnf
DgrWiJegFc362xnVyDKBgB5rCFWv75FNR0FWFT2EzjmwU8WNeHpIxylBwxBLBbAUQNoVTKch
3hnXnHE7DH6isNREoAZs3TB7i1bZEa5wPIF7qQhVgbod8gwQ7E8LvMQI6pLojUOmKyJk6TA5
anVDzbGDuSxDqBBG3EiOpF9RKbKEuTrK3KGlQ8+xtQGoScIda9gpIjcYESa0D+TyIfxuP274
IJAXl5XoIIHOaGjtQcFVXBfBBWeMJ0KbFzcdYCKPvgLcVEaQKR0rGHUZEcawDaAnDVcZ6J/F
9UsYiYTeMXQUEDq/N66wKm/YeiBXG+HeGz6QKpQ7Qc/qNU/p7HVYmWKwgGhnXDTBzTjaU7SU
CBM+NNzCUDCMTkKMB+E+yLaBxEloi6IhCSMpsBSExFFcdqP9Eslq4OeAgTwC/FBhj7jLtK5c
uIVgYfDsRZArRtPgJgnJ43A1wCQ7wKAEPiLgPQZpLugo414GVovp4DqxE9BXRUcWzSz2T8yl
WONqNEq1wHsWPTcQKYNKf2hxwlAGRnzIj0GiAB1sLyqImCg8D4XyCchSlaHWVhm4aIG0KKQ6
IigEzFsIM0ZNFHzkoc8H4a9Z0QWEzu/PvvMaK25h7c2Tf+nML/PXSNZeiaKcdgu/ZPFuOR8z
Bev+q7lczBVt7P0VYzpvw5lchtm8jVeVXxXC4uxs/nr+NSp/LtY2/f7DWgntkJzOwVLJRjl3
MJOL5Tuv1W29Vq8CA1iRQpTl8KKA9bUKIZyIdsMMK6D0iR/MVNCfzQoCrKQzr21qF/X05zHw
Vcc5AVipYayMuMLeHzq/NUrhrXEIZYTOb8ihfNNB+cbVitfPV2zarK/YtJVf9rY8m483X91c
ZtkbeTb3Y/mmH4Qp/y4NRuJp5vrm9XwGHsTj5eY6b06VGIlDgg3iXDD01shbQuctHhVGfivs
x9P5PU21GxtbdzaF4P6Z2BX2TnoF2XcmdCZ0Jj/994unc/1fiJT+haZqDMT9z9B5NmfDrCVp
c7oPZ0LnH8a9+wOqfKyYui0y/Zb9T4SL/LB2HrwOGYkz75jOYrw75raOdi7fSnbCfdjLkH/B
+EE8HHhy6Js/ygr+VpZ/SyRJ7v/kO/KrLVIZWYHfMrh+q6qi8C57ZHWNKSxwRopnq/SIDN9H
cgK/2yo9IvTbI9/89k5ZFWHuD2Btanr+6fDc05Etke6UNwqKym+RylDp+djcwsK7/nfaubmF
Z6NbRALzgcFXElPzqIMtUZ/huYmpubXVVcLb9wLd3d2qqqpEDlsHKioqxsbGRA4EfwU6OjqU
lZWJHLYIhoeHd+7c+dvf/vbFixdEGgSEzu81MjMzAfzqV7+qqiLLVQJC5/cblJkNFnR1dT+U
Nq0wnz9m9vSwUi/zxSLpZULnXwKePXv2L//yL2w6f/nllxMTEx9Cq5YHmEI7mMB6im0iHU3o
/AtZOCclJZ3l4dHT00tNTZ2cnPwQWjV0m/nlHqZbPPN2ETM7h/l4inT0z4fWZ8/EtLWJHLaQ
ve3hkVVT8+G0J8+b+ZvjzFsVzPq2rVvJvj6mgcEHkCbk5Yt27Pgw2vJhpKr9+/sFBT+Q5jTU
MkP0mH/3K+a/Upb2/2Ke0Wf2TG9FOispfbccIIkkkt6aOA8yr3oyDfyYLW3M4nDm//PPTNmI
rUjnR4+YFhbvfbKymtDQyPvqK+qAaWn5IbTo/U+lBw/2MBgfSHMaKpjpUczc+yzOvGDu3cbc
acRcIyuq/36w4/Y6RkclWHsiJIxvi0Df2TmltPRDac1LpsZu5q/2MxseMVtvMv/j35k6caSL
fw4sLS1dvXpVVVX1yy+/tLKyqqurIzLZCrC0tMzIyPhw2tNdzDz1Bcv2/kcmlzFzcJ508c8E
IyMjbIDQmdD558JkP/NaNDMpmzlNbMCfEWVlZf/2b/9GcZnBYCwvLxOBEDoTvL9YXFzcv38/
RWc/Pz8iDUJngvcdFhYWH330UWNjIxEFoTPB+47CwsKTJ08uLCwQUWwRmJmZ3bx5k8iB4K/A
s2fPrl+/TuSwdeDo6JiTk0PkQEDwAWB2dnZpaYnIgYCAgICAgIBgi+NxQ5ars7O7l5eHu6uz
5/XW528x4Z62Fp2nrlJw8c1ofEKdmemuCvN0p884e6RW9K0tjd3Orx+apQMAxjpbq4q6iCFI
QPDuMdpbn5QQY3DqlLKRT0JKyeNZJnNxvKuj8+nMq4iRtYJw3bMWgQUU0kLktZyLH892XXNT
l7HOoM7kxFqamcXn39KR9Sx9Qt/ScuWyqXzsNJEsAcH/EIrs7BJKaLW7OtITbqIrpyAja+Nf
Osj+oci1O9fM+I3cExKTbyVcUjX0rng615fsqyljEpOQdCvtip2NXXpJrplWYNVTms7tN6Id
tJNniEx/PF5OVeenRIWHUohJLBn5yZbNUkdVbnRkGHV7+JWcAarTloYLUq+zygtNzm+h9xfn
nze0t4+xfoJr4ml3VfdzIvUPF3O3zM2jszupo+o4TyGT5DUms9jH2dSpmD2ySmNMudSt/B10
9n58JKDsKXWmI9ZTSUTL18ti7659Vqm9zIUWHSX/2ucr1KWuxBgnjUSinX+KhVQjtpdP3zUk
Ojo6LvH284XVlZXF6cnpl9TsujgzNj7Dflnw5crSzNTkHCXjlYWp6U0vKawNWkkrqVgFUrf7
WVvbOqT0tGQLcir6RFEnwq2VTSIyOl4+u61mb1M+TGe/e/P8We9s8gLiB0znm2ZmUSw637nq
ImifRx3UBXmbWeayf1Gx8Lq1ZX4fdVByyVnLPW2OUsHRfoFBt6kzbbd81a2vjM70uMhZ5va8
pG8M89XXo/MQ/FiM3VU6oex7o7CioqLl2ezi4G01TXklPZfk7HQ3C2VJhoZvTMPMk2pVXU1F
RRlFQ6/4K0EKEiqR5X3r7yqsDjppmDiEZVXV3iu6GmRpENXWnK8oYZNaXlnXUBdqbO4Xc295
uMLAw7V6hM5+LztI7EIBofMHTOd0Y+OIjHbqaLqnzl1VU89YT87YMaV5dH3tfNVcN+EufTjd
ZCipHFnzuDM2wMMthebsy8fe6op2yfUtmSHGJsZWVoYyOlZx94aITH8CJu4pHOGW1DS1srK6
VNQ10Z56UsWr88XwNQ2t88mtC1MdburmSbeuC2s61zzpC2KoeCW29Rb5qfnFravttSEXZQWG
mrEm4/C2/SqVoyurD/MEOEQNLA25937KaxBLL3wG83Xd3WrH6OyNeRdFA/MJnT9crE4MDo5M
rttvC8Od+dk59wa/+8XXqdFHA+Oz65qkp/fh0OTc2POnQxNs7TD5/GHLAJV5paexNCsr+97D
MSLQn4bhalVu+8rhDWnfTxJwT5xYGQoU0ouvocS+EG1nEBoXregT+2RlNEbB5WbN9FhDuNKF
uEl2B6z2Oeiez+mhDvq9dfWiyoeWe/LV9RKohdJ4bayulnvTONVt1drmtkXPWMZ2ipuwP6Ez
AcHPROcK6cPnMtrX/6FmsjHuhEX40NpKU6KPtr6pm62NkWFM691UfuvQ/sWn4QybpIqJ5zUX
pHyubtC511LJ/iprOhgsChWTdiq+k6qkHDJIM3Y21kpT2fnmC+Zs7sXzpob2fn4uelrn4uoH
idQJCH4WLI7fq2h9PvOS/W156klV+0OWqbR0vyQ5Mupm98QKc3G4pv3h3OriQH3n0Pjy4kT/
vZ5Hy+vG9mxH04NH4yw/x8pkS13Ng4cDzc2D86yri8MPqutaaNNqbepuxvWIiKg7TWQpREBA
QEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBA
QEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBA
QEBAQEBA8K6xOPWsvrI0P+cV8hu7R8af9d69P7j0Mzzu2YN66hl1D8f+TJ6x4aHnL5Z/4OLK
8EBHxZ0idl0LbtePLq5fmH7aU9PYv/DmDTND9xrujyysvXHhRefdxocj8z+1CQsTQ02VZRsS
y73bMcw6vfysd+D5xMJ/i5RWXwxVFuRWdQ6t/rj8a2sLkzMLtHAGex6OvPjxD5oZ6qstK8nd
6Pvi+s7XO325/34FLefy1tnvVeXl6N07BdSlu22P31Lu0lR7Q3Vx/kbBeWUD4+wOXR1/0l1R
WvxqtFU09G8qeLm7sZJ+XFn98ze65eWL4Y6Ovsmltbe3ZHluZm5+5Uc0ebS/MS+ndGB04YOk
c3uy88cf7VExNNuATWzBg4H2spi0urn/5kcttRVEmhubmpmZ6hk4xKY1L76Vy00pDEW5S3fH
f6CQcR9Frm0HRdbramZuaH3hTtckdeFp653opKo3h/LqcEt8QlrX1BvMWB7Jj0ms6Zn8qc1o
izH97Pe7lY3W5aWjdC74ZsMqczxQQi8w+cF/xwz7LNxAU1rFODSv6eWPY3NNrI9H3D1qprmk
K6gaWf2jn7SWbSP6h52cBht9r6iseM4vZ5TFvJXR9qBAH1sne+q8uZGFkUtgSe80+7ah+qIg
S2dre1vqkpWZpa1X6uPXx8rig5tHtm3nV1ov2ERTVVHXNr97ihoDkQZCH+/hNV5/oKm6rLzd
1WK63KXnWYHuFlZ0mdZOzg6Wnrn3Hm0uc6Q8eP8BqVsDb53nl0tCfX3jG/5igyc7cxWlZPWt
Aqp7pj5IOt+PdTjEY/P0exRYXlpYXGbPg2MDDxqbHoy/mB0fn1p4uTo/OTo8/oJ1aW1ucmxk
YnZ5cW5qYmL0SW9TW9cUPT+uPepubWxsH3+drmtjTTbatllddMfPlF3i5lErG3ltpl1ZmLqX
k3rjqqeAkGhYA4tlL+cGunqeTW8uaMRDTljBp+xVP+YHmpyS9+x6wVxbWV5cWlmam3o2PbdR
7urU6OT07MLS0hJr3l4b6W1vbGx8+GyWfZVu5Aq7KbN9bY2NzRvKfXludPLFwsJMX3vT/Y7H
37NSmiPPHRQyH9r4+qIu4tA3UrltnWFKJsEpbDqvPOunH/TgKWvMrC2NT07PLc4/6W5pbO59
8arRi+OdTY2NLT0vNpN2Zf5heRT3jjOBOd1sRTTe39nYeP/xNFvzrM5OTExNjvZ2NHc+mVhb
t6/6PYU4hY3CB54Ph5pKaEcUDXa2NN7vnNo08Cee9lL1eTT+PZ23estS5JR+xCbjqVT2GG9Y
PTWXjlw0VBCxS3y+3viZNF89EfPQ52vM1aFKLW5Jr7j77KevTXbaySuaRNzd3JfzrSlch6Wy
v6Pj6g1rJX7dhFXmaqSehKhVxnfN7UnlOSKX0fviwS3X45Kur6RaHmonbXJtbFOho5WXDh2V
y368vDhDWSILM88GmhqbBlnm0OJUpzEPj4he5MNRVs/OjVHSb+p9xp7B56enJ8Ynh1hdH+ui
svO0Zd0Ye9Zf7Gu/T8t2k6ZeHn1M3Tow+d2Z2ee99Jnn8+8FnZvjnA6ftRp8/WR1jONZ9chZ
5mp3SbSWmpa6tq2jscLOvRoVoy/yHaW4DcJY4lhKslMTMYvrr0sU38+lb2WuZu1Z2/+8Lu6C
lo62urqOiVN4ff/MpoG6PL+4riK7MvxFlOyaJ16j88xAY/qN3MHBqnMyEiH1Eyyq9Ed7+me3
jGy2lbwUhKWds7+7c67ZgEssun68N8uXVz2ipTFNXsW/myX7tdEqfQOnhMQoZRX9kifTLaVx
5tr6Ghrqmqqm1+sGmC/7bAXkQ0uGVib7IjycdLXV1OX1zM9fbR1dYQ7fkeLn0Xa/6GenI83Q
8Awpmd5kxrVEGx7kN+p6xcHnxZz7BaIqGyJUzS6m9zFXJ0uuhVubn9PU1JTXtk8q7FtZ6jaW
4ZGw8r/sbawsrmzlnjayyFwa6brm4Wygp6GhqqrlcqXl1Zph/kmUs+IXv/nstIRDaefju4UR
RqqUMNW1TFyyG6hemr+qIcojom1moW15pZQ94Y40ZUjv+nTHIYmrOfVRpoxTjHMu9ibqchKq
nnG9tE2y8iA3zsJQV11dw8DCM61is228mmHNOKl98buRutimefiAfd6jpfYkAU654s2z/Nzz
+82d88y16hDdw8r+m42n2ac9jZ1PNs9J822ppw+Lp3R8R4piX70Dwn5LzLUrBlLCponfdd9k
jdB+vtDakdYY40+PK+d1DL26tLS4vNmiGq28fIRDqWTqZV2QwVkejYv+ATrqcuKGbsV9kyPN
t7i+2L7zgHDYnf6ZRw1BzhZUZyrqmwfGFFPjr/KS6d7jso5WJupqyvwn93+07Yi6f/zTkcHi
q7765/Q1NbUMDFxy2p5Rjxi4f8tcS0tVXVnJ1CO3gVpDrXXcSbU2oOSvZWToFE+NmS2PznT3
P330JUNRlQ1T9zSKSLVXbU+pRQ/2lypL6KT30COtKc78008lSoZf5NiIHNe6yKbzDUt53nPX
+qujD39+LKadlS3RlVfei02/lgRPWYfop99btE53+9kqf7vrrFd65/etYuYau9s0JMTW6fy2
pc/36bz20EGQ0zS5tTvLm1M6eHh+0Eda8XIZPRB70wM0rUI6G9NkZLWy6+6YKMteZT1z/lFD
Zdsj5kKX+RnpiLKuMl9TOdNrLDtyMspCQcE1feJ5pcieffrRtPG22nVL+qhM9sPvVHTrFaNv
udRK+5+yMJh7wURQxX9oYSREwTg05/FUZ4qqcQB7PulKdJNWch+c6DHk2i/qmEUP+Ll7useF
r90f70hzO6USwaLAWl1l7YOxTRbIeJ3OKdX8J8zZ5gRBMeM7w/RU8jDL9+xZq7aRsQiFo0fV
QpfWl8zrKiXZRMEghLKxV8O1ePlMb7Ae/tiaoeqf83imL0tMRLuIReKF5hR5HbuKoVdtWc20
ETsq79pFN+T5xOR4TazD4ePa1WPLLTFW+7gdHr5lLToVJMPNcLz5F9wLbalc3wqE3u6myh0e
nRjuKtXh4dQOuUs9MfKcxBnNywPUhWfDE1NjxRd0DvMY0rbYi0eXLWQOfnVQiCGmbehd0PLo
+x3PovOdqdWa83Lbv1GpZ5lv8TaagsZUZdYi9bSML7VQsvNVUTS72sieZ320jS7ndpWF6H5+
wrCHZau03jzPpRhOib3r1iVdsxi2sim4qHfGKnHuRZ8ln4BFUht1piHcTlrv8oPmQk0RtfR+
lp3Ym6krb1E9tNVX3K0JznsPKWbUtbLR2fecanf1VXs+3St5CU5cWqHra4ynxSL8evmPp3Lt
xE7qXmbTOcFaScAotr8i8vQpiULaIbQYqXp8t4R5WlpyUlJKUrDxtq9lc7/nUXs597C7425O
mIKSaU7bSGfD7SQaaTWtz9bH5vOKn0jnAUdBDsPE5u4c35MyF+i5KMJBxTjp5dpMmL2BV9bA
Sl+6hJRmUW9/jIejpesFn4sRxY0sY2Sx05JfOSL1pgGfbED+us4aLjx/Rsqqvr1Y+oR4eA2r
DpP39CUEA6q+sxA64qx3/PYLQRl5FlTMfGI7hykCjV6QMbiY3ru2OlVflBIaGJGSmeKuwXtA
2qpjqN1IQMguqYd192MPVUHrrO6J5iwLPetA36DQazd7Xl/Xrz0pUz+hlNU9luetdtYybUM5
tmgdE4uqao3R5hb3zHxdJrOx+tLaAcUUjUKNxPTi6tnzZriSqtOV6sYrRjsOMEJT0igp30wM
OLb7hFPmKy2zluco+YfP9ktT7ZAR3r1zB5eGd+MT2l6tCjXdd9Zp8C2euIkAKW5x54w3LwzU
s7sy6Xbz04W+nBPbP+cQpAvm59jz2V6hkMymWXpyWLhqxvjdjmNy1AVJgT1fbBfRv/xg9JUJ
t/bofmXqtWB9BeGD3xw3Cr6zsPamdl6p9lXkVPVluzwawpzEpS/MUw3XUjMMvrcydof/64O6
XtdSkpKS01KtRM5I6EWmBVlyKwSyzYnGBFdO6cDntIP06Z206xcjYm6lxGpKnNyjea33fsKJ
/QoF7Cns5fzkxGR1tOWOPcIhybTo0pMvCe7fa57Zt9WN7RtOh7gt+l7vuKorFJ2js2JtT+mF
r9P5SZGwgH7B48lsa2q1FcryfKyk2KvSdK6M4jrOyKWXPXPhiqePiGq5uThRcPfy9g/NfjS7
9sr9unkJbCMsahBUVJEdTWd18ki93bP619F5sk7lpEDY3dHeTO8T0gHUpLLck6evZZlVkmsu
a9FAWYcdCaJiyvm0McXsrc5wcbBUlpXSdsscmem2F1YLT0hUOyMdWPh0w3D2PSluVt1SJM0p
Glz6fJ3OksL+lcPfM7YffN/v/zRQxjAsd2C4JVmOV8QpOK25/3F3fpCAsHppT7OJoIBFbDt7
wHqoC5umtLGthKzwQFsDZV5xveslPa/TWTmre/imoyy3TfoGZVt0OERCSpsoOou6pH+Pztf1
pNbpbMjQjKpi8+6SopLD1cq7YWaHDwvZs7rExd3T53zMvYEXrxnbWsF0b65O5kTZcYqbVz6h
7YThykieE0rlo697KQcfTS2vlgaqHdUInnltApp79LivMo3dlU5RRV0vum5xHxZP7qDNhJH2
vHPivDbXatmehjA9SSHTBLqvl0ay/LUFFKzv08ycK46OKWj+zoR/VHBx3w6xrIcLb6XzMXkP
dn80hDtJyAbOMRdCNFUNLza8fF7Ey3FYwczZmaqHs5u3j19mRXu2nxGntM96forOskHU2GrL
DOQVUApKLOgceF513eGUTODdyphj+xQLHn63aKiJsNr5pZC9O0t0bp7nL4RVPJze+nQ+wGXS
Mfc9Ottxa13taEqTkrJvZkl0uCTw4Ncyhc+X7oXpHNMMYpmGL4I1BHiM4x5WRp3iEM15QhO8
LNxczi5hfay059n4Jj7c8EvND9zR03Jap8VS6zlx5YC8wbdUiKYz48/Q2VNeWPF8+auRVB5i
dkTStXdxrSPVnVM6gKbl2nCwtT7naWFplxxq2Cy0xDMkVLJ7xgd7B9Z9R/Vhe/fr3etvdRRU
jC5tSbPS0fHMZRdX6KMtZhb17Em5+DGhdTpP1OtLCgVUvU5nPoOOhTfpbBxd3FsTrH1aK4R9
qilSZ9th2er+FhMB/u/orCZsntY2O/aoa2TdwL6iyC9ulbS8ic5qnAq3uuYfl1w6K+3SyRpf
8003+Dj0qh49jVLnEvk+neeu60mci6D4shpqIKrxis4KCtYRdc/qrsmoO/avG8Fd3h4XSwbn
NtFZ9ITmhQ1uTl01ZXwj4T5IKaiXg16q4tIemRuXliri3RXMg/sWmcsDRXInxQNzejcM68eh
liYWQcWr33OFHRRLbF2fN56WhZ3YfTq4lJpSX4bpSQga31hv7OqzQIXTJ1XCKJWR46x4Rj1w
eEMKIxVXZM5a1I283Eznw8fW6Xx0g873wig6X5hjLoaoqpmFdFDGj4WyVlDF+rRQEnYpPqOl
INiYU+o7Oh+XDZ5mLkcZi/G6VbCzJVqKfXXGY/BZk94pMf9S2gybq7+houaSnhKjLWPftt6w
h8E+vqUDs1uczo0x1rsO67a9Xs3yMLODUpdmmEt1ib7GFk6e3qGB5grbPpHIebSy8KhcQ05B
3dozNi5C68QBvnPXespCDu3jyXi0yprjuyOtTI0d3D09HQzULaLSml++Us4r44Xh3nZuPp6e
ni5urv6RGc/fuufwrFSen/dCLatH5oeyrsVX9m7eSxrzkOH8jEPOw5OGv4eXuYVPZiPNu4Y4
+2+FvNhG86Nc74/+Y5dXOa2SXzTG8AnJZ7Z13fSzMrR1o+5ytbVyvHF3fv6BMYdQYNGTuf5K
W30zOzd3T0cXXROX7I4p5nAB99en/YpZGn28Vk3gjFf581c1aArV2nVCs/X723hDPsKaF249
nO6/raEqr27j6X/lioeB4J/4NSq7GnS5ThlcaV1fGsidMUnreNKcqWNo4UHJycfRxPh8ceOz
73Tdo9ty+8Xim2eZy0NxQbZ6xk6enl7mhiaBydTac+6C5MGztknf229qTnIW4ddIzCn11hVS
CWXPdeMB4gw9X+p4ruCCq6GZA9VwMwMTt/M5YyuvTJvVVGOebxXOf7dnM9Gsc/yIhGs2xeIX
PaVWFiaWjlQVPd3tHXTM7RLqn7DvbM+OMVY3t/P2pi652VrpmoY2P39tG2OuJeHwl7yxTa90
2WpJgN5ODt2mobEIbREunZhXps3Ks0rJg0e0wqpezvXdcLezd/TwovvV28neIaGi57WNqrLA
r7+RLJxcqXCX2CvmyO6Pu8HW/EKeVP2bIjz5ebWii7sf1SabGJtRytTJysrY9nzj09lib/V9
gq7s/HXX7fYLnx+jlgbl12V5FS09PcMjo40luHZwulKKoLkgQlXLjBpa+poGPmEVL5nz+VG+
eka2VI3szIyNLuaMvFzb4nSeGequrO148brTY+JxV+39gcXFuZnpiY768sys8rbbMVJGHndZ
bpnpwab46zF5Ne1DfX3tHU9mJx7VVt8bfrXOeTlWmpMUExNX/fDNveOVB7WFMTExaRWdyz+4
6zre0tAwwN5lWRytzC1sfrLZsns50FaTnhwfw0JiWvnwwtvCSBZH6+91snfKWGEkzWNUeS/H
y7KoisXklLezhtPsqzCStamB/OSYmNjCx9OsuXh+pL6q/iH7/uWptob6/onvbOuZR+2VdW0v
vu8mWuxvbHv4jCb5xEDjjesx8fnVz8dGuvp6RmemOurrO5+wVdVCT3N9B2unbKq7PoWqTVxK
49Dru+UL4y01TU+n2RJaaCm4SdWsrIsdePPy4f2ae93P3tjSHytPTi2q6uh90Nz2mG3YLA/c
b+roZ9+13FaTRze8off1RdXa8wf3aloebnZKj/U2FZS1rZtULyfrC1KpG+NvVX4v7OLlRE9G
cix1qaC6c+ktoTvPaqsans5sKnhppKq0rHt0+knn/fr218JjnnXWFtc9YGVd6qgouE4VmpLV
8fz7UQlLEwNV1ffHXq5N9N2vbuphP3RqsLuhsY8+XhouyEjOrKPtvRcPm1OvxVzbGBsjva3V
7DxU/iF6kLCLHmospZ5183brxOTz5uYB9vT8vKmMen7GvVdr5JW+u7To8qu7VpnvN+b6yy30
bC5fTUlPTwxwdAlPurvEJCAgeE+xNtJZdeW8j4+Pf3pdPxEHAQEBAQEBAQEBAQEBAQEBAQEB
AQEBAQEBAQEBAQEBAQEBAQEBAQEBARv/PyjEf5A=
eNrsnQdcU1f7x+m2fdu+o7u1rXa4ESegKCKIAoIs2Xs4WLL3DiRh7703yN4j7L33FBDFASoq
Khsy/ie5ev9pEiBabdXen+eD4eaMe0/Ifb73Oec8h0RChAgRIkSIECFChAgRIkSIECFChAgR
IkSIECFChAgRIkSIECFChAgRIkSIECFChAgRIkSIECFChAgRIkSIECFChAgRIkSIECFChAgR
IkSIECFChAgRIkSIECFChAgRIkSIECFChAgRIkSI3jBNT097e3urMNLg4CB1zvHxcRUmVFtb
S9MEqGfdUuHh4fTntm4pLBZLX8rY2HjdgiAPTSlwAsxc3dTUFE3BrKysdUvR9CQQ6KV1S4Ga
aUqB1l9RTzLsTHCEmYL0zTHTmS/Wk/R/XYgQIUKECAEPBDwQ8EDAAxEiRGvLngkB80RfEBxc
tyB9KXCHWbcUMIg0pSorK9ct1dnZSVPq2rVrzFwdqJzGHDNTit40MNMnDHsyOjr6BXryzwtc
OAsLi4WFRSWdaD6CmZmZSiY0OTlJzzbrlqI3zdC5rS36jxuosbFx3YIgDz0dMXN1CwsL9H9g
65ai/2MGvbRuKVAzTSnQ+ivqSYadCY4wU5C+OWY688V6kv6vCxEiRG+QgKWD74csTGjTpk30
lYCD6xakL6WqqrpuKfq7LrC865YCF8XQsK4rGrMOWmemFLiQF+gThj3Jw8PzAj35ssCDvt/+
Lu3cuZPlperbb78FfLhhwwaWV6CLFy++oprBabO8SomJiTk4OLyUqj777DOGBIgIESJENDp2
7Bhs3Jl5rqF/SGTy6fLvfSBi5nGb/umSmUfL1Z4u1+0Thj3JzNPlPwE8vv/+e2BztbW1US9P
iYmJQ0NDGAwG9bIF1ezs7PzSay4vL6+urka9SlVT9OfrsbKy2rVr11/MHgYGBrKysshtHBGi
Nxc8EP1j9RqCB6COzZs3v0HskZWV9TqDwVvJHjw8PAw9h4gQIULAAxECHs8LHkZGRsCQvUHs
UVFR8SqqRdgDAQ9EiBDwQISAx18DHpAhe1PYw9/f/xUhDcIeCHggQoSAB6K3Hjxm5pZcoipp
UvvgrfuP5mjKVreN0WQLTm0EOSennqzWXM/wJMh2/FwoSFD+4fEphuDxZrHHq3OnIOyBgAci
RAh4IPq7CIHhKuOXDh6AHD48aEWfvuVzApxAXRaQA8OcOyQ8AVcALKFpCxQHldBkBjlXAw+E
PRD2QMADESIEPBD9XYJWE7/0j4x58IASNXusBh4wflB7M0BB6rdAYgY8Xil7vPTVKAh7ULPH
K425gYAHIkQIeCB6K8EjsbAT/AoSzBgAGOjBAxyEsoF0wSkTLg5ew5kh0viWzymvegA6ArAE
0Ah1Hobg8erY41WsRkHYA/7IbG1tEfBAhAgRU+BBBP/ICejR7Mzde/du3br9+PGTleWVheXl
2YWFhbn5pbmFhfmF2YX52fm5+fnZuYXZWXKaA0fA70Agz8LcwuLcIsgGXsyTM8/Nzc8sgjQ3
B96ZWVxYWllaXl66/+jB7cmJmbl5IvKRvH7gAV7Dx9kVA9YAD+o66b0ZcJ1Spglrnw9D8Hhe
9oiNVWMmdXZmJCScZzIz86mszOvGjfZXUTNIXV3ZIL2KmqmbKC52eYGCbm5W1J+CpKTkqxtw
QcADEaK3CjwIBDyRiKcQSGJaujvG1c7O3sEdnZCaVFJf09Lc2lnV2FpRX1ldU9JQU15XU11T
Xl5XXlpfgWuoLK2vqqyrrquuaaysbaxsaqxsralpqq2pr6ypqq6vrK8pq68uaaitqW1qq29u
wdWURySFWaNtUSiH1MKiBQL+n/xxDIzdpbbyryF4nNKKYBI8AG/QgMfw+BR0BNDLi4EH8+xx
8+ZPJBILc+k3EimY6czPlQRIpCwSacOrqdyBklheZTJ4gVIrK+9TfxB2dnavbrIHAh6IEL1V
4AGwg0DxehBIsYHh9koXPSytrdxsdC0vWdtYZYbFNOQWVVZV5lWX5+KKC0tw5B8lBYW4wgJc
YX5pYSGuCFdcXFpUUlZUWlJSllVRmlNeWlxUVJVfWFdQXF6Gy6uuzC8syfQLt7I01bHR8ra3
Q13QjUq9vEhc+Sd/HKm4Hhrz/deABxTZlXo4fjXwYJXyppmSwRA8ZuaWYI+HuW8RvRvkglPm
Gste1gAPiD2++eabr9bU8jLL/Pw7bm6frJv8/X/MzVVhJid9Ak3g8SxrZGhu9goJ2cZ8hbW1
H/T2vs9k5uvXKyIi9jCZubDwQ0AFKSkbmD+Z5ORTz9UbCQkbHjx4Jzf3I5rP4osvvvj888/L
ysoQ8HguwQOXq31ToHfXrQRad7baWjO4FZrE8F2a1WfUkjJNAN9uOYuk17Y/oTMECfQG86VA
j6Xiutddqbdurz5vKYYZJqYer/1BPFdzr6XHg0QgkFYooy0JEVHmR09b7eN201SNtLP2sLMx
MdJDYxwSEqLLS0saqmvqSqsqi8urSsqrissqi0srSkrLS3GlpaUlZbiysoLSivzCqsL8qhJw
56nFVdVXNuYVV/okJJi7ONgaXPI0MPA00goQV7ThPJWZmYnHI+DxN4AHwz9gmjke4PYFz9yg
XqtCP8cD5IfdHeAggBA4M3iLenIpuBXQL3tZFzyANm7ceP78+fjVRSC8t7T0STwTys/PHx0d
jX8hgSZAQ2tkuHPnDg6HY77C7m7x0dGjTGYGHcV8zQ0N5wF44HBWz3My3c/VG7dv74acHunp
ATRvHTly5FVEiXmLwYP6C0gz9Zo6w7d8TgyLgy8d+LbCnE+z1ow6J30e+HGDfoY5wzOh9nCe
0op4bbsUvikxCR7QfYy6f6BbFjNlV+t5eG4bvcCdkDozQ8gJSGlgOGmfvt3XnD06Ozvp90Mh
D7AQSbMk0iMSmT1i46NsJaRstu1z+npzzAG+RAtrR0tDQws9UytDF1entKTEzuLK6vLa0pLK
yqKKmqKK2qKKyhLAHaXFZQBB8svKc6tKCxrKS1vKyXwSlZRi6u6hY2drY2qAOq/pJyiB3cJm
uJXNhlcoJzON8M8Gj+sT02v/Yf8t4EGznJbmu7PGqhbwRaP/doCvM81yWmqXCPPggcVir6wu
IvE9PP7zK0zo+vXrjx8/vvJCAk2AhtbIMDc3d/PmTeYrvH9f9/FjCSYzg45ivubJSSxAgps3
45/nZO4/V2/MzbFD4DE2VkHz1tmzZxHw+DNfQPrvyBrgAb6hq+HEGnOxEPCgcY+sdk97MfCA
02qtU0/IXy0bDB6rncmbAh6riUggzVHYgwieqqJDnc+p2vPyeG/fFbTjgL+4NPrISX959QBX
lAnGwtDOJCogoKi6GtfQWFpeVVFcUVNIdn2UA/Iow5WUlVRVlHdV1jUX4VKiIp3Q9oZm+hbm
Rv4ox+gzCuhNbKY/b/XeuUf/xDFLeenL2ZeXCcvI+NfrDB5hGc00OVcDD5qFKtRKLuqi+WLS
4BYCHgh4/MNF/wWk8Q2uBh7UD86QeYIj+0E+kNXA46CCPxTTD0rgkQGKIghnAF9Smhg+byt4
UFMHuHxNx3RQBBqpeV7wAKWgzoem5dODH00ROMgAw2zU4MHwQt508CAtURJ5yIUUFxfmJHwG
tZ/dQuSIrapooIGWJzuv+zdswUdE/PQvufmgzNDmdj6ukZmXy+pqauvqKkvLyotx5cUl1RWV
1XXNtWUN2dGXXdDOWmgTXXcjrMm5+BOn/dmOOv6y22cnh50Iv6eiCPq0kCPvqaS81BXSCnLP
eQ2HWuDRk19FXFcDD2ioBdyaqCdyrNEE9T2N5r4Kg0dISIibmxsCHgh4IOBBY/JWAw/q7xT4
2jKsmWH+2o5ra9vQte31WwMe1E9SoAjNkAfDoWFmOg10L8NZc7AfGL5nwmXp3cU04EE/4PIW
gAdh6Sl9hMWHWQoKm21nvcCx3UZBOMTFGqOpjGLndv1xD+pHVg9hsUBrY0cbM1sbcy9P18ys
tJq6qqqqysaa2prK6oTkTFcXb2MrC0t7cwc3S5Shqiv7/tj//ei/ebuhCK+7knSEgqwP/zHM
zgNO7MdS89MIBAQ8XjvwgP6G4fmiNN4J+sml1M9ca3/HV8sJg0dNTc3du3cjIyMR8Hgx8Ojr
66+pbc4vrBq96oCAx5sIHtBTNv13hCF4UBvNNbwTrxo84A0RQKKHH/CtN/ctgjMwnOh1/fZD
cBzOA8wx9VQxqBJwEM7A8GLdY6rh4oAfmASP1aIaPpfoO21i6vEa4AH7WEB3wa/pH9xg8ICv
heZu/BYMtTwhkh6TV7eQ4mMitOXPavNzO+7YHbjrsLeGurmSlL6MiMkpXgzrQf8fdgayHYrX
vhRlbo7V17M1NfDwds3Kz8nOzsO6eRiaGJvoa7t6oUJNjJy5eDw2bY/5lTWY86Aj/xEzBRGH
U3yhv+6N+H6r7UFOwzOnU/LS8Ah4/B3gweSqFhjLGUYupfYNwuOV1EwObh00d4/VbmvU4AHO
7cGDB8XFxeuCR2xCltI5Z+5TJifFUQ+nP792/Ttzm5DM7NKXCB4tbR2uXrGiUlZc/MZC0q6j
136afvSpoXlQUkrR0NDQi4FHVXWjT0DSxUteatq+RWXig1eOl1XWDw4O/nnw6O3tS7pcoKHl
clLUOiNHAyDBtWvRCHi8ceAB8zn1t4kheNCvYf+LwYNbIwQ+B4YTVFYbmaWZxAIPTDA01tRz
1FfzCNHkgQhk3QuhfhRi6C96YfDoGZ5cbeIo+JV6eAU+c/rRFhg8wHnCTVDfjd94jweRtPh0
sIWUFhFlLSiOOiHod+aMB/dJH0l5Jy4+i90HUDw8QVLi/ieOu/66xXvbAW8uviAVtVCUnaOj
lbaRrpaRkaOrq6uzlYe0RIKSSuJ+Xovvf7HZuzdCRMRHVND5IKcrKzv2V1abbTv9ThxzlZE0
FBK6nJOOJ+L/5Gk/C3v2F/XSy1V91/W1V2z97XE8oOW01GtV1l1OCzM5qAdayzYzt0jDJzRf
cxg88vPzi4qK4uPjAXsAW+zl5UUNHgMDZOtcXd2ore+5j+sC2yFtPjE3SfUYRd20kWtbWrsO
SGlECElhxOWdUNjopqbWFwOP9vZu8PNyWrGkvC0r+7mDPKYC0r4y5xOV9TLautmv3/xZRjNS
WMZFXduzoqqBGfCATruruzcyJktO1XHfET0eEayEaqSiTmpSpjKuiue0NFbHKDA6Lq+jo/vF
wAPAjLNrlKC4xQEeEwEpH5lzcVqmAUVlh/TNXQNDMxoaWxHweIPAA/wK7DLDcHw04MEQEgCr
rLEqFi4Sl9++dgZmwAOaNw5ZeYYDqdAAKzzzgfoJBb71wZYXXDWUDdQG34XyqgeocQV6l8ZF
QI1q1Mix7oWsFpXoz4PHJdec1fwYcKPwrRIuTuMLgsED9AbcD9Rd96aAB7gbMNxxjEgiEwBk
V1PDojwPi/j8wo7iOmwhKuBnauhyRsLt591hP+/xPcrteOqoleBR5927g77/JeCX7Z6ikv56
xgbKyvrnNPxMreyFBdx37owVEA89KmjBL3BehA/Fzx25lS12I6vt7gMu3DxW/EdQpw/7HeZx
38+blJe5QoKClv1/wlMSEfqF8CxBR1coP6EjREomIuHZ0ZfEBOQ6nyUSTSKQm6PO8KfbXHc5
LUAOAAkMFyL9NeCBCi2j+fqs9lWl3pYFYnLqeyn1Ri1r7NWCRqPd3d2zs7MbGxu7urqAKUxO
TobBw9E97riQIYABTj6r03KBcheTAQwo6aYraKeq6ieo6icqaF+Wu5gkez5OTNFPWAZtbBn8
vODRemVsz6ELHDw6rJxa3EJO4ioRAA9AK4BtQOXaFqHaFmFQK1LqEaelndV1PNcFj/ikAj0j
71Oi5oBhBGX8ZS+QGUZJLx3UDE4b1CZPOWcJ5UDFc95Yz8TauhbmwQPAD9Y9huO4/lEhlKgS
+dyUL2WCPlHUSZPXSpY9Hy+pGnxW2c3WKTI3v3JtvwoCHq8PeJDopijQgwccoI/GttK7IKi/
bgzXXzDMwAx4gASveoMeNOiRgObZCh5ZgJ/coVvKak4buCE4P/yYA/cVVCfoHPj5iPp2tMaF
wCfzssCD5l7HcNEi/C788LXaaAs1eFA/uNETy2sOHutGLiWvaomLcVZWs+M6avn7b45cRzwN
dD1EJTHcxzHHjjrs2un/+27sYS4sP1+AkCB6336jzb867Oey1VCzVpT23n3AYdNWJ77jISb6
3hKilrzHTI9w2LPt9N9zIJJfyFZI0OUIj+fufUG//O60Y5eLuGRsbvoStKqFYschUU6DzBME
Ijm0yNOEp0rQEfAuEWTDE0nLIP1F4EGiAQ/in2wXgAfzy8z/FvAobRqBj0N3mDWeEaijeYC7
zWorZehX3dKsagHIUVFRAV4UFhY+efKkvr5+06ZNADwsUCmHT5hJqEapGxWqG+WrGmQrX8og
G26tFPDzadJJBTYXJLmLCfIX454XPLJy605JuB0TtJHWjNcwLqK0kqUCWtGhtPL/DZFbAcCg
oJW0PniklIvKOokoBFNOuwCctop+BqAO+T/Ulqqomy53MVHufNwl8wjmweOUqOVRQZT0uQQV
/SxwquDyFbQuw9WCJK9NPm3ZczGnZVwu6vvX1La8ueBhYGAgKyv7DwEP6qd4+NtEDR7U36+/
CzxYpbypD8KWkZ4i4MhmsJGF64chARSnuTPQdwvNNUI3K+icz+jHPO+YEfUta+0PCDp56sRw
yGONQAQ0uEjd4mqjLTTgQe1YhqDlTQcPIgGIbO5J5MmlUSbnVe0UJVHHDzkdOhQkpxpygN+K
i8tURdhF5ETEtv0hm/e4H+SykxHDqkjbcXFYHuS4pKloJHvGj3WP19ET1hqKLuY6kUeOuP76
i92e7Rh+Ljc1eQcZCVtObt/N+zx+2+G/bZvVGV79c7KXs57N8SCukBOBkiivAVEsU35fpk1E
QLTLFDcHxe0BUGWF9DTy2UseVKFhDjzsaKHCtZcCHn9mUtPLAg9oJR2UaCZmwMehP3XqLyD9
dwp+C/IZQkdO60VB/k9z3yJmAogB23316lV3d3fwOiws7NatW83NzeHh4QmXK83t400dMi3R
Rcq6aaoGeRomherGuSoGmYq6qTAYACRQNchVM8zXMMx6gaEWY5skU9t4R7c8e1fQSqqKfjZo
RcM4V9UgU4ni94BaUbmUDZKaQea64FFR3R4WXeQfVhKZUKtvnaOinwNXSMEDUFsK+Zz1c9SM
Cs6ZZEUlVjMPHt4BOUa2GcqXMgHSqBnmgDqV9dL/CGNkRlLSywR9As4/K7caiePxRoAH9YAL
MNZrD7VQT5kABhH6DjKcNgkfvOSas7YNfYFVLfRPJQCZoHWpawS4AHmoQ/1Qx92i396axncK
jRNBr7UwWQyh4qUMtdBPVmHYq+BiwWcB/Qoy0E9yox5sgvsfLkIzBk0DHtQDT9Dw95sOHgQS
YY5EhGJqJERF2fAKe+zidDvE6S18+rKOMeb4KbPtrA4HD9gdP+R67Igb33Fr1q1hmzam79yB
5uRyEJGz1dG20lJ3FJMy5OE25zuEVpYPPCbgv48XzceH5uUMO3TIZfsurT1sqENc7sInzQUO
Wp04an2UNzMzlYiHmGH5D4lIToAoiCRAIDSJvLkLAXI2QDRAzkV8aQ4PqoEdwh+HelaeJapx
nbcHPP5e8fPzw+Dh6uo6NTV148aNycnJuLg4aPwlKirq0aNHBbg2db3Q5IwaYNoamnrdA8s1
jTKV9NI1TAqAHVczzAaWV8OoUEk3XcMoA+OLq2vqegHwsMNknNMPzytspsz36PUPrzhvQm5F
3ShfwzhP3SiH8qJQ0ygrNLaqu7d/XfBobulxcrucV9REmf85mJnX7OBeoqqfoQmoyShHzQBU
WKh8KcvEIT86qaa5tfe55ngApCkoaSzEtbn6l2kYZpBPzJRcrcqlDABjgDpAzYBn1A0ysL5l
+SXtjKbEIuDxmoIHtfWEDNZq4MHQbjKcevpKl9PC1hlukRp+oBkasOWlrj8qu5UGTiD7S23u
qcEDTtRxz14APKinpK59vQCBqMOeQGtn1ui0X0VcGd7b1wg1Rj86Qw8eNAMub4HH4+kmcQA8
YmIc5VWsD3E5bt0eeJA7TF7d5aSwi4CAw/Ej1my7Qrbuw+xjxwgJ+PGddNm1z3YXK4qT21hN
SV9NxuUQuy3rdrvjXFHGRkESMmZ7OB33c3jsZfNk2x1+jActImR2iMN534HAbaxYVnbsKZHo
gtRlsu0GphwaXqGaPPHs5VOR4J9PDxPIXEJGkyVKIkDvk56WgF9Ar5kbY6GIQB7Aofh/yD+p
E/kI5VTJ7VJOmEh6CUMt4E4Sk9v2DwcPaWnppqYmX19fgBnBwcEPHz6MoKiurq6npycrK2vH
jh2xsbHV9YPn9cOiEyv/6E/o1DVP1LdOs8KUuAWUJaY3lld1/plVLbbOqVrGkZez6qgP1tR3
XTSKs3TKdvTABURWpuU0d3X1M7mqpbG5G+OZlpVX/4fJJO19/qHFKI+igIiqnKK2xuaewcGh
F1jV4h+aV1jSCL3u7OovKW8Pi63SMkszsCsydCh28a+MTq4rLmvr6OxHIpe+ieBx/fZD6hUf
NOCRVdEH+wrO6MfQsMRfAB47Jb2Wlp8uEJiYenxMIwQqq4vNBke8E2qfOmR8CuGCYoZxNPVD
NczMLbb23bQOKKbuh76RO9AFgp9Xrt9be4qFgHYkfARUBffMGhcCGoXPB+QHrfcM//9aP/B6
jZjna3eae0w1dETOIgmeXQ8fBG0BqKBOoCB8pZUto2uAB+guVbvUNRYBvVlzPJaJTzdsi0iM
0RMTNz10yFb0uKWmpIuBju8RAevfWU0597mJ8AdKi9qfPO60bQd23+/owzvR4sLWCkrntFT0
Lii6Scu7HDtjyXPC+oKCDxeH6342C5njtgonHY9yO7AdtN+9z2svJ0r4ZNBZkRAeQXse/tSi
jBcx3BRrT8ATVvAryyTiPIE4hycQqOCBAEEC8TlqfpoZ/MQT5qemhuobussr+qpreiur+8qr
+surBksruoqKr3d1EBbnKGuOCYQ/7+8gkQrrhtb+w/7LJpf+vfr++++tra3v3LkD6AKwx+XL
lx88eNDa2uro6Ojk5AReXL16tbi4+OrV8aqq1vZOWp+AqV1yaVkrk+ZyXfBobe1uaurq7e2n
H4JpaOpezxYzXtXS1tbT3UNbYVR8aVt7L/OGniF45OTV1jV0/HG6aUtodPELRClBwOM1BA+a
kX36AGI0y0ghPwDNGhMmwYN6dui6O5VQz44w9y2iHiyAL4F6ICM4tZFmMxTYRoMXZt4FkO+C
fpYI9dgEeA2FN6RZ+ULtaaF2qjAZuZRmVgz1gM7zRi6F2wKwQT/FlOHQ2BqgyBA8INHEeH9T
PR7k+GFPwSMhJsZCQMxqK5vdjm2+EqJRTg7u6ipoLm7nbayoXbuCuI56q8jYn+L22fJ78M+/
OLDt8xWTd9LVcdC/4C8qid6xG7trl7e6moeKElpJCS0vjWHfG/nzlvBfd9gIHPdSPBusIo86
eUyPnV37OLdFgmdJT015R01xa2VBa0V+W0VRd01Jf335leamka7u0f4rN0bHbl+/de/2vYf3
pmemZ+dnF5bm8fglZgz+87k7SORJrWT+mpntSEvH+QW2xCU0R0Q3hkQ0BITW+wQ2enhVOqNy
nRyvtTRSspNJh0DmlFf7ef1ly2n/dvAwMjJKSEhYXFwsLS0F7OHj4zM6Onr79u3Q0FDwq5aW
FsAScIShBTSxTaLxJ7yKAGKGVgml5S0vAB6rCYBHU0v3nwQPRutcWsNjSxHweGvAg3pk/wX2
aqHx3q8NHs+7Vws0oECT4FkKcMAKaptOP9RCP30CCmayGhgwtLY0eZiM47GaHX/hvVqo26IJ
70aNiAx3fIMntMALZtcAD5q+fXM9HrCdjo+KNhE/a8lzzHvn7rCt7OEKGg6SkjbCpxx4ubF7
9yZ/yxq497CNlIj90RO+e7ldtu7y3HnAQUnJQk4yhJXVY882Rz7OmIs6UQoaVpz8rr9xhO/Y
G8i5z4trn70Evz0/j/3ufZcO72PX5N1/jn+PuSS7o+QBp7P70TJ7XWV3e8jt8VPaHai8J0SF
I0iTO+jCiVBtwXA9iSgT5QRrnTRn02wPh/xAv4r4uMac/J7K2istfdcGb92ZePT48fLcAnnE
5cUEDa5Qrn68vt5PSqbM2YXU3Ueqb8KXVi0Wls5mFS6lpC0mxjdhUAWemNl7E7CXhEB8tWFE
/lHgAQCjoaFhYWGhv7/f1dUV/FpVVTU9PV1UVLRx40Y/P7/h4WGGFtDMLjEn/5WDh7FtQnnl
ywSP6ITS5tZXAh5hMTgEPN4sAUsEB/ZkmAEK/nlaL2rtSQjU8x+geQg007nhAKGtfTdXOweG
0xhoBMUR1cVmA+yB26WPSgoMIvW7oAl4sgQ8oxUUOajgD582FHeUpjnIxUF9afROAwHtSLgG
+AxXC3NKL3Aa0KyJNXpvDW5h2BZ8HLyAz2e1jxiKtkodADYV1w3vpEOfH/IgrZHhDQAPPAH/
bFVLVGyMsYiYAy8vVvKUuRC/u4I6mpPHZNd2Gz52P+nTvny8Tjv3ObCyubFuiz7O5S4ppntS
UFdN3kheHHWC3/2MmKPQSTcVlbBD/JhNu4059nnKCAUInUAd2GPDts/l1z3ae/ecVOP52U/2
fzb8G/WOf2p9+APnwx9hjnzkfuwTL75PfQU+9T/9WZDIhgixDyPFN0SKfRIp/km42EdhZz4I
EX4n8PT7fmc+8zv7tZ/ML36KbL4ax3y1FSNsTJI8XNNDo4rTshpx1X3N3WMD1yfHHz56sLQ4
TyISGI7VEJ69eDpVFU/Gh4Xbd1NNLMwPsseqq91Lz5zPzH8QkXQvOPaOf9h9L68pF/SIEypP
X683NweKIkIkvPLoZf808IDW0t6+fXtqaio+Ph78Ghsbe/fu3by8PG9v7zUseF1D16sGj8i4
0pa27pcIHqUVLd3d/S8dPF5YCHggQoToLwYPytxJsmJiYiwFxaxY91pyHzSVPO1qYYaVlLTd
uR2z5VdPzgOYU8etBflRe/eHbNocsWWL1Qnei6Ji+ueVzdVlrIWFbA9xY3YfdFdUcxeUwB4R
NDhzwlGQM/z3X31/2WK2j9v7iLDz8VNKJziOKB/ZbM73H8dT7zue+BDL9y+34x+7HvnIifMD
a46PLY5+bsH3sc3xD1DHPnHh/bcn3+e+/J+EnH4vRoIlUfadFPmPUqQ/TD77cZL0x/FSG6Il
PokQ2wBAJVDwP0Ei3wdIbPOR4fJVPRtqoBfvhM4OjC5NLGkpar3SNnr76sMnDwj4P2yGC6hj
gURaWSESlwmkpaUuv2iLfUeTTI0HU6N6wgJuBMVccwi6buF23cJ6xNJozNjg3iXzHiWdYl3T
h8PkyT8EyvTW55pMgoDHuuCBwWAAGzQ0NDx69Ki2thZa55KVlTU5ObnaUMtz6c/s1cKELX6+
vVqeSwh4IOCBCNHbBB4rRMIC5B0gkuLiYi3OaZgf53H7eWv0rr0x51XQ4lKWfKI2J0Wsd7LG
fLcl4AC7w0kuV9HTzuwcmJ9/89/OYSmnYqAgF7CL3fOn3SghEXdzA3dxIRQXpyP7Hocdm124
9rlJCpoLCvqy84btPBT+/U7DfWxyWlJnMFoiAfp7MbI/Yk5/7iPwXtAplhCBd8NE3g8W+8RL
6GMXvndduN/FHnrH+eC7KPYP7Dk+tjn0L+tDn9gc/MSR8zOXI5/68mwIP/leovC7WRLvZIm/
my76TsqZdxNEP4gT/zBS4oNgsY+Cxb8KktrkL8MapMoXaaBx2RlbEHG5Iq+lvenqteGpmQcr
sMOCSLpRXe3NJeQicHa4DHenp77Qz63DxWfYGDNy3mhE62LvOdV+ecUhQekGTsHAHexl7p74
xQXyyhrCGwkeoEJQc2dn52vyZ0kTx8PPz+/WrVtxcXHAiINTBb9u3LgRvADMgIAHAh7IbRwR
orcDPPAEwhLxKXgkR0TbKyhhxUXdjx724jyceFYhfPcxxwNHLJWkbUSFI7ZwBP663Yl9L1ry
tLuMKPbQQTc2TmMlZR0lOa/9hzx5jmPUpL0Mz4VzHfHevAW1Z4fbcQ4/BQlHqVPmRw5id2xH
bd0cuPlXh1NHtBRkYlNSrtwey+koccoPUkm04w7V3hKk9E2g5GeBov8KPv1RmND7ceLvpsq8
myL1cZzoV6FCP3kf/9aNe4M7z3uuR95z5ngfdfA91IF3UfvfQ3N8gOL8yJnrYzeej334Pg0W
+iT8zIZo8Y/iz76TLMWSIsOSJMMSK8kSJPLvAMmffWT3eCuJBGhfirT1ywutqC++Mtb76MFE
goK6ww6OxvDYoY6O8orStLCQSpTzoJ5hm7hE9WmBvMOHM3ewpXy/OfGbn/z/920IF/ft2moS
ZXebVzq99C/bnfa1Ag9ohAUQAgaDaWpqmp6elpWV7e7uRsADAQ8EPBAheuMEHnIZr80kh+Z6
GpQrISrankcYw8Zhxr3fQlYqwtghgJPPcdsma66t1tz7PA/zuPEJWO3e77Htt/ADbFZHuc3F
ZUyMNK30FVxFhE2OHXA9xOorL+V7XMBnH7+N4Gn0ce7EnRxBm7fr791txXcwTFs0R0siWPmU
qaRARHjA/ds3CUtzS/jlqUcPRm5eq+xpjSnPdEz3V4414w5SZfVU2OSu8I2n3H/9JP8TLPxl
5KlPE0+zZJxlyZR+P036kySp/8ZIfBkk/G/Pkx+487G48ryDOfIOiuN9+4Pv2+7/0O7ABruD
H9lxfozi/i+G70sXvnfN9nyAPvJ5nARLgsh7EYL/9Tv1X8+T29zFhIPOu7mYOO3cn2tuPjN+
E1fb4p2UmZNXXOnh0aymlLZja+jGH3y/+i7gq+/Cvvs66fuvs775LvbLH+q0DJYm7r7qWR7/
WPAAKikpAdQBXqSnp5uZmQ0ODoJ+QMADAQ/kNo4I0dshApEcxwOKyRmWEG0pJWvDesB2028e
R3g8L160k5J2FhG24thtveWHkF+3Yo7wOQsLBxw+GPDzZuefd6K5hMy11c01pd0PHTP+bbvV
of1+Fno+ClI2HEdMOLns2A56/cLhv43H6oS4ydGjMQrCA7YXGoylUnSFw21Vct2t6iMD23Oz
r3f1zk3PQCczv7Bw79HdkTtDTQNtWRW4wOwU88sBUnFWHBFqvwVLbfQX/9r7zJc+ol8GiH8Z
LPlFmNR/omXfS5FnSVV457LsBynSHyVKfhAj8mGU0AchJz725vsPmvcHa+6Nuvs+OPPFR1q/
fRUj8lG+JEuxOEuRKEuhCEuW8MdhgmKn9oSdEb3XUb+4spJR3e4Un1vfPTKUk1d3QT1hy+/e
n34Z8uWm0O9+iti0MXXz9xXfbyz736aU39mvJGW96s/lnwweQBMTE+3t7dAmcaATxsbGEPD4
J4MHIkSI3ibhifh5EmXfFDwpISrG9rymueAJl/37A/bu95M448jN53xS1FFA1PbwsaCdB7Db
fvfjPRJ05gyKkxO1fxd6z0EzORU9OVn0QU67fbzGEnJujibeIoet9/5sfGSnFud+PUllVx2U
haSRJtsJw127fQUOZJkK1WLEceZ8efonCs0ly1HncViTAh9UWVJoW23BrVv9K/jH/++MWcI/
mZu/9niq8e6VstGGws6ChOpEj7xA48sYpXgrnlCt3X6qv3nJ/+gh+63n2f95iX3uL/6vELFP
wsU3RIu9Eyf5XpzUF9Gy3/qK/svu8GdefJ8kibHknGHJP/NOhsiHGWLv5kl+HS0ufGR7uqkx
aerm0vJyx9jtvJae6/emF66NN9o5ZPKcDPtmS8r/tmZ9tz1x068pv26u2crauutIAht3ZUDo
ysoyAh4vETySk5PDw8Nh8ADGi0Ag9Pb2srOz37t37+rVqwh4IOCBCBGit0PEFcIKgRJAjEhK
i4yxFpY04GB3EjnuqSgdpHvJ7dhxu61bMGwHvAXE/GTlMfxcLjt2hmzf57lvv7Ukv42CpJmG
uqmGkpvCWT+es/57hf2UlGxOsWqd2GzlIa9lLq4ozOds4mDjkyCiZcB/+qSc0gl92f1JmpyD
aLFmFG+ZJXudMWeXKV+PtXijgyzOVSXXVzsvBt1Qln11uGN67i6BhKejpMWlpbmZ+UdTs1N9
94ZrhlvKW6sLqgri8hM80wJtk931EhyVIs3FgvV4QrX3h2mxBWuyBqntCFDeEqS4yf/sj/7i
P4RI/uh9ZpuLyK/eYnvdJc+cPRYR7PF46ub1sf72rpqR0eZ7d4ZWHt3tT83IVbh4eRdXxqe/
4b7anc/KmXeUr5hXKOeEGM7MZryvd46IR+Z4vETwqK+vX1pays/PB699fX1xOFxiYuLy8vLs
7CwgkJGREQQ8EPBAhAjR2+LxIO8LC23S5pcQaSQobL91j9OOHZ6iYt5YZzNdTXPeI27bf/Pc
sjH08H43RWUrYaGwrdtSvtmE3sHhKK5ge0kTq6MQLizpsZkj5Jf9UXJSIRYyFqqc5p7iXjl6
phe51E8e1HHEnAsKVjKzltXV1uA7aXhsf7CZWL27Qpu3ZKvbqXp7jipztmor9ib0yQ4PmVbX
89XOukUuWqXhVp24sImRuoXHE4SlldXJiTJctLKyDIhkaf7BwqNbM3evPhgfvHu169ZQ9WhH
/mB9Tn9NZld5RkNBdlXu5eqsqIrkaFxibHliauXlovJcXHX5nRvj1aXxEV7K+eHqxckWwwPV
90av5lui8o7xle9kr+IUyhaUipdWSTynn27tNFJfDxqcJa3gSW/eqpbp6enKysrJycnXDTzq
6uoAXUxMTPT29gLwACYM/MzIyBgbG2ttbX0p5hUBDwQ8EP29mplbggKkv+ZhrxD9BeCxSAEP
8PweGh+lIyyC5uF12r3bjZPLX1nN7bSko4CA2UkuuyN7Qn7f6cLGbi8qgOLlDDjMgWU94Lj3
mJmqopmcmB/rITQHr6H4CbS2cEmQco4j70WNrx0iTzkFiBno8CkKCeoZWTp5RRvbBF/SRGtI
aoVHhA+3lpfHY3M8lOu8xfv8zvS7CTRaHqsx4Wm2Oj2AOXvVW27QW6YOK4ZzU66IcGzHpY+P
DM7MzBAIVG4Gyg5zS0RKRI61fDrUiUi+YALxCYG4SMCTCCtLy8s9fcMjY2Plxd6xThwFzjuT
XY6UV0eOTtwq9gkqOH2i7MzJyyoqKWaWWQFh+Sk5GYmZ3e2dROIK/tlioDcLPF7bOB4FBQW5
ublYLLavrw/gB4CQkpISaH4p8iV9/cQDgQeJxODvMycnB+kgRAxFv4ktordbq65qebrjKlk3
RkYvBwVjDfT0RIUuHjsaLqMSx3rcZROr1XEeN0VZb15+7M7tqF2sjnv3eAsdw0rzm/Dxaqtq
aijLWQjw2MqJnVM8bnH+dIwTb5HPTrPzX1yw3GoXJeYYpGh88dTpY4cuatmiXdKN0clqRn72
nkm13UMTU5MDbeVVUU6lWLU2d5VRP41Bd9l2J94aC7Zqs31tKN4hX6nBIOUWX8UaL0Wcl2ZF
FKqvPG1ybGBudvaprwFPDuW1SHHXkFfmrDzb2B5PgravJRKfbWxP2duNMnZDDr/xmESap1z7
0tJyd9+VgasjFUXeqVhOnNPmdNSenHRsZWtndmxmkp5OvqM5LjG6pqigoryypKImPTuvo6OL
SCA+3VP3lQkQAmCP6enpfwh4ODs7e3l5RUVFgdf5+fnz8/Pg8dnJyWnjxo2ARhCPB+LxQPTn
vQ1vN3jQh1v/K/X3tv7aatXIpTQYQiD09HT7+vlqqqlaaWo6CIk6srE7b9nluf+A5/EjjieP
YfZyRfy0JXbTD9ijbEYCQlrndHTUVR2FT5pzH9JiP4CWUfQw4Uny3Rzlskvz4s/W/sKOkVJO
UWIXTQTExaUNDLwdvC/ruMQqWfgbOHrHZhRcuXF35smTq511FXEuxW6aDa6yI/7iNwPPDHgI
1tlyl5ly1tpw97mdvu4vcTNQfNhTpBYlUuyuUZHo1dtU8eDhNOGp54OMGQQ8xZdBCeuFJ5KW
yeABSINAIQTyaBI4RiCnFYhHIGhYWlpq7+ju7u4oTnULt9qfYPJ1ovk2XCKmoaEvt7Adl1fa
3ljX0trS2NzU0NjU2tZaUFjY3t4Bx3p94/Q6Ry4FGhsba29vB7wREBAAOAH8evToUQQ8ngs8
rl6tB+ktAw9Qp7e3N3IbfwHlVQ9AG5Ews2PaGwoepU0j0H4uf/0VDY9PXXDKhHZ4Qf7YXhg8
IC0uLXe3tof6+ly4pKGmJm7Iz43eust/8y63g1xevIJhQrz+B393++Unjx1HzeU1baTl4ndw
Wmzm4t0iZSB4zk32YJHHdlz4r1iL39X1D9snKZrHcWESxS2w6rGp+dEZdWYeUfro+HNWvuet
PK09YzJKmybvPyKtzNzuq2lK8ShxO1eDURj0U5oMUbjjLzHofKLG7GiBEU+No8iAz9lroYpX
AhUa3WSKXNQKYzwGupqm7txaXl6i8t8QyeMgADPwc6TlJyT8PInMIGTyWKR4ORb/GH8DgEdL
S3trc31BkkOQ6bYY4/8mWG+tyXTp7R0sreqsr6/v7+vs7evv6yerqakpLy9vcHDwzf0zeM3B
w9fXF3TvxMREWFgY+LW5uXl8fDwnJ2cNI/jkidAzt/+6aQ+wYExnft5USTUA8dIT6ZXVDCX7
FyuIxPF4/fVcW7W+oeChhclabXvfN9qH8w8BD2Cz8Xg8Af90Lcns7GxlW517mLuhrrIOD5fd
bnavbZzovYfR0ifQasft+fa77ztmK6dioiqF5jqktEP2l58M+Lees2DbU+3wY0P4F7k+2y5q
bdP2E7PN5jeMYnPLkooriewdf+AXk+DgnmHhnaPuEK5qG6ztHOESnlHZ1PtoljzT5P74cAcu
FxfoXI7W6ERLT/grTAUp3vaVbnQ4nWEumGUhWI0W6/OXvxaqNOQl2oQSLPfVb8mNvN7b+GT6
/rPrIJAIM6SVh6SVRyTCIpFIWKbszLJIDjdKJhBa8GjrGOjtqMlxibDamWD1baL9roZCj7Gx
KzVNba0d9deuDYyP37h27TowggUFBb09PYuLi6SnW9Qi4PFywAOLxaampsL4UVpaOj09XVxc
DF6rq6uD12s4ExYXdwAL+Pix5P37umun6Wns4mLTutkYJiLxIxLpnTUyLC8PP37sy3yFCwts
8/PsTGYGHcV8zcvLP4D0XFc3N1fwXPlB/Qh4IOCBgAcCHi/L40GgiEggRxWDjkw/fFDbUIn2
tD+nIIHlE7Hafwi9bXvgATbLEwetxYUdLmk5XFKylzjNt/3819+bsn1pob1FLNvgfz3R39SF
fhPquvUSStQ5V9k4ldUwabd9gmZcQdTg1QEHTJKZR7pVcN5FTLyafeQFx2gT19igRFzH4E2o
1Yd37vXVV1XG+JRiL7SgRG97CD8OkbodItfnKlxvdbTMaH+DBfu4+4npoDNj3hLNGPEqV+Xq
cLtO3OXbI31z8/BUFvKCnXlAUBTqIBDxJMI8OVEFOwfg0djc2tHaWJXpFmnLGe+wIw59uKU0
8M7kzdbu3r4rnfcf3gIP3bW1teXl5eAFxBtEIhEBj5cIHhgMBvxxDgwMeHl5QewRGRl548aN
7u7ubdu2hYeHT01NrQYewHwDC3jjRtIrHWrB4z8nEt97iUMtDx+qAAv+KoZa5ubYQUIil76h
ot7SfXh8Ct6uXc4iaTXDB+/nDm1AD082gLahBwchywgNB5BrTnu6PX1e9QB9u9SbzsMHqReh
0GwiD17T7CAPtQttLk+ibBAPZWNopuH930GGNWahgIuCRjSoN6+H3gIFfxVxhauF2yVR7U0P
zj+xsBMqCK2pYbit/FmTePoN7sFZ0TQNEigFVULfva19N+F+g88EGpSBr5Thxw1ODKoQRkTw
AUFH4Eum6eq3xuMBvyAQyetsSc+iZN15ch9XW4oyN7IQFQ3YfzTuu12ojb9bHefVM1CzPS8T
cvCk5DcaP3xlseM/Hkqc5t4aO/rifq0J3VATtSXKS8kxUheN49VJZLVOPYNOkOwdqh0YuuXk
n2TqFu0UmmvqdVnTNlzLKUbfJcnKMyW3oPzR1NPFnnOzczcGOtuyQ0t9dWucz4xgeB77n1oO
FXzozT3syF5serQAJdPmrTQeqnInRHbUVbDJ8VSFh2Z5SlBnW/PU3TtQJeAK5oikRXA9+GXS
8jQJPwOBBwQPeDy+f2CopDA/I9wpEiUe7sgT5izcXXd5ZXFxZGxi/Pb1G7fGSkpKMjIygBF8
8uTJ8vLym0sdr/NQi4eHR1dX17179xITEyH2CAsLe/DgwcjISHBwMDiOgAcCHv8oBwVk7KDX
UAKmEyQaSqHOAFtAyJjCVp4m+SbVwU3AVVEbUJqD1EcAljCsk/rEqOkCGFlq0qAHj1NaEdAR
agqiEbgcmq6gPiv6t+DK4beAWYffhdbzUv8KNwQBDLVrCLxLXz99JdSptuMa/CFSu0Hg/NT9
CecEHQs3BJ0A6NJ1u/qt8Xj8P4SQV9qSF4asEJ8tFSGRmgc6/TDOtmLSKK6Tdgd5rA/x6SlL
m8qKeLHyyX9zYctnNj994KYoE5Psg+1MYK+JYWkN+aI+UCQoxAqbLm9XIKQbv8cjlzci1ZpA
ItyanApLSLdA+2GCLjsFZWg7Rpy3jzRySbHBBgeFRjS1dy2vPB3xWcYv35q80VqbXxtlW4aW
bXU+dctHcCZcYjxIrsRBPMtcqMj8ZJsD34T36ekgsRt+ki0uUqVY5ZJAy+b8+MnhDsL8NGX0
hbwjzcrK0goeT3wmAoEAwGP8xo2aykpcWkJBnFtyiGGohzYuN/Hm9cmBgfH6xqac3OzkpOSy
srKGhoa2tjbwGL609FdMDgcfFoAExguR3kbwgJSfnz89PV1VVQVdO8C8W7duhYeHT0xMIOCB
gMc/CjygJ1xgg2BbDz0a09t3kBNYbWDXYA6BnqlX83hUtl6lMYvAslMbdMhnAn5CZeFsoBU4
2yXXHHAC1GcLuw6oTwxul6HHAxT5ls9p3WEganqBLD548Kd2a6zm8aC+dug0II8H8+BBXQOo
FrwFXTXsNmHo8XgB8KDuK9DE9dsP4TOEnCEwO/0tI0p/GXgsk0hPKIlsZVdIpDnyIYACdyYm
Y+29TMVV9TXOG4lJ2yor259XMhGXF/jFnHWD49csaHnl3P7WsaYk6ba0fzX6fTAQxlYQpR+R
jHXIkrXJ5zKP5HRPlMttTAO1PpmZKSitsHPxdfSOcovKM3ZLVLMO18Cma3tlmnnFxqdm37w+
Bk0FxVNO48njR+MjvQ0FifmBlsVYxWFv8YVwselA/muYo40WHMWm3CVWAs0uZ8cCFW4HyQz5
yda4ypa6KjfG2I/WZj6aHINoauVpPI+nAqatr6+3uqK6DldViysoxSXlZEelpSRmXi5KScqN
jo9PTb9cXFRcXl5eXFwM8GNgYGB+fv4v+Lz+aXE8YAUHB4OrBkAIuhogBxsbGxaLHR4eRsAD
AY9/GnjAQw8Qe0DWk94mUrvfYfsFD7jQz/GYmVukcWVAPABXCD1Tg2phw0dTFfVgAbWLhgY8
aJwq9OABlaXJs0afUA8DMTPHg5oKqAGDSfCgtvXU2dad4/EC4EHjykjFddPPzIEB7A1yejwv
eKyQiHNE8hpUImVB6jKeuIgn4okE/CKp0Smp3jaxvKgamAkJYQFNZUkXezfRfZFb3nf/9j1X
vkPB/S23mjIsutJ+rQ/4tCvsq9a44+UFUa7pVo5FYtaJvC7pohbxMvUdZeRW8Cst3X0uQbGm
rpHOUUUWAQXydulKzjnGPrnW7tFuXiGVFdWL83PQhI2n4y/LK7fu3uluqysNsWhyEhrHHJ4P
FpyJkr/qL9eElSix4C8xPdZof3LAS+xGmOy1IOluN7FatEyFn1FTTsyNoV7YX4Enz2QhCzxT
93T3tzT2Vdc2ldbjcDVFOFxpSUFFblZBbmF2WRWupqa6tqamsbGxt6/37t27hFcbK/2fDh5A
GAwGmLDp6emUlBSGcTyaWzuzcsrCIrNCwnOujx8EFnBwMOo1B4/BwcH2ju6Kqsb8wuoiXP3N
W7L37um8LPDo7unNzi3DuMVoGfhdG98+eYe1pq4ZAY83GjyojSxks6jBg9qKQY/wUIKLw4aS
4eRS2CJD2aA8sLcfIgHY0wK7MhiiDrV/Y7UjDM009BrYembmvcDWGRhferO7LnjQEAuT4EHP
VK8OPGjmpgakNFD7sqAEfyKvwzzhVwQe5JEJPJEScIu0TCTOEslTNJdIhOGrk+XnQx97tRKX
iEO3rtt6oiNjQga7b8rzFH3L4vvDBo/9Xzs3FAwPNsQ3xR3sSfi5LvDj/sSv6rNNipuqbZK0
fcoFzRMF0aXCrhGaQ8NdUFNjd+4HJhVfwkQ7hBa7hpeaouLOW4aZuqVZeWdaYCIj4zKGh8dI
lDChBNLTaKHg5/17E3VleVlhrhku2jVu8uN+EnNhYjNBwjc9TrXZcpeacFRYcHY5Hb/ue2Yi
WP6Kn1I1Wr7U5XxVrEdvS82T6Sl4lgZ+ZXH2yczk5MzQ9cm2a0PNo70dQ4N9fcN9Pf1Dg91D
Az0jo1fHbtyauvdg/snsMn4ZT56BiyfPgqGcBiV+Kjl+CAEaj4Jmn5IT8emQ1bOwqQh4MAke
QDU1NUNDQ5OTk8nJyV5eXvS2r7e3V+2i036uC00te1+dx6O/v9/YwnvvoQvXxr9aWXn/z3s8
mpradPQ9pJUcrl0/+1I8HiWlNTaOoadEzTl4zQVl/GXOJ3b37+nsZRWRddUxDoiOy2tp7UDA
400ED5qZBjTgsdr8DXp7yrBCGhMGGWh4PgPUClSQHnVojPUa4EG/0IM6M9QWtfOE+Tke4Fdq
/FgXPGjmZDIJHjSTLl4peNCgEXRFq6W3GTwgs0ogvyBQInQtEwnAyLY3dtdeSpv2GwIUskLC
17U1jIxcuTH+RJg745t3XH7/0HPLO4EpYaO3x4dL4gWv5Xzb4L2hK+FfDbH7r3R0pOBSXVKP
m2SIeFaIumcfd0+4NDb59JQezyzmlTXbuITZeyZ4RBVb+maq2Uadd0qy8s+zcItHecbklzXe
n366cS0Rv0LAk6OkL+KJdx7PdPd1lmVG5PnolTqf7fGQvBUscz9U+m6w5LCrQKMlV7kRe7X5
0R4Xkeu+Zyf9RPtcRYqxikUBZl1lqfcnrlFisIO0BIBidolwb3np9vLi7cXFezOLM48Wlx7O
L0/PzyziH5EniJAjgiyQFmZJMwTwP4WA8OQBKALoCTxxBVq0S3YKkaex4leIK+R1NHhyDLNn
c2QQ8FgHPNBodEhICLRnXG5uLkCOkpKSiYkJ6t1pQyMzhCXN2TgvAlN7Ws5X18y6sWW7pq5n
bGLuSwSP4LC00xLmu9nPc/JZnpb1D4tXzC06LKmIcXKJ7ujofl7w6O7ujUvMO6fjeviE0VEh
R3HlIHc/9bTMwMamthcDj4HhYQd0hIVt0EEeA15RFwnVKEWdVOVLmUq6aTqWYdoWYfJayXLn
4yRUAhXOeaPd4nGldQh4vJXgAU8toEmwm4JhhfAwCrQmBbaGkG8BGuWh9n7QzAP58+ABzztl
xuNBolpaQm1/4fmo64IHzUDJawgeNE3A4MHww6VZd/NWgQeN/4Mi8Lxfi6sZ9mh5EDRGmiMt
Ls83NdSNXLkyMjZ1ijvxWxbMro+CN7HEWehVPnq80FRs2xO/cTDs+xrfz3rS/11/+dLE2NXU
qhDHQkmjGC5Ulrh7iSQ2Sb2xpxZYfUoTxDv37hdWN2NC0619ku2Dc638c3TRCbrOcRaeqTbe
yejAxMTs0r6ha7Nz5Ogc5IAjoMwKkWzeV/Bzs4/u3xoZ78ANFIW0xNu0BJzv81Ec8ZW77it5
zVO4H3Oq2eFUlYNwA0qw15m331Wo3f1snbdGXYrvYE/rvak7i0uLRMjNs7JMwC9SArEvEojz
gDGIhBU8nhyGjNwifn6JtPh4+tHdkZt3RsfuXr16Z+zq3aujU6OjU1evLT56Ai0IWiARFiiD
OeQw7URotIr4OoDH5OQksAsjIyOvIXgEBgaGh4fX1dX19/ffvXs3Ly8PHNy4cWNcXFxza6+Z
TbCEIobntD2/hJuYSjh4tFfQSVXUSVPQvgyMrOz5OEnVYCnVgIuGoWj3xMjY3O6evucCj7b2
rksmfqZWgZJKWB5hB34Jd3GVCFnQijbUSqqCdor8xUQpjUhZjUBzu8jA0Mx1waOgqNrKPlxV
y++MnIegtI+kerTcxWRQG0jgnKU1o+U0Q3XNYuwxCVGxecW42h66c14NPLq7+9V1grRNovVt
C1QuZaoZ5qoaZCvrpQP8AB2ioHVZHvwkp1RlvQzwQsskEQGPtwk8JqYeQ9Mywc/SppE/2ujF
pWU8fYWajn/Y9uiYRghUp6J1Cnhh5l0ADl6//RCqFvwKVQ6O0BQBydgzf2l5BToNAe1I+OBz
gQc4T1W7VPCaXTGgZ3itbSupz+HK9XtyFkk09UNmGpwteJcZ8IB7D6SwjGa45i+PO1L3vC42
G8rDKuVd23GNYQ/DV3RQwR8+CLoaPgjagg66x1QzDx7ROa3wEiSa3rj/aO4N+nsGd4M/s/EH
tAZk+vF0dUXNnYSRqaBR0jwZPBrqa4eHhq6O3RM8GvsDi//uDbE/siSLHo+euPVg+npnWSD3
3fxNrYGftcR90Ry7ubvYa55I9M+y868XvRB11CLrVEijgn20ZG5tDEAaineF/Mc8t7CMq223
dY80dYlxjSlzisBdQMWq2UZY+OegQgtMsdFeoZmt3aMreIoxX6QkUBoPuWeeumqezC8Mj16t
K8nBhTsXu6g1YyXHvETvB5y57ycwgj7abMFeYcJRbnuq2FkuWIc/0/VCSQx2sLF05v4UNJZD
INe6PEeaWSI9JkPEMnkfvUXy6eGfDI9V+MdUBSe2xya2hIS2+Qe2+/o3uXvirB2aAsNW7pG/
IwtEaDYuNMTyzHP0GoDH6yZq8EhLS2tpaYHil9bX1wcEBEDggcViQyLyRRW8lfTSNIwL1Y0K
VA2yVPUzgZGV10oBCbKwFEJIV9RNU9bLVNJJjU8ufS7waGrpAtwipeqjqJ0MTLm6caGaYY6q
QSaw5hS2gVohJ4ANKpfACWSvCx5Jl3GqujFqBtmaJsVqRnngtFUuZTytDapQJ1VJN11JNw3U
JqUeHh1fyPxQS1hMSUp6JXhRWdMZEFGlY5GtbpivYZKvbpSjop8JOAR0lJJepqFtTmRiXWNz
LwIebxN40Iy2QGsuoKAQNDMhabKBDJAppF5hynAyKj05UA95AJNKvaaD4XKbtcEDOgKog2ZR
DMM+gReV0C87hWdE0KygWQM8aC4TKsVwIIM+GxwMhN55AmUAiAI7lGhKMQ8e1KtaoCgo4MJp
onz8EwSBx/jNG/VV9dNpNx6EXKWAx9wz8Lh7+mjMTyzhrBvifmRJPbIzuLfzOmlpqSpBezj7
s6HEDyv9/nst43+V4WL3Jm5UNpa4FJ52qRfUDOPC4sT8qgXtIkRru3DkSREEInH56dTNwdGb
3pEZ+k7hdkE5rok1ht5Z8pYROthU5/AyG49UK0xUc+fQs5EXAtn9AYqSiEuU8Y6lp2NF5FCo
8zOPrvV3NOfHV4RY4dDybegz1z2EbviJD3ifbXSTDlLnvHDkm2gDoVpX+UKUXF6QU1tdzd2p
+4AcyKRBDrS+vEgiezyIENgsPGp384kWUx7LKyb29OLLKoh5hcSsnIW01Lsh4bWmVleyiiih
ygB7kJ0mlIghBGibOgQ86BUXF+fi4oJGo4uLi0tKSurq6mgme0DgASysgXV8Vn6jW0CZhiGZ
LjRNizRNARtkQWAAEuANNcN8Jb0MNYMMBw9cR1ff8w61GFnG65hGpWbVJ2U06NvmKumlgwrP
mRVTTHkGaBRqReVStpp+JsqjbF3wyCusi04sr6rtDI6uvmSVo2KQc860WNMEEAiZmkAiV2WY
r2aQ6eRVml3Q2tMzwDx4hEQVJ1z+f7vf2TWQmtV4yQqcXpamSZGWZZ5HUEUhrq2/f/AtmOPR
2dnZ2NiIgAfNaALDOB40dhZeFQsnCDyoj68WqYPepc8wrgUNYDwXeHjF164b+ZPa+jNcL1Pa
NLJ2HA968ABsQHMhoEL65bTQmtm1e5gmA+QbgVegwD3McD3sGnFloYhnb/QEj5cCHkB9A30p
MSkjHs0Pgq8CW7qMX2ysr7kyNHRt/J4od8KPLNG7Pon8mSV159dBZQV9oFRHRVht3GcTxR9U
+34ykfqfhpA9jWWJd+/ds49V8qoXRBWKnA/f710r5FF0xjlabWC8jdwQeQ+3Zcg/8PDJXGph
nalLlKlHkmtCtV14mYZ9rLpVlF1AATa0EOUT19jVP7dEXtxKIC6tEObxxCUKH1HmfeLnifiH
FBIhCxj+R9MPR/o7qosycqI8sz10a11lR/2k0i7u0Tj2M0aDf9RXdjZKrtVDLN1JKjPYvK06
5/G9u5C3YhYgDWVAB2isvDCMl9/70LFqL/cHpcVTCUkzoRFP/AImvDzuenr1GJmXWzg8GR4n
kWeNrCw8pQ0iAh6riYOD49atW+7u7g0NDcB2Nzc3A9hIpQiKKgaBR1JqhalDMmzdUjIajOzz
VfTSwXP9ObMikDRNi1X1M/WscyMTa1czteuCh7FNkrZJVE3d0ykcldUdGJ9SNYM0gBwAP86b
lQDaAa1gfHC9vYPMzPHIyq1Oy6p7tvBkICu/2dGj6JxJloZxAahQzShP3yYnPK62tqH7BSaX
hsfikikeD2r5BeemZdenZTc1Nncju9O+iQLmCQoWQT0fcmZuCTpIb3RANuhZGI47Sh/cEgr7
Cce4oB4mgBI1YABTCx9fLZQoyH9aLwqqjb45cIS+2tXeAo/2cHOrOT2YuUZgpumnQKx9IdD+
blARaKqqd0ItTc/DlcNBUMEL+uuCgntA78IDQ9QRXMFHwPBDZPhxU39wcM1QPW9W9LCXQh3g
RXdfT0td05Bbfb9Fzc3e249mHnS0NY+Ojg4MjgtzxGxiidvxr6BN7yVu+iA8NaKb3G83Wwuj
WW/j3u8I/fdg8Bcjmd/lx8vOzz3KqomzTjgZ3CRhknJUN4Y7pE3BKZPfI8F44j5lhI6wQiBv
d09ucYlAbOi6gg1OMcKEO4cVesRVG7qmqltHGLunOgSkm7sGxuZnXr8HwecSkRwRfZFEntqJ
XyAQnhApO7WQsWSFQBnEIVL2iZt6Mjc81N9Ukl4ag0m2k0uyEC1Dy13zlFgKF8PHn34SxTvg
eaQMJVzu7zRa3TLz+DGBEnsd6Mm1a3EqamgOjvZA/4746L7YqDEfv5u2TrcsbUaszEdNzcZ0
jUtlVLuCI0mLSwQC/hmtkChzSxHwYDzUEhUVNTQ0BDCjpaVlaWmpuLjY29u7q6sLUEdHR8eu
XbsAeCSklOtbJ9CY+5yCeoULEar6qeoG6WgvXEVN95+cXHrJIv6cQTiu/A8TPnv7B9V1Is8Z
pWoaZWB8Sytru5hf1ZKRXZWUVkNzMC65wtA61calKL+kra9v8MUmlwK1d/R0dvXSrNgNCCti
xsWBgAciRIjeiHEWsp+tsx3cYOdz7/abVNVm1lfUFudkpZfiSjPSi06whv3GkrDtM89NH8b8
9E6yj00HfnllGf8Ql2bYn/HNePI39a6fXC/6sDR2050bQ4/n7odn26LTBIIalS9EHjfN4Q5s
k7SOlQzN8pyZf0TxM5DHNijb1ZHx48ad+zFpBWbOQbZeSd7xVfbBxWq2UQYeyaiwLEMXf0xo
VH1H78IiJbw7cYmAnycQlmYJxMeU2R+UMZI5EiARytgHZSrJ03Cgj+fmezsaq1IDSgLMSp0U
mlDCA1iee37cs2GnHoTLdLgqljhpVyf6373aS0aHpcUyjJfttgMZ5pZTw1c6i0sqXVxGnbBj
2sbXzuv1XLzQIiPXeko8i+1QIr/QFOQWpoAHZW4HMsdjVfAwMjKqpghgxsjICHjh5+dXUVGR
np4OLOmBAwcAeBQVN/iF5g8O0voTLBySIIPLjLlcFzxCowqDwguaW/9gzds7e40sE5mwxQzA
o6qmFVfeQnMw8XJ5XuHzbVtPYi6AGOgH/9DCjs4+BDwQIUL0drAH+NnU0rSwuDCbNXHff/jR
xOPm9lpvT7f42LiK8mZJrtRfWKK3fY7ZvCH8e5ZMC42m+dn7JNJ8R1VNXTDno6J/1fu915f6
WUf6f/vaCygsMegWY+hZrObaIK4QudWuVCy4+YJFlFBOTcISZYM68qayK4uExUXiCpl5FpZW
qhs7HNzCzLAx2JgKp7haNaeYS57JmIhyO+9MK3RESgbu1gQ0pZm8KcsKIBDykA2BSCLgyR4P
st8CT6BgycrcCmEZ2ogGgMEsMBnXrgw0FDZlhZaGoIpdLpWhVBoxUn3eon1e/DhrgRSMzmhP
5XBhAXo/b5iI0lhZfU37QHZOcQnK+aqVw4iCVofA2TzuY0nbWVO+3pzw7++8vvq2yMJsaQYi
KMjZ8bqAx2u7nPbq1auzs7Pgep2dnVtaWtrb28PDw/v7+3ft2hUcHMwwcmlaVrWZfTLz5vLF
Aoi1tHYbWCZ2d/W+AHgwVHxKRU5+w6sBj6GAsAL6yS0IeCBChOgNFYFAAOABLPjD1Ot3/YaA
2V5amSspzu/s6JiYfCzHn/UjS+L2z923fBzyA0vuefGyR/dvk0hLk+MPccGyDwrf74nbUBP0
35sFn9XhrCEb3NDahgrVDWgSti49qBp2zLtaO7BGxD5KvKaznMI6BNLKEhFQCHlbtiVoxujw
2M3g2Ex9p0DbkEzbqBJlu+iLtknOAZWYIJypUxTWP6m+Y2AJDwXtmietPCERlikrbqEwGkTy
+hTC0gp5VOZpwlNt97ayvPRw6uG1wdGemprG9PCqSNPqQOUKV7Vk24vpzqah4uJoTp4r2UW3
r08FZ9VHZlfWxsR2mDvWnzqb+NMmn+82hnyxOe0/P5Z++UPyf76M2Ml2NS2LvP6Wct6E548g
Bu7ePDw8k5OT/xDwSE1NxePxT548yczM9PHx6erq6u7uHh0dFRERAbQwPj7OEDzMHVL+GvDo
Ws+aMw8eCSkV2XmvxOMxNDRUhGvqQ4ZaECFC9Hroz8TxgNwd4Kbd2UWe2XI/dWzSq5/0hAwe
bW2NV0dHb03clxa4/D1L7q5Pg1g/Cf6JpfAsd+rt6zfJnoqFxepMq+G4z+8UfIfz+vRW9ke1
GQKzi2SKWF4gpucmOSWcCO0UMLp8WitUOLpd2rP4GCpedWC8m+K6IK9zIayAf3N44ixkux8+
epxbVm7jFWQTnO0UXaeHSlI3CzP1zHWKqLLwTjfHhqdkl9y9e59SfIm4soJfXsGv4Cmh36FA
XkQibShRBliwvLQ4ff/OjetXbg333a6vildXN9u2vdDRDj8zPXTvkc/l6rCMiuGurmb3kGIh
qYAvPwn49ofEb9mKvv2l6tvvKr798fKXvxTLnH8ydoNIGdd5GqXsNdDrCR7Ozs4DAwM3btyY
nZ3t7OwEHAKOAGu4srLi5+cHDcFc+dP6MyHTX2yo5WWJ9Dx7tbyAkFUtiBAhej3BAzx15ubn
riyvPM68dc//CmmGtLg809BYfWVocOLOA7nTqd+x5O78VwgAj80sxXw7I/u7RqCyo11ZdUG/
3C/7b0Pwpz0Rnzenbr95cxSq+cGj+4GpJi7ZIkFNarrRXJap7FFd0qh0Eb8Uuzv371DcHotE
4hPyEMkKgfRswgQgiY7hEWvvOFRIkU9clbVPppp1xDmn/2PvPACbqPcHHudDfK73ngtRcYAs
feoT11+f8sSBOFEEZO9N2bultIVSuujee680TZNmp2lGm902aZs23XvvkX33/91dG0NboIgo
4n35Ga+Xu9+Npvf95DsTHMOYLsHkE+eDvANjlYVlZtRHg1QZs2CwAf06/d+uKj383ieH/vN+
BYUMQyPNw72CInWBvHB4cLiaKmKs353871din5iZ+fQCysyZ2S89z37zHdLr/41ftrpZroLR
cFYcPK4NHm5uboAKmEwm0FxarVYgELS2toI1AwMDABWEQuFvol5x8MDreOCCCy5/LvBQqVTE
rEwBO6/KS9LlXwm+yRtMOgAemrLSjq7+jd+nzyBkzHsgaMEDQS8RmItmBAk5Kmz3vo56buT3
dZR7KpIfzL30WGnav2R5UUhlDPRdTZ3aNWq/H3uNj2jZ9sh55+hfhso2nIn5Mp7qNzA8iBYT
HbKYzEiRDhNWAHTUcSFRaY86hZx2j/WOYzuH5Wx3jl1/JuyED+liGN3BM+GUS2BqNrujD8wA
j6l9zO9huq7bAyvTil014mBi5LltO5rq5FMlkvb2NBWX5VWo6J11sv6erv7Kdu6Zi5QvPk15
/FnKrPk5b80nfvph4ufLUr5fowiOM/QMYHVFkPxeC3Q7fAxuW4sHOKX09PT8/HyxWNzZ2alW
q729vZFSGNnZRUVFgENw8MDBA3+M44LLXwc8MPbg8/n1DfXlypLCs0zVUW57RYfOOCxXFFSU
a9o6ejcsT3mGkDJ3WvD8aYGzCcxXHw6hpCgwFa/XmYRUb3n8g13M6Vz3x2pTH2ImrOzpakdR
AAnI4MvynCPXBYt/cmD/b1P4W5d434RKl56NXsoQkUxmNEIC6XiCxIdCyKLJZDEivVPMFlmx
9kJA3EFnf5cw0sW43COXSetOhe88l+AcynYKIh06H3QpNFlZUWsaA4qx6mLQdS8WGov90JRr
N6/ddXKXPTGSolaUV9eo4yJOpfmuYUbv41Bj+5rayzKpmWtXMl5/j/PxstQfPovY8nPc/oN5
l4MGapEk32E0swayWHDwuAZ4YLXCAHgIBIL4+Pje3t6IiAiwpry8/MKFC8nJyYAZcPDAwQN/
jOOCy18KPMBzlclkAo1gMVu6k2vUR7g8Ip8npJOz0jlsDovDX/5p8POEpLl/C5k/LWgOgT77
3ojIy/loPiyi5itKFezAN7o598giHq6Pf5QbOatUyYAR64MBoQGdIZ0aey5hZUDxisOkD3dG
vxZU9Ikvf4lT1BZ5mRpFBhMEDWPAgDbNNUJjfpfGju4YEv3ohaDTl5MvRueeC8/d6hC/6XTM
Cf9sl2jGUc+EE+7hREZe92iDOaQ0KtpN5Re0uLYUlZQt+eyHhQv/t3nrGX5BSW1tcVLw7hSX
t1OdFyUE7q4uV1TKxNF7NlO//ilrk12Ky+ms6KCc+Hh2GrGrFSErHXKN0KixBgeP64GHSCTy
8fGprq4Gn7fS0lK5XA40TlFREe5qwcEDBw9ccPmrgUdzczODwRgaGgLLvWl1HT4VvY39EjnP
x/tSXGysXKnatjplJiFq7t9CFzwQNO+unBcJCU6H6AY0iBQo+N7uIUHM4Uri3XU5D2pCHytL
fTA3/cjQYB9a1hypv9HZ0eObcP4CbZlv4bJdcf+2S/pPuGqlK+U7t9hTtW3NKG8MjlkqsChR
k9VpojOZ8+Ql53xiDl+Icg1nukULjniQ1p0K230x2TmS6RiUceR8gF9EcmlFrdmCRX0gMkX2
GBgeSclibN53dtXWk/RcWWNdUWbIVqLzgizn2Ule3/PZCYI8VqSrfc5JJ0kijc1hM/PY2ZTs
bAq1ua0NHq1YakFqiUC4xeP64FFQUAAWXF1dOzuRGoYUCmXmzJmAeBsaGnDwwMEDf4zjgstf
CjxUKlV+fr7JhBQU7U6tafPRwHp4RD+Yy2UoFYoRveXYHtoMQujc+8MBeMy/O+cFAmnjt/E9
3V2Y8jWY4FIOWRI1o1swTR78WDftQWbIO01VQjTpA6lTCgiivLrcKW6tB2+Jd8GPW4I/PE1e
GqZa5ZCyLDz7Uu9gO+pxgcaKcY2yB4T0ox8tDlrb0hmVzjziHHLGM9kzlnsujL3JIW7T6QiH
wOxLkbQzntH2bmHUXHnv4Gj1sKkbPXQWqKS2NT6bx+AWlClYSZ4ro47OjDn6j5RLn4lZiXyh
kELOUHMEEr6aJVEKi4u4+aJMOq2+tQWGb7smcX8K8AgMDOzt7a2srASccP78eQ8Pj/b2dhw8
cPDAH+O44PLXAQ+goAUCgVKphNE4ydE6HsOwwTwklghK1SUGM2x/iPUsIfSVe8MWTg+efzf1
BQLt0ze81cVFaMdZJJCjvbJWGPh5G40giPz7UM4j0sjHZQwvk8msRwCiH7YYLBYoV045HvWV
r3itE+PnDcFvXuB/EVq4wj56WVZuFGAeVI1b80MgCK2oajYbjAYDVlh12GDOE6tcvCKPXwi/
EMa+EC09cDFzw/FQO9dEtyimS3D2ofPRQTFZNdU1SC9bNHD0euyBlRBBNq5q7RCI8ot5GfHn
fww+9FzY4cfTPb4uE7FkMi2FJyhUqYoKq4rUFYUlZQwej8JhdvSgKb1IMg4OHlMCj8zMTKw7
rYuLS2FhIThJjUZTXFyMMQMOHjh44I9xXHD564CHTqfLyMggEokDA0jr5P7Mxg4fDZJOaxgW
iXglKrUFgl1Ocp4jhMy+N/LV6aHz7ia/SGC+Pcs1i5iFeDbQMAf9oF6Z4qJJuFeS8mBLymNN
mY/kRK1u72pHOs1beiBzC1DSI3p9AivyePw3wYU/HyW/uyVqga9kuT9vpWP4Wqmah54LIAyg
yyELlh5rMZiNIyaD3mjQW8yjQRQ19S3hCaTDTuEnvLI8Y0Rn/ZlbT8dss4+xD6Q7R+aeuBR9
0dMvTyAaHtFfYfeYQCDQ6IsOgkcAeVQ3txTKZbVyRqrHz6En5kTZv5TuvapWJq4o7WLkK4uq
yxprW2tKK/M4PAaLXdtYj7SoBSdrxM73hv0sf0HwCAsLo1AoERERgYGBly5dAuwBFgYHB80A
Lg2G4ZsW8DEG+Dp8awScpF6vv0WTw2iQ1a0To9F4gxf7IQYeIyNl494Cv7W0tDQcPHDBBZdf
AR5YfxZMKbe2toJvo0Ap8AX87q6uwezmbr9KeAgGD1qxgF+iLgXbeDgzn7079MW7U+f/LXLe
PakvEaiLnvUIC4w1W/SIaQLto6JRslnh86qID8n8H9HRnqCHzc5XphkhoKIBmQxYIMQJ0t7T
E5By7gLpv0FFS3Ynvron/v1g5WY35ncXY7bXNVQh5UXhQQOMJLtAiNViAGnAYsGCTiGrUUGn
N3BFckevkOPnwy6FcC9FSvefJ687Eb3HM905nnfCL+PwhdCYNFoLEv8JLtNotpiQxBMIDT4d
YxHMnQMhWSkIotQ0tIkE+aUF1GS/jWGO86Oc56X5rW8tlbbWd4lkRfXdNeDrOZcuEotkvX19
o0iDJbP8quiOvyB4YAL4FhBCaWlpfX09WOjt7aXT6W1tbY03LWCSoaGhxlsjgDo6Ojpu0eTg
RjXeSunv77/Bi30PA4/W1oJxb4HPbWxsLA4euOCCy68AD0AdWAQmWC4pKcnLywNaoFhVxKXm
qN15HZ4a2AibTHqJQFBchNTrCL7Mfe6+8BfvIs+7P3r+/cmzCZR3n/P3uRTRO4DEWKIBpHB7
Zz0t5uemzEeZl/7WQ3yykPivjMxdw8NoSVIEI8xojTC4uqH8QsyGS/TPfOXfbI7497HMpSGq
DeczVoQmufYMNlhggwHJrUVrqkMjmB9kUqmqqw2Lzzx2LtLei+oRKz8ZwNxwNnydU/SJiDzn
KO6hC6FuvuH1Dc2oP8SMGEwsEFZwA7KJIzEjiSkIEXX2DItE8hxiQqzv/ojzn4Wcez8tZOdA
o2qkZ7BUo9U2qDIyM5i0/MbGdr1eZ711v1puEXiAL6TgGU6j0W5b8HBxcUlJSQEfOYC7gDrI
ZLKrqyue1YK7WnDwwAWXv4jFAyOQ/Px8qVQK1gD1XFteUXSJo7Jj1Srrewd6iqQSTVn50PCg
27m0F++PePku6vxpUQvuT5xDoL0zM/iSU2hVTQliNjAhyR0mk0HODKxJf0Lgf1955KMtnH9m
hX3SrNXAWPAGwhJGCCl9YRYo80+F77wsXHkh77PN4W84M38IEW87F706jRtqsGD9VSxI8IgF
uqL0+Ziuh8bMHwPDekae0tEz/tD56AsRdNdo5q7zsetPhx+5TLwQRT/tFXc5LKm9uw9zqiDF
UaHR4BH4lyXE1QLIpKtvpFhdyaQyqMlRpLAL0e674gMPlyv4LXUdMrmKTE/PyszMz1VIChTq
ElV3d/dNssdfqjut02Ti7Ozs5uaWkZGRnp6OgwcOHjh44ILLn07s7OxutOMYpjcHBgY4HI5W
q4VhrOkZ3JfdUH44j58lYfLpmUmJZDJFJBPZHwuf/0j0SwTagumR8/8WO4fA+s8T4e7nYpUK
EdogBR6B9WDnpooideJLpUn3sb3v62U/qgh7RUYJQ9NakJRT2GyEoF6AH0YTnM7NOR61LkD2
46nsRdsjF/nkr/cVrTkVvk5UjAV7mFDwuOrJm80Wg3G0clhFTWNIUuYhlwB770SfeO4ZP9Km
M6E7XOIdI9gnvJI8Q5JVmprR7vUWK8iMGTxQV4vJbGxoa8+XFbFYAi6dJ6RyeaT07NQgUmoC
KYOeEE9MzUjkMhm51DwWjSMUCZuamrAMIBw8fjV4YAI0Tn19Pd6rBQcPHDxwweWOF6vFo6Wl
hclkglcMPCDY0kuq7/aq6G8dVKglwZcvR0TE1DfXJ8XkvfpExPME6oLpYQsfiH6ZwHnt0Rhv
50xhLtukG7TA5n5ID1S4cXBIkbSklT2N4nt3a9qjPUlPcSLWd/V3IoiAZMdaYIsBRjAE7hsa
CckKdkz7OlDx+eGUd/cmfeBbvMKVuto1yq62QYVCAnSNXBGASCaDGQADhLp5+oeGWUKps2f0
6QuRnhFUl3D6NqeEn8/EnQ5mHr8YY38xjMbJHxhGXCrW6uYQhJYKAZeMBLtYeof7y6orCxRK
gUAq5Mryc0XCXDqTRs8isUgkJptFL8jLk/LEComiQqvFonBvRnDwwGTmzJnZ2dng44eDxxRF
q1W1tHiB1zsJPMCc3t7e+GMZF1zuePDAvrBrNBo2mz00NISiCFLBvIdU1+lRhhTgMOuEHE5B
vhRsxqYpX3sq9DkCbeGDIfOmhbxI4M5/MNHXhSnk5HU1N5jhwX7YqEdnlmTYtedN58feo/J5
yEh5LC/8jeIiDpL4YUFriZnRlFmsKmlng0fyXrecrwMkq7bFvHaI+nZo0drzKd+Hp5/p6W8z
WyCjxQRdDT1GvSUAPIYs0BA2YVVdW3R8zgmnAEfflPPR3IM+OVucEi+EM84HEo87BwTHZtY0
dWC7IvVBzCYI6W+LmGvAPwOkHzD0tQ+0NbY3VtbUlJZpSktKSksq1CXVanUl0ly1qrq1rqm7
s2tEp4Nt/D44eNwkeLi6ujY1NU2qAaurRRB0H6YEpzBeBxpsyhvf6MgF38tv2eTwLZsZG2d/
3Y6/G3jgggsufx0B3/UlqIzRCGJjAODRcakU7keCSwslYlVRCXgrly1f9HzYswTmgr8Hzp8e
OIcgevm+ZE8HTgFPWq4uhuCBEchsMqHN5nhx5VmPVFD/JnT622DWQ0XJT9HS7Q2mbqSLigke
DdtA2ANQiK6oin8uatdl9lo3/tJ14S86534UJl3hErcikxNjsphNFv212r4iRzMh+bDQMATr
MRAYGBzJFSnO+0Yfd4s6H8E47JW+xT78tG+mawj5xMUIZ584vqzUYMbaw4EzNiJBp+gZmZFU
Gp0ZHjZA/SPm3kFd/8DgMJitf0A30D8yPKQz6Y1IMzubOBMcPH4r8LjGt3sYvguC7gXfwa87
dLq1JlP2VLacOMAhwIGusYHZrNDrd059QqPxGZPp8SluDCPptFOd2WB4ESCBXj/vRk4m9Ibu
htn8MA4euOCCy62weIBXg8FAIpHi4+NbWlrMZqw9yi/gYTTqpEJBoaIYbCkVl/x3XvRMAnvh
3/0XTvefSxDPuYe8d01cbFg8l8O2wAakzAai0c0NlUpR1As9vEcK3B+oinywmf54dvji5kYZ
lkkDYYdGAMcAHrdA+TML6PYR64Ly19pTPtoW8cJl8dc+eevORG1uaK8yW4zXugQYa2VrtqDZ
skiHFhRSwP/rmttiUyknz/s7BxEPehHXngzbcz72YkTOWd/Uo+eDk8jczr4hbBKzxZoQC6He
ICMWbop5cGxu1xXL0E0XSMfBYyrgAQSC7gF68Fa7WsAhwIF+Q1dLV9fe/v7lt8LV0trqCpCg
sTHuTnK14IILLn8d8GhoaGAwGFgBST6frynX6PX6vqyGDvcyqB82GEekAn6hoghsWaqqXroo
aQaBteBBXzBeIUhmEbI3fRullMpZXFZ7fx+ijw0jJrNhcKg/L2p1Y8oD9RkPcdwfbqH8XZXy
Ty7pwpBxxALrLRDaggVsbIIgA5JIY7LoxGU8jxQ7T+aPTtSlO2PfO8f93lOwMobhpDfoYSsW
YM1rRxU+EqkxVmcM3cCMpcgCAEGa24J5jUZjY2NzbAb9lG/aySDaER/KTueE/a7xZy6nOXjH
X/CNTaGwtPVNRjMCSxBW4MMyNrAaJ2jSD2qZMWGsZEYKu1qsSTFXjisWryve3t6zZs3Cajj8
hlJQUACmvRUlnnDwuLPBQ5BfHJ8qSiWJpXI1Dh644ILLVORXVC4FylWhUABVNfrd32xWFik5
1JwSj7wOjxJ4GAYUIRMKiguRUM/62pafPk1/ipA9/8GghdN95iHgwVzzaWRbc6swn68uKUU1
r8WCVuAokVEFIa/00p4sCJyhjLxrKOcuZuCHheX5yDa2URtA5ZuMEBprWtOidYk56Ere6M5d
vzVy0TnWR+6U5bSCFAum/k1oFTIzmmA7CgPm67IVdlFypdI3KOLoxdizQSyHAOaOs7E7HKLs
A7LOBKcf8AiLSqe2dXShYGMyIYk5BqzDPXRFC5axemNIPCpKKRPGKBRB1orvf8zH4PYvIIaD
x+0GHnJlySV/9rp9xPX7MzfYZW0+QEwm2RmM9/+e4FFYWGh9EOGCCy53MHgMDQ3xeLySkhKr
AQRo+XptVaErp+QAp1pe29PXVSyVqIpKB4cG8vJE338c9wwhe860wAXT/RYQ8mcR6N+8G1Bf
3VhaquIL+GOWCMRa0NfbxI7+rjH1yeqMp+ju9w5lPSqLeS6LdgF1xVxhIQA8YUH8KYiGl5Tl
O4Tv9mT/6MT8cHvoW76cTc6xq1VVCK5YgM43YvEhWONa81RUu9Un0tnVnUTlnvSKPuOd6BJC
OeKWuvVU+CGP1LMhOcddo7yCE4o11SYkyQcyg38wNLrveIy5Zk+WK40fOHjcJHhoNBoevyA8
imQ03mcw3ELwEAqloZHEwaFHLJZ7fxPwUCqLGSxBVfXmvr7vfxPwKC5WJ6XknLAPWr/t0p4j
4ckZWwASCEVeKlXJzYMHiSrde4q06UD22j1pa3angLFub8bGA2RnL6eq2pfxdFpccMHltwUP
8DhisVjgcQ2PFjId9S6M0NurjovYaXwqm5yVkkwkZvPyOaSsrJVfxM0gpM++P3jh9MD5d+W9
SGAsWehXUdLQ0trEYDAMBgNsk6Ur5fjJw2Z1cR5he/+9PurJJspDqbFfNbU02yplaNS9geSv
wLABLDEljDNR3/oKlp5M/cKZvMo1+yuflAMtXbWo0QMzchiRMWWPBhq4gogBMivKK3yiEk5f
Cj3vT3L0oew8HbPPMdUpgH7KPeGUW2ROnmwQbe+COl3MKOFgHWOuwIprmFdsieMP4o47BzxI
FM7G7S5v/t+uzq6H2jv+yWLzbwV4+AYkLf3uyJsf7tNUPDM49ACRxLpJ8JBIFAHBKd+vdkjL
XNLe/tVNgodYrDjhEPi/ZUfe/eTkstX+q3Ykrtubfsn/JACPg6ePrdvu5eGTlMvL/3XgUVhU
6h3CXbsnfcN+EoYcNiMVsMe2w7ExydSyMg0OHrjggstvBR5geyyRFmMAAB4mMxJ/0ZPV0Oul
HWrXKYol/h6XgkPCq+uqensHjuygPUmIeeX+iFenhyy4m/0igf7eLB9lQfVA/2i7DdimIWxT
g4Ye8kkTdXpp9FNiz4d6Wffyo+cVCqlXWiQgFAzQuAo0jlRvMmVwYuwjvwkQ/Hgo4b/BijUO
scuSmf7DZiPaNA5G630Zfulhex2LB2QyIZYMk9lgsSCtuHqHBnO4IhevmDNuiU4+1EPnUref
iT3mmXXmcubR8xHRaYymtu5RcIBMY63qfrF3mK2xJFcfWFEzyx/0Mfizg0dhYbHzhfD/+2Tv
q+/s+PBLp2/Xh/qF773kt+vLFS6rN7n6BaWq1eqbBw8mW7h936XX39/++vt7l3zv/uPmaP+I
/dFJK79ccX7F+gupGfQbBY/y8vJ0ImPvIa//W3Lw/z4/+/WaoJPnHc+5bT52JiSNyCwpKf0V
4HHCIejz704s/tr1h02Ra/ekrd9PHDNKpK7Zk/rzrqRVO+JWbA77fo3b0TOhqRnMMo1miuBR
rCrNpkkP2JNtDR0Tx7p9GRvtss5czMkTFOLggQsuuNw8eAB1rFKppFIptoxoZ0RHIy6M3qyG
TnckxsNsNgg5bKlEjpgOTJDjEfoMQtic+2JeezBy/j05LxJobzzpy2eW6w26vLy8srIy2KY8
iN5somW6FMc915X5LN1jWiP5nvr4J7jJp4aNVzSN/aV7rAkN/4ChvoGhCKKnc8rnJ9L+72zO
5yGidY6R64UqoRHCXCcjkMWAQIF5Spc51hMOXJnBuk95VWN4EtXBPcrBI/6YR/p2x0S780kO
PhnHz4f6hiaVlVeP7ov0gEO8L1hpdTMa3mFGDC7gNgFOAsxkQS0jyEA2RJJ2kIBZHDxuFDyS
0mmZWax1W5xff2/Hmx8e/HS514qtsev3ZYABvpIDJbh6Z8JPWyO/Wun27arzJxxCBQLJjYKH
urRy/xHvwPD0L789+uq7O95dcnrZ6oBVOxOBQl+3Nx3Tvz/vTFi5LerrlRcPHAugMfKuCx55
fLFQJPULSv5xjcPr7+/75DuEYcBs4LQBHoBzXrk16uvVHtv2+QaFEQvE8hsCj3XbvJZvCNty
OGfTQfLGA+Ak09bsSvl5V7LVKAHwA9wchEC2x/6wITCDxJ0KeOSLVceccsAZTmbomDD2IKaP
rQczeIIiHDxwwQWXXwEev2h5NMCDRqPx+Xxb44MF1bI95Pr2iyq4DzYa9UqxuLhQjW3j7cJ+
7t6Al++JX/hA9Ny7iS8RaK//I4SSruof6M3ISOfxeDZ+B+QoRWWFHP9PBklPcSOmKaIeGEp9
jBn2v4o6JYwWPEe1tI1HwoS4Q2DTCFhq7mj2STzpQl62PeJN77wVntQNF6IOV7dVoiygt5iM
QOtDN6rasdiQsb0G9YY8qcIjJPKIW8Rx78z9LnH7HMMcPOKOOHifcfQSiOQjeiN6njDSksUC
YSeLmHPQVnfoqwn6JdAUMcdACLghmb0wVkQeB48pg8f+I0EL39754ZdO362PAPpu04Gs9fvS
gZ611YDI667kn3cmLl/v/+3PF28UPOKSaO/878Rr7+5eglBNPJh/08EsAAk2qtx6lKQfNgYt
W3H+uuARHkNd9N9973/m8M3aMDDPpoMkFDmumA2s/xmdcMUG98BQ4tTBIyqOGRLFtr9IA6cK
8GPL4Wx0/nRszjGjBHHTQSo46MnzOaKCwqmAx+Ug2urdpJ93p1+fOn4xfRC3HspkcZU4eOCC
Cy43Ax7gEZ2QkBAZGSmVStvb20eVM9pTZRQ8kHRanUwoVKJ1PICE++W+ON33BULCwr/FLrg3
bTaBuvChKI9zWfkiQXJyEoVCwcI8RmcC8+hNrPBj9QlPlVEfo3tMG8p4QhL9nIgfMGZjGQMP
LDwCNSJAJh0MI84ObW31xdSNpzKW7o5+NzB/k1PiqmjqhSF9O7KrCTKbLDfWjB5CqcM4FrUx
Vou9sa01ico+5RF1/FLkiYtRhx2DV2899f3Pe4/Ye6RmcTq6kO5yFow3ENBAKORKp4plfOiH
0WxBo0qua48BT2/wsL3R9jp3Knh4+GVt3hP48864DXakzYeomw5mbzxI2rA/Y80eVMn+QiCp
6/ZmrN+fufUw9UbBo6BAtn5X5M6DYev3JG6wI246QAFHAap8g13GWsRzkWzV5mv3pG20Q9wQ
1wWPLGqBq2fq7qPJu09kbz5EwU57ox0Rm9DmnNOB7t58kHLEPmnq4OEfRqGzxGCBnVvoHczd
djgD3JktRyibD5E3HsjcdJCM/Hgw3TOQw+Aopx7jUSApOeWStXJr1A9bEhCzydTYY/0+4kGH
nMg4Lg4euOCCyw2Bh600NzczGIyysjIej5eZmVlQUNDb24sp6auBR1K0aO5jfrMISa9NS351
WjIAj9n3R57an1hTU11XV2MN88DAA1PSaj45P+SlZvqjTI8HqpOfrMl8mJW6rW9gBKWgK8AD
6HaDGa3mZdYj2ALDcTSvi5QN++IXH0//MES0yj78S444FQu2MJtGLJD+hi0eKDWg9guDyaI3
YyEjZrOsRBMUm+boHrbvpPe7n659a/GqrYfdTrqGBEWmVtY0oKcKoAjpvguZTK0lajWVWkKn
q2k5qpwcNY2uptOLaDlFzNy+pk7E0oGevOV6XHSLCoj9ScEjncTffTg8NIrJylXau+Zs3A9U
f9a2Y/QtR7IRL8O+NJQH0jceyN5gl7VhX/o5D+aviPGwd0ndfSQ8NUPAFxY7e9E32aUDfbrt
KDgKZdOBzPX70gEwrEeySklbDhHd/NjXBY98cZGnHzGdJFAUlsYmC484ZiPGgaO0rUeyATWt
RVwhaRsPAE4g7z5O8gvnAaU/dfDwC6XkMMTWH6VydVQif+vBFHAHAHUcd6FFJwnFUtWNZrU0
NbX29w8LCzQHTqV+uz5q9c6pgcd+4tKfLn/2nQMGHtr6zvnLPbGx4mi89dcNlsGahJxC64/W
dy9G5oK3cPDABZe/LHgAjV9SUiIUChHNq9eXl5ezWCwqlVpTU4MYQ6iN7W6IqwUBD5GoUKnC
9qJkKF5/OngWIXnh3+Ln3x83m0B76d4Yr3Mc8NbwyDCbzdZoNGN2FazDGzzQ3cqM+Lw+bbo6
9lFe8CMdOQ8wwj4qRaNBLBBa0WMsXcQM6wxwH0APWAfOCemdUl6ncojaco66bk/c6xfo7/rT
l7uF76+qqUQOYRm0wEOwlVpsrA7jk0rG0GZsG6w8KVq5bDSJB1nb3duXm690uBj25coDX685
duR8lFsY+bRbuMvlaGlROYwZPmC4raws19dPGRFTEpekiohRBEfKAkPFfkH5l/0ozu6syCTj
wPDoEa9nj8HBwxY8iGTR1v1hMck8TDkWFZUFRPB2HAMwkLHlMHXr0Zztx5kb7Ig7jpJ8Q3Nl
CvWvCy4945K+42B4amYB9mOppiIygb/nZNb6/RlbjuQAzgFjo12muz9risGlADzOe6aRKAVj
KcDlVIb8gg8TnOfWw9TtxxibDpDsL9KTifmFRaU3GlwaHJFDZ10RylIgVrpfzszKkZJpsnHJ
JlMHD21lXV1DT1//yPCwLjSGt2Jz1I/XNH2gMJYBqGPef7Z++JkdBh4KTdP9i04BwMjOKwM4
AaAC+3WPQ5HF20LAwMEDF1z+4uCB5brqdDqBQFBYWGhdD56r4KGUQ6OWFhe3p1X2eJQD8Bgx
DueLBEVjFg8hV/v+S5HPEVIXTAuaf1/sHILohXtj3E6zYaTnmlEkEmE9X8aiOS1YGQ05w08a
/VQT9WGG+zRt5gMFCbNk7FAINulgNI/FjCSpQGazER6wwMNoRVMkiBOC9CazKZUWczZ229nM
pfsi5vtyVl9M/zmU6Dg40oXktkAj0KghQ49koIw6T5AgT5PV04EGhZqQEiAWm5CQsZQYjFkg
zAeD/FTf1JFBETi6RZ1yCb0Yku2aINrvm37IPYLDl5qB9A4w7c8HrljZQCZbxMV6al4fLa8t
m9WWRu6PT28NjCaeOK0WcscOgls8bgA8UjMFm/YEh8XljtOYB08lrN8bv9Eu49BZchpZcpPp
tMcdU7bsC0lME45bv/tw5LaDyVsPER3dc9i8wqmn04oKihxdk9JJ4yeMiGUdPpvpEchh5ip/
dTqtXFGsUl2BK5xcWUQc+1eUR7MFj+qahu6egcqqxura1r7+YUVRjd3J1B82xf68axL2wMJu
v1jh9crrG+e+uemjLw7Zggd4HRw2AJwISkVqfwEOwcwdVsDAwQMXXG4rAX+w1q8Jvxt4WGM8
BgYGGAwGVsHDVlpamwUstuActd5eam4z6Uw6oVhUrFSjrDKQmsh5+/mAWQTiwum+C6fFvEJQ
zLo71sGOYkGdC2VlZRwOx2AwoAcBelpvRrV9V30VM/SjKvKj4sAHJNGPlpGe4idsHuzpHE2L
NUMw4loB4KG7wlCBSm9fXwTJ+1z8ijNJSw5EfeCXu8Y1YSMnP3uUKhDYQMFjLJYTGgMPCwzb
2FIQ9rg6B6B7jL1vMlk0lU2RCZQjziGHLhPPxnOPBaQfvRiiKamqzCB7fviJ62efSny8TVRO
b0x6Q2RiVURMXWBYp4d/v7OX4uDR7LNnRlrRKujXC379i4DHxo0bly9ffl3wYHGlFzzTs8ZM
B1Y5fCaORBFoNFP6dn9d8IiKZ/kGZXFypePWHzgZyxfKr9e+ZBLwUBaWJKVyuHnyCeDBEEuL
pg4G8NQql3J5stBo5s2CR22jQlWfkSXMovB7+4Y1FQ2NTZ0XPLN/3BS5ckeyjekDMXSs2Brz
/menX3lj09w3N8/7z5Zx4DHOvgEWjvvQMLsH5m3BwQOXP5G0dg7scCZafYhg+TecXFvfCf4W
sD8QTACu/7aHmIqAv9xr/BneavBobm6m0+ngKQ2PlfyyjJkERoaGm5IrynbSJclCiUaRJ+JJ
82XKIgWbl5MSz/j8jZhZhLT5030WTIuZS5A9T0g4so2o1yExpS0tLTk5Oa2tregRTBA0YIKM
iNI3mPIzLoljXtJmPsK//FgVcSYn7MOqQhlqrTAgVdBNEFqXFBp3qtgptXTXBxPPnov7/kTM
h+dSv3GM3OzofbquuWXUdIHQh8U0ZuX4xZ1iAx4TI0DH3RR4rAuMtVppd/8IX1rsHRh3/FyA
fUDG8WBS8MXwgG+Xu3/5P2lMWHFcfJ1/SJunb6W9g9bhTPXpU/WHj7XuO9K64yDv+zWa6DjY
Wv7jdweP21BWrlz5008//bqS6UfsEyfSyG9eMv3gqfiJNHIzJdMj41gSafFvDh7gJMOiGTcJ
HmASYYGmtLxJo22pa+ikMaVt7b2FqprwWN6GXTHfb4xdsyd13d40ML5c6fPae3vmvL5+Hkod
E8ED0AX2oMYe2mABIw1sAQcPXP5Egmlk8HkGC9j4bS0D2J8MGHnyGutfhPWv42oCzuc3P43f
Hzys3ha1Wp2XlzdaJh0VazotYo1htXWeK6oVVGXxsj183EP8Q3PzuI2tNbWVHWs+S3+WkIiU
TJ8WNY8gBuCxa3Xi4MAwZkXBwjyg0cqfw2ZIh2W5NJdo6UGfaSkPiDynlUc/Lk14sSA7FAnx
QEwRBhjSm2GjaQIjoeCBnGFtc3lw+lGn6GXr7N/+eO2Cdce/jaPF6UxGjBqQHrcwYi4xWqlj
zJEyWlfdfO0K65C1zQqEVuowYaYUCOpt68xlCM9djjvmlXBxs4P9m29nu59qrSwTZ1AKnFxb
nJxrdu2o2rahetumivUbin5cUfjJUsYrbyd9/q2hue66v4W/Dnhcmz2uDR5HHRIzs0W3Hjzi
OLny2x885AoVkyO9SfCQyYvjEhkZWcKi0qbK6jaeoLhUU5fDEKZnckkUqU8w66ctMT9tjf3g
C4e5b2565Y2NGHKAMf+t7Yu/PDbO1YLxBiAQ8PUNC/YAA3ytA8vW749gYXDYAJ6xtmGoOHjg
cluJbajS1VQ2+CRPaiexNWtMuo0t2Nii+DjwAPuCGWzXgA1uFDzAgX5P8Ji6GAwGoVCIBXjY
xGMgr0gVChjqptZ3XiyFe6GOga7k9GQ6hWk0Ilq+u2Nw+4/pzxCi500D4BE5/+785wnJG7+N
6+lB0k7BNvn5+XK5HMuURdwn0LAORoweugEDJ+GsLPmx0qjpRf5/1xAf4SSs7B4tnw6U/IgZ
1pkn+FnQcupI81qwprpZdiFky6dr31r4+XPfH3vtTMxaoSoHs3kA5BiydbdYfvGgmNEOtqOZ
r9ctdw6hPe6Q+u1Iwi5SGwypC2ZpbO1ikXlOn6yJ3rGnXMbjSBTZ6Qymq2fJsePatWuKPv9U
9OF/yf/+T8zc2THPzEh+dIb/ky8q/XwtI/04eEyFPa7bJG7qcjNN4qbQKf7GmsTdkMA30iTu
JsEDqaWmLuMLC5PSuDxBkaCgRKWuotKFuXnyUk2NtrLp25Xu//ng4Ox/r587ZuhAqGPR9s+/
OxkYmm4FD/D4wh5xACcwqLC1G1sDP7A8F8wGMu6haitgTm9vb1z94fKHiG1g0kTBjHWYKc8K
z9ZwJmxH8LdgtfVNCtjYnwxG4BhLjAMP7C8FMxJifyngR6tDE9t9Yr6YQFlrPRzG+dhpWH06
2I7Y9wKwpS14YCuv8Vf5Wwlm4hgaGmIymfX19ePAA6vvCUHmHmpDp2sJ3AUPW3QSuaSkuBTb
fWhw5OCmjJmE8PnTAhdOi5xL4D1PSF/5WWx72+iZY8m5iOUE0AISNzGih/V6lAiq5PmM0De0
6dMLPO8vSbmLnfB8dWHumNrXW+ARywRXC/o/M+KLQW0bhaVC+0uOW06t3On3uiP5PZ+07a1t
WvCG3gIZLVbbxWRIYUENMNeI9vylEYsZjTU1IRGpYC8j1hUGHiqQXP7oKy03r7yh6XIaI5Gc
lxefLjx+kvHpZ3Eznov8x9NBj80IfurpmKcfJz/1PPGRF5iLvwXfIXHwmAp74ODx+4PHWOpQ
SXIaOzGV19k1wBcqKqsa2bnSQlXN8tXuCxftGEcdb3+0j0zJvXUFxHDB5Q+Ua3g9MLqwmhGA
7k5lFmNUAJat9g3b+A2wfqKZwqrx8+Q1KIHobQ8KmME28dw2L8w6FdjGyvZW4IkmyzEawWwp
AGzgMb8ntiN2XOzcwLvW0xh3XbcaPIA0NzfHxcVZVZ6txQPJL4Us3dSGDgAe3UCnG/IlojK1
BjMhmEy6c4ezZ90VPvd+AB4R8wic5wnE5YtjWpo7YDRTRigUJiYmjoyMQFhfEwjwh9EAD0Gw
ebh3iJNgJ45/RBHykDLmbmHaw1JaoEWPFfk0g82gyaMxUbsFCgJAlCrNpfCzHuTvQhRLziYt
SWH6mSwG7FhDHW0t5eq2Um1rWXVLpba1sqy1srStUt3f3oxWHL32fbGNDhlryWKBzGZYD1uG
OmpIOzfEr15l1huKW3u8kukJOQJtYSnf63L8p0t9/jEz8O9PRj39ctJTz2c9/SxjxsvCf87P
e/Zd/gkXHDymwh44ePxR4IEJj6+QyKtyhRUKZQWXJy1W1y5f7fHqO7vGwGPrgrd3vf3xXiZb
eEtLpuOCy+0JHuMiQoGm9k/OH+easRoAsQG2nzibrakBbADoxfagmDUD231cXpj1KBixYMyA
YQZ2Mhj8gLes0SO2V2T1itqeBjbV70MdVikqKgoMDGQwGGq1uqenx5ZJMEXfQ23sdtfAPXBL
V0tyRjKdwhgaHsIUc6Abb/bfImbfG7DwgbB5dzGfIxC/+b8Yrba6paVJIBCkpqbGxMT09fWZ
xpJpYaScx5Ae7geqXyNm0UPfKk6YURD8sDRtLjPxcCdat9MIm9EQE2gyIoBQWwwSe4o6PmC+
POd87Hp/3nJv/o9nEzYU1YjAZsMNrbLEWE7gZV5wBDswihEcwvbzzfXyyL10URAVCY/Zc64P
HhAWa4qmAY/CDqyik+xem5PjfNpgMdb2D/OLyqVlFXqDrig7K2Xj5vD5b0T869nEp1/IeuoF
+tMvMV5cKFjwnuidpbknnXDwmAp74ODxx4IHFjoSl5zrG8LQaJs0FY3fr/JY+PZOAB7z39q+
YNHOZSvsWWzRrW4Shwsufyx4XM3VMi7KwhY8bLU5UO6YlwQbE9NVxgVXbHRIHQcetrtPavHA
NsNCpwB7AHoBwzWSa33LFiRswcP2uNiP1w64uhWCRWJIJEhJBDqdTqVSAYdY8QOjiyFOe/t5
VVV+dSaX7OnrFRIQyhfyK6pLjaah1AjFgodjXrzLZ8G00Hn3MGYRsha/GhQfn8Rm06VSWXd3
t0gkam5uNpqHjVA/aslALCUAPIywaaCjnxt7PD/6aYHfzDSXRWGXlmrKEGwwwCbED2Ka1N4B
G5F3jJAFeUEqkkP9LEm2ffiWi/yf7Sk/xFG9DP39otCY5P272xiUAb60I0fQSmF0p2UOxCYM
RcUUXHBrKdGMXdkUwGOsIDridIFMsMnULFNS/HxUXFpHa52kUKwultfWaHoH29vKi5hn7dMX
f5owY1bWjJncl+cL/v0e98P/pX71OeXQrrIc8h8CHmBCMLNthZbbnD1w8PjDwQMTOkuiLK6r
b+pdvtrz1bd3zV+04613Nrz5/trYtCt69eLggcudJ9r6TkAO2XllN2TxGGdGuPYhxm2z3y3L
NtD0avaHceCBOXFso0rOBrGsM1zN4jERPKyBH7/bHR4ZGWGxWFiAh16vLysry8nJAfgBVBWG
HyODQ3UJ6pIdNFlygbyiMFeQKxFJ1aUlZGqWVJ4bcpnyxuPxLxDCFjwQNv9e1guEnPde9k5N
JnV1dYyZU4q12ioI1pngXsRXgdbUMFp0BmgEMsPlEk6cz8uuux7b/tErTvveUEjiLUgFD7MZ
KWOOmDTG0ktGX8H/EfCA9Ei8BRL1OQg4BcAHRUw7mrDOgfxzaMpJXoRfyIo15z9aUh4dB4mK
+4j0juSU3oSE/vCI4cDQckdXnre/eXAQwsqYm0ZbrFizbK/GHuCf2TICjejgYQBN5prqhlq1
JCbgULLPTmLECSYnor+zrCI9nrLqZ/Ki95n/WcT+9EvSNyszNmyJOmHHpcb39bb+IeBxu9Xx
uC574OBxm4AHUpZEqSZTxT+s8f73e3vfendtzrrn3vtoRXwGEwcPXO54wSIzrdGbrZ0DGIdM
jPHA1o9DBdt4TiyN69rggZX8tYKHbXMBDIQmxR5rjKj1oJ5xfOv5j4vxwK5lUvCwLliv91eL
nZ3dVDqOgUcQk8kca8uCCHiilpSUsNlsLpdbUqIu4AvEl9g1x4X6mhGg7KVySVkRElza0dFV
Wqb2v5zw5ozI5wnx8x8Mn38P5wUC68M5vkWFWtRZg1xyTU19cXHJaFe2seoZgC7MFiRRt6+v
LShy/fKlj69+e37QiTfzsk7193abkJwUowHJTzFbMIeKxYJ1VcFYxPqfBTJjNUgBxGTLsy5E
7fd333D+q0UeH31MPX1RHJrYHJvR6uVXc8Gp/IKjxsmx+tTZ2kP27O27m3ORUE8TmEMPIWkw
JqxgKlZYDLqqGQQcCsmpMYNtSss661X56T7LspznxTm9FRW5o7omryaPkbh5e9JXK7J+WJu2
93Cyqzc1Mo6UkCiRFPT29/0hfz5/FvCwsgcOHrcPeGCSTszdauez4tMvKnY+hIMHLn81h8vE
AmJYejiWLWIb3mkLHrZZLZOmiowDAPD9edI+R9juVlsExifWY2FEYX0X7IKZXybOMC7+ZNLT
sJYavpmbNsU6HhqNBgAGlh5rNv/SmF6v1+fk5Li6uWakpVRHq/q8tHA/+K6vE4r4RdIi6+5c
tviDOWEzCeFzHwxacA/jRQLzvRe9RMIilC6QQho9PX0yuRK+0reB2DMso+mxUjn5wtGvvHa+
zAp8jBn1WXMVuGrzCGwcQUufW8Yar5gxA4XZYqUXzGSBVViHkGQWY5EsO3DDV8defSH52KGu
snJZGkl5yaPV4Wzjnv3aPfuqDhyu3XlQu2or8YPFbLu9hu42pEyHyWgxow1nx1k8JgcPLDnX
BM5Do+mqLeZn+3/Bcn4u/dzC6NAtPCFRymIlObimHnHI8wqUpGTm07kiNo9BpUsksq7ubhw8
psIejz32GA4etxV4AHELTP2dwQOv44HL7eN2mdTrMZVQTLDvzWSnAq6Y9ChXqw1yNZ/O73m7
pgIeFotFKBQqFArbYEuAH+CJzefzGQyGVCYp4Asklzj1ZySWFpMeMkkk+WoFUjK9u7dLXSJN
Skpf8kbws3f5v/Kgz4L7yC8S6G8/58Fly1BFjVQPNZksYrF04nGtlVH7OjoY4afzAp9rzSXw
Ip8qz4+DLEakiBjW3gQ9KTDRCBLdAWF1OKwkAGFlNsaMFB25NN+3Pwj65gdZHltcpmQmxfPP
2TeePNGwZlvFj+uU36woWLyUMveNoCdm+M6bp06Igy0mA2zoh00jowaUa5EH5u/BcmwtkKlQ
WV2aT0u++FHGgb/H2j0b6bOJy6cK8qSsNIaUkVcslqqk8kKRpFAq4/PzCqSS9jHfEw4e15Y3
3niD8BvJ3LlzHR0dCbdGwC19/fXXb9HkhYWFhFspO3bsuKHt737kpWX/918AHgvf/OKu6U+O
ezczMxMHD1xwwWWK4KHX69lstu1m9fX1YE12dnZ+fn57ezvieRkcqk1Qq7dTZWkFBRoFj58r
4YsLC5WZ5HSxLFet1mz8LnXmXR5zpnsvuJ/0MoH72uMegT4pWA0xTCRimcFwRc/6X0qFIJU5
IDWHKAieNyQhFKfdLyM7GkZ04yqam9BipEbUxnEleEAwWiEEyEhtTfLPG90XflgWRypsqAtg
UkgZGXlel4uPnhR+8W3qwjcjZr0U9tSMiH8+Hjdzpu+/nkj76ofBkhIzbO6EDQMwmrxrulZl
c6znC/auwaDLIjHUfEqs0wfJ++6LO/BknM9mqUIgVpSzuHJ5iVaiLZeVqUvLylRqVQ6DrlAV
9Q0O/CEfg98KPIJSCxZvC/k9o49wuX0khshf+fmXADw++N8qnqTsdzgiDh644HKnggcW4DEw
gOjE1tZWoKRIJJJIJGppaTGZTKPaHYaHuO1tjsoaUSVZkON52TPCPyxfwK+sqdDpR8wm+NgO
2sy7Ls2ednnB/ZmzCcJ/Px7g5hLN4QjE4vyeXsTKpJAru7o6x4EHZmAxowq/v70tL2pjWcrf
y9Ifp/tv7ahsgnR680iPqX/YNKC3DCNuIPCfEQmxMNu2eUXAA62xYRoc4bt6np3zesbxc/qe
EUljq2tKRiqZUcaS5J6+mLR4iesTT7j/4x8hjz+e9NTTpOdnZTzzYvTT82VObsZ+QEiWQTTL
F6nVYe1jO0HMSDH30YMbjCM0OrtayY91/SLpxKMJZ55NDt5eqhaXlNfl5iuLtNUlTbXlzXXF
FWU0DitXyB8eGbFA0G0CHphTDxtTr74Ltrx/0anftk3AX1wmDTnDwQMHD1xwubPBo7Kyks/n
A8wQCoUAOcBrW1sbFu8xRgiI+6GX3tx9SQP3wu29HWkZKdwctl6ns27jepI76/5LL93vveBv
6S8RRK/9IzQ9id/e3pGby6FQMxRKeWFhUUND3VW0OTyIujjqpBSy8ztZZxdGHvqO4u1fEB+f
HxOVFxIDBi80tqkYedYZTSakuAd0BcFgP5bxJadfe8/l/Y+kBQKAOOUd3SQ2nylSdrcZJRHE
jJ9W+bzwUui/ZmQ8+Rzlqedpz8wWzF5EfvE94vLNXdpyExLFil6oZTTH5SqnakECWbHgWMgo
lshLxPw4zzXRTi9HOC9IDd/XWF1YX18vlyubGhu6u9uUpUVkDlNSrBwcGf4DPwYTwQMouxVH
47HSu7b5Vjh4/J5ibWWCgwcOHrjgMonGMZkNI4aRId21h25IZxwxDvUP3yanPRXw4PF4Xl5e
TCazqqpqcHDQbEa+7tsGYGAJpQA8Oi8ilUtHTDqRSKBWqGCs8jiq9RPDRfP/5fLC/Y4LHgx5
icBY8HBAclwejDSUN/X0dmu15dHRMUqlctITwCqBWXQ6SUJi8Ko1mqigASGzk5LdlZbelZDS
FhvXER5T5R7IP+texRLoh0dMltH28tBoOVHEZwN+bFCVH136w8ZPvhCVKip76/P5xCJOQrmc
0dRc3a4p5zucJf5vacqMubQZrzD+/S71k68zl/5E2Xm4msI2DgxCFgirhGqtFjapIAktkBEh
H+SopvKqWnIGOTHUMSZgTcDFFUmhTk3Vpa2tDSqVXKMq5NMY5AwSV8gvKStraWpGfUvXsXh4
e3uDJ21jY+OtBg8rRVhTt07708G4EMH9fFc4eGtweNQvlsos3uKYDlYecCdvPZduCx7RZPmu
C5ngrW/sosFKlXY0f4ojqcR2weKrWzr7bQ8BJgTrs3JLx50kWA8Ogc2GpYNNOo9PohAcVFYy
eoucQtjgxxY0zio7rwzMsPpE4g4XIti+qw/5M/RLEsVTlWD9RodU8CNYD84BbIPNOellhmZI
wJwcSZX1MsFb68+kgIWJ95YlrsQmB3OCmbHLRE+p33qG2Hqw5U4XonUzcI3/3RIM7id4xdZY
jwW2Aa/Ww1nvG1gJbk5iTiF2o8CPAmUtDh644HKHCVC+I4O67paeJm1LtbJWI64ok1xtlJdJ
y6sVNSKiOCuW+icCj+HhYXVJCTUnh8Xm1NXV6fQ667VD1pKdMNxDb+64pAbgMWAcFgr5ankx
qvoNaCdYWMAt/mCu0/P3H1rwsOvLhOR5D3slRSO6Y2RkuLq6gsViiAukev0VJuWx8hzYD4Oq
1BSXj74K/PoHyaWTbRlpdcGMJu/wVs+L9RedWs65dDq4lRxw9Fu2OsDRdUhvHOUV1PliQDq3
jRo9SiqqAsLiSsTKejUvxmtNkstHyeeWEGMPt7XLy1nkuLXryJ9/w1z6XcrWjUm+l+JjQ4ls
StcQoiCQumAQ1lQOdaVclRCMCCWhjAJZjMWlWg4rP49FyWOlMEnJ2YkpGYnJKenJYQnhMYlx
NDK47twcGo1FZ8hE+UhnvOuBx+9Zx2MceGC9h8i8UrDGShcJOYXYNgpNE5bDZX1rhzMRLGMN
o61vYcHbL33tBr7Lg/XgFTOq2B4Cq34zzsxy3IdmPRA24dXmsZ4SPFbhB1vG1mN5bWBysIxl
pQEFDZbB/NYeTFZrA7Z+KpcJNgYqHlsYd28xdxXmLsFCx7FrsZ0ZOyuwmVecwLoZOHnrltga
67Gsvx1sGTsf7FaAZXBbJt5bHDxwweUOEJPB1NnYVS7TasXVxZxSGV0hYcildIWMrrQOqXWB
plAw5SpOkfeRwC2L90Wcj/2zgIdVEfYMD+bLFZnZFI6QW9dUbzAhD1IT0owNDCRftZvd2OAn
M/VbOo16kVBULlGgKtpktiBblhRrvljk8dxdXvOnRcwmEOf+3SfMn97c3Mhm00mkLIWiyIT5
bsbiMSALrEdKcUFG1LjQp1IGf7/C/pOvNdmk0pwYaZCn9mJg49FzzfsPNRw6VGlnV7Fvv2aX
XeqS7wK22OkNJit4jJYUhUZNL2BujbahpLCiRsUj+/1Ac5mbff7NlPBd+VKqnMXyP3TUf/ue
ZPuzjIRYBpeWTMnIYNPae5EKaRYzYjUZzWixXN3kMVZHDM2ohZpb2+WyIqEgT5DH4efy+Bwe
i8EkU8kkahaLy8nLE/EF4FYJ5XJ5Q139KGzdxuCBaTFbfwrmjrFqW0xRYm/ZkoZVaYK3wJqn
PnG21cvWpgDYISbNAhs3G6aXrz2PFR6sDU8xFY81YbduA8DDtlIxODp4F6urY738a18mVgXo
bBDLCjO2gs0D1ttWGbIeHbst2HWBLV9d4W2bID/OdWU9FtZE3no462zYuYErGvcrw8EDF1zu
AOnvGiiVlGmkWkVuEcIb2GDKkMFQWIeYoZAwZRKGTMkqLmaW+Z0IXvPfbbuXHQ93i79NLuSq
4KGzwMMW5FWPDgNqutDD3U09Mr6YnUpWsgW9da3QsBn5ig82G4SHMmua3HnmHlOv0SgWFmjF
SLasCUI0NvKwbWpctSRsJiF27t3kOQT6Kw8GHDsQzOWylYXi/r5B9JB6tMntWL81CBwcGkHD
Jcy9/bSTjsdfW0R0v1yrLefRMyke58qcz9Ru29u8elvNqk3yn1YyvviU/M67Ec/PY51whK9Z
aqO2tkVcXF4oZxDdPycdeyzx6DPRfpu5uVQxm0+KTQZziwX5IqRAvJjF5rDZnO7uHtja9/YG
xWgwdnd3NzY2VlVXV1RUlJaVlZSUlJaWlpWWaTQarVZbV1fX2tra19en1+unMuHtBh6YVrVa
J2zfGqf1rG8BNgBfycfp5XHAMCl4jHvrGvNg2hycFVYVx3aDia0NMM8Rtg3WBQkLq7DaWK57
mbbTTuy2AKACK9FjezMxkrF2QLBu+RHqW7GumQgekzZ3sL05YGMcPHDB5Q4T/bChra5dI9Yq
uSoZSyljK2VMhYwhl4PBBEMhZyjkTKUCDPAuMuQKlkKao3A/5Ltu8c6tX9jt/upYmNvtbfEo
N/Qm1Hcl1PUgo74ntqYvvnYQjNhaXVKLPqmjxbNYuCNNvI/UHlA+ENM4Et/Um1zTdZzZ48CE
OyC90SgR5pfJEPDQIxmxZlQFGw6sy3iWEP7KXdQ5BO6cBwLdnFMHBwfH6nwBwNCZzViPlVGz
h8GC1uMwQ5oU0slFH4Rs212vKOHmidPSSCQfX5m9o+KntYJ3P6YteCvhpTkRM56JeeLpiH/M
jPn2B+PQ1et/QlBVZT2vQCHITY9z+jjJ7pEou6fi/TbK5ZxCiZzHYJcVq9XFqqKiYsAHbA6H
yWIBKvjV4DFqHDOZAFfodLqhoaEBVMCFg2Wwxmg0Wq7TBPf3AI/e3l7AHuNq2E4FPKz+FFvl
bssk1u/vtj9azRqDwwZbK8c1FCW2+zhHxtXmsXpSbKv8WU0u42a2BQ/s0qxFj62Xf43LxGDg
uvG3mJXDikbY5OMMKeiF6G03mxQ8Jh4LBw9ccLmDpbO1ixrPIgZnx3mnxHglxXqlgIW0QBI5
PIcSwaBGMqmRLGzQorlgUKM5OXEcdiLP61jgWoQ6Dm1benD314fDLkXf1uBRMNzpUd3kU9Xq
U93uXdXiqW33qOjxrOjyLu/21vZ61gxcru/2qG5xKW27oCk/KFTuYDSHKPv9C/SZVfAAPGw0
5Ofnq+VI5JtuNB4TaWFyZk/WC3cHzSEwZhOErzwYEoH2qYEgo9lktiAFvnQWC4RFhBjQ2AwL
Yv6A+pUloct+Orv4M21uXntLd2RKTnQKXUjiChwuUj/5IvAfj/s8+s/Axx+PeeKJrMdn0p58
OfjlhRpy5tVa2kOQpaq6Ll9RLM3PjnX5IvnoM/HHX04P2VaqzgPEweMjcZ4VWm1VVRWPx6PR
aFqtFmDDddrUXlNuiCv+KPCYKNiXcaDmJlowbLUhpuKtX8Ntgx+A+sZiDLC3bBnmv1uCrUV6
rdEO11aU2GzWA2E4cbV5rDraVk1r6zuxlZi3BQvYGAcemGsG63Rga6O4xmVaQykm7WoNj/VN
sDp3rI4ka7ay7ZZng1i2m1knx67X9li2h8PBAxdc7mBprm0BsOF93N/rZKDXKTACwGuKd5bX
oSDnnR4uu7yuGDu9nHd7Oe/y9DoY7LzNe8sn+3d8cWj7Fwf3fHU0zC3mtr5OpGoGBPfDcA+M
vA6gy30WU7/ePGCE+0yWHgN4hYcgeMDSV9XBz2Tmcws7q3phNOy016DPKygoViqs2r65uUUh
UZ7YHTfvIf85BM5sgmz29OBQfwYGHmj4BAIe0Gi6KmLuwPJV9f09qQeP7HlyVpajs2VouKNn
IJnGS8wWNmu7C4PjKN8s958xw/upx0OffSZt5nOMx5/n/evl9OcX0Pbs13d2XA08Kqoq8+VK
lZKT4LEq8fSr8WfezA7fV1MlKa2pFCqklQ11LR1tykIlAI+W5maMN341eNju+Es9tDG5ncED
qGmrPd8aI2FVf7ZVwrDS/Zg2HPcWoAVMTdt2KwAiUNZaOxSM66J4jbbLtrNhjHG1eeCxNovj
ZgP8gJlBMFWOBXzudSXZ2hysdhJwXbauE9vLtI3xwN4a15HBVmyPaGussA3SGHdo282snRTG
Hcv2cLb3DVwLuKKp3M87ADwOHDiwatUqXDHhcmdLe1NHgm+a7+kgX/tQX4cQMPwcQtL9sgNO
RXoeCpxkHAn0OBQYeCrm0p6ArUsAeBwEY++yY+G3jatlcukzW7rMg/ltvTl1Q0Xdln7LQGWX
oW1ID5sHYYsJHWakRKfZhMZQdgx1ZUukmfRcsaKora9vwGwWSqVlaqRkent7i1AoIpNyChXF
CWG5i2Z4v4yAh2LOg0HhAUz0YFhXOCB6a/orPFbyvL1O6/zTDxc++VRJJA/pdT2Dnepqjbqq
xqSDO/gy5s7dye+8Hf70M3Ezns+cOZvz/ELR3Ldz3lksOHlmuK3tahfX1NzM4uZRsxIi3DZF
OyyOPLuEEn2mt7umvrtNXl7aPtCjqdbS6fSW5hbEDmO5qYpe4+jiJqnj9wQPXK4hEyNdf4Vg
fpap10i5/eX3Bw9ccPkrSFdbT6Jfhu/pQAw8fOyDwUj1y6JGsHMi2dQIzriRHcmmRHIY0fyL
+303Ldn7ZwEPSDEwmNTY4arq8ahodS4cYndpQ2UD7HqghEfGckmRMAx0YCp0wGjQamvYjFwK
nVkgkbAYTD6XK1dKydSMXC6vtqYRfNVXybWL57vPItBfIsjmPBgQFczCwAMaTRLRI5MaRvu/
IhVAYGiwv0Mj4FRxmFpFcW1zQ4EwXZAbUVxIbaopMdTXF3h6U5Z9R5zxCvmZ+blvfMT54POs
Jcsytm7rKVYgTHQVi0d/X79criITU1NCnZK8t4c4r0kLO9/SWN3W31NYUSYtUqaRMhlMRqm6
pL6mdmho+CZR4bcVHDz+KMGMKpghZdLslanLDmciFjQyqWsGBw9ccMHlCktAV39SIPHymQDM
3IGBR5xnSrIPMdknY+JI8slM9CGm+Wef3+29Zcm+Pw14FPT1B1cNnNPoHKv7T5XpaL3V7pLh
7AbYiBo4LGN2CevASmtZ4JGB4dqKaiE7N9TXPzw0RFDAr6rT6nWj+RotjfUrFns/S8h6kVAw
/2HfuAgeutpoBQ9EuWPNUNDZAJGYkFgPeLi3s0SlrdJWZEYcibrwaczlHzLizg40ldeycjPX
bOe+/wXz/z4nL/0hdd3m5BPHMyOCDPqr1mezWEzNDU3igkIeh8ejpXOzQykpfikxoSQSicpi
phAz4pOTMkiZLBaTxWRKC8Tt7R2T2i5w8PgLgoc1KsM2mOTXGUzG9bbGwQMXXHC5Knh090d5
J/icDfJBwQMbkRfjY92TY8C4lBTjjo5LSdhynFsqWIj3Sju/03Pbn8jV0mTqz+3qPFfatbdo
4HyVWaGv9ZLoqA2QGTVF/FIdY2yY0UiNsTBK/cBQtaa8uqpSb9CNRpaiJTqM+s4DG6KfJ2S9
QOC9+g+f5FgRotBtwMOCdJtF6nRh3haTBUnVBUtdnR2FxbU1mlJOxLZMlzlJbguj/VeWyCha
oTRq79GYH5Zn7NhGdnSkRIVmUzIzciiDQ8NWWhjv7LCYuzq6lXKNgC8T8nh8HpXLzWHQOZkk
ekpqWkpKMjk7m8Vhs9kcoVBYqlb39fbeVr+ZWwQeYEIwc2FhIf43jgsOHrjgcnuBRw8Aj0Rf
x1/AA3W1kMjh9KxQ2sRBDmGAV0oky2O/39Yl+3d+cXDnnwI8LHCbuk1zWT6Y1tFwuaiT1VgW
JBzg1gAdboRHq4mODQgarUxuGYbNQ5AJi/oY1fJYT3ozBBACqR0K67wcs+fcF/sigfHvfwam
peSjW6F1PhA+MOpheAC26MEMZgQ7TJAFrRQK9XT1KJRVlcWFvPDtWQ7PJjo8E+f1PY+WmM/J
Sw4Kzgz05GcmFuTSckVculhAYeUO9A5cDTyQOuZGc1/vSEN9e3l5lbpErShUSuRqqbxEIpbI
JBKlXFFUVKQp0zQ3Nw8MDGC5wHc8eGB1PE6cOJF7dRmXbItl4F5XJp6qTqe77l6TIlBBQcG1
9wIbTNwLTHXdw01KYlO5ut4ruRRroXhdGXcnp3gzNRrNpL+4W3EnJ72Z172TJ518Fi96R7Xt
CvCY4uekdwLhT+Vm4qY/XP4S4NE7EOWd5OsY7OMQPGrxsA9OukwkBuZkBFCR4Y+OsWViALI+
K4Thbue36ZM92z4/AMaeZcdvnzoeUVFRvZN9qR9o7G4VVBsbDN359V2ShhZR1XBtN2S+WpYq
xh6QeVyZc9R1ArjCAJtG0IwXYqL0jX96vEQgvf1kNIUqGd0TrQcK5h5B+tqbAafARiNsMBgh
0xDqdent6JUWqIok+UTv7eH7ZoQfeDrhwhopi5kvllKZVLm0QKGQyeQysUwqLyxkc7j9ff3X
ASsLICTziE4H0KKnp7e9s6utraO9vb2zs7Orq6u3p2d4eBhrSXO7CaYQdTbd934TAVqGcD0Z
V14MY5XrCiCliZdw3b0+/vjjiSc5a9asa+81aWYlmOq6h7sa4F1XxkELuEVT2WvcnZzizdy4
cePE87xFd3LSmzmVOwmEu+ZBW/CY4udkIv5N5WZO/HThgsudJ+CrdPTlZF/HECt4BJ4L9zgQ
sHvZkb3fHN/79SRj15dHzm508zoQvH7xrs2f7gNj59LDIa63dx0PoJoNSNlQwAHQsAUaNEM6
pPWZyQiZb7AoBTTap9VkQdrFw0px20fzA58kxH7wXFQBXzUpwEAWM2wC9GE0QRYd1gWms0+U
r1KIxRm+O0IO/Sv8+CPJHivU+fxCVTkzj6cqUaPFQMu0Wq1MKsvLyzOZTNc8JWiydbdRBOkf
Ijf6PR23eOAWjz+vxSMzM/PsBJkIhBj/nL2eTHH+cUKj0Sb+Nm03mPQ3jstfUAb7B2N9U3zP
/mLx8HcMC7SPctru6bzTa9JxbrvH5aNh7nYBaz/evvHTXWBs/3x/8IWI2x08MI+JYaymBpLA
AhnAuJFyWBAyAYS4UowWWIfo9K5208qv4v5JcP/kBc/8TF53Q3N7dX17TXVHtbajurqnttEy
ZECOZbGY0GAPrMF8S2e3SKYpLVJnBu2OPPtklNP0RN+lFUWCisrGPJEE8EZjY0N9fb1MJmMy
mROf6lfDj0kxA1tvLbiBf+ZxwWWK4h7MXLPWSbjzlds8xgMQ1Ouvvz5F69Cvs5ht3LjxunvZ
2dld2842d+7cO+BTAZ6hNU19/IIGfkEdt6CGK6rniGrZwkqWoJL5/+y9d1gcSZboe/943333
ze7szO7M9ExPt9S923dm2o3pVsuilvfegaAstnxRhZEA4YT33pvyFu+99x6EFUhCICFhJCSE
9/AiK6Xs6sIIkGkEdb7z5ZeVGelORkX8MuLEicK7Gfl30/PupOa2pea0JWW3JmW1JmbeTki/
HZvaFJPcHJ3cEJXQGJHQII2vk8TckkTXiqNrhJHVgohqLlBxNVtYzRJWhAnKwviVoeyKQHZx
ECcvIr7q6bORjfTPGh0eFQVE+1r9BB4+lsERfvFJ7JxEVhbQJJkqrKdwcxwNPTUOauKPEIDq
HqcGOYStc/CYnJ+ahLtOZHO1z80D5JgZhyJ4rEJm5+fG52emwGnGoU4U2HfDzjz+y/9Noak4
5/nxCkJZmYHBGUH+mQE+We5eGfZe7amFAHEA7IzB88DKuju6XwxkV9SUFBRGBRmF234Z7viJ
OOhKV3tdd8+zmrr6vr5eABvgAy0pKenevXvzK4j3BaPFwpiibx5nQylK2YRS0/DYxiMXR48F
iqVKLmI8YjNq1+3dwp04Xl5eK2kdWluL2e3bt1971N27d5dpZwNotDGCsrZ2DMRm3hXGAW3h
xjZzottYEbdDJY0h4sYgYWMgt96f2+DDvuUZXuMeWuUaVOkcWOHgV27rXWrtUWLplmfhkn/D
sdDEPvu6TbaxVbaBRQb9RjrVNJ10PZVolKbLTNFiJGrSEjCkWBQ5FqefQLiepH8j3ie05N7D
0XVlh+mZWbxlxK92WcAxkFel/7zizvON8LN82dXiZx0KwEPsFRsXmBYbmLqIBiUDTQxLdzb0
VN+PwxzWBap9nBK47sFjam56AjADIIU5SKFGiPmZGWi5ihYPGXjMTs5B0TnmJmEv0vni5FKd
v2oIMc6DhVUjxaX9mRlPUhKexMc+EUTccw/OMXN6VN04OzMzBjWVvGxsGZgcK2+pS4iPFAfY
8lzVgh0O8wKZjzrbh4aG2+40d3Z2ZGfnRERElJaWgmcZGRlZPkq5fChRhfVF430pq5X1L7UN
j209cs0cMgvKOiYnZ5QGeW9yr/OZd2gphhqtyUjAUCPRlAgMLVqTmaTJiBbF3Op/ProO7xkG
j0WBYf3IBogGf7ezLyq1PkhYHigqCxaVBvMr/Xnlfpxi3/BS75Byr+Ayz8BSj4BiN79CR98i
e59cG6+cmx6ZVm4ZFq5pZo5p123TrtmkGFmlMs2TGWZxDJNY2rVYilEM0TBKVz9Skx6hSYvE
kCVogviqjkCdyNMxiqLeSKTfSKKZxpOM4hk3YuubH60fa1S3PPqPvdb/vtviV7stVwse36l5
CgOjFcBD4h2XEJwRH5S+iIakAE1mZTobeKruRaEOagLFHyX42wevc/CYk00CPwcPl517pa+m
e18F5slGyU7Pzk/OAggBpdBoR36a776Tvipnm7jimbLKgeiYoQjJMI8/HMQa8Qkrp93gEhjt
dbdmX43bnYMiow5UtZXm5CbkxsRnSzhR4c7cYL+sjMJbt6rz8pPj4+Ok0oi0tLT8/Hy421dJ
C5tHbt994hZYhKXF4PXjcfQ4PCPB0iWrorZLaZk3l+X/Rb1PhjnSGk1mDMAMDDUKIIe8Yukx
WgZJoBZobutTgsdmA4/B4aniik5ebEVYVHVYZENYRG2otCpYXBskqArgl/lxyn1ZVd6hVV4h
Ze7BJe5B+S4BgD0K7LzzbT1zrd2zLV2zzJzSr9unXbdON7ROZlgkMUxTaGZxVJM4snEswTBK
hxkFwANPjcCQJBiymHgt2sgm1cQh3cQx7Zp9qrFdynW7NBO7rBv20unpqXVik/zqdoAQv9pl
8WsVq48O2a1KD2gHS0Pi/SyC5cGD5SgSuEXzXSMXUTcpULFXjB3N5bKKuvo+jPp+DPawtq9d
wDoHDwg6kPGySKzSuVeBSldeds1B4DEyD3RmZn5s4llzhImu5487c03MC/1DOoURD/yCuhxc
e63sesyse0ysHhhaso6eLQvnzs2+jFUGrvfseX91c15uQUpRallZallBek5yfFaEJE0iEgh4
AZGRkoyMjKysLLDMycm5f//+BgYP2P1sYJ1FF/mlpKCsQ4vx84qPGgnYA3AIoJHbd54oTfQu
ZHhkIi6tmWKSoGWQDEytgBzyitOPo5mnllY9XFf/SCV4vDsBtURR2V3PwNyb7lk2npk23pk2
ntnW7rk3PbKs3LPMnTKu2Sabu6Sb2CZdv5lk6pB6Dah9krFdwjXrFCPrZEPrJAOrJAPzZLp5
AsU0Vo8pJVyP1DOM0KVJdA0jtQ0jdQwitJkR2vpSbaoER5NgqRKmVZKdb4G9V66NWxZ0UY8s
G58sU48MFEN44Ny1gtyIkZHn6wc8gB4mhhVU31+VVjU/ihek+ZkD6vgJPLguUql3/BIaJ/VO
iPZPdqC7nN9z+co+1JX9KI3DeG87v/UOHj8P1YHo/KoKEKjJYnZqbm5Y5mU6PzlaHe5rtvM7
PpXyora+KiqhyMW7w8X3Ht20h2zURaK16ui2aGASDh5PoxqOP4Y+lMagTp/56dHx3iftbe13
Gyu7aosai4sKCkoq8gvr87MLivIzi4sLi4qKysvLa2tr29rahoeHN3CZr4xcCsvQ8ERMSpOe
cSKWFr2wvgMcArX260eHCqu6eweVqPC2ZGZmFsDedbt0TWYijh67DHL81PRBi8HR45z9Cpta
e5XgseHBIyu/BU9laRA4KKoQTRFjyDwsmYMl87FkEYYo1DeLtPFM06QKLOwTLB3iwF40RYSi
iHAUHo7Cx1EEQPEUAZYixFD4ukyBo3c6xUxCNZU6eabqMkQYighPFeFoYCnGUURYmhionpHE
1C7Fxb/INajYNajENbTc2DHpEMr1v/cw9pw1SIrwevSwbV2Bh7qpeA2HJ4jSAq3CfF85l3pb
BIk9Y+OD0+OC0hbT1Lig9OTwHCeG29mdFy79qAb06kG0p63vOgePOVlADjiEuXxw9NV1tEAn
mZ6em56U8UpfbqHn3mMuxy5XpxXW1TYXRCem3HRus3K5q6V/X1Wr4uTZuJ07Iv/6l7BPPvf4
2z8b+FLo2wqwx5zM42RybHR8crh/9llP/6PeljuPWtvaHz+429vV/hDc/6NHj/r7+4eGhsbH
xze2Y4YSPKanZ3OK2g2tU0Hdt7CF/+dVXrQWM4lkkhCV1DQ4NKHEhjeU+uYeB+98vH4cnhG/
EuSQ48BIGahEB/EqHj5+8UGCR1vbfHX1T/r4sWICsNHBAdK2tkVbKqFd/v7z3d0bFTwmp2er
6x9o0/loqhhDFeAAIVClWKpYhgp8LE2IJvD50or7vaNUY15hRWdFQweOyMHQRFi6AE8X4ugi
PA1SHE2AowmxFP4Nu+jegSmPoCyv4PzH/eNmVpEYsgBPE4K9eJoATxVqyg7BUMRgC8082tG/
wCW0VNNY8PcjZp/u0P9sN13lvFF6tM/jB60bADzihSnBN1kwePhYBQPwEHnGAMZY3Lk0MCU2
MC0pLMuJ6XZmx7kLey8DVT2g7mHjtd7BQ4YKC4Ojrwo85qBxMdNTsqEwM/fuJOAwZn/fkctO
aLk3wE3JjYpNzPUNrjO8UXL6SuRX21if/c3/oz8GfPxf7E8+CfrT55LTV4Zabs9AfTRzE7LZ
6JAmlJm5kYnZ0cmpmenJuanx6ampKXlvUiV4bGCpaXh80z0HVHx4/ZXWfVh6rCYzycA6Navg
7uTk9LxSVtNgOS/zxs8rafdnlWFpUZqMRNiDdA0KO53qGsWJYut/WafTtYDH3r3z/+t/zf/l
Lz9pQsLP9iLbQTIdnZ8BCbwdSSMQbEjwiE6pI5pEaZABckjwFCkebpegivAUEZYqwNJ5OBI7
v7S9tfMZgc5Ky2m53ztAMhCiyRIMxBIiWAFOQEqWoCl8j+DMwYkZK6cEG7fMwck5d78UdQIX
gApOn4+j8/FUgewSAsA2WCrAD4GWgeg4xuOzXbRPduhv3WO0ZTdT5bxhWoz344cbATwSRanB
1qxXE7VA4CH0iI4PTl8KPOIC0pLDsh0M3I5vP3N2z8WzKhcv7VNzs/Zc5+Dxlgqu2fG5ySmA
AYNjNU6ODn/7LOqa6cDTkVsdTzzEkfyUjNvZ+eVmFrH7Djn/5g9+v/sT/5NPRJ/9Of6Trcl/
/IL1yZflNx1mh15MQSeZUw5U2MzgMTU90w6NniiBKq811X04/XhNRoKFc2Z5zUNlLlq5ZOW1
2nrkoKnxeGB2WtTakGOh06m+eXJK1i9WHawRPIAi4uPz00+YKJCGDn9/iD1guujuhnZdvDiP
9P8CJgFbVtDuwWQy1dXVP6CsEsAu1jGMx9LEAAY0qWJNGsQGOJoYQ5OggZK4ZrbRvc8nRfEV
GrosF5/0p6PTPqF5Gjo8LA2AhAgD9ZtArIKlSvFUCZbKL6npar7bR2IIyYYRzfeellR34Mkc
wDB4Ol+TLsTSpODkOKoQWtIEeIpEg8L95/Ebn+7S/3Sv/hYVxpbdDJXzRqmxADw2QldLkkQR
PATuUa8Bj9Ase6bbkR9Ont59FuiFHy+5WrltBvCYl7V4gO+m1qJKo23bTf7+1b2UzLnZ+Yf9
vbE5qelVNc8edzfweVEXLoT/z1/FH/0p/pM/Jv/hT8V/+qLi8+8SvtwpvKA6eLsZasOYnJI5
uyplM4JHRe1DS5dsbWbsoqMnVqHyfqd3lX6nK5K84ns8abWBVQqOHqWqJ0GRI96cPWCnUzwz
MVRY/bhn6IMEj4wMiB/mZX0oADPkWz9gugD4AcTYGEqm4HUGOGR9u5esTUJ5xQSjOBk2iHBQ
I4YMJ+gSdYpETYdLM+LXND1u63xONRGiAGDocwsq2+93D12ziFTXY6OpEohP6AIMUKoUTRTe
dE5+OjjtFZQO+YGQeZ5BmS9GZkSRFRhCGIbIw5PFeBpILMTSAdhIMTQhgBw0lf/dKatP9+hv
+ZGxRYW5ZZcMPGI2CHgkS9PkwCMEBo9lulpkLR5ZDgbuh7cdP7nzJNBzKudcLF02BXjMzc7J
JqatySt1xesG6RLuFVU+fzHS1VX3oKP0QW/n+OxIR21xvD41ftePcb//Y/yWjzP/+k35dz8W
7jqScOJCvpPjeO9DqHtnanrVsdqV4LEhhCcp1zGI1aDEaZCj3kqVB/ud4mhST2Pre3b7Ou1V
Npfa7bpD/c820q9Xos3E3xQUt9g5i2wcxZ4BaRbOGQA81AiSt/Ii0JRIbcNUIkOy6KXv6P+h
h607NzX+LjLV2sED8fHQ1YX4AYiDw0sCWQmubGgJFhRrG8epE4VXSXw1El+dKACqpsfWILIs
7GNqm7ta7j83tYlS1w5RJwmvEsPoJpz61t6G2z3QRr0wNJEL0l/V46nrscjGvMr6R0G8QnVi
uDpBCJ2TEBrKL+l+NhGdUksx4qN0w9F6HBSRhyZwUUSuBpGPIXHRFPF3p20/2a3/+R7GVhXm
VlmLR9pGBA8fy+DlwSMmCCyTk8Iy7Q1dD2w7dHTn8WM7T5xWOetk6bxOcktPT8/yM5u8IXnM
zUzOzk5PTUxODI7cLq9rrLnTdLdVwjZI8VNPDzPIzAl90N9YmyCNv6yRuv1g3JmLAryWhMGM
srRKZoU+e9Y3Pjc3Oj839V7cNib72p9E3+jhEt+i9grp/UmOb1GjjY7Rfvjf9wTX3+5p1602
s2+k2+lFmWrzGLggAsqRbIQlct78uxtDjcTRY2n6XCeycQPhv1ZYEW9sbV2wpZj4l3r9/8k3
2M0y1PQwNjYx9bFylHoF5xhaJWozo68SJBpk6dqQA+CfBkl8QtVzzzGLRW6G8ts28n+0Uf/z
WabPOgKPrVvnCQRIv/tu/uDBl9sXBY+hoeXAY2hoQ4JHILvoul1aRHx1ZFJNRFJNVGJNdGJl
dmHLnXt9I2OTdzv7EtLrJHEVUUlVUUk10qRacWJVfHpNR1f/4OhUbf2D+JSayISaxMyW2qbH
TwZGm1sfSuMqpYnV0Qk1MQk1YEUSX15Q2tg3MPx0YLS26VFSRhO4UFQSuFx1dFK1JK6KZhb9
3QmrLbvpW/bob93D2GAtHulRWStv8YgOAuyRBMDDztBl/7aDR3aeAHp8zxl7S6fNQcFz87PT
M7LZ7YG0t3XWNTy81XIrIgib4fB1+s3vpSE6pQ2pJdnpArpJjO61zABBelxKZmZOXFJKTHp2
78jo9LxsPtzp1Q6nWYs8jbNW1j7rX+PM9bC0SDU9CerN2j1w9JgzqIAdB4yLtD9WWhXo8K0k
hX9E+/2fBX4cGZ3MK2wI46QyrgW6eMd5BedhqdJL2sKVc6CM92I0SJKjl9z+uYf21Ta9ExfN
F/4TkVsC5PmOvrYWnZZuFV0tKiov/TQW7WpBEsNYIt/VAtbBFmPjjVfW+4QVOvjnT/6saRqa
BnxqZnJyZqlvW6h0n5qamvlpLo65mdmpqenJpb40Z+fmpkHquWlZrfCqlgGfjXPzNq6p3x22
3LqbsUVF/zO4xePCxgGPvKQCZFQLHMfjteCRHJZlb+gmA49jQI/vOWlv6bBpwANkkrkx2cDc
jvbO6rqOiqoysdflhBt/jL72schHI6cgLi87P4MtqotJqyqoKSmoLC6uysorScvIHxiQTfQz
JZur7t2Dx+zYiz4xs8vz1HrWIv2vBed+ddfx0ArTb7DKsZ7ySRKX6+6fZmqfdkVHpE6UrKmt
I0adKD560eWrH/S+3Kbb0/t8XimL1wqL/OuePB2URuXTDH3b7nY3tfa4+OWq6gov64heix/A
7BhK5KmrPtv2GQCzf7lNJzAs+cXgyPsHj7WIAngAooC7WuZfOZci7SewcymMIrBzKUiAeJOu
2Ln0gxPf8EJ7n7wXozMjkzMjE3OjE3NjEzOzMn6YnJkbHBofGh0fmZwcnp4dm5ydGJ8dm5ga
HZseHB6dgIKLQuEpx6dmx2dm5mRhsodHpsfAGcZnhydmgI5OzID1F8MTI2NT8LSlIOXwxNzI
+Nzo5CzY9nxo1to59btjN7eokLf+SPtMxXDrHuaeCwapMb5ZuUXj62A42xuCR1F6SfDNcF/L
tYHHUaDH95zYNOAhc9CYmx+FhsNO3r97p7i0uSA/l2t3Ssj4Fdvw9yIfrcryotLShuLsguZb
1RW3Gm7VNTXeasrJy09PyxgeGIRG5EKzxczOKqOgy2QzD6cFWaC9ozeYlaxD8XT3jY1KrMPT
I9SJK2/th5ADrJxU8/5+L/Orbbp7DjOCwpNmZ5XuQ6uWx93PK6ruJKZUPBsYzcxtMbNPvaQt
VNUTLxVQBegFbMjOwyZfQcihdwl1MzWjcqmTfwDgUVj4M7pQGGwr36ABgER+EO7GHU4bxC2i
WyQ4emY4eac5+QBNd/VN40hKqhofDU3O1DV3ePtn2rpn2PumO3lnO/pm2PoluXqmZhc1Dk7O
3LnfHx1f6+GX6xuan1V8u/fFWFF5m51LipNnpqNPqqNPupNPhq1riiCioKd/pO/FREZ+q29o
gZN3hrNPqrNPmotPuoNXuq6x+PuT1lt36X++h7lFxWiLiv7eM/qpMd5HNe1/tcvi4yMOR0nh
rtz88sZfZlzbG4JHeXZlCAQeQYibB8814rVdLQ5Gbge2Hdic4DE9Nz8OIerU/Tvt1RVt1SUF
IuczPNPfhpl/EhlIvFNf13DrfmFhRfOdhub7rW2tbUWFBalpqU1NDdNTUEvH9Pz02DxgYuWA
2s0OHrCMjU0VljR5+kU/6h7IKWzD0qQXtYQaJOnr4meCui/qHCZ4x6FroO4DehXv0PVIObZl
+fbK5WR6erqu/n59Y4esAXw+ObOJZhp7UUug/vN3ASx/RZuz94TVN9sJX23TO3TmOl+SNTa2
XDy39QgebW2KkcGqq3+2Bfz094egYtHWDDi82Gq8Sj448AgWlOkYJ6jr8q7qsq4QwlUJHDVd
PvipzeT6hBa0dbwoLu8gMAWXtMNV9fiXdTkahODIuMoHvcOShEradQmKEK4ONmpzNMlsS4eo
6qYuW7eky/ggNT3WVQLromagrVvyna7nRdXtN+2TNIk8DT32VbBLj6NO4GjostT1wtSp7O9P
W23Zxdi6x/DjXdQtO/WoBpZpErfdqubIbGuAQD46aPubvVYAQkJiKlo73l8J8IbgUV/aGGbP
8Vk7eBw/sfvUzeu26yS3cDic9zbxx/P+yY6WJz23q2ND1SI8/hLj+XW+hDH1pGOwb6y1pWt4
dPjJ067GxnogY2NjymJ/UYEnzh4fH9/kdhgbmywpu11b3952r887pFCDKF7K2QBDg9w5Lmux
VI5bfL2dAD63j50zEUfljU9MKbPTW3gR45Ndj5/1PYHi0g8OTQqjqnSYkTL30Ui4V+sMyv/v
O8kAObbvp7n7RvU9eX1psx7B473LhwcevHI9oxQ8NIWKEIroRRPjKGIsRaJBFqJ0uFY2sfe7
n5c1PtRm8DFUIY7MlsbXPBuZ8Q/Jw+mwsCQ+li6EophSpViyFKUX7hGU1fNs/KZLAgbsIvGt
XZJ6Xkyk57fo0AFmQIHW0bLhtGiqFC0LdqpFE6Gp4u9O3/x4D/XPO8nfHCDr6FsKuS4JEndV
fS9Q3QPeUJiS/rd7rX93wObzU84054T3QCBvCB63a++EOwtWBx7hmfZGrgdkPh6Hdxw5qXJG
yBKvk9zyjuN4IF9NUGv2i4HRrs7evq77zXWpTVWi21WSjua8sYEno4OjfX3PAWx0d3e1t98b
HFROrqGUFcmDrqcTst7bW02PbNwyVHWEGuQIJLwYXPGp6QkOnrX/difpq226O/bTvAJin/a/
UJru7cqzZ8OdD54+lzllhbDzjl/2BiiIIkuOX/b4dgfpmx90r1uGt95ZaRO3Ejw+SPDgluoZ
x2OhkBpSKHIpRaxFEeBpAhRdDEXn0GU7uscODE2HCIvVCGxrp/j+4SleXLUqgYOmCjRpUHx1
CFqoEixNiqVLcXRew90nFQ2P8PpCLQNxZUN3Q1uvNp2tQQS8AahGAgUco4sA2KAp0LomTYii
SP95zPazHXqn1A3cPJxiJV6xQpfOjtrZWai1vLzxoSs3/ygp/Dd7rf5w0PbXKlZyEGIGCOSv
591CYioGht7VN90bgsed+naWiyJ4LBVADIBHLACPULjF49Dh7cdO/HjS3sp+YmK9zBzxzsFD
KUp5l9Ld/fxBVz+8nld0R4su1iBJ4VYODZL4mGz0xJfbdL/doWdhy2nv6FZa7N1Jb99Ab++A
q1fSwVOOJy667pT1ah09Z1JS1rSq87xr8Kirq7O2tn5b5V5371BP39sfIfvBgUcgu1CLEYmm
C7CyEOhYSAU4mgBQAUpfpEGX4CmcipqOW629WlRWXHJjd98QzVSsTpFgqZF4iBwEcMhTHE2C
o0lRFH4QK+fFyLSJfYylS+Kz4Wn/0HQNIgtHh86MowvhqeI0qXw8jYeFAplKNIj845fN6cYW
ApZ7gsApgnWzqbZw0Vu91dbtKy7eqx38axXL3x+wkW8D+c99NwEYgATrDTzam++Huwm8X00S
B8CD7xaRGJoZH5wGNCE4HSi8Ds0cF5IWH5KSEp7taOx+4LtDx3aedLR2mpxcR/NVKcFjoahe
EyYVtLyLM9958LTm9iOgYEVp57clAOMfdvV3PXoG1g3NhMcuuKvpcE+r+23bZwC5c3yvQ9T3
rqptUxrq/Uh13f1r5qIjZ+z+voN4Ts2qpfXBas/wrsHjbc1OOz4xnZF/x9gm7ZptWnbhvYm3
OnTigwOPxrYez8A8DQIHR42QRUoXo+gSDDRviwQn6xZBEQXSuNre55PU6/zyuq7mtm4tcrgm
RaJFlUKdLDSxbEY5KR6ABzT3itDCKX5wYt4nOD0wNO/ZyKypXTSKIsRDaSCeAXiDoUlkhwhA
YiyVf90iMMjXM1boEcmxiRa61VZlTU+9pqodGBqPyKg/z+QBAgHUgRDIHw7abkf7F1TfXz/g
0dnygOMs9rEM87UKBepjFRLuwBd7RoHHBSqSqRBRzwihhzTCO+4m3enQjqM3DCwmJ9dXz/La
wMOZnff1JQ9YQTW6wUpO8FDcxOpFgQR5aliDIsuQvcAOCntB+uHRlzkf5OGDeiEg18G7wAqw
obKSeovy4sXog65+qgH72DnXQ6dsZe4cupfRtmmZVUrjrE3eZCBZOC/H3IY/s6aAwx8EeFTX
P7Z0ycIzEnD0WBw9DqzcdMupbXy8OcFjfHK6pb1vcmrO0T0BpctGk7kYsgBDEqPIQixJgCVz
MJRwdRLL0DrOn12iSeM6+Wc7+2VgiCywCwsFRedrkAUokgAFlhQeisxBk3gEQ3Egv9TwRqSh
eYwfq1iPKUJR+GAvmsJBkbkaZD5IDJZ4MkvfMMjVPUjC847l2UtZjplJwp6ezlXdPyCQkJiK
z085f3TQFsGPjw7ZAfx4W60fbwgeD1ofRvnGhznyw51gFYQ78sPseeFAHXhhMg1/paHQksNx
ETsYud00tRkeHllvGWZt4DE8OmnikwZsKEqte21iol0sqGrf50MBHngTIloKPAA5wKcFioAE
YgGwEfwEZoETAK4AP+Hz9DwdAgeC9DBCg5/gqJWYTimrla5Hz4LCsxkYxhlVS6Eke3R0QmmT
D07WP3hk5t/F0KIBbKApyHyFkZqMBAw1yp9T/uDRW3DX/4DAIyG/ecsJJ2nGLbD+pH/IwzfG
0Mz3+o1AM/NgE4sgU5mamQeYWgQam/kbGvuYmgcZmfgZmvqbWQTDe8EWsEQSv1w3CzI08jU1
C7x2I8Dwmp/JjQBTK1l6SyRx4HWLIDv7AE6of5TQRcK6GSvxrKvOGRtde89XeePD80zef+2z
kW/9CIoq+8XBY2hgqKm2ub6ysaGyCWijbLmMQgkqmhqrmybG1mMZuOauFrhiXUnlDtfX7/Oh
Vn5vawAPefqCcUIePOTbMQCEkB3j3vx+5EU5quU1H+lT4x03t0EBwA3+e3qwV2kQJXi8XfAY
HJqQxtdrGyQsOl8hPBOQrlFcRELDi8E3+pN+EODR2vFkr3bwH2StBI6s3OK6jpb7fWB7d09H
TXlmRUFCRWFiRVFyRVFSZWFiZVFCRVHiyy2FMi1KroT2ylYKk2QboSW0EayAZUGy7EBovVx2
CLwuSw+dtqIgsao4qaootro07kF77fzc26lkO7uf61hH/e6A7b/JBsL8h4qVbUj2LwseG0ze
CnhEZtYT7WLvPHiqek0IKmKwhH0YwBKurEFKeDtyOPjeB1vkE8OSVNCCnAScHCzBmeFd8DrY
CPYiG4Miy+DzAIUdM8DNIFcEipy8oPo+fGYk5VIXXSF4wIiyDHiAdRg8wE2CXW/Fb0QZx2N5
GSgIR6qtp3HWSoMoweNtgcf0zGx+yX1DqxSt182SjKXFgDSG1im5xe3T02sMT7f+wSM8rupP
h+1eumXuu/nxEQdeUs1Gyoe9/UOgAP+dzPv0P/fZ/OOK15uMulWCx1sHD39pKVwFg42I+8cy
4AGwAe6VAIlhxwkYDwCNgO1gC9gO9iIHytfyQMEuGDxAMuSi8DkBXSwKHvCZQRokJdLTsehF
VwIe4FrypLEQPMA5gWXmX3W1AH3z7hUleCwvoKpCqq1eHklpECV4vBXwaG7rc/TJx+nH4/Xj
VxgpFy9LbO+d33h7LS1v6xk8BobGz+hz/vDKHeJPR+w9BYUbNTcC2PjyosfLJz1sB3BLCR7r
CjxA9SpflSM9C4vW1/JumWAvDBLICtIQoQAeCp4bCmNDwF5ADvOLdW0onFne7URhF3x7y4AH
zDkwosi34cDgAQMMAlQNd3qQvbBPyML2FiV4KMFDKesWPPqeDrPE1Th6tCYzEQkRs/KJgTQZ
ieDYUEFVd+/qHA/WLXiAivhv593+bbcl3A6wHe3f2z+0sTMkeORPjjnAjwxwC3NDsobJX5Tg
8S7AA8ED5AMf+fZXAA+4yoY9MGGFE3Q+fg43WSiwhEKLx8I7AZcDJ4EdSuEECuABswTAIeSK
8D2AA+FdCy+6FHjID0uBIUcBPORHtSAkhgi4B/hYedRRgocSPJSyDsFjfGJGGF1Pvh6vyUzC
0KLXPhUyDUBLMvFafFxq88jI5AcNHqCo3HLcEa5APz5i/+aeDx+KDAyNg2/Jjw5BjTy/+dF6
n3bwatlDCR7vGjzgunsp8JCvvuW1qLZjYWW9PHgkFbTAJ4d3LQUe8M+FV4THnix0fF2Jjwfc
XyPfdiHf1QI7iiyKSfNyPU1K8FCCh1LWLXikZrfoGKXj9OPWjBw/n5w3FgCMiV16SeWDD3TK
y6TClo+POsC15+ennN9FlK11Lt6iYtgC/77bYrXsoQSPXxY84D6IhScE4AFOuLD3ZBnwUOgl
gZ06FoIH7Nu56KASOOXCi67Ex0PhQRR8POC2FPBQi1pvzSN9lOChBA8leLwf8BBIiy9ig9UJ
QqiHZZWdLEs6fjDiAYG4BRa13fvAQggC6vhU1tYB6tzv1H3eXWjxdS6gYN96wmkN7KEED4X/
4NomiVszeMB9Igu7IbqfDir4fsB191LgAVf0CE7ID25VAA/AFUuFHIFPIr/rtT4eyE9wWsSr
ZH4x51LYlxW+NyV4KMFDKSsHj3tGW3958JAUnlT1PKPhfxEbCk17R4t6K+wBOX4wEzUZMfXN
H0yLASgV4S/9f9ttuYZehg0mt9q618AeSvB4c1EIILY8eMAOFSDrIrChEE0LpITbHODqGD4n
EqFrKfCAPUngFg+wDrc/wAkW+q/Ce+VHsiDri150hcNpYSPAD7IQPMBd7dcJhkEI3CdIJh9b
bG2RS5XgoQSPzQAedyj/edfgk9G2dzJWYuXgcfqq72kN/7NovwNn7K9oc9BkKeYtNX1gadH6
FhmJ6fXNbX1v67meDIwVVz9Ky+1IzbuXnHM3Kft+Qta9+MzW2PTWmLS26OTWqORWaWKLJKFZ
FNcojG3kRzfwoho4EXUsUV24uC5EUBXErw7gVASwKvzDynxDS72DSjyCiu288y/qiU/h+Kfw
HDWiyNYlz8Y1z8Yjx8knK5BdWF3fNbf5siioAcWpDda++ebuee7skqScdpm178ZlAGu3xaQC
U9+OTL4tTWgRJzQDUwtiG294ZP2/281Byb8LFRAqrAzhVwfyqiBrh1f4hZX5hJR4AWsHFrsF
FLv6Fjv5FDl65zl45Nu55tu45tp6Zjv7ZfEjK5+/2NQRnBRCpgPwkB/foQAeMCHAXhZI44C8
pwdYh5kEHn6LbIddMZEmBYVRJAjSIInBXiQBch6k3UMh4DninrHoRSMz6xc+9aKdRAjtwH4d
CjihYSoGFwKKuKTCF1pzvHQleCjBY6PK2PhUfHqzuXN2fmz8s3SPyZ53Nb1OT08PoI7XtvRC
LR5qPsfV/LjS4qs4sx9P255WD7iqJ3wb7AHNm3wOHfQvFWZq5psOsX8+OAY0r+weS1oRKCwL
EVaECCr8eRX+3FJfVrlPaJlXSJlnUKkHqNH8ih39ihx88my9cm56ZFu5Z1q4ZNxwTje1zzCx
SzW+mWJgkcK8EccwjaVdiyMbxxAMo3X0o7XokXhqJJYsRRMlV3WEqjpcLF2qdy2eYppAMooi
GEZ5Bufdud+3eTLqg+6BxKymYGFZkLA8RFgeDFubU+obXu4dWuYJrB0IWdsFWNu3wN4Hwoab
HlmmTqn7cSH7sSFaxlHGNsmGVqlM8ySGWaz+9VjqtTiSUbSeAbB2lCYtEkeNwJAkaIJEVZuv
psfDMyKJJglU0ziCQaSzT5ayoFiVgHpZoXsFnjFtYUr57Supo5eKCArOo+C8AY9/WdjLs8zN
vM3iTnb1N5weTgkeSvDYeDI1PZtb3G5sm/5y6hP9ODvPvLqmX7gnAoDHqau+J9R8jaxi9S2k
Ry57aupzVI5dP4cKQIF6Ya34gaVFY2hRZ1ABX/+g+7fvtGISit7kJp8+G4lKqwEaKq0KldaF
SitDxBXBwppAPqgNS/zZ5T5hVd6hFV7BZR5B4Gu6wAmAh2++nXeejWe2lVuWpasMPBzTTezS
jK3TmObJDNMkumkc7Xoc2SiGYBClw4jSpEvxlEhQFWroCXE0Mdk03tAmxcg2xRCAinWKoWWq
wY1kM7u4pIyKDZ9RR8enK+s6+fEVoZKa0IjaUElFsLgyWFgdwC/355b4sSq8Q6u8Qsq9goC1
i1wDCp18C+198229cm+6ZwNTmzmlmzikmdimXbNON7BKZtxIYZgmAGsD8CAbxugxI7X1I4G1
cSCfEMUoglCLEUG3SDSyTTWySTG4mWJolWJgnhzCz3wxOKIsNN6dwPFA3u4UgR+6KMFDCR4b
TGobHtt65uHlYnPB4S8w1Cjv0JJ7Hc9+QfA4rQ51tZxUDzyHZx9T9ZHEVRL0XX48aXtaIwgO
kL7KcbVROHrMZS32nmPmX36v/eX3Wl9t04lNLF706kwmU11dffk77Op+wY+q8eEUQcor82ZX
eoeXe7FKPMLKXIOKnQLyXYIKwEe3o1e+vW+urXeOrXfGTY9MK9ccS+dsC+dMM8dMU7uM67Zp
RnYpBlZJ9BvxFJM4qmEcySSGYBytZxSlaxipox+pTZPiqBIcVQoqQQu37Jtu2VYuGaAatXBL
N3dPu+GRRbFI+vG800lVZmVF1sTE8EbNqI2t3cLoOl9WiQ+3yJcL7FzpzSrzDC/xCC11BowR
mO8cWODgDTTfzgdYO9vWK93aHdgKmDrb3CkDmPqabaqhXTLTPBGYmmYRRzGOoxjFEa5D1tY1
itIxANaO0KJJsVSxJj0SoJ2VR85NVwgOLV0yLNzTzN3TaVZJ3x+kiETc4aHHc3OzytLjrQjR
LjYosgxxhFjYt6IUJXgowWPDyN2OfoAWUJgLxiKxuUA1rWWQpMWI4Uhrep/+AtUZAh7nsCEX
tNgnr/piqQJtpvikmi+W6HHiipeqNhdLjVpJzwtIA5BDnSA8dM7h2x3Ev/4LD8ADUMcy4LF8
HI/Z2fmcwmaDGxIthljXIEKmIl2mWJcp1TOI0GFEkI2lZBOpHlNKvyYmG4m0GRJNRoQmU6LN
EOroi4Fqv1xKtekSPFhnCPUMhbpMAdVIpCmbpB5Ph1QTmndejKVJcHQJ0yre3ivPxb/I0TfP
0bfQObDYyjtLlR72zZEbn/xAPqlmGMF3v9tWvfEy6vjEND+imGjA19IX6RgCU0t1DYR6TIku
M0KPCawtpV6XEo2lRKZU30RMMBBrMaXA2lpMkQ5D9MrOYmBnLWBSfTGBKSJdE+EZfJKhkMQU
4WgiHLAz2EWDTI2TWRucwcQ+GRjZxa/Q0Tffya/QOajomkvSD+ds/nGQ4uflkJMa9OzZBzyc
ua6ubv3MOCbvsyHv3aEURPLy8gB7rG0gkhI8lLJOBIAEW1KtyYhe0bwnBklUs6T65p5fFjxO
afidRgefxbGOq/rYucccOONw7Irn0Use0HhbSuQy+AGQAyxPqnr9S4UuQw4tGDnWDB5jE9PB
7DwtGl8DmlBegCFLgWLJAhyFj6XyMWQJmiDgSivSS+7p6nOyS9p5kSUoPQ4a4ARVgKcKcFQh
jiKEllQBFloKUSS2tVMCL7oqkFtcVH6fzBRiyUI8DdoFlniqCNSJoH7EUkQE4wgrt0zP8HIv
dpWRY8p+VafPdutv3UX9dDf5NMYsXuzdWl+8wfLq7Px8GK8QTeKiKMDakHmBYsl8HIWHpQjQ
ZIkOXZRTci9EVMY0ldS19lk5xWkQ+WiqCEfl42nAwiKZwcEKpGhSeLiwtKDqAclIkJrXFhFb
jSNxobdAg1Rmc8AhIpzsKNqNaHuffC92pVt4ua6p9PuTFlt2Uf953CA4wC0z2r3v8QfcF7Dm
OB5KUYoSPJSycpmbm+vsGkjJbnP2L9Y1gsJZrLyrAqTUNUzwCi3NK7nf0/emAbqHh4dBoffa
Dy6BGBrVclLd92WLh7rveVwoWDmh5n0BzwLU4RWShdFzPXLR7RI+8NRVH0AgKDLkOAq7j4J7
1iCKz6IDfzxh9Y/dFMAbCsixNvDoeTJ0zT5Fg8jDgLqJIoaoQKZQVUURYWhCDJVLNhTdbu/P
Kb2jTQ4vrLjf2N4DvrLRZBGWJoC+r2lQYjyEHGI8BXxfC9AUblRSbUR8rVdwQf/IlINHogaB
iwWVIJ2Po/GhxDSQHtSbYqwMRbSNxIfUXb7Yy/x0l/6WPQZbdjM+3UU5jTaJk3i2NZZssHwb
KixFk4C1ga0k+Jd2gwwIiAJDE6DIbBvn5P7BKX9Orr6x8EHfcGx6HYbAB29HztpC6CiKGE3l
6xoKbt3uKavtxJP4qXl32h89pxgBehHIrM3D0QQyzIMOAVfEUoRa+iIck7/9jBUAvE93MYCp
/3WMERTokhXr2df9AVfcHxB4vPkMa0pRgodSfhGpb+mx987D6cfJHDki1xwBA89IxNCivUKK
73Wu3fdjhcNp+aICBDwuQl0tPgh4nMeHH7/ieVIj6CyOfVkzOCa59NRlU0Ag59CBqjpcCDlI
kqOXXP+xiyzfq7KorhY8OrueE40TcFRQCYo1IQzgQ1RAA5WgVIMq0SAJdajs7KK2h30jTEvw
U3DdNubx8/GEjEYckQN9sNMlGJoYow9qOjGGGgFqQ3Vdtk9IXv/QrLl9vDaNn1N8p6tn2Ngi
Aq3HAtWlJtTyL8bSQTUKDpRioZpRqE5mf3PUdMse/U9/pH+qwtgCVYi0M+jrEHg0vTXwCIos
W4mD3wqTLQeio5PLDGFw9cuXWVukCSEBXxMyuBgNW5vANzQT3+16UVx1H0/noEn8AE7e87E5
d/9MlC4bQCCWJsWAVwNZW4IBjEfipmTefvx0zNw2CkMUMM0i7j8aLKm4r03jYEkc2SWAtUUy
awNTi2VtJsKzWgH/s5e5RYX+6V79T3czvjvGCA50zorzfNLduXnAA55Sdv7VKFRkJKyCwLPM
v+EIDnlZGCXjTYRoFwvPcrvo3qSClivGAvkHAQoHDFn+qRd9cMBLSFx32GtFfi84rbJHSQke
G1si4mrVSZFYesJbCYIBqnUtZpImI5otqel9shbfj1WCh985XOhFba4MPMJegocmBB4whxxX
9SZdBzfGP3bF8wwq8MhZh5NXPH7YbwiQ42/faS2DHGsFj2e61+IwVCmaIkFTRWiqEE0TAdUg
81V1OXr6vNScxt4X056BGSgCC02XaJBDw4R5/cMzPHExmhgON5VoUIUoCk+dwEURw3xCs3ue
TSVlN2JpfA0SX/+GuOluf9O9pzdsIzV0wtEELpYCUEoIdSuAb3zo412gTuZ/fdTi0z2Mz1UM
tgLdLQMPzHWFFg+4mJUvP1cl8MzjbyvZ8pXLMuEcnf1zMFQJmiJGwdaWLa+SeGo67GtW0vrW
ntsdL4wsAOPx0HSRJj00t7St68morWu8mm44hgwZTYMKdYphyKzY1PonA9O+rGwUiYOigEPY
jj6pfQNTGQWtZEOuug4LS+RiqdALwlAFaAq0BEh5Viv08x+NX1obgMdx/aBA5+zYTQQecIwL
OA4nTAKLwgAcv2upKOVvAsBvi2SQwB1L7f3irMvLXPcqYgkcjmyZp170weEJdgFswE6z4Cj5
eGXzr4KcKEfuKMFjA0tJZaebfy7ROE5VDxS20rcUgCtGk5lENUtOSG8ZHZt6d+BxSt3vuLrP
cUzwCTWfC4uBB/h5ChV8XpN9QtULAo8z9nuP3vjbd5qvRY41t3gQriWhqVwsmYuicNEkLo4M
KclQ6B2UVd/yuK2z39EzGaUThCWGY0lQfYchBnKEBY+fjKRkNxmZizVJoILja9MkVs6JqXmN
j56ORMRW4knhGBIXQ+Kr6YXRTUQlVe33Hg0KYyqMzaO0SSI8iYcnsXFkNo7ExlPC1UnCbyHw
oG3dQ9+qor91F2PLLqjFI/bn4AF/3IFyDw7MuNqRAusEPFz98zFUHqAvDWBtChdL5OEpXAMz
KV9a2vHoeUlNB9NUBFmbxMaSeShiqB4jLKegpatniCUsAjgB7IYhCoiGEZHJNfcfDXj4panr
hGAoHByJD96dqm6IvXti6/2nt1r7fMOyaUZSTaIQB94piYUjc7AkliaVe1Yr/H9+NNyyh/bZ
Hn0EPKAWj57NAh7yNSYyC/zCVwZvfOvg8RYFhnAEJxbCw3a0n/xTIxFTl3nqRR/8ODl84SXg
SyNtJuC/udR0ckpRgscGkKi4In3jADefBEfvbC1GjKquWOYL8TZmXtOP0zVON2QEZVqhuzxP
rVA9Nf4BwCOSsnP5ZP50IhS5FBW4+zD9i2+OHbrsdg7PuqDNO6nmowAe5/EyIIHB46zDvuOW
K6QOoLaekVevsRfqR1u+/Lff/H6RXUZs45sp4Ns5p6g1q7Als6A5p6gJaGt778TUzOzsfNWt
9uTs+oyC5uyipqzC5rSi1rSilrS8+s6u/rn5+Y6ugdzi25kFLZX1j/uHJ2cByTzsycypTs9v
ySpoATVmelFLam5dQcmt/sGR6fn5h31DRZX3MgtvZ4JrFbZkF99OyGjUM5R8e9hs6x79LXsY
W1SYW3Yv3tUijwRwEEX5XLEwzhJSxsJl42rBA5xNoSG6/8XoSr5VlwcPN/+cqMTanFcWyMpv
KihvfdgDufcPDY3nlTQn59RnFrVkFTUBK6UVt6YWNOcWNw0MjU/NzTe0PAavILuotfFu//js
bH3D3bSs6gzoVM15BS3ZBS1phS1pOdVVt1rHZ2bHZucBgeSWtGUV3s4AFypqyS5p4Ugrz2sG
/d+9hlsA4O2BTP1TV8vmAA+4uUOh7wMOtdFw5yeHc/gTXmG2FLhCBxuBLqyIwRawXZhSu0xi
uBsObEdWFDpHkCwKbgY+dplmBBg84G6RRXth5LcvBA/4qRV8ThZ9cDhkuoLIB3tfbaOHcjjt
xgMPpP8OaFb53aX2LvXBCPIP+JsgLA30irFAIXMiPYYLFS7/FTauoWF8Genre8ERZOiQ3Y1u
hHoGplq5ZGCokWoEyZtHHcfSo89jg3cfMbe/uA95769Vp4P/B/yJBOd+tXwyL9QJGXgEHD5v
89dvjx+84HTggu3+K67HVL0uaLIWAQ81rzPoVYPHD+csPzu+iP6f//rs//n/frtw+1dn7G44
pz8ZGJMz8KxM52ZmJydnphYN7gA2gh1TUzM/3zg9OTM5Mwv4YpGo54BipqFpdMEu6ChZCmjx
fGSWcSPim/1mW3czt+yR6S7Gp7teAx7g8wrJwDCEyM8nLl/FIJOVyx++TM84vAvO4fLlKrgK
+H5UKL3lqzBwcviWlgcPF/+crt4XCuacm5+ZnpmYmp1eNFz8jCwm3vT0zM/tCTBvZn7xtzM3
NQNeH7A2/Crn5169kbqWJ5fwAV/sNgZ23irz4/0Oci7dROAhH5B8Xm6ONrBRfmYTuOJWmMEN
mUhFIbPBdS6yC8mi8BQtcGL4JPI+HgpgMP/zaOogs8EJlpoYDjkD3LghX+PD9wN7ZSwDHvBT
K9zDwgeHky11A/JZfZm/lRI8Njx4IP13QHVuRi+1d9GyEe4KRA5HVCHxommQbkH5G4D1XTTB
3bvf4+4dRTHwi00s9Q3Jum6bekVXvDb8wMKRuDRZKsfMv/pB78vvdezP73h34HFI1XP/JfdT
GgH/2on67C97D15yOytr34DB4+RV3/P4cGhFzfsMOujoasDjn7tJZLPwVYKHvZlLVs/AwiE5
c9Pzc5PTc7Oz8wtAYg7CkrnZqempubmfMAPUnmALAiNzcoeBmhWqOmdnZxYwyYvhWaZZ1DcH
b2zZQ9myl/aZiuHWPYwtu6mnMddipZ5tjaUKpRxCs8hcmci8XfDMnnApDdMIUhpPTs0g4LE8
CctXE3CRDrdyyL5SJ+QvsRA85Ge7WBI8AnI7ewcXWntybm5qanbuJdYpWBtg3szM9OTcPDJ/
HECL6ZnZn78SBFQAAgJrQ1afU3h5dc1PLuODv4BaPChb9+p/tofxr+P0oCDn7BivJz0PNgN4
KEQvR2pY8E7lS0v4LSuAh3wrB9xcAO+Ci004Q06++gMsGsFDHjzgae6RNjT5yWdB/jT3T5cv
k5cBD3hFng3gQCLw9uXBY2FU1YUPDm6A7Bi3EvBYeW+LEjw2NnggzkUrAQ+YruVhA9Y/HbZb
LXjIJ3h3gftAndjY/EAozQX4YesiYYlKyddjL2oJ1Ffs+IGhQsihpsc/cNb+2x2kL7fp7Tqo
HxiW+Oz54MpvYxU+Hup+Z1CBKuedVM45ntEIOHrJZfsB8hFVz13HjY9c9riAZ13U4rwJeOw4
QI9PXnwYyFI+Hh0P+w1uJkck1Kfm3E7Jbk7NbsnMg7Th9uPBMfBRPVddfy8hrT4puyUptyUt
uy0ltzkprzEltbG2sX1qdn54eKqxpTsj905R9f3uZ8OgzO189Dw141Zyegs4W3JOc1p2a0Ja
Y25R0/OhCQA3dx4+yym6m5x9OzWnCZwqLbc5JrlJz0j87RHzrXuon+9lbFW5tkVF/887CCeu
GsUsAA+QkeD254Vfi3ApilQrIKVCsQ+DB9guTx1IYzhQuOJQKMPl5+fqfjoof4m1gYerf44o
tjYlpyU1uxle5hW33n3QPzE7/2JkLLe4GZgrKfd2cm5Les6d5LzGpKzG9IzG9ke9gDKePh0p
r36QnttW09w1MjVT3/QgMfVWSmYreGvJwJ45zalZrfFpdVV17RMz8y8mZ2619qTntcqs3ZgK
rJ13O1xUeVEr+IsfDbeqUD9XMdiyh/H3g5QAf+esOO9N4lyq0B0gX8MiY0CQul4BPOQFnATJ
CXB6hV4G+eayRcFDAU4QWoC3I43V8CGLdmEg/wI4W8pPm4sw9vLgocDhiz74ysFjGUZSgsem
Ag+gCsXvUuAB8p58A4V8Pi+91blw0kbk5DBpILowzdsaO7aUDA2P5+TfMrEMu932qOPhM5ao
HEORXNISvtbvFCCHbJiq2z/30L78Xu+b7brmNpz2+6uO37gq8DglCyB2UZtzWsN/xxm7A5c9
T6MCv/7XuUOX3I5q+J7ChwPwuADAQxMCj7OY1YHH9v201YJHZ9dz3evxaAIXpcfR0AtXJ4aj
iVygegZCJ7/UkpqHdzqeefllXdUKUyOwrxL4akS2ml6Ad0DGna7+klsdzt5pJKYAo8fVovDM
7aLi0mrvdw/EJFVpkdlXdcM0SKzL2sFMM0nZrfttD57xRGVMk0gckYsigKuwMAQ2UBQpTJUS
/u1Rs627DD7fbfCJiv4nO4h/30e4dt02WeLe2lC0aFeLfMsDXNzBzbzyRa5CxlNo9F4GPOQP
RNKDjdvRfvKXWBt4OAfkA2tr6LE1COFXieEaBBaGxKOaiIMFhU33ntXc6rpuHn1FK/QqkXuV
wLtCDMOTg6MSqu/3vUjKbrxhF6tD5WF0uUSmQBhTdvdhv29Ihrp2KGRqIkudFH5ZK9jZJ7X1
wdOqhkfgrZGYYiyR88raLLQeC0UJP6Md8MVew627DD/bw/xkFwmlZSpmuaVHuPR1b4oAYgoZ
QL6G1bSKhOtuhAcUwAPkFvnJYeULN/irDexFHEWQnj5wKgQJFMBD3r1T4aLysU+XKkXl8Rvh
nKDIMuScKwEPOP0yDw4eRAkeSvBYLXgo0PKi4IGMn1pht8hKoOK9gcfLFvvBsbr6Dp4oa+DF
WG3DA7eAvKsE0WUd0VJ+pxha1Cl13237DL7cpvvl9zoEmldl9Rqnr10DeFzQYoP1g5c9jmv4
nwIrF52OqXp/+/2lb/donrjqe16TfVGL+3bBYykB4KF3LVWTIoVia1P5KJoIQ5ECRZHEV/XY
enRRQkrD05FJX3auBpGDpYlRRE4AK//Z0FRc8i0ijaehx0FBAzaFWLIEpcfHEoKcfVMe9U9k
FbVp0vgYMs/AIqLtwfO61scmN6UobS6KJEBT+WgaWEqgIB5QFAuBOpn77THTT1Tof95J37pD
75iaoZO7S5TII5bnfLthcR8P+c86+Y9N+f6URVs84C7sZQyyFHiAlc7Hz+UTKAAGcubXDact
wkPWFsmsLcRQJcDaGkSBuh7byCymtuFRe8+gsU20BpEPxZmncNLzbvc9n/QLzsYDMiRxgPWw
4FgiIIowYWzV06HpUEEhhsTBUYRg6RaY8WRoKjGrnsjgobT5KDIfQwPWFsqszcNT+Xi68KxW
0H/vY366h/HnHZT9F5kSoVcU1ylF4vq0b7N0tSwFHv7SUvBm5VsP5PcivpRLzTkLz2i/A+OP
bAGHIOHT4S4VBfBA+vLg9hP5i0Zm1st/0CEdi0uBB9LdI9+CsRLwQB5kqQcHt7dvMefS+Z87
pSjBQwkeCFqADKPAEouCB8g8yMalQsqsc/B42XHQ2dfQ1Dkp84isrO20dEq7rCO4SpDIR/yA
nEhp0YcvOH+1TQ/oFYxdWmblm1x0beABeAPqW9HmAv7Zdc4B7Nq5n/jXf50/ftV33wX7oxp+
J6/6vB/wIBgn46DoUmI8VYKjSDQpQqA4mghFF2NIAh0COzW7rvvZhKF1lDqJY24b3ftiMiGn
GRotS+RpQrE0oUnfZCGqIrAU0VXdcGe/tP6RaXOnJG2GqKjqwd2uF7TrInU9LhT8CoozJsLQ
RWjANjLa0aJJ1IniL49YfvwD4fsTZMZ1Kz7fJ1rkHMm2ys8SDL54shAJkPIcrMj70sM1PpwG
LkWRorX/xShy+PLssSh4wFcB4CF/CcSFD7n0inw8/ApwsllUAH4Ag+PJYk0qFH4NDYyjx2Ma
8Vvv91be6sbp89AkTigvf2By3iMkR12HjaPwNaFQ8xKgWKoUmFqDGBadUtc3OGXhFK9O5Bta
xjzsG8ssvI0lslBEAYYuRlPFwNTA5iDbo+CoZTTpGTx76x7DLTt1D16hBwS6RbAtEyK9H3bc
mp6e+nALavAfXOHEH0v5eMy/8guS9z5V6HGQf62wS8bCwu04OVxh6BPcOoc4HiscBTcygDyp
0MG3cFzA8uAB50bYoxW5gRWCB7j6Mg8+LxvVsrC/CR75Iv9VizT6KcFjk4NHaEyFQu2/KHgg
kLDC4SfrFjxg6e55/qj7ObyemddKMYnRIEkx1Ch4Otcr2pwfT1h9/YPe4TPX+eLssbGJNy/0
VgQe4iIF8IADiJ286nsGG3JM1VPlvPORqz6nNAL+8vWRv31/CWx/D+DR8aBfxzBWFgxTgJNN
oSJrheDjaAI0XYzSF2qQBQZmwu6+keiUejSRlZDe1NU7TDGLUCODb3YpqAo14SCcVKhOBPgB
fV9TONmFrayIipueqc+Gp/1DM9UJLCwd4g2whCcv0wRf7jRQOUKEo6bH33bU+BLWyMfbJUHk
HsWxiRV6NFTlTk3Jj7WZl2/llu8NhItNZFyh/MgXJH1VUxfsH4IUyEv5Hcknk/9ABlfZjvZb
9BJw+Y8MtFkePBy9c8BTv7I2MAXU7IMFRqOLgLXViRyvwLTBkRk771Q9fWHLvf6iqnZ1Ck+D
CtGdbIo9OOQpNPWbBpVPuS7q6BpIzW1RI7GF8TV9z8YMbghRZB5ibdklwNvhQxelg2tJTmOC
vj9MJdDMOaEeMTz7kuyYgWePN0+RruBaLF/DDo9OwKUWkrUUuiTkd8Efa8jIa+SESH8NUlPD
4AFfdCF4ILlUfugKSHzNKwX5CYjoteAx/6q7XD5jrxA8YGhZ6sGB2IZkK4QLgwlHob5Y+QBG
JXhsbPAA32jIunxb31LgIf+PkA8UqZCjkPTyowyWSvP+wQPIyMjYw67+vieQj6goovTweber
uoKrBOHBc45/30X+apueJtGt98nbmRtxheAhjig+jw0/hQo4qR54UZsnBx4+FzVZRy97bDth
dUzW87L/jMX3+0lQHA80FEDsnYJH39Ph69ZJV/VY4AMZC5GDCEWHFCub2BRUXiiaFEfml9d0
Nt19SjJgt91/XlF9F0dk4SmRmtSIl/ORQbHQwQc13PQhUSeyA1g5ablNoqiKZ0PTBuZCDEUI
8QY0cxn/1dwuUIULxfAki4jMQOubTiKuRyzfLoJlm53Ke7LKeUPgpo+l/g5vK1MtdYlVBaIM
F5aqE9gYugQHwYMITROjYWuDdWBtqkTfJOLJ87HIxJrrltLRyXkWPwetx9OiRkLmhQwokGGb
RNY1JsGQw/NL7tx/PEA2YNc2ddc1PcZRwmSNVwBOBD+3NtS9haPyaYberq7OUUL3aO7NzEQW
NNJoM4m8C8TCGlZheOnCLglk4DZ8HnnnUrgMvGDAX5gYCT++EDzglpOFpPrFWRfEK2mZ0azy
dwufSr4JQt4DBC6N5Rte5P8ayz9499NBJEoqogsLdgV8UoLHpgWP+VfDyZEOl4XgIe8TIp+X
FAa5KMDzokNaFk3zi4AHLM8Hhnt6Bzw9Ig+fdj5+3vmHfYZffq/75ffa18xDn/a/eFtXqaur
A/+j1/6JevtemNnGAszQYQp/PGV5DArcAcCDc0LNCwogdtkD/LyozTmm6nEKE3JJh/9+wAPI
495BG+cYtC4LSxJjKCI0VQopBfCGBEfhYWhsDRI3mFeRnHdPh8lLKbgXLizBEFg4igAPJRah
KBI05BYClkI0hYemiFAk4Q3HlHBxhV9ocWr+PV0DCYoqwlAEGCofTRGAdVC9oihiHJmrTQ0z
swllh/nEC1wj2Y6xYt+mxrKpqfENXKSAz2oHt3iULhdLFmOoQjRZiqJC0wHjoRYkDprKwdOF
KTl3g/hldDNpWUOPhUMshsjFUwRYYFiq+JW1xWgKH1qS+AG88oyie2SmMDbtNltSjYZj0b+0
thAFxWYHh4hwZDaBEebgEiTmeMXzXaQsx9QE9gu5nqzNIwr1o3z9Ozw6qYCXCuAKDgQFGkIR
8mO64UBh4P0iGACHFFMYkLLQYQNsWciu4JsRPuEyWLswaJ7C3SJ7EV8R+S0K/UHLP/gyT4T0
s6zQwUMJHpsBPOQRAo60r7AXaWdTgASkZXsZqJAHYAUyXw/gAUuR6XFrdfUz56x+2EvTJruX
lDX/UncyMzNTVnm3+lY7ge62/5zLSY3gs3jWqas+rwKIhV3UYh9T9Tx0xesiHDJ9leDx/V5K
XNJaZlV7MTjGFeYTGSF69GCiPgsogRlKYIQSmSEERpAe2M4IIYOf+qEkg1ACM4QIaSiRAake
M1SPATbKlrKf0Hb9EBIDHAuWYGMI0SAMOiF0thA4mS4zxNg00M87QML3iuTYSzl22emivu6H
m6FUefZ82MUrXpsaoKcfSKKzAA8QZDaRWSwYmBoYkAQZMJRkCIwZTIRMB1kVNq8uvCKzOUn2
UsCrIejL3oh+qMzOoT9ZG3ovIQSDEEurwLAg/yiBWwTbJkrgWlacOjo8uDlL9ZW7IihlxTg9
ufLmDiV4bBLwQAatgC3wdD9LdbUs2qb3xVmXNbRmrB/w6LRXAa9PqHso0H29lDaFpa0YYqil
S8qBU9cPX3S9qMU5/rIBBBpFe1GT9TJkugw8fjxmsRLq+Ho7YfdhRuwS4MHhcLy8vBbb81N8
qc6HfZERQgk3BFJemJgXLuGFSrihEl6ImBsi4gSLueFCTpiIGy7bBRKEvVoBW8IkYJ0PbwyT
gDQccGCoiBsm4oRCybhhr5ZAofPHSkLTYvxSYzwKsvjdj1o2W9lSV98ijRSIOcHASi+NxoNM
DRmNEwIZjRsu4AADvrIwV2bhl9YOf3UIsHOYmA2ZWswNFQJr/5QsTLYEJw+R8sMSIoJTY3zS
Yr0qS+KHh7o3ecH+5jPyKEVeiHaxqwpPrQSPzQAe83IdLvKNFfKNG8uMatkY4HHPcMtoW+H6
eU3Pnw/3Pn1hYOJ/+KLHcXV/WeTSl+BxQRZAbFXg8c12ohrO4c69R/eWiEOyVBwPRVvdqy5I
FwAtyhAWZgiLM0XFmYLiLGERpCLZT3FRpghal2khWM8QylS2IvtZnA1tL5YdDlKCXdCBsvTR
0mA3d2cHF3s3N8fkWHZOKq+6LGV4qH9zFi89j2+X5kQUAmtnCovShWEhXi6udk6u9h5eTnnp
AsjUWeLCV6aDrA1bOB1aFsJmzxZBx2YCU0PWlr0OcfFPh0DrcMqCDCGwdltjydTk+LxSlPKL
CvgOAiVST0+P0hQbGzzmFzhmyO+FA+ciXSoKXZBK8Hh30vGg39Ej2cAs9OB5lzOYsEs6vNWC
x9c/EL7ZQTqnZtn1eDkXxxWCx3sQQLn/ttsSZIzPTzl3vhp8pBRvUfFHh2yBWT46ZKecXny1
sn///l27dh1YVhZWc3D1t7zU1Sl2H6Slpb32KJBGETJ7eg6sQJycnBb+c18rTCZzoU3U1dVf
e+DCo8ANvPaotVly4aMpZTOAB9LJsuhepNED3mXikwZH7AfY8KfDdqsCD3jiRfnum4UzOSrB
Q15yixqPXfZWJ7D2nbGHXD5eRS6FJ4lbCjy+/kHvmx3kPYeZgWFJg0Ojy19i/YDH+OT0F2dd
4bzxt/NuA0PKD/D5pMKWT487AoP87oCtCydfaZDVip2d3TuqLpXgoQQPJXi8CXjM/zwu+mvn
alnziJX3M0ncRgKPqanZ+OSa5MzqqzjbgxfcT2gEX5BFLl0aPHS/2UH6dgeBynS737Gi5sr1
Ax7QG+l+/tfzbnDe+LuqV2//0GYuZIKiyv942B6Y4jc/WmNuSJSlrlKUogSPjQQesO/xamen
/dNhO0AO8kFslOChQPsrieOxEhFFlahpBzMthLuPmpxUgyKXLgSPr7cTv9lOxOm5Fpc1Xbhw
YdGPnXUOHjB7bDnh+HIqwzMut9o2qbujVWAG3KL42x+tLxkJlEWuUpSilA8RPOblRm0v3NXz
dGiZvcjhyMxZQJvu9i51/kVnEJBPoDB4XAker5WOzidlVbcvaDicuup/Fht85OxPPh5w38qR
syaSqLypqZczpHt5ea3ETWu9gYdCu8fHR+yFKbWbqmwZn5w+o8/5/UFbuK1DSR1KUYpSPmjw
UMqHCx5Aimo7/u9xp9MaPhc12cfOO0Pg8YMuQI4f9tFcvSP7nymGXwCX/te//tXV1fVhgQfM
Hn9X9fr33RawU6XqNeEmcfkob3z4xVlX2Mn2dwdslT0sSlGKUpTgoQSPXxA8wLewKze/7Fan
KLLsKt5333Hrr7fr0Y0Dmlo6lzqkp6dHR0fngwMPIIA0DhPCfrPXClTBoCL+5JhDREb9xs6Q
/KSaj2QNHUD/fNRB6U2qFKUoRQkeSvD4ZcHjZ/XywKhfUGpBUcNrU6alpamrqy81R+e6BQ9Y
mG5JHx2yg+vi3x+w2Y7236heHwCrfrffBqasz085lzc+VP5DlaIUpSjBQwkevzh4+IqL1xDj
QiKR7Nq16/bt2x8ceMzL4uv+8bA93PQB9A8HbfGWEcjMFxtAEvKb/3reDWCV7Ok2Ub/Se5CK
igprmSwMhglPpfRaURg2C86zkqMW/uvBltceBUqMhY/g5eW1/FGLRh4Gp3rt5RZ+jKzkJhca
c22WlH09Dbz2qLi4uIVP944sueiLAzewkqdTMObaLKkEDyV4rEPwgEPcq5uK13Ds06dP/fz8
QFZPS0ubnp7+gMADyPTMbFpJ2zWvlP8+7fIfKlb/Z6f5F2dczP0zJGm3uvpefHAZDzxOdcsj
d14hziLio0O2v1ax+tUuC7CkOsXfe9iv/GO+Rdm/fz+TyVSCxyYHj7a2xxevOFtZuSrBQylK
8Hif4CFfjsmPdgGlQVlZ2Qf01oAR/nHFC+AH3ADy0UHbz085r60h6P3LrbZuHeuo/9pv89u9
1vD9/8deqz8ctLvhn65s5XhH4KGc+EMpYWEZO3cageV6vkk4RNu6Ao+gyDI4yCdYsuIq5Qvh
pSYjXpv0PB0ClzioFwJU9ZpQPkbHexNwA19f8ngPAdU3J3gAAaTx5ZdfviPnk/cjdqE5/7XP
BgkI82sVK/BTlFr3oGdgYnJ6YfqR8anyukep2fdSc9oSs9sSM+8mZLXGZTTFpjVFJzdGJTdG
JDZIExrEcbdEsbeEMbcEUXW8yBquuIYtqWaJK8IEVSGCiiBeWTC7PIhVEhBe7Bda6BNS6BVc
5BlQ5Oaf7+qb6+KV7+iRa+eZ7uSdHJlQMzj8E0gMjkw4hOd+fMThD698R6EAHf8/e2cBHsXx
BfAKhbb8WygtlBYpVShWvLhTnAaJO8Tvklw8uYu768Xd3d2Iu7s7cU8IIcH+cxm63V6EEEJy
gX3f+/bbzM7OSm53fvvmzXsnlQGBYMiBgQcmGHgA4eLiAv0F7YAH7G5gZmHAA+vPqSH52kDv
PIekJ6BBEZ3gyeXgEDACGJLOfsECfMmYRCLHArQDs+Vi4EElHT1Dp+5Zz0tci/7+/qUerLix
rQ8w2JfHAXIogx/tikOkB9MMuww8fJ6Q1egeXOHiD7TE3q/Mwbvc1rPEyr3QwqWI7FBgal9o
ZJunb5Ota5WpbZ6hQU5XN05TMU5V0ktR0E8i6cQRtRJkNBKkVKMllWLE5aNFiZE42QhBqXA+
yVBesTBukSAOoQAWPl9WIf+74iGCsiGixCBLp6zmjn+J4oKALYIcayesNIauyaNTMRImGHhg
goHHooMHvZQb0inD6OVIkvrJ4DE5h+xkAfUvCtpNtnVA6kDnT6GypUwZ72vKI84mMhh6R8g5
M1SersHZXO87Ax7zLrKysnR0dNNNeFkSAvpu59C8g6zkVSeUKxu6qLYOP3ycmlvr6JNr4ZZl
5ZFh5ZZh5ZJt5pRJdkg1tcswts40tEzXN0/VMUvWME1WN7mvYhSnpB+joBtN0omU1YqUUY+U
Vo2UUooQVwwnEENF5QJFZAJwUoGCEn68BN97wj5cwt6cOG8WPg9GHhd2vLugbKCwfJgwKVRY
LlhQIlhKMTAkqvDpM8qZnOW1Abzx9WnVe0q+7204Vgw8MFlE8DCziHRwcDh7/iL05RgdpS1L
I02BB+QBBC0AeFwSskfwAA0eoGsGW2EPDskkr+IBYrWA7YB1GPx8/Tk1qo5exiQSNMWvFjDl
aUArBJInDjZ+kNUMHAgeERpkXqCCqyOFsAS0DE8MnCdiUQEK2iF7pSPR2mFMVOSSQWV4CHSD
yHVNPjpNgQdMGjXZpepNBPRZ8/uZHBgYuGfPnvk9yUWRjp6hvsFH6JK6pv7gqFI733Q73wIb
7yIbrzwrzxwrt3wLl2yyc4aZQ6aJXa6hVYaeZYqeRaI2GbBHkppRoopBvKJenLxOrJxWtIxW
lAwFPCLFlEJFiWGisqE42UAh6UB+CX9eMd97or5ceC8OIS8OnKeIfIisRrSsZpSsZoSMZoSU
ejj4U0o1lpHH0tEt8NmzcWWr2ODEMqwLwMADk8UCj11/0IGe/Zdtuz6YEB4BYQw8phOYmB4J
Yw5623vKfhAwAEugwQMWAkKAkAARAmZ/A43Afh/040m59aC/3kVvRDVAA20p8ECImwdQsAsC
LWAr2AQbhIlXoPMJkuEFJroFxwJb4RGRk4SnBNZBg2AJKsDzBM2m5DdAfoD+KlQXBddBOVwH
K0jOF6qj0xp4TJbZZHicHOccyXp54NDRj7744fufds4y8SXAiVcey9HREbyZDx8+PKVH/VKF
kO4hF690Re1wolYkSSeColrRRIpGAjaQVAoVUw6WUQsXk/eXUA4RUwZ/BhIUgsTkQ0RJwaKk
IFFisIhsMF42UFAugF/C966oO4+U911h93t4j7ti3twE77sEL25RL268Jxfekx3ngScFaZql
qBvGq+jHqhjEqRrHqZjFCauHXGAj//SnMI4gl58d/OjRIPb+x8ADk0UEj40bj0LkWPnFKrC8
wy6Igcd0AnthNHgIagZCrw/Yj8N+GfTmVBYDaOiA2d+Qbh1pc/JQCxo80CnhENgAuALKoWEE
ksPP13XgvshACagDtoI6oAJch+ldqGwpkC4gmcAd0UMtyEVBwECGmeBVg8apyl85TEM74AF/
Wq8UqlclHLJ5pUwmh4SEhFfupaSkBGqOjo6CcxMQEKA18+McJCaxnKTuz8RryyzgxCzoxirg
zibgyC7gyCboyibgzsrvqqofoaQfyY1zMba6zy/uwSLkzirkyiHkzC7kwiHkyk5Zf7lkFXQW
l/c1tku8J+airBemYxTJiXNlx7lz4P9RIbD0uEvwIGpG6lqk6Vql6ttkalikcUo4/3GZuPFP
3MY/BSXkVOOCTbs6mrD3PwYemCyKmJkFA/C4fEMcwAZ46XlGF4GlsJQyBh6vBR4v/hkZQQwC
sC+GvAEV6eghAEBbwQzgAW0jcBiFCkXgOSAtAwUoggYPaGxBdkHXhPYNtCMKwiEQb2YPHvBP
cDlU5cjRaR883lDma1bLdGJpaXn48OGl+6Ju7xly8U4HjMEi4MaG92THu3IBMMB5c+A8OCm0
4MKGc7+Lc80rbk3ObRSWdG7vH1PUDmEXBptcOSlLD068OyfebUIpXMHCb+/gnto5+IRA9IpO
qi2r7uLFO02AhxtlF9A+zh3syA6OIuxGUAzQtkwhGcRcZDP88Shh45+iW44JbzwiKEFUTwox
68bAAwMPTBZJtLTcAXiw8+hzCsms/N8qCB46xtY0dZI0BR7Q2jAZPJBeHvbRyGgI1e5w7AP6
QiBbpwQP2KmhnUsR8IDDPWgmgRgwGTwgvVBNSKECD6QyYo2ZDjzgRQGFuW5hOWQeDDzekhQU
FOzZs2fyqM2SEHWTSDa8G6ugOxsgDSEvLiFPCkgANsC5cQi5s+FdWXGOItKeD7pG/CMK+PAO
lfU9hlbxbDhPNgpITFgwJipz4jw4hCjcwiLkFJ1UXveg/x7exT2gsHNwVFTWjUXQlVJfxHmC
PdwpiALax7mz41zZhJ33XSZtOITbdERs8zHxTUdENx3GSRBVEsMAeGAh0N8j8Jg5zTcmCywy
MuYAPPhELC/cYNm45Vcjx1DQxfuFxGDgMZ3AMRR0r42AB4IKcCvs9CFgQKdNdM8Oe20ID2DH
9efUJlMK1XRaZKiFypQBG5wSPBDHUSQSyGTwgBYYuAvingELkaEipD407MAGEdh4b8GjsKoN
XDheO/itHqW/v//SpUtwCGZpibRyyF2CHwfOk2KywLlx4YG6cFKgwoMV58GG92Tlt3Pyyuge
GidpBbDyOboHZAdGl7LwOrPjXTiEQQVoyvBkx3lx4j2Y+Z1k1QLbe8d8g3PZeJ1J6sHt/Y+9
g3JZeO0mkMOFS9iDHe8JcIWdgiuuXDiPm7zWv56U2HRUZONxkY1HRSngcQQvQVJKDDfr7sTA
gybAA7qmUyl8WaEn9E1XebqayEcT+uUJ16fz2MdkwQSH0wHgISrrsnv/sZ37jyno2YMuvqSi
FgOPGQR24ogBJD6rFm0PQQcQg06kyHMBXSkQ+wPs0+G6gnk0lQUDCvQFBS1Ajw70JFbQJigE
7cMpJIBqjNxS0KeBbgGcMGgfntjkKGdgE2gHlsMdwV6gELQPCqnqU10UPDSogPyJPvq7DR4L
KQA8Tp8+vbRm2sqpBd8l+LLjfNhxHhz/DIhwCHuy4j0ZBdwZ79rpm0Z0Dj4Jiixkwzmy4N2F
ZF2LqzsFCS6M/M6sOE82YQ9WERc2YTdWIU8mHgeclEdReWdZXbeorDurkBuboINnYPbA8FMj
y1hWHms2gYlxHGEXduGXwzqAcG7z2v16WmrTMZHNxwmbjhJeggdROQGzeNASeCABVSYreHGh
Z+jPUJmqJlhHTNCTa2L/iMUVJmY5AB4kzeCNW369cIMFJ6MJuvjhkUcYeMwg6ABimMyjYOAx
syQkJOzZs2cJBVSX1QjhFPVh5Hdl5HOh53dm4Hdm5AXrzgw8dryiLvZuyc2dw8HRZVyCNkw8
9kwCLgz3LP1Cc1OyaglyHsx8dix8Toy8Lgw8juxCdir6gUVVncUVXWIKXvQ8Dky87gy8zsz8
tn5hxc3dI87eGQJizqw89iw8Tiy8zkx8jkx8TuyCTrd5nX87I7vxqMiWo4TNx0Q3U4ZaKOCR
GIqBx+KIo6MjFTyjWQJxRUNsFOgoSejKr6yJuNLByoiD/UKGYcRkOrlyDQ/B45PlKziFZJjv
EVZ+sYrWTpLWwOMFKmQ6Ju8zeDS29R3hsCB7L9wvAXwtnj592tLScmlYPFTDREjB8lrBilrB
RO0gea1ABfVAFe1gB/e00oq2kdFn0feL5dV9iGq+Cpr+ChrBclrB2sYhnT0PG1sH7FwSlScK
jayS49Nrex6OVda06psEyyj7yWsHKmkGyWsES2sEyKt7Rcbm9Y08Ka3rcvbMUtWOUtQMVtAM
VNQKkFX1o+dz2npaatNR/KZjwpuQoRZo8cCGWmhD0OCBuGEMj4wh9gr0uC1SeeaaSPTFKUMh
zWNKC0zmJsdPcQHwEJf3AD27mKLhhRssv/2+CwMPTDDwmI0sgHPpZBkdHRUQEPD09KT9+yOh
6Gflkt4/+Lh/cLR38FE3WA6M9A0PP33x/MWLZ6OPH7f1DHb2P+oeGO0ZetQ9NNI5ONo+8HBg
IqnK+NMXPUOPewYfjTyhRBodf/Gkt6+vq7ePUnNwpK9/tH/gURdoc2Cos6d35PHYc0qdF32P
HnYPgfLhvoePCyu7OfAOW09KUwZZjoqhh1oSMfCgbfB48Y8r2ivBY8qa6DYx0zQNyt79dwB4
CIrbUiazWPnt3n/s6KkLS/FCMPDAwOM9AQ8ooqKiFRNCy/eHoBhg75Mzqfjp02dPxp6Ojz97
NtVOz549fzE+Pvbs+VOk5OnTsfEnYzMc6Omz50+ePn3y4glYRQqbO0a4cE5bTwDwENl0THTz
McLmI6KbD2M+HksDPKAf+2zAY8qaaIdSbD7LAkhCQsLRk+fNnV/al9raeo2Mgsemieq89ffL
ADxus6oC8LD1S1733eY7TOyTq4FGMjIq0SVPnj2nvCDeRfCAE68Qfaunza8WAGNrzG13GJUd
bUsEJfC059zmdAKHR9GjqHO4sTNncsHAY/bS3t5+eEICAwNp9v6IKwZYumb1Dj/pHx7rHRrr
HRzvGxwfHB4Dbw/w7hh9/KSzd6i7/2Hv8GjPw8cDQ+MDQ6O9/Y96BoaeTjDJ46eUHUfGx0Hl
J89f9PaPdveO9g+O9Q2OTRhDRvsHxnr6R7t6hh89piRgGX3xrP/hWPfgeO/Q44GHYyWVfVx4
l62npTcdE9x8XGTzMYkfjopsPCJIIColhJl3d7RgnQXNggecvQIL0V73k8FjuppoHw84k2Xe
X4mYQOnv79/35wkY/3DVmnVlNRSkDwvLBmiRlzfFRBXw+G/ceBRsPf0XHuziHlX4yfIVciTF
yTVVVb2kpBz+/e/n5fOJyAFVUFSikaQS8wgeaG8lKrSegwyPjFn6ZEyX2hUdnnTOzyzaVwoZ
7pzZgQr0mFNOopmBOuBo6Zt4toAjIjFA3iXwYCV6LtbzDoSOjo5AINDm/ZFRCxYmBZDUQ0ka
wST1QKJmIEkjUEUnxM49Nb+8tW9kLC6pRFk9RFo1WFYrhKQeIasdqKIbVFTd3DM0nphaTbZO
UNSIMLKKi0+r6Bp8XF7bZmAWJqMUSFIPImoEkjSDZdVAs/6R9wv7Hj4pqe5w9MhU0QknaQTJ
awYqaAZLqQTS89sC8Nh8RHTLUbGNxyU2HRHaeOAuSV41IdQUCyBGg+Ax2WWU6j02g3Pp5Dfe
5Fkt4D32JlksMZks4CtCgCD35Vfrfvpt5y879m/+ZefJv249e/Z8BvAIiYiD4HH4xN2Pl30i
reMM8MPBwWFm8ACfWuu+20SJr/6/VfsOHV++fIWv3+JPi55f8IDWuXmxeEzOV/tWwQOZ5z5z
m68b1XzOUdAntzPDJPqlOKsFsEdHzyK/yoyMjCYnlKEJ8NAM5xLxZeFxZaLMNLG/w+8wMbHF
jZHXkUfMxcY5s6ntYXhcObuQPT2PEwOf6+27dk5eacU1nVrG4RxCjmAXZl4n1ntOXIJ2Krr+
OaUPiqs6JBV97nDbMPE5MvDaM/FZ+0cUNXYPufik40U9WXgdmfkcmPgcmPmcWHgdmAXsb/HZ
bD0jufkIYdMRsfWH+Lce5+fgJ7rZG8Z463e1N2K9Bq2BB1rBu2LKOB6zrAkFpoGgqox5fcyj
POgaWrVm3ef/oyRbYeAm2Polf7J8hbGV03TgkZOTwyssvX79PrB1284rADxWfLZy1Zq12dnZ
M4MHgI3te4+JyhugE0wsemTFeQcPql8v6NzBzxUGJ4fdDTIzKyW/AV0HlkN7AqiMROWacpAC
ggfY69Q9K8QEAVPCwcaRZwSG8kCfDxxVmYz6yPkjAzFIshhII4gREn058IgwWW1OaQvcBOOE
UNUfHhmDJ0B1UaFJ5chpg0YaW/vQbaLfA+8SeNCI0OZMW1m1iHuEQE6cF8dEHA92vAc7zpOT
ElPUk0XQje2ek4FRROfQo8CYElZBR3YhV5ykW2ltt7isN+s9Bw6cG7sw3MWbXdCTmddGUNIl
r6ytsrGHQPRiF3TlEHT2Cs7vHn6iT45k4bFj4Xdjw7uzCruxCbuz4jw48W7cwp63eZx+PSP9
3WGhTUf4z9ARlLR0vD0MfBxV74fbDvZ3YT+bhZeZ43igLRjobFZTWjxmrokIDGSExo95+YbC
BEpgYCAAgN/3Hr3FJgiQwzk0m5VfGqCIu0f8ZPAAryklJSUZGZnftu347vvtYMcVn35++jK9
jIaFlpZWTU3NdODBxYv/Zv2m0IxGQSmNz//3JQy0/t3mXwaHR94x8IChtNApWZEs9tDADukC
9Kon71m9QIUShQMKECdmCR5gK52YC5K9BdSEs87hVthro3EIsZPMDB5IvhjQ3cMwqrAmFUjA
6Kbw0uDjDFAKifIHgQddHzSLzk8HrwtGcUfuCaijah2HbhOeG1Vu36UOHv1Do6o2cTQyOw96
fRgZGaFLwOO8mBYP1VBuMR9KPHNKKFEvLkAdQm7cOBd2vBsLJcyXKyuPnaN7Qv/QU3ndEGZ+
B8+A7KC4Mno+Z1CBUhnnRQmWjvNgF/Zix3sxCjhIKvu29o76hhUw8DvLaYV29o+7+WUy8tiy
4dzZRDzYhD05AKjgPdiEPDjw7lx4j1v3XH8+LrH7NL8AQd7Z3iDQU8/LXvV+hNPwQ0Adz7Fe
g9bAA74Z4FtiyjkpVD4eM9SkEvi5hFTGgiHMl4yOjq7fsPnCDeaE0v7te4/9umN/dF7H5l92
MjBLUoEHpA60HCdYyFgFIn+qqalRectD8LB1dANIY+4eCyOra1r48klS8CO3uPptM9Ur40W/
JR8PdKo1qhjjiNsGug4shPlcYH2qoRYY1RMJBIrsBft6pBq0ZsAnBT4jcwaPKZPGotfhUcBj
C+pDlvCJKaKKxjPZCgRTxlDldkETxSE2MrpNuAme0nSfJ5hz6ZsLgUBgYmKCMZpOnz4NnlPw
vC8aeKgEsb+0QriBlQl1Yxd2ncii4s4s4s6M8xCWdm/tGPaPKOQVcaqq7zOyjGPD+XAK+Uwk
hnPlwgEC8eDEA/DwZAVNCdpH3y9taB24K+rgEZTb2ftIVNaZDefKQcko5w5ansgFA+o7g/bZ
cZ4Mdy1vs8vo6GoFuOn5O6r5uWjmpUWNj41i/QUtgwfyUoJv4Ckjl76y5szv9rmFVsZkOnMr
nBXrGV0ECIFLWMHWL/mXrX+iwQNNHcrKynBli2SQUmQDgA2AHMhWtNcoAA8+fkPQppQqGTQO
YIOVXxriB9ne621f1wLH8Zjs40HliUH158/XdcA6uhDdvU5OjIJYVNBNocEDSZ6CBp43Bw+0
5WFya+j0BxA80M8muj7AJCRLwpRJ5ZDbgm4TA48FE09Pz8OHD/Py8sJh0C1btoCvkkU5k+yC
RjW9UGYeOzYBD06cNzvegxXwg7Anu5AXp5AnB56S3I1LyDW3uC01txkn7dI5MK6iHcIt5MmF
82LDU1LLUbK0ICM1OE9mfkd7j8zOwSeSRPe45NqSqh5uEWdKfhacG4zHTjF3UHK7uLEKuvGK
OWhqm3rYGwW46ng6qESFOLQ0lWPdxJIAD3QEsCkjl85cE6bwpjo0ev4LBh7zKxzcvKvWrAvN
aBSVN4ADLnsPn9u3TwCCR2RkJMIV+vr6L9dUVJcR7gPweDERF1FLSwupg3wrAfD46Zdzl29z
Red1/Lpj/8GTlwF+fPnVOjY+sQW4qEUBD3QJFWnMYPF4JXhQyWTwgPsiLiILAB7wctDGCirz
y+SjI5NTqMAD/cWxi95o8pAKPKXpjKIYeMyXkMlktAuWgMCiRbYBvxNr+1h+EQcWXns2IUd2
ATdWoIIu7ALO7IL2rIK2zIL2JM0wRe0wLpyjjkUcn5gLu6Aju6ATq6Azi6ALi4ALZUXIkUXA
kVXQiU3ASUTOV9c8jgfvJKceoqQdzo5zZhUC6sgq5MAq6MgysRenkB1R3sLaytzfVdfXQdXX
xSAv6/7jsRGsg1gq4PECFRYM/bKdOYAYUhM9ygwtzMgIOFRsau38Cvi02fTjr8iAy8/b998V
VVm3YS8ADzhgAUVXV9fc3PzlH9qGFItH+EuTSHt7u56eHlITeo0C8Ph+yx+AOs5dY/76203+
iVU//b5/575jCxPKg9bAYwYfj8nggXZ+mD14QO8I+KSgbSOIt8Z04IFsBSszgAfSGnhOgSJH
BAoKXwkeEI2Q9LvIs4/28WAjeaHbRL8ipnvqMfCYFwEv9tWrV3/wX1mkARfK++Hp0+cFxQ16
Jl6yiiaKShZKKpaKqpaKKpZKKhZQifJmRJKZkrKlDMlUQZlS4aW+rPbPUpWylJe3IMqZKilb
EBXIRHmygoq5kqrVy/rKFooqQM21tM29nE19XdQ9HdViI5xbmiuxroGWwWP9OTWoVJ8qKlax
sBy8WPzjStCVZ67Z2NYHPnzAn+j5LODPn6/rgPdSbGYN9o+Yd2lubj7w59Fr9Nw+cWVHzlw5
e0Pgmw079x84LicnpzSjqKmpGRkZWVtb29raamhoIOUqGto//LyHjp3454m/Tl28qWcT+NvO
/QJ4sf6BBZpFuMDg4RNTBBRdArpmp5DcnoF/v5iqGrtACdkrHSyb2vqp6oAlWM8pbUF2hzUn
HwvZq7VzENkFPBegPjgHsIIUtnUPwiOCQmQveCB0kBC4CRZSbQUryHU1tvbB1mDj6MsB1IE+
mcn3BH0m6HKwI9LI8Mjjnv6H6DbhQcGDL2EQNt2dX3LgMfr4SWJuHbgu2jmlJ0+egAf58OHD
VOwB/lz0UGP9/Z0PmqoeNJQ/aKx40FA5sZxYh9pQ2dJI0Qf/KiisoKz8u0SvVFDqN6DrU7QF
bmoobX9QPfKwH+sRaBw83qogARWx4KULY/fYsOXXE3/dTCjt3/jTrmtcVh8vW37x0lWEJQBX
GBoaqqioUJw6/vH0mFJEJGRXfLbyHB3nnmO3bzALmLvHLlu+Qk3HdCEvB8vV8m4Iv1rAzFHL
luJ02syS5v4hGnVWTEhIEBAQQBPIIjqaYoLJwoMHJvMuGRkZWlpaFy9enPJlkpaV98nyFUQd
u9vsQt9MTJgVVTBQek0hkeS/Wrth255jUrpu6zb97p9Y9fW3m67fZl3gK8XA4z2RJQcegDqW
HyTeU/Kl8fMMDAwED9Gnn366iI6mmGCCgcd00t7eXjAh7u7ujo6OKSkpyKasrCzCVAJqTq5j
YGDg+I+gG3lDgc6fADbAO+TAwT9FCJLCBElOTq4pKwsQiKvWrCMoUxLAbdl2UF7T9HXBQ1RU
9Ot132/6ecfv+y8cPse0fe+xH37dufAvLgw8MPCgTaFZ59IpBbydENMH1fx08GL5YBYCnsTJ
zb5yr9OnT0/eCyDQK3ec7lXwSoGziREBFzubvSZ/wXFycr5yr8kz/dE3k4mJCXuuMfCA0tTU
BNDC19cXQQJ7pTCSgA54QK5d+pvpJgfzLQ48p5QYj7yGONldJ8ZDN9ZTL9ZeI8iQaG9EdDAi
ORjLOxgrOJooOJoqOtlr+QeYJwVaJAdZJnsYR5qruZiruapK6RNF1IiiaiRRNRNV+0jnzCiX
rGjXLD1Fi9MTcu3KdYgo2traAE7Kyspmc+aysrLgx0xSVGtq7+/oGwWaU1j5ww9bpqw8ODyy
5ded33y78au1m4VFJcAD4oiSyMhI8KB5hkSflnXaI+3FYn5/i2QQnVEcVeBl8Aifv3QdPkSf
/29VXd0ixErCwAMDDww83lzAa2f16tVUE9aQx3zmbxB+MUWgBpZuk1MQvvL7BbxtXkz4FSMu
yu3dQ1uvKv18kSQpO9OOU5puQDnY6zqXwgVWeaBgBTby7SkiUFAC1qk+jiZHLppSJneIm/9S
gQ3OIJNxBbmZWyYEe67fW/AAnamhoSHo5a9evAGePrBk/JuNl0lUjlfbTiEUUAdQB5VwR9Vw
J7UIZ41IF80oV60oV+1oN50YBDw89eO8DOK8DeN9jO77Gt/3NUnwM03wN0sMICch4BFslRJs
nRJikxpqmxZmnx7ukB7hmBHhlImAR7Rbdox7dqxHTpRbpr2ht4ORj56SmZKUlpGadaJ/QVJA
YVJgIcAhSCNT5l/LyMj4448/1DT1IHgA3fzDD9P9KxMyixhZuWa4M5EVvR8QEj8QS7zjWAZW
tqhmTlnt/v37Nh4R1bV1i/Lvw8ADAw8MPOYFPObWD06ZION18xQj855eoAJOzsHlj2peJDJv
Cz0FbL5k/Tm1N2lwzjf8HRZRUVEaTCr05lJWVga+5clkMui7zcT9yBL+5pL+uiJOBA5FFQEz
XREHK9kga7lgG2KwDSnEVj50scAjzjM3zis33jvvvk/efd/8BL8CBDxCXBJMNW1U5XR4uQXB
T1dISAhcCxpC+PkFdA1NEfBgYmGH3xRzEMesdgp4EBK5PCrBcr1i+nQ1nz5btAjDGHhg4EGb
UtnQtfKIPJEc9Z6AB4zkj4TQnyHf38zg8WIiRs0cwlYjh4YTt2FAfgw8MFkUGRsbc3d3l5OT
A//oW1cYOW8J4JjllPnICHiYSwVYSAdYSgdayQTRPngkBxWlBBelhhSnhpakh5d624Uaa1r5
OIRnRZdnxVS4WQX+/vsOiBw3bzMcOPgnJzfvdG4erxSlyAYEPFbLpYIVGvz/YuCBgQcmtAAe
VMF70QFkSmrbpzRfwPmMk8FjugOBdmZGl8nAg8SyowKPyaNCs79euBcGHphQCZLITF/AQ1/Q
k+eOmAyHjrGwt7GIj4mojynB11TM790Aj/SI0ozIssyocggeu3fuDY9JAtQBluu/+46RkXHr
tm0bNmyY220U8K2G4HHVpmSLaiZYaR8ao7X/dUVFxSunAWLggYEHJosCHjDJ4JQ5x2E1JEki
Ah4weDU6uQ86fyg6nTFaYAWqOL1UWyEnpOQ3oIdj0A1SHRemMECGjWD6IWQvDDwweTHhFBoc
HKyqqnrh7F+XL1xX4bbS4/eA4GEg5GWI83rnwUNRSouBkRWaO7Zv3+VhG+xhF6CmoHPzxm3w
I3/dsTOjxBZIHUDXkNJWSCWDlc0qGQ29S2/CHQYeGHgsvLxvQy0w6x9ieUDCUwMYCEksQ0ey
ffHPsAgcE0Fn8ppMMmhTBo+K33R0MfNgCnrrRUE72BqS4hmdKnE6goIeOxA5kB0x8Hhvpays
zNDQ8PL5a0BZr/MKMygqcVrq8Lrr8rm/V+CRElqw4ftNxZWNgDpUNXRZ6bnzEqrzE6sLkmoK
k2oyYoqLUuqKU+tK0upL0+u1tbXj4+OHh4enu6v9j568pA4xynKFZDJQuC4bVr/kfiQYeGDg
sfDy3jqXgk4ZHS8XqYZ069VN3VRZNtBYQgUecC8YXG545DH8c7p86LMBj/Xn1JBQdUgSMdjg
DOCBJGdEdsQsHu+tqLE7892U5rspQ2Q10+R21brrqn3PTZvH7T0ED5bbnIA3AHUA9vh9285o
vzQ0eBQm1yLgUZBcZUd2FcWJXzh/wcLCore3d/KNRdxKP5FIAstl4kmfSibDkj16uRh4YIKB
BwYeVJ0+TMQD+QHt0QGgAj20ATYhKYqQOmgfDzR4IIiCNDidZWOWFg/YIPr00DvOAB6T28fA
4z0R0EVGRkbKy8uzXxNSYXVSZXMC4KHO4azO6aLB5fI+g4eLecDePQdg+A52zntyYsq596um
A4/S9PrSjIayzIaitBpDLbMrl6/w8PDAdG+IMLmUQ8z4TikdrqyUTtmgnPHhhNFjyY22YOCB
gQcGHm8bPGB/TWUZgH+SPdPRFg+YWHk24IFYJGYJHq/08YCWCgw8aFNoLY5HWVmZtrb2+TN/
MVziFqJTVGK2w8ADDR5H/zzp4RsMqCMuKWvbb9tz4ytnAx7lWY0V2U2Vuc2hPtEBHuHVBf+m
/Vo1MYflM6kUaPH4TjF9DTFtmUTSFzIp4E/LtFYMPDDBwGNmWSoh0+cXPBBUgMMZcL2texAN
HsguyFALlXPpdEMtja19cBOAOqrTQFxBQFPgHGAhWIGHmG6oBfHcgA1S0QUaZqi8QeCObwIe
jo6ORkZG2HNNm+ABkOPyuRvXzt/kvS5DZLBUYnJQZnZUYXHEwAMBDx1F04uXrkGf0r17DziY
eb8ueFTlNVfntwDwqCl8UFv0gEfeEtDF/2SSP5dOXqdAsXgA6viKmPqLRtbKCfCgsy+lnd8q
DFeIgQcGHrTJHjSbJO4tgQeaAUDvDPtuHhU/ZLQFVoP9OCiEoTbg1pmdS0G1g6xmM0QnQ0+T
QXSyvQI6l6KPizSIPivkhGELSFgz9I7zGxgEE9oBD/x1NYmbhgr0dooM9oqM9hh4UIFHYlDe
hu83Qp9SY7L1jcu3c+Iq3xA8uC0zAF18RIj/VcRlh8p96FO6SjaVzr7kD71csL5cMmn0yTMa
+a1icTww8MBkccGDahYq7MFh9w2noK4/p2bpk4GuBme7IF05jDj6yum0oJ2Z45KhJ94is2Ze
/DNPdvJ0WrCCbhAxy8Byqum0SFhUsISXg4HHOwMeY2NjkZGRIte15eisiTdtSLds5O/YYeAx
HXjwsOPEJYmAOpra+zds2BTpnfLm4LFdjQIe64ipy8QSV4jFgfWNMlFXLfNWSqeskEoGS1AS
WdGLgQcmGHjMIB09Q6fuWbuF5y+Js32rlv+27sEpy6ubumcfwgvUnK6dyTVfGRwMiV02JUoh
gzVTbsUexncJPIaHh93d3S+cuXTrPBvhuh4tg4eZvDsaPCR4FST4FCX5FFnucLLe4ZISUAIq
LaiEBg+yirO/ecL8goe/Q/RPP/0KfUp5+XBignLZsRVvCB6JaS+jle7VynKIrDmgnTVh/UhY
LhpjmdYaXNrztXwaKGF1rcDAAxMMPGaQpeVcigkm7xt49Pb22tjYAOS4c4GbcNVA9oYVoA6a
Ag99KUcVYWMBNnH6v1lOnz7Nys5VWNNZVNtVXNdVUt+la2Sua2ShZ2zhFxoXHJ1sbGGnb2Jp
YGJZ86C/9kF/XWt/fduAgBAe7Pg33U12Rm4FgpalpluwbfIbgsfp4+cdXX2gT+kfu/amhBW+
OXjo+FHms2xVy1hHTP1EImm1LGUW7Ta1jAvGuZ9JJX8qmbxVM3uGhHEYeGCCgQcGHphgQuPg
oa2tDZCD8QKf2BVD6WuWMtetaA08rt+g4+DmJUgSyXbuIXGZ+dUdBdWdaPAore8ua+gpb+yp
aOoFWtncV9XcV93ShwaPhvaBxvbBvJKa6IQ0LV1DQZwwCyvbm4CHl034qdPnoU/p6dPnjTVs
smIq3hw8jutRuOIL6WQBp2LH6JqjE3+umJjbQvIpV/GvOG2U++GEScQtgibe/xh4YOCBgQcm
S04KCgoyMjKw+7Ao4CFxkXz3gqzYJWOpKxbSVy0WHTyMJdxl7mly3uEPjM1OK3mQXtqaUdqW
WdaWVd6WXdGeU9GeV9XxJuDR1DHY3DnY0jXU2j3c1jPc3jvc0fuws28kLSuPjxOnLmvgaR42
S/CQECSlZhUC6nB09Tlz4gLM1fKG4FGa1wKQgxIaXTHtO/nUTYppa4mUebXr5VPprQr+J528
TS1zHTH1q4nJtnu41AkEQlNTEwYemGDggYEHJq8lWByPhQeP9vZ2sQtm4n+ZAfCQvGQuedl8
YcBDmkVv/ZqNU4KHIr8xMx3XpctXhMVlTW08olLLDCzdzvx1TV7daAHAo+FBV3h0vKa2LgMD
I+NtFgNlyyj3zJnBQ4hfHPEpDfdMnhfwcIuqAUTxlWwK4I3LpnkXTXLXyFFcSb+USflZJf0n
lYyrZnn7tLNg4SHdbCtz26tXrpLJ5LGxRUseh4EHBh60KaNjT3SdEgur2rD/HSYYeCwueJSV
lQkJCd0+y7ko4PHl56u3b9mnI+ikzmcHwcNU3EecU+XqxRt3GJiNrd3jc+qSi1pSilrcgxOj
08vXffvdZ5+vDIzJetvg0dU/0j3wqGfgUe/gaHxiipiEJN3NmyRx1RCnxCnBI8T5vqKKJgAP
cUkiLwceyU77huDBbFUAB1aumeUZBVWq+5Xv1aI4l34mmQzY44Z5vmlYjWFoNSAQGE29qLyj
srhOQ1VLX18fAw9MMPDABBMMPGgKPHp7e1VVVc+fvsR5VlrsvOnCg8efv59e/smn+nj3H9b/
unXzbggeDt5RAngJW/fQxPzmxILmpMJmCB5fr133w0+/GNt4fP3N2h279y4kePQNjfYNj1bV
NWnr6hWWlE8JHn+duZqQmptTWPnjlp+TgvPnBTxK8pq/nBhnIXqW7tLIXCaeBHjjjEEOZTqt
Qpp9TO1hvewVkpSkLX+Z5h3Wo5SrBlZ2NPV2NPdlpeY/e7Y4kT0w8MDAg2bF1CO1sa0P6wcX
RpJy6+ml3KYLL4bd8PcQPCIjIwFyMJ4WEDlrSDhnuijg8cmy5Yzn+BnO8n780cfK9yxE5TRs
PKOCE4rPXLz+zdpv165br6JvBcBDTtVQl+xEVDNctfordh78yXOX1n77nbGN+wKDR//DxwMP
Hw+OjA2NjA0/GovzyYn2zIDgYaphf/jw8Y6+0YsXr2krmMAkcW8OHkaBFZSZs+KJezUzrcKq
6kvbsnOb6czz4ezaL2VSZL3Kais7C4rbtIOrPpeiIMpPKhkQPDpb+rpb+7vbBl5MRGLBwGOp
SH1Tn7ZZkqldelvHEAYe894Pvg+5WmhHYIzT6dK1YDec9gVwwgw5019LfMxjeFjwzKfwgqe1
Rc6YiJ41WRTw0OR1BLwhw6n7v8+/PHr87F0hqU8//dzY3v+7DZv2HjhCUjfRJbvKqOjfE5IU
kpBftuwTnLjC9l17v/hylYiU0m/bdrByCwDwsHbx57gnICwugyPI8OPEbzGwBsekLQx4VFTX
6eroK0irKkvrXLhwpbii0cMniMAvi2SnfUPwyM1s2iCfulwiic++cJd65gaF1MM6Wd/Jp+7W
oIyqfEtMFXMr3aiYtl0985Bu9jfE1L8tC/brUCa8KAVUocGjpKBSV1vP1NSsqKgIAw/alNHR
8dLKTjf/Qnmd++x4X3a8Hzven1PEX9kg0Te0tLK2e2z8KQYeGHgsjFQ1dgFgOHnP6iCrGdBd
9EbQRhSaVE4v5XbqnhUACVB4T9mvsbUvPKXioqAdl6KPqnUc2PTzdZ1DbGSYjYVZ1gNUg9FN
QR238HzQDlgBSvZKA0tQH1Qrrm6/LuIEo6+D9lPyG963G/4+iNAJQ9wJQ/xJI+FTRiKnjRcR
PKSYdD9d8SkvTvyjjz4ydQw6dPT05i0/+0TnfLxsmaGNd0JeU2J+Mwu30KrVX+mQnZYtW7b3
4JHzl//+8edfceKk33f8se/QUQAeylomASHRHX2jVQ0dh4+esHDwXjCLx8PR8ZHR8aqa+h9+
2AKODs4BLyiBJIl7c/C4Z1dIiYUukXTbPN8xsrqupLW+tK2yuPWcUS60eACV9Sprqel6UNtV
Ud6hHVy1e8L94xOJpKqabgQ8etoHezsG66uaxAjigoKC7e3tb/s3RpWrpadvRNc8RUEnNjmj
4ck/cd1BV4WAx0C623v7PI6NPY1NqhVXjuAihLILB7AKeVMph3AAFyFEViMmKaP+6dNnNHXy
GHi8k/0gkogNBgsFN214ZAzeOiRqOsxmC+o4heTCcpjTjV8tAJ3hRcYkElYD66ARJOcLqOAe
UQAUHu6GqNMLVGB2DDzeJWlqajKQdqQd8BCiJ3744YeRmfVfr13PyiNCkNP8+OOPgxKL13+/
8ceft4YmluiSXb5c9dWqr9ZwC4iBJR0D+w8//rJq9RpevBTAjluMHGjwAMrAxKaua7rA4MHD
y6draAqOXlzZiL83n+CxdmKiyjpi6h7NTDWfcrvw6jsWBWuJqRA8NiikGQRXXTTJW0tKZbcv
so+t43UuWUdK/WZisq1qUBUVePR1DvV3Dbk4ud2ku5mSkrIwP7mRR2Mh0RU4uRAOkUBOkSCg
aoYJBSUv5xR0ByrVSf/S6UF4Pj76fj6Sre2DSnrxnKLB4P5MRg6U+kzcvUAN48TCsnbaOX8s
ZPq71w9CNgC9P1WIcmTQBKayhQnaQDUIHlQpYhF4oBpqQcADIgdSQiJHwWaRbLkYeLwbUlBQ
cO70Ba7j8jQCHnqC7tyceAAeFm4RR09dWLf++5jshk0//MR6F+8RmvbVmm8++OCD5ctXfPbZ
54raZHo2ns9X/k9Z1/ybtd9+/c26mwwcu/YckFHShuDh6OrDK4CHUcoheywYeGRk5eza/QfE
nus3bsoSFOcLPMyDKN4dv6tmRCfV3yTnrZRO/lg8CRCITmBFalYzdC5trupIz3sg7FYK2GOF
JCWiqYBLqV5oNdi6UzNrSvDo7x4uyC0C7JGenv5Wf2/Pnj1PyWqU04jmEg1BelU2nA/4kw3n
a2qXUdfY+54/ktV13VIqUYA6wG2ZkTq8/717BHj30uuaaOLuYbNa3r1+EKLCZLPDlHlmJ4MH
wi0zgwdV2tz159TQbWLg8W5IfHz82dMXWI9LCh7TpxHw0OZ3tnQPX/vtd/sPn/SLL/xk+Qoe
vGx4WpVPdE58bqOhjfdHH30E2MPCJQjOagmOz9+85eeNm7fgJRTWfL0WkIlrQCwEj42bNksS
1S5evo6wh4ae6cKAB6COuKQscNCAkOgTJ09lpRVkRM4PeJyfmLryLTH1J+V0SbeSpPTGupJW
k5Cq6+Q8SjwxscRPJZOO6GYD/MC5libmtLTWdWcWtkl4lm9STF82EdS0sKJzSvAY6BlurGvp
6ewfHX1bdoaSig5N00QOkQBO0SDwtT6pA/XlIoTeFQtw8s7v6n74Hj6PbR1D9h65nCJ+HMKB
s0GO/9w9vC+3WOhdgr+zd35n9/DiXshSBI/CqrbRsScYeEwniMmCyuKBDJpQ1X9D8ICHI3ul
v7c3/F0VSpa3U5e5jioIHNWnHfAITasNS6/Vs/ICgKFqaC+nYXby3JXYnMa43EYAHpx8hE8+
WQ42yaoYINNpOflEz1/+e9/BI/sPHbtKxwin05raengExeVXd5jbef2XPczeNnhYWdsxsbBD
cwcgkOycvPEnz7ISitIjSt4QPFJTG5ZLJH0kRgmTLulakpjWUFfcCn08TEOqTk0wCSW4h2SS
kGtpQk7Lg9ouAB6t9d1ZRW1EvwoYTd3ufsN04DHY+3Cob2S4f2R8fHx+f2zNrQOWTlkcwn4T
3+Yzfciz4/0BfgjJBAdFlj8cGXvnH8PnE8vunoeufoWCMsHchFB2vN/rUsd/7p5YGJ4YGhJd
sYh3b8mBB6AO0M0JagZi4DGDID4egArgqEp1UzckBKCWPhkIMwyPjM0GPKARA+3jgbZpgK2H
2MgvzYATB8LAg3ZEVFR0Dm6BhoaGF0/euHtEnf+IHu2AR0haDQSPiMy6M5foVq/5Jjq7ISa7
AQGPrdt3f73222/WrT9x9hICHqnFD1R0zbfv2vv1N+tiMysnx/Ewt/+XPf6+Sa9navv2wONB
e+evv20trmwEx1LT1MMLi4yNPwXg8fTZ8ze3eIg7FwNyuGqSG5VUx+9QtFE+bYd6xmHdbMAh
18l5ZqFVEDzSc1tkvcp+UcnYppZx0zJ/l1bWJsV0YfeykAzKWIyUT8UrwWN44JGNjc28uJv2
DTzyCCjikQgEOME26y51wnMyVFIlIiGt/gmNeU7OuwSGFYrKh7IJA+QImDNyTOF3qh7d2NKP
gcfsP+cx59JXfKtGFED2QBRyAnQcRUZbYPnM4BGaVI40AiBkSvBA3EVgm6DaYt1wR0dHIyMj
DDbQMoc4HuA2Xj1Bz/unNt9hPdoBDxyDnG98EQIewckV56/cRoNHcELx55+vvHSd/iYj5xdf
rkKDR0hCgYS8prmj33Qh0y0cvCF7AAUrNs4+bwk8hPDCgDegT+lvv23t6OyB4PFo9LGosHhK
aOGbgMdPSpQ093ZhVQA8hJ2KAXj8opK+VzOTCjxqytvJETU3LApWSif/ppb5lVzKJbN8y5i6
pvqey+SCC6b5swIPK1smJqY3YY+2jqGo+9UipFBusVB2Yf85dKAv/U6NEvKLW2GbA+luPaGa
75jmFDxw8syUVo0Al8zA5zkv7AH9TqVUo6vqejDwwMBjvqS9e0jGJBLgBL2UG2LigJAA8AOU
gyUszyltAaiA1BkeGQN/ouEBTsKF9hNk6/B/zXR2AdnwWGAT1RAPJksOPO4eUuc5pM33py7t
gIc0m87Va38HJJUj4BGZWR+VVY8GD2kl/dVfrdExc7ZwDvpk+XJLlyAEPGaTJE5d15SBiQ3m
TJlgD995B4/UjOwDBw9B0wonN6+pmfnjsaeIxYNEkjfQMZkzeITHUZKz/E86+XfVjJ+U0gF4
UA21XCe/DCC2lph6wzzfPKIGGWpxiKunsyxYR0o9bpALlrMBj4eDj2ysbRkYGAYGBl7fyjHq
GVTMLxXC9ep5GbPwnJzwOzWxTa8qKqvGf41Mtn03NIdvfWx0hoy8nYKai5FljLRaJCOfF7OA
17zgB6doELdoQGdhAgCAhdR6xT2VGHhgln9MMPD4R+4d0OY5qMN7SJemwIP7prCsqgF6qGUy
ePyx788PUELHwP5a4FFc16Wh9y97XLpCYY/5BY/jJ07CObxxSVm7d/8xOvYEDR75+fkszKzZ
CSVzAw9F9xLIFdo+5dUFLTWFD2qLHkDwiE1rvGtfBLPTAt2nnbVRIU3MvSwjvxWCR1tDT3tj
T1V1F50VJQaIc2LjbMBjZGjUgmzJxcX16NGj1/pNOntlCchEMfL7MgvMy8f7P36non4mwsKl
AmveJfCIEz+dL/JLCIldnKDNJ2ysrOVhaBl3l+DH9MbsAZiNRdDr7A3NdPxWwAALqRQ+xK+p
IXy3tHw88NrBS+JsCQQCExPTgh1ufPxpb/dwdVl7YWYDbWpBRkNJXnN/78PnzzEioDnwqKmp
ubtfmzbB49pfdHa+92cAD2uPiC++XLVu/Xe//LZ9284967/f+Olnn8Vl174WeJTUA/YwQ7OH
rYvffIGHu5fvlas3XvqU7vojMyuXCjyePXt+7dq1pJjMrLjSOYDHHbO8NbIp8h4lv6tmbJBP
FXYq9oqpkfcs/Vk5HaiCV1lOXgsEDzidFoDHJsW0HRqZ2sFV3smNHA7F60ipZ00oKWt3ambN
EjweDT/WUNcAL7rXmuqSX9JiSA5X1IkWkAqi5/VgFpyf73d2vB/ADzlhvSixy7USmxe4M31L
6sB1Fq6UKx4NUBYUENDQM/a1ckzglQi4dddtjqYPnA/HxNjW8YsK2/bdS+X+doFpqlp4bRXu
a2w67dKVJ0+e9nQP15S1ZyXVxAcWRbhlhztnhjum06yGOWZEuOckR5ZVFD3o7RkGL1vsn0gL
4EHJwHLyMtcBNRoED21el/PnLwSn1swAHheu3oKGDoAcn32+Eqx8+OGH94QkXhc8Suu7NfX/
ZY8jx054B8W8OXh09Axs3vwD9Ck1MbdhZeN49PjJZPAAPbins392YskcwONHxTS8QxEMmS7j
VgLYY5l40lpiqohLcVZOc0NZW2N5OwIezdWdLTVdGfmt7HZFq2RTQE1AILqh1U0NvbphlCEb
56SmWYLHo4ePlZSUSSTS81l/TkTH5fPiDIkqTnqmwZpGsZwifnd4PFgE58X04cMjGXmb28HX
wWOBhw/eksb7/OdCWguSEiITJInWlvYx+uYJTPwed+65v9ato4RVx/neYLU4eEZq234e1gt0
5YQfFoWpGpT2vrch4JaogEe8q2OwMLMxMawk0jMXwEaEc2aMW1ace1acRzYtazxYumdFuWSC
cwZnnhpdXlbQ0tU++PRdd02nZfAoKysD1MFxQJE2LR4q3FY36G7PAB5W7hErV36+fMVHO3Zv
3Xfw2KXr9EdPXQD4seLTz+Kza18XPMoaeuQU1XkF8DCgOmCP4KikNwQPgrgUSVENNvjrb1vr
G5unBA95eXlHa9eclOLXBY+AqOqPxRKVvUqvmuSulUu5Rc5zi6qpLXrgF1/HYk0JW/qXcS7i
XJpX+EAzsHKHeuYmxTRxj7KkvAdtDT2O8fV0VoXrSKkCrmUwktjswWOwf9jTw6ujo2OW7AE+
l4pLGhTUnLgF9CTkbCzsY9UM4thw3gy8nm82WcMPgMfZG5q7D+PMbcLe4Yf6fmKhqWVQb99I
Vl4jSTPiNrcrPa/HLJDDl13Y7xaX3dG/SNsP8P2+n1dBRncRmWoJUUdjW98RDguyd8b7at94
3t0+XFnUlp1QE+dTEO2WE++Rm+idBzTJJz/ROz/RZymo9z9Lr7w4j5xot9xY74L06MqqkvbH
j55gqLDA4DE2NsbBwcFwSOTuPi3aBA9FLvOZwWP/4RMfffTh6tUfbN68fNv2P77+Zt3HHy/7
dv2GDz74gImTfw7gUd7YgxeTkZAmIewREp08Z/DIzi/auWs39CnlE8Rr6+qPjI5PCR7a2toW
JjY5KUVZsa8HHuf0swF4nNDLNvQvL8ltpvLxqC9tsw6vBuyBxPFgsyuKymhGnEuhj0dHU29V
TTefS+knEwE99CPrZgkeoyNjjx+NjY2O9/e/xvTMJ0+f1da1a+l7kq2DbRwi9clRkspht+66
Mb7+xA3wFQ+og47D5vB5uW37eLYfuBcQkvpuP9etbX3hUTmpGRW9/SPhMaWipOCb3K7T3To2
nC+HsD8Dj8upa6o7Dwls28977BwB3PZHjx5jb8jZyNJyLn1zefToUWFhUUlJWVZ6YbBvkqtt
tINZmL1RsJNxiKtZqLt5GFC3payUSyCHuZHDnE1CHIyC3W2jk+/nVlZUl5SU5uUVFBQUjjwa
mf3wMebNOwfwIJPJ146ycO/VolnwULtre/HSlenAg6huCgdZVq368OLFD46fOnSVjukOy71v
1n0LCj9etizkfsEcwKOiqZeKPUKjk2cPHuVVDfXNHRA8rl677ujqA31KDxw81NM/NB14wKEW
CnjElc0ePPwjKaaMHWoZX0onXzXJNQqooAIPq7Dq6+S8LyfCp4OaJw1y1pJSeRxLYORSNHh4
JDft18k+bkhBlHXyaW2t/a8FHm1tbXMw3tbUtWvqe9wTMnTxuB8QViwoTfFemKXzJOxS79x1
OnFZacdBfvAVz8Gnl5ZZ9u4Yt6ff9HDkcVFJQ1NLN1gffjjuFZjPI+Z7k9sNHfSVDefDIeLP
LOBx4ZbuH0fx2/bx7vqTV0HNub6xHXs3YuAxndTU1OBvy8vQ60jd0ZK4qUVk0acoqwFKDRdW
DV6pJDYjeXZjebB8fZVjNhCj05Rj0pWh15Zj0rt7RTSvIK+mugYDj7cEHoDtKIMse1VpGTyg
c6lHVO5k8PCKzP5y1Vcff7xs05afAWbs3fvB/gOrvtuwaeX/vti99xA96z1QuO/Q0bmBB1Bh
8f+yR0zyLMFDQBC/7ttvDYxMXT19Lv/jU3rs+MmIqFiYJG5K8AC9cHZyEQCP7Pjy2YPHOX1K
Unvb4MrK3GZD/3I42sJsVaAfUI6Ms5iGVFWVtG1USIMBxPIKW5X8Kn5RzQAq51vuk9zI61wK
nUtjclu7W/t3alLy1WqE1rwWePT29Lm4uMzhV/r48Xjc/QIHl8iW1v6a+i6yfTKbkOctbjeW
6f1O2SY8JJn43M7+rbX7sBD4it9/Aqdj5PO+Ddr2Dzxsbunp7KJMam7rGLJwSGER8AA8Bu4P
u7AfgJArjCb7TxK27efZtu8ev6hJXkE19lbEwGNmqa6ukWLQ0uG2NxJyNhR0MhRwUrxjqkRv
hqj8bRM5OoOFUdItI/Shp1RlBrLU39qiV5QlrqpJXVadrOJX1cSn2QR2kbyhqcpsAS5Ti8vG
FOcucFEmJze7umq2TwoGHq8FHsPDw+dOXmTaL8m1R5PGwYPtbz5NU+fJ4LFr76HPPl+5dccf
n3++8rsN31+8+JGh4TJVXc0bd9hA+YZNW+4wcwP2UNG1mBt4VDb38eMIRAVVGPJr3/6DyVnF
swEPb7/gnbt2c3Lzrlq1OqewEuzu6Opz9foNJDvtlOABqAOCx+yHWvwmzB0rJJLy0htgdtqo
xDp2m4LVMimfSSWvJaYIORUlZzRB51IEPKBzaUFxG96t9Cu51E/Ek35UTlcLqqqq6YZJ4pyT
mqDRo71tYPbgMTz0kJGRcc5JbEUJkgzM+MiYXMAOVTVduuT79DxTeU5OIAdgkkv0hnuPi/y+
j+f3/fckiDbllU3v7WPe1T3Y1NwDIASss9y1uMFiwSLg+Te71Z9nZX7fz/v7fh4GDvWY+3nY
+/BNwIOV6LkkzvbN+0HwsS/LqqMv4KjNY6vDa2eEc1ZkMFViNIOqQG8sw6yhI2y5AKorYiXH
qUW8Y6DESEZOYLKqMJkLXSZJ3NAg0OsIMOsJUimTrsRtHYnbumCFapMAsy6BXpdwTUXrrq2J
qKsGlzVZ3BN/g5ibl1tThVk83gp4jI2NMewX4/pDg/bBQ5RJmYsXTwUefnGFq9d8veLTz7b8
vPXzlSullfTbe+irm9a0dN4z9cr0iy1Y/dXX3363YfXX3/7viy/9ozPv5zbhtEMQ8Lgj6T4b
8Khq7rvNwGJCtgHwABDiyLETKdnFrwSP1o6+VatWwVCocILM5s0/1NQ3zwY8XiuOxzk9irmD
wzIfgIecawmMHibhWpyY2lBb9CAmpUHAsRjwxmGdbP3Ayg0T4BGd3mgQUnXaKHctKZXXqQQ6
l/qnNjHaFq2SSZH8J2T6S6NHWO3swWPs8XhRYTEdHd3rRvaAwsXFBSixta23sbkbTndz9c0F
7MGKyt4y4UHqe53F/OBpSdCfAmXn0UlKK8aedCDtHf15IW4M7KZ/3dA5c0VlxyHK2NNfN2Td
vONHH49h9+cN2aOjZ2nExpwn8NDV43NUZiGrslsaCDmhwYN020AdZxxikxhslfC2Ncw22UjO
Vva27ivBQ/iKAvG65nFlu9WFFWtyy/7VvLLV2UW3+Axu4UxXZxWCP9FbV+WVnlCyk7ympsVt
q8tnR7pjYoRzFf6blJefW1Ndi4HH2wAPjl3qnLs1lgR46PC5Xjx/xc7vPpXF48CRU3/sPwxU
Skk/PrfxloSppc9+c69jApp+tsF5V4Ss9x4+8/1PO/cePEJ29MsobTsvYBeRXgPB44Kg/SzB
o7ql7w7jf9gjNbvklc6lx46/DBcG9/r1t63KqmrTgcej0ceB3uGvCx6J9ylTX5dLJMm6FP+q
nMZpXRAUW1Od3zLZudQzrvaOZcGHYokT0U1T6K0KXePrJzuXdjT3SflUAPzgci6V86+CRo+O
9oHZg8f42BMSkZSTkzNn8HhBcfx43lRbX5WZBNaDI4vp7zpSPEiF/djx/jc5bY9eIG4/AL7i
ea/eIvkHpTx58hR7zBGpEvjCg/MwP5PkmSuKJ/8SNyL7d3X3Y7flvZJ5AQ8ZForFQ1+Qoob/
tXjI3zGSYVc3lXM0kXV422pGdJLn0Za7rf9K8MBfUZC9qXOPXf9vgjmdKEoJ5n+LkPGMujhm
vb9FzOj+u/VvUXOwi8QNdU0uG2NRFw1uazMxT/wNDDzeoiwh8IC5Wti5+WeIXEoyj2Umeifm
XdB2OCptLA/A4yyfraRRJJ24m5BWsIVfjlN4oaptgrV/jmtkEQCPg2xkEb1QUb0woK8Ej5oH
/VTskZZTMjN4SMuSJGVIEDyAAgjZtPmHXbv/mBI8HBwccYLCrwsejOQ8wAafSSbfNM2NS6iD
Qy2TwSMsqYHVpnAtMRXUBPUP62ZP51wKwKOzpa+2vkcvovaYYe7yiektmmG1rwUelRVV1tbW
z18/SuC/4DE+2qxztoBndWWo/cORp9fpDa4xmNzmsjt1VRV+xR+/QLC0CxscHMGe4sngAbRU
dq+5bWRmTgV2Q+ZF+odGVW3iFjH/6SKAB7OOgaCTmbi7KcHNCO+iSG+K7ugV6I2Jtw0XRkm3
jZRnpA7E4iF3XfMU0XJtSu66hKx/NTF7bXz6bR69O/xGa2PTwJ/orWsTM0+SrCSvqQHwsJDy
MBRyspTyxl0nToAHNtQyz9Lb28u6S3lpgYe+gMftqyzKupbTgcdpXhu/+xUKFvpneNlP8fDs
YzHdP6EOofn7Wc0AeOC0Q4DidSg6B/ConcQe6bklM4BHSHj0/oOHQH26W/Trvv0WIIcQXnhK
59K29o6bdLfiwpMBdWRGzzZXS0hUFQCDj8UT18ilHNfN8o2qpgKPxLQGKbeSn5XTt6tlqPuV
5+S1THYuhZFLC8s6pgQPGGV9nXxaVWPf7MHjyfhTfT39hw8fvu7PMjAwUElJCax0ehBgB/rA
U7awuJGezfjyTf2j52S37efZc0RATce9+UHXm/z+HR0dT89CCgoK/vM2rqmZzV6RkZHUIyDt
7a/cS0tLa8oX2sxCIBAmg8fVX5Yd/mHlK/el2hGcwGyubnJaQFFR0de9ky8mIha+ci/wb5rh
TiYkJCzkOMt7lasFAQ9TMTcTUVcq8FBkMJW5oy3HpEtk0lsAlWXQId42eCV44K8oyNBpc3Ab
XJew+lvcEq03COaiDLp8rPrXxSyoNoESfraXFg9zSQ8DQUcMPN6eyMvL0x3kW3Lgocpjc+mv
Kx7hWVOCR3xu4w2Ci4ln5sjozy9efFDaYKvjnPLjVZ3U4gfn+G3TS1vP8dtllrVZ++dA8Hit
oRYIHuX1HX9dvubhGwzYIzWrcN+Bg7XNXRW1DxxcPCeDR1tn/5Vr15lZ2e2dXKrqmmB22imH
WmxsbB2sXLOSCinmjvjSWYLH2QnvDnaL/LLMBpugij/UM26a5dmFVuZmNmn7lv+pnbVRPk3A
sTgmtaG+tG1K59IHtV0xmS3sE8HSL5nlW8XUNTX0IkMtwVmtvR2DB/RywC4sDiWvBR5kM3JL
S8vzOaVG6E+yQ2Jrj7VXgZLGpm5z65gbjJrS8ral5Q1z/tlzcXHB9wMGHksdPD744APIqBh4
LDx4kG4bKvLquRuEuOkFv2111w+xVnYXvaGsPAsfD4nratvJnqvySr7KLER0dXbRmsTMe7dU
TijarMoq+Cqr6N+tWUWr0vP+FjSUuo6Bx1sX8P48d/Ivtl2qSw489AU9Fe+SfbzTpwQPq4Cc
fcymCXlNV/AkeqnbN8XvSRpFAnUIzUeDB6AO64Bc79jSg2xkj+hiz+ji9JIHswSPutb+ioaO
i/+wR1xSlrK69o6du48eOzGbJHFTgkd5RZWYiCSgDgp4JBbPMjutsU8p4IEvpJITE2phyPTS
rEYmi7y1xNQPxRJ/UU7X9a9A+3hMBx7IUIuMT/mPKhlg32sWBejstEnFHSsmBmjC8tpmDx7Z
Wdm5ublzMHo8qs+mJPKYoI6eUE2kvLNrMDQip7au9U1++Qh4vPNDLfWkHe/2ZWLgsdjgoeum
H+KqF/y2FRzFStlN9O9XgwfuirzsLT1JNlNRLrIoJ5WayTOYSDObgJXJm+SYTcX/Y/HwEbom
l4uBx3wL+I64cYiLfaf6UgQPAyEvB/XgKcFjL7MpBA+P6NzMkt/zKtZXNRt6xpSwKfiyK/gC
8MBph1j555wXsMuuaL8p4SqiGyqiF8qt7D/7oRYYQKyy8V/2wItKqmrozRk8ysqrLl+6HOgV
TgGPxMKM6NLZgEd2Uu2PihSEkHEqhJFLPSOq9mtkXjXONfQvT0tvJLqX/DSRG07eszQzu2kG
8EjKfYB3K9ukmH5UP0cntDqntIPDsXiTUrqUb2V+ZTeMXCoz4WX6m3pmZ9fQLMHj6fjTtra2
2QdRh/JksKNO+hfYdbZaMc/7Lx8DDww8MPCYl6EW6dtacow6coy6C6AyDNoT02lfMdQiek0Z
f0VB8pqa1BXVySp+XU1imk0S19VFr6lg4PG2RUhIiGGP+NIFD2MRb2Nhb3uf2MkWj9O8NgA8
AH5IGqqf4WUffPhFdGbUj1d1LHyzAXhY+uXImEYdYDUD4KHtlAzjeHhGF78ueDS0D1Q1diLs
ERASPSV4/CWT8ErwuEl3y9zIOjOxMCuhMD2qJCOybDbgIWpXAEhgm3J6dGy1kG3BBlLqH+oZ
buFVVD4e0cn13LZFa4mppwxy9AIrqAKIaQZV7VDPhAHEsora0D4e+eWdADw2K6Uf0MsxiKqr
auj7VT0T7CjmVzV78Hj29Blgj2fPZhvOCzqUwn6zQXn/s0cDGHhg4EEj4PG+OZdWV9VI0Wvr
8ToaC7sa4VwMBJzlb5oq3DZDVPE2WeGW2WRVnG+daJOseIescPs/J0ClimB5y1SOznBuKn/L
RJ3Vmizmoc/naCHuI3hJNicvpxqL4/Fm9g10Bo3e3t6zp86z7VRZuuBhiPPSE3K5dYXxLr+w
T3QO2scDgscZXtvEgubj3KL0Urcj084fYDXRc0kB4OETVw7A46drOucF7JRt4t8EPBrbB++n
5uzYtftB1zAVeADegArejcj6lOCRcb8gITI9M6EgE1BHZEl6ROlswCMutgpONtmikAaQA4BH
THxNeVZjRXbTdLNaHKNq7lgUfCmdDJ1F92hlrSWlstsVRWc2TzmrBRlqic5v43YpWyefdsKY
Mn3mU8nk1PLu1wKP2f9Qu3xlYKdZI74RunYsUfDIq3hQ3dSNgce7BB5LS968H2yobyDyaagL
mmjgTIGq40xV+Axno8po5V0YNZhQyhFVeF/qHBpRFTDSFiWr40y0RMjS3MplFWVNjbMNSEgg
EJiYmLAfHlqo4nhYW1tfO8TBvkNtSYOHsbC3sYiPsoCZJE5BVJykZWznF5MLwcMxJF/GNBqA
h7ZzQkiSoLz5mcKqgwQDsortfQ37JOuA3PCJOB53Vfx1nJN1XZIljCLnAB6+QVG79+zl5cdJ
SJM4uHh4+YUAeFiGVAHG0PUqk5IlDT583Ds42t0/AvPIgHLbiNr2zt7QsAhjE7O02NyM+/kA
PAB1pEcVpkUUp4eXzgY8oqMqf5kYZFknlzLBHqkX9LNF7AvJAeU5aQ3TgQccaqktbdulQTFc
mIRVTfbxoAKP2vresJxW9dAaHteyvTrZH4snfSpJoZ3vFdOTyrpmAx6tD1olJCQGBl5tuBjv
e9BqzQZ7TI+/P39L1DF78DByS/n5ug5Y/vsQ3bMCOsujbL9lcIbXerqtBZWtZK90DDyWFni0
dA7wqwd4RxW9J+Dx9OnTgYF+RDo6uhvrW8uL6wuzq7MSSzJiizJiChHNBBo7sXyVZqBWMlAr
GVPVnFxnPrQgI7ogPWZCY4syE0ry0ysqShra27v6B/r7gEwswLU/nRCMH+YLPG7/Icq8U+Hd
AA8TUR9Tgq+jRqihiuWNa3RMLBwxWbUJeU2J+c0APJIKm5OLWupawdvpg/Ena3MqC+YWMn06
iwdVADHEygGkuLavZ+DR6Nh439AoAh5AL126rKWqlxydnREPqCM/OagoJbgoNaQ4NbRkluCx
VYlCHfRmucWpdQnxNTJOhd+RUmHO2c8kk/AORfeT6qcDj8by9sO6lIkw3gn1M4BHSGbLHu1s
2CbQTySSGO2L3VJbBnqGxfwozh6rZFNqHwzOxuIhJCSUlJQ0NDRTvMcngx2gl4TdZSTfLzCO
x+KCh7ZDwvKDRLBEswTQsfGneRUPhkfG2ruHLH0yqMwaSbn17hEFYCsaPEBNWI5UJpGjQAXY
DmIhmdwaBh40BR7vm4/H4MBgTET8/ZjkUL84O9NAM20fUw0vcw0vSy1vGx0fG913R620vcF1
mev4+rlFp9zPjI9JigqNiwyLAQQyNDj0ApN5Ag/W31XZtqu9S+BhKuZnIRPgZRplZ+ge7BwP
FA0eKUUtfUOnwYtq8OGRtwcekCvSSzs6+0aQFyOQ9p5hNHgkRWWlx+WnA+qIz0+LLnhd8CA5
FYJ+/xvZlPi4anSSuLDYalaLfDj+AnSrSrqKd2ledvNrgUdjXbdVTN1fZvkIcpwzzSfH1qNz
tXR2De2eYJI79iWzAQ9tLW1/f/+Ojo7pfpzPx0dbDK8gfaUANystg0dKfgMop5dyg3+CdRmT
lzNnAWmAP2E5Ah6AKJASsBXgByhcf04NrCPtg9bgjmDJrxbwJlc3/PBxcFQ5HmdFFFKNkqbD
wOO9BY83l8rKasFrJKkbOtI3dWRu6iowG8kx6MsxGCBKZDRcSJVjNEAffUr9p7LBXJTeQPy6
FrhYyRtaxNsGHGfx2TnZVZVVLzDBwGN68DAT9yNL+NurhPjZxALwCHG+r6VgKCatYO7oG5tZ
lV1eMP5kLXhXtXRJvFXw6Oh9OXu0eYCCyr2DL80dRmQnWCEtLg+AR1psfkpoQVJg4WuBR2x0
xdeylOEVVdciquy0cDpt9P3aK8a5y8T/z957gLVxpYvf+z33frv3+d8t3/9uNutNdu/du8lu
yu5m0+zEiZM4jh3b4IILLtg0m14MxnSwqab33nvvvYMQvYvee5FAQkL0KvwdcfDJWBIgMAiw
531e9Ixmzsw5M4zm/OY973lfIiKHUw7VzsntW4JHXFH/JQ8SDGoK9L/0Smwzulu6aHA6LUd2
2pJW2n+slYysGNkSPAIDAv39/clk8tLSEs+bE/l1dKr+bpHSgSKXHmTwAFBBoU0hqIDWD4QN
cBmCx/TsInRHxJpBsBYPWBh8gvWAYcDyzuweLNYqsaxP0yRDSj1VXDVeUi1ZXCXWxa+8b5Dx
qj7WeEb5wMFjt4Q9q+WWtZ1ckLNqqJNqiKPy2qyWG65IDa456F6xFYSK2OpdtV+r1A3bAA41
uemucdFc9fwTzfMm2meecKuGkKmGEO9NYJeHF83M73q5PAizkfH3UI9SFNKt2Y5zKS6vM3i4
a8a7ayX4GCZ5aie6aEab6dsq3FM5++M5cSmZsJiHADzYUcV6U3cdPCBUUOjT4PIGBoeX1K+/
4BdnV4NutDCpAhYoya4tyaojJpMK40nEhPrtgoeYa82/ifi8+yCVI0kcBI+QsHJPP2J7zWBj
9YBVTOvnlhX/fs4JDcGIepISCD0c4EGoHpIOaPy1TjECld8blGhGt3V107BxPDjAY4oxq5fY
yS78uJTOmN0cPGJiYhwcHAB4LCwscN+ZzLIwFChsuj71GSZk+gEED4ANEDzQemjlAAiBFrCF
0aHAMjRogE+wxi2qDC6gI4BPVAYdhH9p6RizcimSeJAo+SAJpdK7qxwLIERGIzEioWFich5/
DL6sBaCP+p/HDfXdsl4f8GBnp5UPfCrlZXHPhztXi664hYtuoLPOnqurXvBjGRu961vnalE+
b6B92VJBwvHWQ9/b6i+qmo/aLbsHtx3AAsemW+o+YBeNi6aW0r6OKsGmdz1d1CO2m6sFl83B
o7Ky8tLn919t8PDQTgDg4aWT5KWbFO2SkxpK8HEI1VEzjI/9iO3ssfTLlr7UXQQPm4haABVa
JmbQuKGuqulk4cOmjqQq8LUkuwZSR1F6LSG+tiC2jhC3DfBIiKoKCykNCy0LDyv7T8XUn1/x
/UrcMzKiIiqyMjqqMia6Kj2JhCwemmZJWOfSvwhZG0Q0v2VYirjit3rFcDrtbZ/6P2DW/0a3
WCKgMa96mHtWC0/woI1PwwGXpDrK5uCRkZFhZGQEwGN2ljOpysJQAwoURks0QmBwcMADDaN0
DtAgHmwXPOTNEqBBA5bhCR5gGVQEjgkVOX7wI2O0Gf/IWim1eCn1lLuYBL5IxVXAplQ1w9Rc
YtfSMgt/GOKyHfBgZ6c1uetuJsEjO60ZOzstIcmrYK81zZfoqOvDZ3Zadq6Wx75vVDa+WUr6
Scvq3yiuuS5jd03R+Y2iavAVu/W3ZaSThj4oO62hqLOjcth2s9Pis1o2B4/k5OQLx8RfH/Dw
0U8OsUqPcc9NDipICy8kD3wF2IO18nNS6RMbE+fLF0Vk5JXMrJ2s7N2sHNzjMwgJGQRSBxkL
HqV17anZRak5RWm5xem5xXHJWY6uXi09IxA8AFFck3eCyDHGmCNGVMDl4qxqIomMXDvyomry
o2sLYrYNHkdFndh6g61/FXF4/4rjsRvOx26u6xdAbzkj8IiPq8GCx1+FrZNT6lJSSR5RVWIe
tb/WKUKkAfXfHxGvedX75/ZsMp2WJ3hMT8x2D0+apHdvafGoq6tTUlIC4MHhX8qaYyKH0iEH
ISwY7Cl4WFpa8vN8gKQBkCA8g4S4AlABGmqBYyhwqAUBBvdQC+QKUBiNyyDwoNCmwHo4vAKH
WmC9fJ7I0vJKSnabsm4Ke2xFJY4bObAKjSEmdvmkZjL+PMSF36EWMWt7hSAHlWAH5WBHFQ6L
h5O2mJm1mqcA1EbdS0/y6VoAMT6y04pYS0nYXdD0vPDoRdVwV75lo3Tb9sJDd85NjzykJdZz
tbg8DLWS8XXXiFLGs9PuKngEBgZe/Fz6IICH4Q0ftasWcpd1FUQMEHjo3HK8KyHFka9BSEhY
+ooKNmS68k09w3uO9qqRW4KHt14yYA8fgxRfw9Qg8/Qo55y+totwzKUs1zPMK8HbMdhQywSq
xB1poAkhWTlxJTnxJbnxpZcvXRG5dEXy7j2k96XkjHTNMmLXo3PQmPOFMaWFyZWFyevIUZhR
TXy+DC74S4LHaSmvsJBSONQirRnhH1CMzdUSE1119r4PAI9zMj5Qz8v65mQ0IvA4LubK1juu
5s5ZfS3k4JzuX2mz8eNPT0rtUzq628c2mU67OXjwGcdjanKqvLwcgMfk5CT2nsQ6lGIDhe01
ePAvAAng2AdUUa0wthXrOXigoRPoLwooAq2BWyF4QK5AzqUQPFKJrXAZWk6wXqmwFn4kKLpO
Sj1FQjVhc+TAjLzESKmliKvEegRWDo0w8aciPtSyNXhsmp32iair/hUHwajhNWfjW/xmpz2l
43Ekv+IP2aVI38opO5JZdP2+7Q1Zhz9kEP+QU4bdeiSn9KQenp12zy0eF49K7hd4qFwyEzuv
ePnMzfNCQueFhO/LKT0xt/EOjkYjHVXN/VnEamRwaB+gdwwy6juGCkpq2cMcwxO9I8zm7pGn
gMSVVMD/+rLIFdELd+RvPtK7Z7MlePg9TvU3SgNamS0HwING/mvw08zMqCKgWTHFWbHF2Wwt
YVPHc/DITSjNA5pYBjQ/CWh5fnJ5QXI5xImpuSXvkMLxyYWkpMr5xZXUkIqZuSWIHEkhFZTx
OVgMXPYdgwfy8SjOan3nvFVeaiMWPJCPRzWxq6aoq61qwM49D2vx4J7V8jfTcgAeQi61W8bx
2BXwWGWtkteEwfjJyxHrULow1MAxFHJAwAPiBOAK7ERXNNQC1oD1oAC2PCgMXUmxAcTgXFq4
Eo3FgJVgd+x0WnBMfqJirrBYPf3jjt6lEqqJd5Ri+KQODscPOc2k2JSmqekF/NnIvxwu59KX
t/xvFTLdWUvU4omk/RNJBwGowV0bnas2xnxYPLRFrG4pOJ8zCBDS939BdbzVr1tJSzuc0/Pj
2HROz1f+ji2enXZPwaO4uFjoi9uCBA/Niy4QPMqbRwKj0529QyOT88ubBmvaR9ddLLqwLha0
5j4aB3iw/SuGGAg8oIvFmn/FFKmlO7ew1MXdOyUjl0KfgeDh8DDMTTNuE/AIMEkvjNdhsf5t
uOfzcJuUMOusaOe8OI/8RJ+CRB9Cki8hI7w4yj4v2iE/xrEg1qkgK6o0O7o0B2hMGVAUryPJ
iQg+xS5IhTkXpnsVRbgSkaEjObiCNrmwbu6IrAFrdgYefzln+Q7Q80CtuPVdIbbGxlSFhJad
k/Epym398rbL5uDxoRkbPH50qhEweKBZLVPVscihFCxz+2AcHPDgFg4fDwHLwDDTwqVIRiMR
wMMOqOMnxw9VtuPHI6MMQmkv/nh8JcFDAEniTBQc4t1z4lyz91rj3XICLWP5zE6recn8I+eI
Nyrqf1dS95OW1r2ZVyZzzeykoc8bJbUvbCqpe4NYdUXREc9Ou6fg0dLScvarKwIAD6XzZrfO
yAmdunLuvBCxtq+saQSARzl7KiuF7djZTtkV8BiiTg3T1uN3AfAYZbAjlgeGhIPb4LaI1ENJ
I2fNCJ7gEWia3l5z/tmzn9FH34lziQy1yg6zzgm3zomwyY20zY20y8OCR6wzIc6FEO9amOBG
THAnQpwItiqCmHFLSIoyvh6eNCOoYmpuCYVJf7b6LDei+uUtHkWZLQAz/PyLSMSugIBinrNa
3hWyDo+o0DRLCo+s0DJP0nqaBMBD2yJZ2zLZzCkLgcdfTMoAeFzzrBMweMDbD+tQSo3V4b5X
cfDYRFy880Xl4m7Kx/D0I92uSj5IknyQWFk7dEgfa/h02n0ED8PrjgbSVr6mUT4me66+ptFO
uv7ql022zk573lDnqs3j646GV2y51O7JDZcNNtk+ueH88JIZZ5K4Whw8XkpIJNL8/Pp8OgqF
cvqE0J6Cx70fdS+cunbh4uXH5nYRyYSSxqHSxmFBggd1YpZMZeYSii2tbIWFhe/dULZW9+MG
j0j7qGnm7wF7gM+0AA/+wSPRowhyxdzCcpBNiaaOAegr0wPK0jyK4fqskMrs0MrssKqc8CoA
HnmRNS8JHlKPIq4rBdUVdualNgICyU9r5AaPL265GNulJyTUaponnZf1BeCh9TQZgsfxO64I
PP5sxAaPW14kwYBHRkZGfHw8BI+NHEoPEXigyKX7UntlTYenf8E91eCLd/3FFKNfnj0AwCjo
pOcX95JHpw/dY03AAcQqmgYBeNw3in29wENp3cfDSTWUw8dD95qNzjVrgamhqOOWPh4AHlSE
HmtcMOWp6hdMH26w6eFFU/WLpmzw0GKDh5d2LJ6ddteFnSFub8BD6rSmyNXrdyXvu/nHEEmD
RfWDxQ1D+wIe7OSwk+ys9EOU8ZCwyBs3b16/eNvbIBELHkFmGTFOEfTRd8AzbHHhl8Up+vyD
R5JnETJrYDUjqAJcYQAe4HO3wMPXl/jOecvirFYAHj9Ke6s9iasv6r6nHVWQ0YQFDxnd6Jtq
Ie01gwA8tMyTsCHTheT9sOChmyqnEJInGPCAkUsheAy7XuHpUIoVS0tL8BM+yD+ffUwARyaP
sy/jyLi7b+5VyQAxpZg7L236EFeJP3PV7todKxw8+GGPianDERHl5fvBjvbOh1fMLSR9beUD
bGT9re756V100L/siNRAxMngsuBUX8QJWztvFXHSu+yge8leb5sKdtEXcTS+6eaoEmwp7eus
Eib3o3Z1TVVnRycOHrslt4D802DXwSOvpj84viAkoYBQx06VckDAgzE1PzE9z5xZKC2vmppd
5ACP4KeZ4TYpIz2fw3kutJEPcsJc+ASPZK/iZO/iFJ+SVN/SNP+y9ICyjMByAB6ZwRW7aPEg
pje/c87SyS2vltBp4ZB57IYzdC41tEw9dtOZI3KphlmisV2GnH7MJuAhEeIOznRk4n+HugYF
AB4wVwsAj9E4Q+RQOtdbtV83P5/TaTcSA7csNFVW8NI3QFlZWR1nTNPGJ+OSqi7f9bl2L2zH
7HFXOVZCNf5bIZP3PpY6JazFUVcqsRXGFYGesUjAGjT5F7rIQkOQ4Ief8Oy0e9oPDg8P2z12
c33i72q0psb+zo99D6ga+rB1fXldnbatPs5PfN1NA8CZupkEWOs79/T2kEfIArvgr7xYWVld
+VRpt8BD9pRxTjXKSj9g5RocmVbKD3gYWToLEjwmZxbWU9LPLVo/8nXVj4DgEWKRFWqZVZn9
YG7mvyB+DLR9n+gZc0DA46iok6phbE1BR3hY2TvnrZLjatCslrP3vG+oBEPwOCfj88Utl4+u
2GuaJW0OHmbxpG7a/7Az19A19xo8aFSakJAQoI5BQghyKGWWhe3jzc9nALGN5J2L1ruYzW3b
1u/ekbn55frmwa7esWfPVovL2tR0Ii6I+YjKRm7L6wMUBshxSz781GWLv30s+cFn909f5PS3
QZOCsVFYAYSgScEQQuAymTa5s5irhwg8RsenvrvvHZZe95qAx9TkZDGhpIRYVpBdnJqQnxSd
mxyTmxKTlxqblxYHNP8AKWhSbN4Ly7HsdvKj7JIxucnROUkxubkZRWXFFSWFZYX5RYWE4snJ
SX4ya+PgwadkZmaePy768uCh9L21yPd3r924nVBQD8EjNrvmyFt/5BM8vvrmlLGl876AR0xc
grDwBetHPgg8Qq2yY5wSWspvrSz/HDzSwGdDsUycS+a+g4fko3DkXIr02E3nH+95g893haye
WKcB8PDwLSzKaW2rGoBDLX8VtsYq1sejv40yOpAOznF19ReUgdJdAY/mFkpuYSd9fIoDPDLS
M/T09IYbSzpU3tjEofQQgQfqczeSTZgEbRpnzu6s9p4+yvzCytLScl8/ZXB4fII5Mzs7n5xW
I6UUePGu/23FaH7wQ0I17o5SzPkbTp+ceACo4/1P720EHpA3EF08W8tnJ2+WgKKXvFbg8bo5
l7a3dygIG2hdZM9j1b1q++S2o76ovZ4oJiPbDQdB6pYZ4kDb1ouJ7lA1LljqiNhoXrQyuOYg
/r1KVXUl/0nicPDYUqanp7//7tTdf5i8DHhInNQUvnjZyMotvawTWTy+//GSrKpOdkXnpet3
NwEPZQ19r5D4lPzq377xZm5po+DBY2Z+aZg8Ki0l424YhcADOpcme4cNdX0NTR8zk0dKU0z3
FzxQHI/E2Jq6wk4SsQsbxyM9iYQNmQ7Bw8Q+w9QhE2vxENMIw4LHQPvoNFOS7dky/9lLgkdz
K8UrsEJBO0laPV7/aXZ6dts4fQaBh4mJSWxYQJfu+8ihdHVpn4fIXwY8UBAwOAYBFmAvDKN+
wTWwAIoDBvPYolhkoCv3jCk/8oPZzgZrRscYcwusxpahnLzqsKgsyhhzemZuhEwjU+huPjm3
7vtduxe6Ns02ZgN3jjhx1TgRce8vTmm/94n0e59IAeSAupHFAyaaQacD1gB8Al+xp4yDxysJ
HtC51E4+yPkBO0mcE1eSOP1r9gJKEnfFVu+qHT9J4h5eNFNZSxKn88Nj7dMvqM7pxzBJnM5p
HpvWksSZmot7uaqH28r6ezyMUhLS21aSOBw8uCUwMHBiYoJjtOXWR7o7Bo+73z28fOV6WGpp
VmVvdlUfBA9776h3//ZhQe0AoA4xaSUseNh7hpnaeKQVkiB4BESlAeQgVHU80je9dPXmvoDH
7PxSQ2PLJWERjyfRWPCAzqWFcZaT9D9B/KAOfZwb4bvv4FFL6OQGDw4fDwgeKI4HAg9sHA8I
HsNdHSsrb4Kzm2Jo7Qw8SPVDjl7FkqqxUupp4irx4F1b8kGSlHrKwyfp8enNY7QpAB5CQkKd
1meRQ+ny5Oi+/xZeBjxgPwsjfcFkLpA9oCME5Aq0CXbNKAdcKrEVYYm+6wth0vmXxpbe/sHR
GlJfflF7HaljaXmls2vYNyhjZmZ+dm7B3TdbRSv0xr1AUdkIDscP6M4hej/4GyHjDz+XYQ+v
rBk6tgQP+AmJAjQYLsPrQKFN4eDxaoOH7h1rW/lAc0mvp9I+Di/majG87qgnYelmEOKmH7zX
6mEY+kTOVu8aP0niDHUuW8lKO13TCxLVeUGvaweoitmr3nEECxybrukEyko7wyRxDspBpnc8
XNS2nSQOBw9u4chOC2XHQy131qgjMrMys7IXCx4yKjpAg+ILjrz1x5yKLrkHupdF7+ZXdf/9
o0//53/fFb58w9DcMTm/5h//+qyqjXJbUlZKTjWntPHPf3l3v8BjbmE5NS1d+PwF1ychPON4
kAqVlhZ+CfGjv/UcIdbjlQGPwY5R6nAkPLUJquu2wKOqesDWvUhcJYZXlpAYiQfs8Faq+qmZ
OfWBcscPgkPpXgy1QLqAyVmeYbLFYXttjvUo421jJ2VnwUDq6nt8A1Nj4nJJDV2tnZSmlsG+
gbHw6PyhEfrc3FJeYV1pZaeTR5a0csDFu3635KMADUJ3jtsKkaevWH/0pRIaW+HQTYZakMUD
nhQK/w44BIFHRz8VoggOHq8WeMAkcR5mEl48ksQpOSZ7FyR55u+1pvoQHbaTJO6koc+bpaQj
xNqftKj294RKURm764pOvy+oBF+xW98sqvnewPt5kjh/Q1EXJ5VtJ4nDZU/BQ/xbLUAdERmV
GRU9HODx9ckfTe18DC1cT529VFg3+Mtf/Topr1ZeTff0uUtoqMXC0ecPb//J1i3QxTfiq29O
1XaM/urXvymq7dwv8FhYWiktrRC7cTfCLodnHI9Ej5TOumuwgwY6O3WkuVwuOzTmFQCPwc4x
xpgLPC/GmA8/4FFW3mfpRAB0AdDi7maJyUBnlyirkeiqeL9U4a8APCZKQ/m8V/d6Ou3uggd3
mlrs184BGk/wgPaBHYDHyspKQ/NgcnpFSERODam/sWVwmDweGUsgj9IJRbVRsdl+gQmxiSUl
FR0xiRXi8v43ZcPA/0L4lutn36gD5HjvE2lu5AD696MKP1423Ag8oKEDJqNJJbaiISSwFa4E
y7d1I/jPMnNIwWN+cdkmqLC+g/z6gAdMEueoys4Qx50kTuu2uaWqu6XKnquVqoeuxDaSxElK
2p3X8RbSflE1PZVu2SiK2YIFjk3ntb3ALs+TxIVZy/i6P9p2kjhc+AQPNntsHzwSiW3R2bXp
5T3c4PGnP78TGFcgKacuKa+ekFt75K0/FtUPfnPqrLGNOwKP+0qPrt6UUNbQT8mveuvtPwHw
+OfHn4XEZuwjeCwusZaWWZnRxVGOuRvF8cgIjGyvEZuf/S9EILSRT+oI+ql++YcaPIa6qJPj
htDRlD4avRF4gE9icZe5fYG4ShwbOZRj+ZytKf0wVUY5yMXYsX9ogn8w2NMAYnsEHjA7LRw9
mZ5dRIlodxc8kLR3jsYllpaWN/T2kaPiCFQaMyevPD6xoJbUER2XPUabWFxaNDAOPXPJ6ptz
T97/RPq9j6V4IgekDkk5G+/AdI4qwLmgwSCYmwbbYDii9GwtnQ1YcAwrFvxjDZ9OKwAfD5gk
zlk9lCtJnBs7SZyIgwBUT2R7SeJ+0HJ/O7v0jxnFGC15O61Q9L7tTRmHt1MIf8wswW59O7Po
lK7nSyaJw4VP8FhcXBQ+Lib+kSn/4JFS2pVa2p1W1s0TPKDFQ9vY7twl0cK6wf/67e8yipsf
GVoIXRaF4OEeGPfI4Omf//KurVugV0j8Z8e+OggWDwgeyyuslMDCLQOIlabYDrSdX1n5OcQP
1srPBzuECqKjDy94DHdTpxhakD0mqCEc4DE6zMjN7zCyzlvL7pHCJ3JwpAWRfpgmrR7vFVzV
1Tv+qoIHyk6LEtfCeR97BB5AenpHXTzio+MIWXk1ADxS0ojEkjrKKD0mnj0QA9aYWcecPGf6
8VcqGxk6PvhM5u/HFDT0vBYXlw/jY03w4OESUdJPZrwmvQYfSeKeGkk7GEk77rUaSzsaitvq
XLXmL0mcpaiS6xmjoLNPAl9QfV/1a1aS9xzPPA7g2HTG0F/ujq3myyWJw4V/i4ehoeGVo3K7
BR4ScuoyKjo+EZn//ed3ciq67kgrid65n1nS8snR43//6FPhyzd++8abgD0AeJTU90vJqYpJ
yuWUNr719p/20ccDCx4rrNUQywx+Ipem+WfUFejRRj6B+LG0+MvuBvGCmPhDCh4jPbTZ6VvP
J/KoQ/AY7hvPyGw1sMhh+2yo7QQ5OMJjSqunST6Ic/Etbe2kHl7wQLQAX/mx+WThuz8gDR3n
TLQeOkLAEOtoFxhui59ctJvLBHMut6DRO4CdqL2zezA7t5Q6zswrqMwrqKKNT9q5JJ88b/bp
iQc8nTo+PCr/96Py9xTtZ2bmD+ljDffx2EfwMLhmb6rokOCZF++Wu9ea4J4XZBXHf5K4jx3D
f19Sd6Sw5icl1v4hu1T2mtkpfe/fE6vZrh2YTb8vqLyq4IiDh8DAo6ur64dvf5T4lxk/4CEl
orU5eFi6BP/rsy8LagdOnb0kJf8wt7IrLJEAZ7UA9gBPiYTsCmJdX0ZRQ1hiHoCQ7JJGY0vn
s8IiBwQ8mpqab16/zX/I9GSv4tyI2I7ae8gBdYb5P8Ndws3l2qVpoYcLPEZ6acxxu9XVX6xF
jz/R3typZZItqZYMdFfykaHpnGsjNTH2XiUNrZTDCB4HUAYGx2vr+9NymhJSa9o6BuMScgqL
ahmM6ac2cTzB48PPZf9+TPHcFf345OKVlRX88YiDxw7Aw/C6o76UpZdxhJdR+N5rhIO278PL
pnwkiTPQvmJtdNXhySXrJ5dsOFXU+ck13puMRDdIEteBg8fugwcQU1PTS19K8AMe8jL6m4NH
Xk0/AA9tY7tUYtPHnx/HTqf9w1t/+p//fdc9MA5Op716S8LWLRCAx1tv/ykhq+TgWDxkZGQ8
7QNjHPO2FTI9PypuqFN4afGXyAMEjsLQRz/raZStI7gUxhMOPniQ+8bHKVmstTm27e03bslF
ikiFiPEXk2p7kbqfO4pYuxJJzRQcPHZFSA0Dnv75Du5ZWXkNzS3dE8wZK/t4AB6ffK2KwOPD
z2UAchz7TtXJPYHBmMIfjDh4bAkeDkrBGyeJYw9/CChJ3FVrQ1GnLX08NC6Zqwg9eXiRnQyO
W9Uv8F7/cC1JHAQPj50miVNXV3+ZXAyvG3gsLi46OTkB9pD82HwT8JD56uljS9ctwSMhj3T6
vAhH5FJHn4jzl0VNbTzOXriKjVx64849j8CYfYlcuhF4lJSU3pOQzYoujnbK30HI9PyotNLU
wNoC69ZKzd5mCXLvOcbop3Mzf1hl/dvy4q+mme/QKcdHekX6WuTbqk1aq6zqi/0aSvyq81Kr
czPLMmr2HTzYzqWDI0y6+9Li+6Nj9TmEJnv3HIVHUTdkgq/fD7utuKv4oRwr8SARgI3swwht
o7Dw2HLBgEdiYqKjo+Mr+TNfWloZGPqgqNRuhDIxRp20cUyG4PHBZzIffi77vbCOloFPdl7N
OH0SfyTuQJq7R/9ywfqJR85rcr6gyzBWsndQ93PSCnDSDHB8FGCp4GGliFVPnmq5B7p2WI8N
VWFN2cue68sKHhbbVLC7jaq3q26wo4a/m26I/v2nLa3N/X39fF4uPI7HtsADiqur64WvxDYB
D7ETGnZeUVuCR37NQEHtAEeSuE+OHnfzjy1rGmHHKS1v268kcfyAx/z8wukfTufElaQEEHcx
V8uPOgRFZ18FhZ95ev6MRPoZ1jDygpGE9YtJ+lGglH6J4W7lvlajtprg9tqQ3QWPoa6GscGE
sSGgidThRCbNbIqhNTWhNT2hPcNUW5z/enHhxNzsqaXlkf6h8a4eyvLKckNTv51Lxo17vhfv
+N+Sj3q5jKgx4qpx4ipx16T9vxUy/vsxub/+SwK8kus+8RMMeOzuKzDy3wjPIPEMCAYdP3Yl
twu3VwkvAZdO6hnb5YPi6pX94yXLT0+ofy+kGRaVN7+wiD8JXx8JDAx8ScBeWloiAxn5SSlk
ysgwubdroL66vTS/vji7tjizpiSrpiy7tiznJy3dB61ZU+zyZlqSXV2UWV2UU1NGqCdVt3W2
9w4Pj5DXZGR4ZGSE/QmWwRVYXubX7xoHjx2Ax+LiYl1d3SbgcfuEmr1PzA7AIzm/DvQj4veV
7ytq/M//vusVmnSQwYPFWgX3DwCPzIji3QIPQB1AwUXIj66lMWYLYuv+4z9+dvLkz/T9rfvb
FAbaFRhjXzPHjy4v/WojINlIFxf+OMP8cmZyXWeBTgE9DnRuGqMzx6HzxrZ0ebmlp4/a0DIE
75CVlZX2jmFnz6zbMn4X7vjf3Al+xEisIccVSd8T543+cUz+bx8D5FifcKFvHCBI8ECBsLC6
3YPAWSpwxgo8AoQQCAnYMjrOmS/fZo55NJuDB5Syik6/4Jy5uQX8GbgrUt9Bnj8kM4B2tx+c
nJzr66bWlvcWpDRmRddkhlXmRVblR1UXRFfnH05ltzwKvBVWgXPJjKgipDX1do6xVlefn/Hq
/l7w1wQ8oOwFeMir6X7x9cl7ihoAPCRkVLSfWAkSPECPv0PwiNod8EDUweHjAdbATVgfj6qc
8uaKwJbKoMGOh8PdyuMUoSnGsdmpD7bLDJsra+XX87NfLQCdA/r1NFMeWTymJh5PT+gvL/2T
HSptrmhxcXloeJRQVEdnzOQQmufm2L3q0DDNO6Dgrrw/OzamAn/4sRY8U1wlVkTC5+uzj/9+
VHYtfuYLczwFDB4w2YqoVhiMbQ6/vgx4ANJAwbU4MGYHodF3CzxebTEyMiIQCAKrDlAHuP6K
FomvCXhQx6j+bmGhnrFeNuGW2r7mmj6W2n62ev52+gH2BgdWA7erDuBTPwCcl4WWn4t5aJRf
UqhXTIBLhJdTwPDIMJVKxcHjZcxuHLlaeAqLxdoIPMRPaFu5hW4XPPIqu/7rjd8B8Pjk6PFP
jx4/c/7y2QtXBQAesE+HPT5a5hM8JO5IA/AA+vLgAeutaBl7tjb1D8jU7AIAD7gMqoYFduxc
2lGb09sc0Qe0JbK/NbK/LWqgLXqwI3qoE2jMUFfMcHfsSE8suSeut7l3cx8Pct/wBM11Zfm/
IZzMz30P2lxS0ZVX2OgXmOjmGU1q7AH4wZiYLiptnJ2bGyHTPXxzb9/3uSYVeFMuciP8gPG6
7yrHXhb3+upHfZglhOfsTgGDx0ZdOSQQmI5kenYRRs2CZIKGS8IzSGANwAkd50xsjA54HBhF
HKV04RgfAQtgL23HdI4aKbQpsF7eLAHVAneEVePgwftU8em0e9kPtrd3KAk91r3k8FjU8ckN
Z9M7rvrXHPSvr6vBdQfD604G1xwFo+y6rjui2jfUaw46V211rtiyP7n1Cu9Numub9K7aaV+0
1b9ir3PR1kjUVeK7BxVVFe1t7Th4CECmp6d//PaS5FEjTufSr58aWrhsFzxUtYz+/tGn9xQf
uvnHRiXZaRoYfnni+2JS/56CB0IONNQCO3qwkh/wyI5lUwf43C3wAFc1LbICfOZH1/7suZDH
Z7ktHvviXEru7ZpiaMHJLEABe0wy7Lva+2tJ7VW1nQUlnZSxqbr6zt5+yvz80gh53CcwvaG5
l7W6Sh2fDAovNLKIl30QfFUqQFQmnCMpqrhKLACSi3c8vjytC9BiI+Q4UOCBHXkBRAHDhqMc
JQAPciu6YKI3lLIEO9Ty7HkGW2wSW1QFBBWw/p2L1ig7LdwR1gK3ovVoJUpPj4MHDh4C6wfZ
uVrErO0Vg9nZaR+EOKm+GLn0hqvuNRvd6wJSnWvWawHbt5hOqyZszI4hds5Y96S+7vcYXfv6
SMj0kZCJ7vcG3Fu1zhmrXTC2kPR214iwlQ/w1IxWEsaz0wpUwsPDz3576d4xc47ptGoPTbcF
Hrlr5g4RUfFPjh7/+OO1NK+0fxe5+uFDXdO9Aw/Ym1MnZqem5wF4zMwuYsEDKJ/gkehT+JLg
AavLCa8qbx7Li6yB4FHROAotHnDr/k6nJffVzDAlkfvH0sLnEzRfGLm0p4Pi45/hF5iam19J
pU329NPikqtrST1kCt0vMKOhqZc+MUMbZ8YnF1bWdsWn1jw2j5N9EHTpjs8thai7KrHQ0HHt
XsAXp7QBbGyOHGz9XAaBx16LpaUlmvXGEzyweWNR1jPIDOEZJLeoMuTLAUdqOMCDYxlVAUOb
wn2L6/pQLQhynr0Y5hRVDWpBqWBx8MDBQ6DgwU4SF2B618Nc0suBM0mcg+E9a/+nsf7mMXut
gRbxZiqOetdst87Vct5Q77L1bRWP7zzSTrqlYvU7l2Q5SUdZaZfvXJI4Nn3rliKm4vHoIjtJ
nJ1igNEtN2fV8LUkcbV4dlpBiqurK2CP+188xYKH+LUH2wIP0Tv3wZPh/GVRYxv3xBwilf4p
eFQMDf8/Z8/938zihr0AD2TrAEJjzjX3MuiT86P0af7BIzu2GILHtuJ4cIMHtiWpEetZWaOi
S0BFYM384sr+gsfoQPrc9Hnk9TE/I0QbyeRIEtfZSiEQWoLDcpLS6+ubB6vrOodGGBPM2ZDI
3K6ekZa23tCIjMiYLG+/2OCwjJyCeiqNGZ1QdkPK/bp0wG2FCKFbLh8dV94SOWBkiQ8/lzUw
CRbMvY2N47GRxQNrEsEaN8BXRYtEZKzgdi7dBDxAMWS7gCHTYVY17sLwgPJmCRx2FRw89hc8
oI+HilXy6wUe8oFmkl5Ppb25wcNEwT7OPSfWNWuvNcEjz1bLg9/stJcsz2t6/jWJ+Ld4wk+a
UPjX2DwxKVsxWUewAL5it76bQBB65KG5Bh62Cv5Pbro6qYapbDM7LQ4euyJmZmbnvhWR+fIp
Ao8b3yj4xRXwCR4ewUngsaCqZWTh6PfF1yd//otf/PaNNxWV/3t2lv1+XVz65/ruht0FD9iV
jzJmqtqp6LkEhH+LR3RMTIBrxMuDB6KO5LCq2fll6M5BrBpOj6oEywWxdevUsR8BxGjDngtz
n0HeWF39xQxTktJf+0IcjxdztfR2jRUVtccllnv4JmbmlLe29YVHF3R0DQ8OjyWnEbNyykco
4/GJeQ2NnSzWKpXGkFNxP33B4puzj9/7RPq9T6Q2RQ52/EywoKzhlkeoIxTVHzTw6BygocT3
4RkkbvDA+nhsCzz6RxhoqgtP8PCMKUcmEZh+7nUDDwptCpwyMvscBPA4XLJrSeIUgpzV2EMt
HNlpH4s6a998aiLjZHJ/z9VUxlnn9lNDUQf+stNa3ZRzPGEdfsIy7Ce1Cj9hESJzx/q+uN2J
p8Hsr9itlmFgl0cX2SHTXR+F28r7e2hGbzc7LQ4euyX29vZnvjsvfdwUgof0CcPb4vf4AY9U
YtORt/6oa2Iv/0AXLFg6+cEkcSFxOY90jq2w2BnWVlb+X/K4JqlzYNfBAzZ+kMl+ZNEn16mj
f2Zhc/Do7e07d/ZchE8CAA/+Q6ZzgAesgjm9OLuwHB1UCatOiqiOC65A3h2wjIAjl/Y2A7Cw
Wl7603NHjjcnxzWHuzt5BBDjlZ12sIdWXt7pG5DhF5QRm1g6QmG0d/SHhKcWldTRGVMJSQUx
8Xl9A6O9/RTlhz4/CJsf++7RxonJ1pHjH8fkVB+5Vda0C/iu5h88ICqAfh86e8CSblFlEAkA
ivD08UDLoAD0TUVVoIOYeOWCBehxyhM84AKoJZXYejAtHnAACKscSWo4LilHSaBw+ImjMEAy
dGTkSwMK8wyEgoOHIMBDMchFg0fIdHaeuOsuepft9UT2Xi/bG1x12jxeOtbiIfzA+f2IrA9C
MzCa+X5Impi07V0pu/eDUj8Iy8RufT8sXUjDXfPiWsh0dnbaneRqwcGDW0gk0vz8TlJBRURE
APZASeIufH/9sYXLluBx7pLoz3/+iw//+SmgjtjM8pLGIQge5c0j1i4BR7/436Sk/7PuV7D8
Zg858OXBY316SAM7/nZZM3V0kAnbD5bB0wl8wgIbOZfOzM4rKipZGtnDoZY4t4Ltggc8fpIb
sZc8FRZUmBRUCcAjOagiJawKIQdoDyxGiGPnLRUMePS1kBhjGqyVXz/PZ/fuONlpsGNgw8il
vMCDMTY1QZ0aHWZUV/f4BeXWNw2A9pdXtZaWkWZm5onFtRnZJQNDoyMUupZByCkh8y9OavJO
TLaGHP86rqCp711L6tyX3wIHeEAX0I2GWpDDJ/QvBSUbOykoCy0cDeEGD3hYCAnYKiDAgK9H
fjCDuWt57giKgX4Wm+sWruRu7T6CB7wyPJUjaAnytuVWsAnNQYby7X0vniXhRd5f8OgnM45L
eLhFl7924MErV8tjUSftW08tlN0tlPZcLZXdTWQdNUUs+MlOq3XZ4ryO9xduCV+6xP2krvHH
7SNVr1pcV3Y9xl4Tj9ka/4VTjLSE3UsmicPBg1v4jOPBLaurq+w4bmQyBA+5byyvnLuZVNS2
OXhEppU6+UQ7+0ZnFDfDXC0IPMpbyJ5B8Z7B8dlE15nnNv/pua86BvN3DB6wNx8eXvflGB2f
GSSzwaOoYRQOtWw+nXZ6Zl5LS0tV4WEWmzqKM6OKox22l6vF0LoIHD/cqSzJvWjdyhFUER1S
kRRUlRRWgagjLLoUgYcALB79bYRJ+g3kOzo/89XYYMDWIdM3Bo8J2jRzfJpBnTQxc4yKLXD2
yg6LrSyrbM/KKQ0OSxkYHB0apqk88vtBmAd4QOT49ISSgUlQY0vfPv4Wtpurhee7Nj+RSDcq
A17zx5mzO656S8cHAYMHdvYNUmzLsdN80BQhLHugktB7E66E84gBw8DyBwE8XkPn0k3AQ/+q
vbmyU4pPYbIXYa81xbsw1C5J7ZIRP9lpAXh88zTk/eTi9xOIP2li0QdRuYrXLS5oer2XWAi+
Yje9H1cgJueEZ6c9OOABZWZmBrAHAA+lbxxUvnN00Y7cVsh0DvDAxvEYGLVeej6Rc3xSsrW/
eVvgsY4co1Owcx9jzI0ymHCZSCKPT86hoY2NAohNzcxpQuqIKYbgwTZ3bHOoBYIHqCvClTg9
t8S2eIRUUhlzsCUpQdVTc0sonAi4nntq8eio6yL3uk0zzyLf0SnGjaGuHH5ztWwFHuTnUlHV
GhRe+MQiNiS6srNneHJqdnhkXOWRLxxqwSQmkwPI8cVJVRPL0PaOwS1vNktLS/DMPDjgcdhE
0OCBPF6gXwpU7olCHCuh4wqHNQOu5MYMgGooJCwOHgcEPAyvO+nefeqo5e+g6bfXCmqxVHXT
EDHnJzut5mVLk0u2pmefmp7jUIvH1x2NLttyrWer0TUH9YumnNlpcfDYV/B4thZbzMXGS/4b
a+VvHDTPu7npRW0XPJQskwF4OEWWQ/CQNIqDzqUN3R2X1LXhi/kK6zejDEMNh+TY/JbNwcMl
sQ104jTm/CB1CoDH8NAkeXQdOfrJk6MDTI7RDZ7gMT278Jw6iiB4JPoURNjk7sDHAzuNBUl2
WFXS8+ClgslOSxvWXGX9AkUonaDK9LeVby9J3MbgQSXTyRhhMpmASHv7aVHxFRXVPc/YQWDm
NfSCTgk9B4/PZf5xTPHr0+rWDtG9fRT+wQDPTnsYwWMjxuC5EvrPcIAHRySTrU8VB489Bw+b
jbPTuhlcd9S9Yqt7xU4AqnfV7nkcjw0VgIe2iJWasLHGRTOe+nBNN9qkedliLTttpINSEDs7
rTAOHvsPHkAqKytPnzwr+a2uyreOqt85Sp7U0TS0SCps5gc8xB/HmvgU/CDv9zSAeFrBD4DH
aUU/NKvFIpBo7B0+NXsK9phP/c5nlPpsDh5sh425pcJ+5uDYzPziSn//JPgcGmbOzC2t4wdz
ijI+Bzv9iWm2fws3eIxQxjQf6GVGF0HwSPApCLfO2Rl4pPmve5amBFXMzS8vLrGQiSM3ohrU
DsADfO4ReAx0eE9Qr688d+SYnTo+NmjR3diyk+y0vMCjqa5VTlY+JCQEUQfnM6pnrLKmp6is
7YF26JmLVgA8Pvhc7th3ao7uCYPD1G3dZjh4vALggY0SzxM80KgKdlwGzhJCM4kOJnjc0Y88
FPcBiUQqL38pd5T29g7li4+NbrmYSbibirsb33HTFLLSFLZGqnXB5icVfv65h2qtuZVqX7DR
vmD7QsP4VrCv3lV7SxlvYzFXKxnfez88rK6p6mzvfIbLvoIHkPr6ejExMdHvZFW+s1c+aXvt
e2nhi5c9Q1M2Bw8j73wRjbCyphEEHg7hpUfvuh6963ZdM/yBbaq0SbyabZq6XVpLb8TC0l+t
Ar76Xlb8pIzMCWn9/OoibvAAvfk7X0sC2ICMMTw6NTLAHB6dpmAMHUPMmdFJJgIPnhaPjCgi
oA4IHvHeBWHWOS8DHnA6LeINbHbavMiavbB49Ld5Mcauryz/Go2qTFBvdjfUbity6ZbgERed
ICIisgl1IOntpwaFEm9Kupw4o3v+ij6hqGFnYICDx2EEDzR6AsOdbQIe07OLPLkFSyNgPfK/
PSDgAVs4Oj71mvQa4+PjUYFxsYHJbA1iaxx/Git4DUxiK3Y5MClm25oYG5S03v7A5MiAWMoo
hU6n4/yw7+CxurpKoVDAj/3syQuyJ00efO/88LrlZeEr9+VVEwsaNgIPRcukvKq+KxphADy+
lvb8ywWbq4/CQ7MaVG1Sw7Mb/ZJqI3MagVoFFUHnUkN3g5C0r2rbjgAFT5eZ+R8odL/uYQoW
PFwT29CIRv/AFGV8dn15lNlPZqLen85k2zo4wINYXGpt7JQRSYTgEW6bHeeRH2qVvSvgwZ2d
dtfBo7shbJwstrz4O0wEsA8p/Y+76kt2EDJ9E/Do7x55qKYhKytbU1MDkYNKpc7NzW1+kwwO
0zNyaumMHT6fDx14iGqFocjqYBlN0wCdFHbO6Y48RQ8BeECX0aN3XNFXDmDYxLmU+7LAYLBY
19NNUuwRCIRdeazhwlOWl5cnGBMTdIwymAdVJ9YUu7xTXTtTxpqCK7CysoLfCfsOHlAWFxez
s7NFRUXFv9fQ+NHF/kG4hpzB+bPC+qa2yYRGnkMtSpbJJj4FMXktQen1IRkNR++6mvsXAvBI
JLadUfTPq+7Nr+79UckfgoeGfXpsfsvgWPTk7NWfcqqyfjM5Iz00VoSGWuYWlgFmjDHmn2c/
mR4ZZqKQ6TA7LczVgsCjurb+iZHxVZHrbjb+EDyCn2aGWGSFWmYdfPDoJIXSRm4vvcgb5F7D
jtqil8nVshF4xEbGi4iIODg4IEPH6OjoltSxK2BwuMADpYRDnSboTGGAdDhqADaB3pbnvIxX
ADywik1yxw0eHESh45zJ7TLa0U/lPjIM8brvMjE1b+qTxx2oBBdcnq1lYnV0dMSvw96Bx7M1
X9ORkZGGhgbQH6n/4GJwzcteO0DmrpLqfS1u8IjKbfqLsHVZ04i2c5ayVYquS3ZmebeqTQpA
jtqOUQP3HItAYkBynbpdWmBq3UP79LPKATKmCY8c0o298zuHekcZ9ovLf0W97dLy32hMB9ek
emTWwCpo2xiDPVeRAzxSM7LkFRSEhS480TZPDs1LB9QRSQy3zT744NFSmTg2KLm0+Aa6Aguz
fxkdeNBek7MrSeJ4gkdNeb2SklJ5eTmiDjqdDv7pArhXDyl4YLtjFHoUO46wd7L2f1mFBkl2
QNpnUivg6+qzdWWtKXvbytpasLyyylp/jwNLu2LxOPKDGTxf7phgHBYP9HUTRw5oLMKyx1bR
SwQ0znKInEtxEbDgcTwEAB5Q5ufnwVsw6JUennaR/9HUUi7I1yw+yCY5yDYZgEd8diUEDxGN
UAgennHVADzAJuhcCsEjIrvxulb4PZN4wCcP7dKsg4ti85tj81viClrOKQcg59LBUeLkjDSL
9RvY+S4ufzDGiOeZnRaAB9biEZeYcumCyO0bd+1M3NLCC9Mj1jSSmBxECLHMPJjgUUso6iS5
UgYkFube/sm+MfsXSr9qW3X27man5Qke2Nkr4F88MzMjsHtVkNlpdxE8AGzAKKMQNmC4dUH1
mGycYEzPsVjL0OLBerbyDJEHIIvn1uK5+YWpGbbNamVpcWCENr+y9PIWD3i+PvGV3D4bHOCB
oqjxwx5AUNTWbU11wcEDFxw8Xm3wgG9bQMDrsAiQU2KPLts7qkfYKIUG2ybfE5P/8cxZVQ1d
W4+wb+95AvBQtkpWs0v3jq9xCC+9phlu7l+IZrUcE3dr6KYC8IjJb0ZxPLDgAZ1Le0dGxxj+
cwun10N/s34/NatBYTRvBB4pIQUulr4+9qGpYYS0sEIAHinBhOTAggjH7EDT9CCzjIMDHtW5
eX2tOjTyeSxssO0b82+PDUo2V2TuenZaDvAY6KR4uftirRxzc3MMBgMaOrAhrzlCU0JPBmwn
AjsXMm0SLfM/0HAYwQPrEol8EtAcjc0dFV5e5haWYhLyOtkTlllsn6iZmytrRMFiLUEmAZ/z
i4uMybnlpaXwTGJ5M3uGYHVbj71fDH1yes1O8rLgMc6cRddho8iliMGwET84IpdyCPYa4uCx
LXn5WS244OBxYMEDyeLioqurq5CQ0M3TsqrnbLSEPLSFPbyeRj5Wt7x3R/6tr5Ru35U8dt3U
1DPj8zuuADyQxcMioFDaJP6dizaAPW5oR2wOHmg67RgjennlvzHjLx9NzdxsblMMCla5dEFE
Q1knJbgAUAfQ1FACW8PAZ2GcZ16IZYa/UVqASfpBAI/yzLyWSsehznvM8aNY2GCxfjFJPzbc
o9xckbgX2Wk5wKO/nRwZEisqKqqpqQmHz7inrkDeAPwAJy9gE8cjIMGCByiDwGOjkNevmMUD
dEywO0YXB6xBcz22nKOxEzMHe0iFZeQQ7R+ZvzaCsgJunlHapWE6s6yiDRDj/OxyTzc7gsr8
0nJiZkV9W/8glSqu69g9wp7j7BqZq2IRBIrtgDy4p6UgSEBpaDYCj2cvjtSgleBa9Y8wsLVg
Z8rg4IH3g/gFx8GDW5aXl5ubm62trQF+XD8tpXreSvuCp6tOTJBN8pdX7Iy1Pd87rasgaxKS
0XD1Ubh1YIGQvMuPsu4PbFMjcxphrpaHdmlfiLudVQ44t6ZfSrhvHrm0uz+gueXLpaV/w/ba
QBnUD3tar5FKtQuSgwB1+OgnB1tkBBin+z1OBdSxv+BRV+jT0/RgbOjs/Oxb2DYvLrwxOnCj
q8G8sTR+77LTcoBHR0Ofp4uPiIiInp4e1tbB7cuNTTjC8fYK3+ixfetrCB7YE+cYbtgjfw/o
xtHU1XtCzGx0YhYs51Y2s6l1VcLaN7G5a3B2flHXJvaEmHlSXiMoP0Cm6tqGrjxb1naMdo/J
AWtG6NOf3DKg0CdXnm3b6rF5HI8to4phZ84iCwnY652L1jDBDdZZdyP/UiMjIwKBILB/9OFy
LsX7QfyC77sEBgZOTEwIoKLV1dXp6emenh4vLy/wBv1I2EXnopf+Ve8vz9q46cRYGUaHOaaG
OaVpaYUE2iVIicmeEroH/l9C54Rl5JVk5JW/vfpQQdsSWTxE1APsnDzsnD3tnT3NrezlFVWA
KiiqWFjbx/vlJPjnBjnHGWiYuFr4Z8Q41pep9bVfZNLf5YCQleWfk3v/QSJezwk3iLL3Fzx4
lCSnNJVaDHaITY7/k6Nty0u/Yox9PdCu0FTqX5pG2rvstNzg0dM8ZGluAxARPL2RlQN6dExN
TXGb36HFA73Co8cvnEMKC6De4fW0eKAktuBCwby0cCW8YnwGxdqOsOEwsaj+W0nb+QX29BAz
32T2TbUirmjss7Sy0DtAfe+czr+umYupezxbXWZMTalZBM6xWFqOMd5JRFB+cnbx6G3DPgqD
9WzbLqY8wQOQJ7c7KE/wePZi1HR4O22UeI4jMAgSPDst3g/iFxwXJCwWC3Re0O8UiO4lLz0R
b6D6V3ys5EI9DeMei/o9ueEf7pIeAdQ1w9821t7IC6iDsbfb0+Aoj8xooJ5Z/nbRWiqGUPXU
jJ3NfNlq7utlEwrBA2hiANC8xMC8JKBB+XHeOTFuKZlhFhVZ4n3NX0wx3uTo6+em/+9Q12ek
QrGccNOsEKuMIMeXB4/CuNDyDLfWSrUu0v2uehk65VP66KdTjL9xVL2eEW/ivZGe6+01JtW5
iQLITrsReID/C4DD1tZWLHJMTk5uNHUF6+OBLBtwnAV+hZ4eryd4YLtISF/YkOCwd971OB5r
bqOsHvL417fNugdG2f1+egl0LrUNTKtt7e0ZHv/qrpWyUcxNJRfW6kpOcX1WcX3fCFXJyHOY
Ng7KF9d3nVe0np9f2AF4oBAlHLYIbOgSSAvoKwd4TM8uok2QXlBWX+z1BHzCM1HLvoBHRdPg
xNT8obgt8X4Qv+Cvp4C35sXFxZmZGQAhTU1N5iYWajI694Q1H11xhODx5Ka/yZ1AW6UIR7Uo
V+0YN91YD704H+NEH5NEH+MET8N4L8N478cJviaJIXZpQINtUoMsU4KsUoOtUwPMk51Uo50e
xDirxbg9ivPQTXDXjnd7FO+uGe+uleChneCpneilk+SlmxRgFBVl75Xq97QwXr0m725L5YX+
ti/Hht6bnnhzeuL3gEM4zCMzzN8jZdL+TB3617oOA/2YtqbTzLdnp47MTa+H1Fic/83s1B8m
x/9Kp3wCqIPce3q4W3ikW7i7Qba7UbazTq25zKy2wLs0LZUQW7WnuVp4gkd9WXtCZJqznbu1
hW0JoRw7YwX8a+h0+vT09MLCwuZOhrDjWFxaeWSfduQHs8ZOtufAbd0IsAw+oYLlx+7ZYH1T
NwX0GqWkfrDsFlkG1gsqfNbWYmlpefPmzV08IOArpNOzC2j9OHMWXKXiuj4IYLv/+2L/xFjg
r661Lzg2d2iEtrjEntUyNn5lena2b5g6t7QcnVpu5pqYklfHYq1OTM4sLS11dQ6NMyZXV5dG
RqgxWWXdI7Rnz3bkXbpngi7mljl8BQweJaR+cFeLG0Th/SAu+AU/RDI7O0sgEMTExM79cEH6
wkP9G55GtwKMbweaiAWa3AkyvRtkJh5sLhFsLhnyVCrEQjrU8l6o1f0wK5kwa9lwG7lwW/kI
O4UIO8VIe6UoB+UoBB4u6rEuD+NcNeJ4goe3XrKPfrKPQYqvYeqWPh7xblF5kXb5UXb50fYF
MfaV2dot5ZItFWxtrQQq1VbF1orMpyXJzqUpLvsSuZRP8Gip7g32ibgnJQPjgGHHUzYJe745
eKBl+ArPkZUDvu3C91zwogp4g+csmP2VVzVk+sLSyjI7Ogfb4rHIWoY2jEZSTyaxMbOg6nkp
OM12mbW6zFqfb3uIAzPiSeI27wePHDlCeC7cM1xIJBKBD5mf57Tw9PX1bbkX98g+hULZci9Q
hmMvUPuWe1VXV3OfPj+nBq4Ax17gKvGzI3d1bW1tH3/8MQ4eB1bm5uZGR0eJRKK5ufnAwMBB
A49DETKdH/CoL+0QEhJSU1OLj4/H8gb4aTOZzOXl5e3+42rbhpHFGyAHHDrhGEABBbBrCNU9
4RkknqPzOHjsgf0DcgUAD8nVVdby8sIUczExpcInvNDdP4dJn2OtLK/Nt11mF1tlsW0lzwQS
Eg4Hj/2Qc+fOYTNlc9/zgEx+xodwz0oA13zLvbh758DAwC33AmW4IWfLvUCPz/Pe2FLAFeDY
C1wlfnbk+VQB699//328iz+4j8jV1dnZWTr9pxzr4GX8wpmrsiLaurdccPDYMXhU5DVkxOWj
q4r13xgbG6NSqTMzM6zD3dXg4LF1bwxDpg+P0k2cMz4XsfjoivHn1y31rOJaWwdftVMVLHj0
kxnHJTzcog9HcAwOuwRu8dhriwdYDz7x/h0rgplOu11ZWVmBEyhAz5iXl2dtbS0qKip85rLU
5Qe6Yk44ePAJHsT0Klc7b9l7CmfOnMHmkMWaOBYXF/FfwWsFHo1dw//f58rvn3/8nbj1vy5b
//xjFe8YIg4euOCCy2sOHhyyvLwMOkrAnK6urmJiYiIiIgrXdHDw2Ag8ogKSdTQMAKqBCwUe
vykpKQMDAzt24Tg4kpiYuKe9yWsCHu395N+dUA7LqFxeXCqp7H3vwuPkwgYcPHDBBRccPDgE
vJhPTk6OjY3BkQKsP6TWHSu1W8am971fW/AoyazPSyqH4AEuSHx8vL+/P0pYj4ZUNpkSe1gs
EocrSdzBBI8BMvPICQ0RBU+XgIIb6sG//Ey5rY+Kg8fLSHsf9T+PG+q7ZeEdCi64vErggbV+
zMzMjI+PUygU2KVmZmaCh4zomkhdUda4a2arFPLKg0dcUIanfeATHTOxW+JCQkKANMi8ZHR0
lEajTU1NcUccxcHj9QSPxYUFFdOIhxaxNgG5mvYpKmbR3T0jOHi8jOBJ4nDB5dUGDySrq6vY
93foiQpe9g0NDc+cOUMkEhF4OKiFvzLgkRCcI3bz7smTJ2VlZcGjFfAGNp45djBlcXFxfn7+
VXIZxcFjV8BjaXHR3Dmyu3e8vW+otXswKrksv4j0qp0qDh644IKDx94LHIsBb/fIEoIE9NFC
QkKiF+/cv6GqfEfHUNbOVNHNXTvuIINHtE96sFv8U0N7Uz1rJQUVdC4DAwOAqbgtG2NrIsgk
9Th4HFLwoDIYobGFbR1DJbWtpKae7KIGYkXr/NIcQBL2nNrVV+FUBZyrBQcPXHB5PcEDydLS
Eoy6CTpiQCOov87Ly4uPj3d1ddXT01NSUjpz5kx3dzcCj0f3jC3UPNn60Etg4BHnneNvH+3v
EI3AIzO8TERE5OTJk5KSkqCRoLX+/v5lZWU8x1CAgNMEJzs3N/cKjKTg4CEY8Cis6jR3imdM
z66wfyyr8ZnlviGZlLFxdhCPVwU8BCwVTYMAPO4bxeKXAhdcXk/w2Eiw4UG4xdzcXGlNZGVl
T67J1Ys3sOChIfP4keyayj3RlHvy9JGLo0GAk2EAFjxcjINdjYPdTIKdjQJ0VUz0VE2BYsFD
4tY9idv3IFoAAQuwUmxLOOKIIqHRfgotzmKxXgfSwMFjL8AjOavawjmuf4ganUisKO9MyKpJ
yqqqqGxZu7EOWpT0w8QehyVXCy644OAhYFlck6mpqcnJSWgVAZ04z46eY0TD9UXR1NTkZgYl
jKCS2AJ5a4KN37WJQIMGk8mcmZnBo20IADza2tq4gym9KrK6HjJ9eSmTUFta1TZKpg8O08gj
o40dvcSalqq67gVwj8FA6WuhS3H+wAUXXHDwEIAAIJmYmADdPY1GI++lwHnBiC6AcAf0w0XA
4PFKCwuCB405ZWAXVVjaMjU5s8JiMZmT/f1Uv/CcyIRCCo2+VpAdLh0Hj23J6PjUd/e9w9Lr
8EuBCy44eOwFmfAUbBkIEpsUWFxc3EFKFFxw8Hh58OjqHdU2DconNrW3DYbF5iVmVFRUdccl
l+cSG8vrOmZXWAsrK7ifx3YFdy7FBRccPHDBweP1kdXnummh9aGWtIzqtKyKwWFaTUtfcRu5
tofa1jtGLG/s6h+NS6+o66XWdjD7yfOz8zBt3GElEAKBIMjHGg4euOCyLVFTU+POv4MLLjh4
HCLwYP0EIAgzuLHhZ4sr4n6xRUGxxKbO0bYBZsvIfNPQRM/YRE5RfVZeXWJmVVUnjdjMKGgg
13bR24en5pfmDyl64HE8cMEFF1xwwcFjr4S1CkljgbVCZi629dNbeqkdg4zukckeymQPebKf
OkOmz4PeeIR2TVTdzco9k9QyVtM6lFnUQizv7uqj5+S1ZOc02brFh6XWtQxOF7SMOsS2n5NL
JDUNrK4uHEa7Bw4euOBySGV6drG2bRjoHh0fHPnDq/ZAN6+CQpsCv2ugGxXoHKDBdkIFXw/s
JYXnaxVAAMuiWmFgGXxuucttwT7QdJwzQaXg86BdPZhgek+Pf3hntZCZC1W9E3lN1JyGsdwG
Wk4DfU3BwlhO41h+0yjojXsGLpk5J7kFFpRWD1fUU9KLerLKuuvaKKRWakY2KTGr1iU4I7di
SFQz/79PBR8TdkpJLWCx5nDw2FLmF5dtggrrOw5xBkZccDkgAvpHgPGgD9o78ADHB8oTPAD2
wK4ZKCgDO2ue8r2sNzwO1CM/mIEdDyZ+YM8FNht8brnLWUW/PW0VQLvwDBLH9dyyYa+kReWQ
xfFYi7lRUj/sk9pa2EkvaqcXNo4Rm6jEJvA5SmweBctFQJtpZR1U0Bt39pxNzq9PzKyOz6jJ
Lh+JJZJjigdKGsiFFe1eoVnVLRRCRYtjUMl15ZibClb6RkapaRkrK6y1MZxVTsXBAxdccHnl
wANuhT01P+ABSoIFoAA84NcDyB4HEDyQ3QmtAdcNtPAgG45w8MBKXnXvSemoO0aFEYTBktbJ
4mZmcQujuIVW1EIrbmYUsb9OlrQyQG88RL7iH1NeWtU+MDxRVt1d2TTcSV6oaeyvaujxicpu
H2J2DowVlDbllzX5B/qG+Pr39fSsIcYyO5o6VlcP+pwswYOHS0RJP5mB9xq44LLX4LHdgRiO
8ltaPOB62EFvCR6oB69uHoKH5RjFgLWDt3vu9/2NTgRu2rILRkfgODhY09RN4R880JgRT/DY
qJE89+JoHjwFniUR4PHzv9uolj0dksPBY3Nhzo5HJeZckbH9VsLbKJDknNzvmNjlmNTulNLp
nNLjmjpgGtqg71UCemPy2BUn/9SY5NLWdmpDbV9kNMHEKr6Q2NzaRrF2j0/NI1XV9xaUtQQl
EpoHGVWkMSpjDhpWYHSP57rCjjK2eqDnvOA+Hrjg8uqBB3QDgP07WGjspGC9F7Dv0bAv5igP
DfubgwcHV/APHkDkzRKwLQfVYWvHei/A0Ry4CRwBdtCgLnguaBM4IM+qQXnsEVCN2H2x4z4b
gQcogMpjLxHc5dhdNzScBL6mEltR7dhhJuz1hw1AZwGKmXrncR+fo/EQ1TicT0B12Lbpu2ai
hsGLiW0bN9fh4LF3wloL87WwONvb1Z6YnOISnBGU1R1ZOBSe3xde0BtZ2B9BGAonDEUV9lv5
FoDeeHDkQkx2TX0PndTa3949VlI/6BKQWVTe1NI2QuoaT8qprGzoLq/qik6rKCANWgW2+MdV
jDNmO4cn2gd/0o4hZufQRNcQvY8ySZ9ZZq0+T38MFlhrM2sOwEAMDh644HKQZZM4HhuBB1oP
Oi+4DD5hX496f9Afoa/c5WEPtXfgAZ8D8MhoGRwBEQjsu0HfCncEX7HtR41E5wXUM6Z8o6ph
/wsKY3eHuCJjEodt20bgAdoJFkAVYIGDmsDCkR/MwEoEM9hN8AjYdkKiQG2ABcCZWgYUcB8f
LCNsAAuQr7ANQ1cPHAEcE3yCxkC6QI0Be6HaD6BL6qsKHmsWB9jFs8hjcxXN42Xt4xUdzLI2
emnruha3TpR3TFV3UBIzy0Bv3Ddy2SKgWtOhJKu8r7Gd0k9eItPnqxo7a5oG+8fmalr76zuH
0gtqajroFn5ZEoZZLhHVBc30/HpqAUbz68egFjRQi1vojT2MUcYc2xWE3RDWAfEAwcEDF1xe
MfCAPQ56JQc91CW1IPjT4+gTYRnu8rAf5wCPpm4Kz2kpOwAP7JEhXSCTBTwpaIXgeEmH7YQe
DqB7RTiE+ISjXnAK8AjcgyOoC56eXeC+FJv7eEBjEbos0OKBjA/ovFDt07OLWDsPB/xw8xLH
8bmHWrAN4z53SEHoXNCF3egq7aLs9ayWw2fxYK20DVJJfcyKFlpRI5XYTCU2ja8p7bmONfTP
RaeV1TT2gN54YORSeHrHI+tiK/+K4prh0GhiQnZjSf1IXtlgSnZ9am59clZdbkVnUEJtYGJ1
YFJtVdckoZX+4gE5dDy/YaysY6S2a5zURWODEOtAXBkcPHDB5VUCD9BNoxdtqMgJAfWwsAzc
kWd52PlygMc7F63Rq/dLggfqlFHtyPUUNQa0E1UHFTUGgseWAMZh5IECeQZrxsHCxibgAY6G
pvBgj8DhXAoLgBPk7uix7eRuMxwx4T7+5uDBPaUI/Jt4boI17il44NlpOWRx+Znc0wxh9axI
wlhFD72slVbcQgVaxPYsHQefFe3jFc0jsSmlLZ0joDdu7rhg6llGbCAXNQ2T2odTsyvTipur
O0Zr2unVzdS0/IbweGJLH7WsdrC7fyIgutAnqb0QHKFzoqRlvKSFBrS4ZXxN1ysqbR2v7pqO
KBg+K5csrhVBHR99tsQ6CJ4fAgaPw5urBfxsgW4SrGC7B6luHuLnaKAM3EsATIitiJ/zBa9y
sBh6pxOAgP4IO7UQBw+ODnecOQunjVj6E4rr+qA2dLInsEdlN4D139330nZMBwtukWUblQfa
P8LgAI/yhgG4Cdy6LwMeZQ39kGGgNwJoD1iWMIzG1g6qyCrtgGcXk9OA3bS4tALBg0ybhAcU
eRgCSl7XDOWoF57m0TuuqCTWxBGSVgu+TkzNwdOHD6WNwAM20ie+El4WDovHt/e84MFBs8HR
gDZ3jRp55MDaQYPh1gfWyfD68/zf/eWCNc/jbw4esGEyJnHrPd3Syp/OWcCvOHjss7nj2coq
a6W2uV/FNOrEnYArDzPtozu907o9kzvdUzrd0zr8MjsyKsmAH3KLW/KIHaA3bh+4ElsyVNVF
q2oj17YNkbro1R2Mug5qQ8dYXRe9rnuisLY3Lbe2trG/e5Da2Dnw1Kv0gka2nE2xW3q3Z1q7
V2oXUO+1T68UoJ320S0/Kib/U9jz/G1r/cdWRCJhfv5ApIYX/KwWyvjU8spumnuauingOQaU
w0F9d2XzYAUmXrngCQBfWMBj59v7XsjBbKODXNUIAQ8lflhlE5928JyJzm7YLbLiNsVvDjx8
+gC8jIDnMOh3gK73WfX98MH++swl3BI84H8NKfhfQP8NaGaH3gXoAiLzAvaO4i4PHRe3nE6L
fUNHDdgIPFAZrKvDM8zwBPRSgM6Q2B2RhwYsgL1XkYUEKE9I5janYK8bWAN+g9j5NRuBB9Zb
A9WIwAOZZThm63DUjm0n9+8a3NU8j4/+C5v7eKCrgWxBOHjsr7B9KVZZy0tLw/29GbklYVnN
KZXDaTXk9GpyWvVIRnV/Vee4TyQxjUhq7aUTitpAb1xUdyazrK+ufaR5cLK4jVbQwh5GKW2h
1nczqtqGajuHG3tp1Y3DecSGqrru+lZqVGplQTPNO707tZaaWTeaCT5raRm1tPSasbRqcmbt
aFrNWFB6m7tHiKeLc3ZW1tjYGIt1IMZaAHXs6agch9R3kMHNr2iRuIvHFED3t2VHDB6MaCQa
PsZ5PoH56c23BR7glLE251cPPATwtDzU4IFFDmyUUY5ZKgiD0S4cToYc5WEHt3nkUrSVQ7lL
ojhjUM8p+XNAAsesFuy/m2NaB/SIgBYPOPbBMceEQ7CzWrBHRv078ohAtz3PyKWohbAN2MsC
zwhtxc4R5q6d+x+BCsubJ/A8/rPnozwIabhntSAAY+8eW859LqjGLQOx4uCxm+jxbHVyfr6l
b6KsjV7WzgAIUdy8NhTSPF7VOVVY3e/ik9DRx2juoBWWNTf2PA1O8X3qVfrIoSowdyCrnpxb
T8utp+aSxgoaxso7R0uaB0id1MYeRnZJa3Jue2hcXXouKY5Q1zC8sDbOQl37hOMstLWK6MWt
tJJuakkjrbC8u6uHApPGrLBeu+S2e+HjsXn3B37F8HUjMrMeO4iA9eniGFZAu4DfO4djGz/M
sMm8e+xBwtLrsEeDLvfw0QQagFqIeAA8xKCLO2oVKAD6C/Dk5DgdnqcPFJ0gOhT2aJuAByiA
mgcH37mvPCzwyD5to9qxXQO64GAlnCOJrQIdBL7kovkLoDz34A7PcwGSX9kNi2Ev7CsGHvzc
ii8Tx0PAAqNYbNQwrI0L+XjAqTdbW1nXinHPJAXHxI7C8HN9Nt+60WTVTTbxefwtz5TPS7Gn
goMHVpYWl5p7qNW944QmOofPZ2ETraydWVhHLmkYaO6drG6hkDr6usgzhEaqkV/tRzdjP7+T
qOVVo+9L0vOtBarrU2MYUOOS1BaQ3eGd0PHYqdjErSwgtbWqYySrvKW6e3oj59LCZmpB82hh
83hJG72mm15cP0Slz7122CFw8ECmWmiBBN0QUA6LBHJvg0827C5Yp3T+wWOTl3TsQc4q+qE2
oMluqFLumYNYMzXchA0RwF0dOi+0O6wX++6GFjr6qZuAB9ayjQ1TiTUCo6MhBMIa2DkaiU4Q
yy3YKrCefki53R15ngsEDEWLRNSwQx3E4GXA41UVDudSXA6I7DV4JCYmOjo6HparwZyZE5GP
e+zXUNL5/7d37sFVVHke9z+namfArXJ2tGpntBQc1NHCUSlhZyQlpeyMCzgIjkhE16AriouE
AIpCCPIGuQl5EFDCU4KARh6KPBRCEsIjiIDkKYFCzOURcjFjDI5A9pf8an/183Tfvp2b5HIf
30/9Cm5u9zl9um+f098+53d+x7enwrfryLlm+6rZdrb8u7/su72VdYVl3gPV9flHLiQvLOk+
ZPXY7N0fFHybtbY6b/fpvN3ej3Z/S5ZX7M3bc3bT3pqtJac27D3zzqbS9ftPzv2w7Nlpnxce
rd9fdaHwaC3nbFqz9vDuqvLuOnZ+Wm75XY8uX5u3/4cf62Ptzgyl8BABwMqhR3wGSQ4ycWtn
pcEO9vopL0lYD3CntEvhIY5hAX08RHjIKC0/smXI23banQzHU+HJ6MnL8wqtPg/SV8AdHbyS
V5Nlkh2f49INJQ7Cg4ok+ct8BEN4sKi7td8sw2mfD0r/Wictcv7cj6EP0X/UUslfwk3QZw6V
aR1eN86FrxsLD94kR/fXLwThAeEBwl94RBaXr/z05tydtz7yzhOvfbqu6BTJj91ldUVlpDTq
dpXWFZTWFR09X1B2fnvpubm5Zb2Hbbqu18IHnlmbs6V6f0XdvvILtLXw6PmiFmseQCk9U3j0
bNGRM7tKawsqzxZUnsnN/6bH0x/GPb9pxorSLV/W7T7qKyqtK2RrPpCPrbD8/LqS00MnFdz4
5+z7B76dmpn+9fGKWPst2Mdj5Mz1IRAe/O5Mjx7uQH4wIZu73JvUlLcmFbXAmkQHWdIP4kFJ
K6Rv31Z1+IvSYys8rF4c2nnM2GqcrIOPhxGcQQs//e7PGdJj2tnHg4MnSBREQ3joiAq8Sa6k
7UkZgsE4hKgXa/eRPqK/c+GtLDykYAFnXkB4RBBUWx99JQfXAcIjvLl0oqr8zbdX3N4v84H4
D0dnfJGUdWBM5qExGYcSM75ssUNjsw48Nj7/170Xd/lrzpjskh1H64rKfTsPO8TlOLfjyLnP
v2q2wvKzuTuqew1deUv/Vf1f256Y+cWYjIPNmac3Zz4mg/899Gr6oZ7xa7o+OO+J/5k5MSUl
Z/GC6uPV+G06TnjoTng2eiyyb5V+nOnA0dYk4o6lH8QygUV7agVUHf6EhzXKQduFh3MvkBY5
boSHhFIU53x/woMf9xJfWj/onYMP6EO4FB7+zgXCAwAIj3Dghwvnv9i/J2vB8ldGZ418fcGI
N1JHvJbx4vj0F8bOfz4p7fmk1OFjZg9I8AyIf3vk2Kyhb3y2dNuJomMXCsvOBxQeBeV1uytr
J8zfmzgx7dlXZgwZ4Rk+Pmv4uFTONiHRwzY80fPcqHlPPj8lcdzkebNSVue+d+jw0Ybvf8BP
09E9HrYyQAIo8biG6AeHJM5DLaI6nENM2AoP6yyYjuvxEMdX6SXgfoNX52zwJzwkgCQPP2nX
WeuVl1ESfz0eVhXX9P8xneQQpBncCA9/58LKB8IjDKFfKmg3G4e00bECGoRHFHKl6WJD4/GK
0o0f5mame9JS56Slzk1Pm5c+f17G/HmZ8z2ZmanZizKzsuanZ+T0GvxulwErR3j2flxyZm/V
d82xxcrOF5c3255mq2Urpn+/9m0+cOal6Ttvemhx8ox5Oe+kL3lnceb8tOac097OoGzTU9kW
pKflZGYtzlm4fNXizz/fdvJszY+XLzZdufozakMcx+NETV3PYVkZ77fnULs8jHiyv8yYkAc6
uxkcrvRaZQk7QsjT2UjS1OK+GFB4yAs+T8MXcyk8JEIjB6lmJwr3woPL7+DjQVt5YILdTmSY
g5trvg5rth7yJzzk+c5eFrY9HuyDQfmTCtJ9SnJ0OSntZ6IXLNOHsPZ4yCZ/Ph76XLgAUSM8
ogb2tCGrvdAQdFrrfR7cnG5dT8m0pOE5ZdqMyb+0M485stFnCREG4QHh8TPd0bIqyqVLl8+e
O1tRUVlaWlrWQnl5eWVlBVlV1dfHqo/Rn+UV5Ws3bhnwYvZNjyzqlbB+2tryZTuOL992cun2
U8s+O7Vs+6nlW0+t3P7te5/VrMg/NW3N0fue+uD6Bxb87YVZ6Z75u4uKqqurKyuIcvq32RTV
x74+efJkjdf7fcP3LWvHhMWkligImS4tjzEDoskSuUinkkeh8b2RxE1cC73ek15f0qXwaPr5
/BSZoOFGeFAbyHEXrbNajPU05bg6ZoIckZ4FDkMtegTKVnhIhjq0lz4pYwlR68XUh9DCQ1xt
nWe16HPhAkB4hKHw4N8oOOGhHcLbLjyst42xVI2/W1cclbW1ak5uFJOXl9ehTxN6ZBcXR5J/
+JUW3Ox56fLlGu/JjRvyJkzOenBIZu9nMp5MWvb3xPcGjVn9eOLqQYm5jyfm0ufBSasfH5/b
66n53f8y/amXp06bPfXjT9afPn26NUUKiysTBcJDYjvYvqTwognUmMxbUWD71mOd6SBJ6F1G
miOHEOISbNwwf+9ZnIkRx4NDXlD7Jktp84iPEcncGshi6YYS7mmxvTgSSUO/1knQDDpNOX2H
kOkSK4N2lgLowtAO/A6Y9/lX+uh09TghbdWXznox9SE4BIdsIu3BP4dtHA/bc2lScTz0a2wb
I96DNsJTsdo3bVuEB92WW3ZXGEvKykAn9xOKDjGm29MmcUGH8AhZj0pkrdXSKv55qen0uQt7
9hQsW54zbcbsSSnTJ6dMeytlSou9NXnK1GZLmTppyqzJKSkzp05PfXvWp1s+Plt35tLlyOtw
wyJx4YZLdxEAIvHeZnnAscJkPjtpQuNupz9ZYepodVpaHK708lZb4SHJ/bmF2IapMYSHrbAJ
6EAOIDyC6RtpCSpK1tDY8M03J0pKSgoKiwqI/HyyXWS7drIV5BcU7NpRWLDrwIED5+vqmsJk
udlIEB5DJ+SiEhnNIDuoSOTqWA4SDqJVdcjAhDzc9biGhMk1JpfZdmvopXINrycdhU+Hi/cn
PGRGla3wEBcs3eMRoTFhIDzCWntcuSIDIVcuX7586dJP9vyT/7t0KYI9i0K/SBxpj9O19ahE
1mZQhps7dD0FAMJEeEgEOe04JA7ePI2FezwM4UFS4YY+b9EmPRTCm/R0Kh3szrbGUUUbn/qJ
sWidFEa/CIiPBy9eL1UVXkMQHiAihAfw1yxjViCwMmrUKK/XGx13uLXHQ/cqGMJDD75Yxzv6
j1oqLzLWGdbi26PXl/cn9fUyRk0W51JZmU7gpd8cVisAEB4grISHr75xyqLt8PEDwCVRE8fD
QXjo4DB6NpZ0KWjhwVFfZIVrvUlPVdNrG/kTHiRyeE1Y2xC70p1iKy1oq8iP/V99gxu1qWXW
SYeudQ7hAeERHHAuDR/Ywc+2p4UjZmizXdlT5u/Qy6m8YwIIj7YID4ZnY8kgiFYX7ASSMHmd
VXhIz4lx91oLIz4eFSfOcnJxBdFlE4cT50UQlm4owY3ahNVpAYQHCIS1S1nPHbaGJdFtryyn
a3gGAgiPNgoP66iHNX4L7dkjPsO4FUWTGDPCbCWxdi6VUHu8p1E2qQtcMNpZSigxPbbtqcKN
CuEBIDyAS+HBvdmPjV6uw4/LBEPu0NDvnroppjafd6DWGMIDwqNdhAd9aawKRPekITzk/rSO
p4gO4Rz8+X9q4SFyhQdcnNdO0jNuRJP/o+EiblQIDwDhET6Nre2a9S0vYhf1EAa3rtY9+Xvb
wQ7GNrCSGz9V3ZxKh7PRsMs7o26obQe+dUQv5wKD2BQeHBmPrPZCAweLE88K3iTB9lkw8PQu
CWHHaeVWH/LaKt6BQ+XrTToHw3FU4JB04jXKScjopjXKxq0Wb92YX6ozJ6PdcJ9DeIDWEhcX
t2TJkpAdLnacS6lF0p7zMkOWGi5usp6dtEYGOHTob2NEQ79YSWMomVDLySHTdSod9Z1zsJ1R
qPXDiW/rHIRHk13XtG2IszVbD+kCo35BeAAIDwgPAEIDPZ3poU8SS0QFv17JOMXwlHW621ZG
NGS8Q4aeSVQY8QQkE0oS/8Zq/ZTXqaTb2Vl4kNhIyd5mHdcWJz2JsMQFkwmMnETLD16dlqWU
fmcEEB4AwqOD8ufvA+Lz+XSq5ORkN6mMF3OqjG5SWccR3CSkE7GeHWkt51S2YiwuLs5NOYO7
kta5S3SVWnslQ8yeIyd99Y1RXwf10AM/uI1F3/7RcFGCIrJHPc8T1HMGtbO9eOzz6iTyufZC
g0MqIyqjVXjI4m5aJ1idS0nP6AEdHbhJ9+f0iM/Q69QDCA8A4dFe0PPO1jGAF6cLSGNjozW3
gBw8+LN+XVIvblJZH81uEtKJWM/O4/E4p6IdrKnoKe+mnMFdSWuLRFeptVcyxKqDnlMJyWuj
vg7So1/Ggv0tc2+dRSjxjqxBF7V/ne1Ksno6oSEhHIQH943YCg/e5BDKgA4n8oOTS/eLdv4H
EB4AwgOAq0WMOJfyabIPBq9f2VrhYZUQboSHVa4EFB5cqoTJ6/TyEzqVeJb6GzrR8a5PfFtH
kkO0FrQHhAeA8AAAwiMEeFYW0Gne2m/Wtj1VG/NL//Olxa0VHrUXGu4a7KHP/ztr/dINJWR9
R7xLfw5puXT+hEfNue948SxJ1Tsh243wKD125oY+b5HlfLTfmv/hSq8Uhv4cnrKOduD8M1bv
5k1csFWbDxZ8cfzjgnJ2eV358Re459tdeLjp1bR2bFImblLZdvYGTGU7ehuwizj03eZWCZeb
mxvKbvPgrmSHdpsbng8uL6a125yubffu3SE8QBhyoqau57CsjPejf2FHGYOgD+waKrMF9Zqb
xpQT/lNmwhqzWiQigc7ESMWzC/Wh/QkP7poQ94wFa4o5H54zaBSMA1kbnq7WgrHEwvpZHYob
Py6rKxc9TdyksnVvC5gqLi7OmiqgU1zoHQWtEmLAgAGhdBQM7kp2qKOgVYy5uZhWgcQ3WLdu
3VBDAbiK2EbYCAJ/kUDcHFr7tbb72dkWLIjSAgAAACBCmZmzQyaVyJpZ1oAbAAAAQCxQfvzs
v/R8c0LGp7gUHYQOq6jnmwAAAAAxCNZq6Wg25pdyOGgO+4x5JQAAACA8IDwAAAAAAOEBAAAA
gGgidiKXAgAAACBMtEcsrNUCAAAAAAAAAACA2OF0bX3vhIWIpA0AAACAEADnUgAAAABAeAAA
AAAAwgMAEN34fL6HH+lzTeu57fddjTVqAQAAwgOUlZVd+4trg3isjBuXhKsX9WzevLlL11vS
3n19X+X77m1OVtJ//OkB68rsAABgpfHHn2Yv3fllRQ0uReyQl5d319139unba+X6We4fLq8k
xd/f417SLbiA0dkUNDaStvxT3P2bixa2SnLcfmfXfv0f9Xq9uIYAAADaV37krJl6z7135eQs
xtWLMkhP3nf/PaQtg5Ac6OgAAKDHA3Sc/PisJGfAoIcHPzHQ5/Ph6kUH+/btveMPt7nXn5Ac
AIC2AB8PEIT8mO4Z3aXrLcXFxbh0kQ4JyH6P9S08shKSAwAA4QHCWX5sLlrY/Y93wOM0omFX
0g+2pUFyAAAgPEBEyA94nEYo7l1J0959nSTHb37zbx6PZwcAICZp37H1UAoP/HYRxKuvvnrt
L64l+bF+RwY8TqOMVrmS9h/Up0fP7jAYLGbtli6/e+GF59uxCQrZWi30LOvU+Vf4BSPOpntG
w+M0msjMymiVKykMBotxmzRzxNPD4iOxuSPhQU8x/IJRbPA4DWeqqqpmzZ758uhhqYsmFJeu
wu0K82fTPKMmTn9xybpp7Zjntn3vUp7tni0sQoWHt7b+5RkffbTjKIRHe1nuprmtql+0J+1P
lb19izF3wVjKlgoTynPfeXDZxOkjRo99cdGihefOncPjPrLcOWBXxeIe7vHbm280rAMr6ZfL
nHego19zzTUjEp9sx4Mu/3AGB0Bu32xhESo8QubjEc7Cw6jy1A6s25oadG5jJv53q+oX7Un7
t3tT0/3ebpQtFeaqXFI4fkSiOwfsqhhXVW4EOlp43P3H3wdsmiA8YBAeoREezUtc3X4zf2ij
DIDwgOMH3Dlgra2q9G8IjtXpul9CeMAgPMJHeCxcNbnZh3/wQ1xBqKZAeMDxI0LhFWafGPqo
y8hgsPAUHnEP96DvxyY/918D4+hf/jJlzkj6ko3aK909S3/Kl5xW+m8pOR+ImhrOM6DwkANR
hnqkZuCQh+X7T4qy+XvOnw5nLQyEB4SHwZcVNSQ8Rs5cD+HBwoNlACHVmWofV2GuVgtWJBuu
FHor1UpDeEj19ze0KsKDjshVlWztpx7eSoeTL8moMNZGif+k5LwPlzxMhIeEGtu6dQv0QGgI
boVZWBgKD26aeAduUuTNSHfPUiuks5LxGt6Bc5aWLaAA0AeVTER7UMJO1/1S8pdiW1+g9HlB
eEB4YFaLbUVLnvkS1V/+LLWM64uuyKwQRNJLReattL8WHvEJ/XirIVdshYduK6R66mFf3iRK
w+gRlarNfTXhIzzY/ja4L+KMwY8U5sbHQ/oNpNY/99JAakPovYP/pIZF3jX0416y4lZC99/S
iw/9S5qB0vKfzu0h/UtH/KQo2zgEleG9DbO5weE9uXGD8IDwgPAIQngIXKmlG0FqClVV3pN3
kEZAejvpG/ogwoNkjJu6Jm8irHaoxaDP9/X8g2gb6czkZkReMSJLeGzalQV3U/iRwhyEh2DU
cXkPMjQA94haa70kN9oEq48HfRaTlyOjYbEqik8Ks6mto+/1nhAeEB7uOVFT13NYVsb7xRAe
t91+M9URa7cGyw+qlVLRuCrRW4mtbwYLDxInRqPB0kXXdH7psFZY+izCo7maF2VTtaXdjCNG
lvCAu2lHO3V07tyJ2gc0kpE71EI1l00aH6OOWwdljAd6a4WHfufSvawOwoMkhx5qgfCA8IBz
adt9PKT/kAWD7sw0xkz9jcyy8BABI/0Vuvbp1sBZePAcf12AyBUebP0efyhCe+3Q4wG7Kj4e
boRHcD0eInX04Iuz8KAPvXrfY90TwgPCA8IjaOGhfaukW0PGO3RVchYe0uOh3byNmu6vJ1OE
B28Sf1FrC4AeDwAfj9gRHuwzRl9K68HDr4aPh7Pw0H2wbqbT6maHM+RN8o7Gf/IYMcGertRg
6oYUwgPCA8LDQXhozw3ZJHNJdFUSxy3ZSq8MelZLq3w8bIUHNyPSUBiNjOFVbkwEho8HZrWg
wYwy4SFPc54Sa/VFDyg8brjxet4h4KwWW+HBBaBMqLUxjk4vR+Iiy2WD8IDwcBYeQyfkQnjo
wRTx8ZBxFl3RuCpJI8DfcF0zZrWIGHAzq8UqPCQ5z6g1hlq4N0YfHbNagLh8II5HpBgPpxpd
o3pSm35Yc4AO3VLprUZW3Cmhe0gGDe3rZjqtzpZ926TZiU/oxz4eY5OfM/aUbl7+UhdGSgLh
AeEh2uN0bX2MCw9teiKJTLDl7416bW0EeFaL1C+eCOMcA9mo11yePn95gLWNeLzTB67Xsqex
lYsqjQwXDHE8YhlELo1WY4fz4FZ2CDqhntXinD9+IAgPTKdtu1FV0j6i7dgIuDHK2SFz561X
3RC5FB6nMBgMwuNnXbL1jVMWbc8vqYbwgMGVFB6nMBgMBudSWCQaVqeFxykMBoPwgPCAhcZe
SYq/v8e9cCWFxykMBoPwsLLnyEkSHgnJayE8YO3lRzpuXBKe8vA4hcFgEB4O2sNX3wjhAYMf
KTxOrRb/3ACquTAYLGbtli6/Gzbs6Qid1dKp86/wC0acTZ41En6ksexxOicr6d9/e+NNN920
ZMmSHQCAmMTr9UZoW4ffLoJITk7u3LkzCY+AffLwI410j9MPtqW56Wsl+fH0sPjjx4/jugEA
AGhfffjnB3uR5HCItgo/0qjB5/P1e6yvS3dTyA8AAABXS3LAjzRq2Ldvb6vcTVl+DH7i8YMH
D+LqAQAACIK8vLy77r7TpeSAH2n0EUSA06meUbff2bVf/0chPwAAALRWcvTp28vlCy/8SKMb
9vogUUES1L0Nefavd9zRDQoEAACAg9i4/tf/OnrCM+4fLnDngPCA8AAAAADhAQAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
wJn/A5vjFyA=
0 0 m
-1 0.333 l
-1 -0.333 l
h
0 0 m
-1 0.333 l
-1 -0.333 l
h
0 0 m
-1 0.333 l
-0.8 0 l
-1 -0.333 l
h
0 0 m
-1 0.333 l
-0.8 0 l
-1 -0.333 l
h
0.6 0 0 0.6 0 0 e
0.4 0 0 0.4 0 0 e
0.6 0 0 0.6 0 0 e
0.5 0 0 0.5 0 0 e
0.6 0 0 0.6 0 0 e
0.4 0 0 0.4 0 0 e
-0.6 -0.6 m
0.6 -0.6 l
0.6 0.6 l
-0.6 0.6 l
h
-0.4 -0.4 m
0.4 -0.4 l
0.4 0.4 l
-0.4 0.4 l
h
-0.6 -0.6 m
0.6 -0.6 l
0.6 0.6 l
-0.6 0.6 l
h
-0.5 -0.5 m
0.5 -0.5 l
0.5 0.5 l
-0.5 0.5 l
h
-0.6 -0.6 m
0.6 -0.6 l
0.6 0.6 l
-0.6 0.6 l
h
-0.4 -0.4 m
0.4 -0.4 l
0.4 0.4 l
-0.4 0.4 l
h
-0.43 -0.57 m
0.57 0.43 l
0.43 0.57 l
-0.57 -0.43 l
h
-0.43 0.57 m
0.57 -0.43 l
0.43 -0.57 l
-0.57 0.43 l
h
0 0 m
-1 0.333 l
-1 -0.333 l
h
0 0 m
-1 0.333 l
-0.8 0 l
-1 -0.333 l
h
0 0 m
-1 0.333 l
-0.8 0 l
-1 -0.333 l
h
-1 0.333 m
0 0 l
-1 -0.333 l
0 0 m
-1 0.333 l
-1 -0.333 l
h
-1 0 m
-2 0.333 l
-2 -0.333 l
h
0 0 m
-1 0.333 l
-1 -0.333 l
h
-1 0 m
-2 0.333 l
-2 -0.333 l
h
0 0 m
-1 0.333 l
-1 -0.333 l
h
0 0 m
-1 0.333 l
-1 -0.333 l
h
0.6 0 0 0.6 0 0 e
0.4 0 0 0.4 0 0 e
0.6 0 0 0.6 0 0 e
0.5 0 0 0.5 0 0 e
0.6 0 0 0.6 0 0 e
0.4 0 0 0.4 0 0 e
-0.6 -0.6 m
0.6 -0.6 l
0.6 0.6 l
-0.6 0.6 l
h
-0.4 -0.4 m
0.4 -0.4 l
0.4 0.4 l
-0.4 0.4 l
h
-0.6 -0.6 m
0.6 -0.6 l
0.6 0.6 l
-0.6 0.6 l
h
-0.5 -0.5 m
0.5 -0.5 l
0.5 0.5 l
-0.5 0.5 l
h
-0.6 -0.6 m
0.6 -0.6 l
0.6 0.6 l
-0.6 0.6 l
h
-0.4 -0.4 m
0.4 -0.4 l
0.4 0.4 l
-0.4 0.4 l
h
-0.43 -0.57 m
0.57 0.43 l
0.43 0.57 l
-0.57 -0.43 l
h
-0.43 0.57 m
0.57 -0.43 l
0.43 -0.57 l
-0.57 0.43 l
h
0 0 m
-1 0.333 l
-1 -0.333 l
h
0 0 m
-1 0.333 l
-0.8 0 l
-1 -0.333 l
h
0 0 m
-1 0.333 l
-0.8 0 l
-1 -0.333 l
h
-1 0.333 m
0 0 l
-1 -0.333 l
0 0 m
-1 0.333 l
-1 -0.333 l
h
-1 0 m
-2 0.333 l
-2 -0.333 l
h
0 0 m
-1 0.333 l
-1 -0.333 l
h
-1 0 m
-2 0.333 l
-2 -0.333 l
h
\renewcommand\rmdefault{cmss}
\makeatletter
\leftmargini 1.5em
\leftmargin \leftmargini
\leftmarginii 1.2em
\leftmarginiii 1em
\def\@listI{\leftmargin\leftmargini
\parsep \z@
\partopsep 3pt
\topsep \z@
\itemsep \z@}
\@listI
\def\@listii {\leftmargin\leftmarginii
\labelwidth\leftmarginii
\advance\labelwidth-\labelsep
\topsep \z@
\parsep \z@
\itemsep \parsep}
\def\@listiii{\leftmargin\leftmarginiii
\labelwidth\leftmarginiii
\advance\labelwidth-\labelsep
\topsep \z@
\parsep \z@
\partopsep \z@
\itemsep \topsep}
\makeatother
Some Preliminaries
\begin{itemize}
\item This description corresponds to the {\tt RU-RAU-split} branch for RAN infrastructure components (located in {\tt targets/DOCS/oai\_L1\_L2\_procedures.pdf}, editable with {\tt ipe})
\item we describe
\begin{enumerate}
\item node functions
\item current functional splits and packet formats
\item RAN procedures
\item process scheduling
\end{enumerate}
\end{itemize}
NGFI Harmonization in OAI
\small
\begin{itemize}
\item New descriptions for OAI RAN infrastructure Node Functions
\begin{itemize}
\item{\tt NGFI\_RCC} : Radio Cloud Center
\item{\tt NGFI\_RAU} : Radio Aggregation Unit
\item{\tt NGFI\_RRU} : Remote Radio Unit
\item{\tt 3GPP\_BBU} : Baseband Unit
\item{\tt 3GPP\_eNodeB} : Complete eNodeB
\end{itemize}
\end{itemize}
\small Source: China Mobile - {\tt http://www.windriver.com.cn/windforum/download/wf2015\_networking03.pdf}
\small\begin{itemize}
\item Current OAI implementation (RRU/RCC) supports either
\begin{itemize}
\item IF5 time-domain fronthaul ($>$ 1 GbE required)
\item IF4.5 split (FFTs) (280 Mbit/s/antenna port fronthaul – 20 MHz carrier) per carrier/sector
\item Soon IF2 (NFAPI)
\item IF1’ for “PDCP/RRC” soon (3GPP Fh-C/Fh-U)
\end{itemize}
\end{itemize}
NGFI split points
OAI RAN Software Architecture
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
528 64 m
528 32 l
640 32 l
640 64 l
h
528 64 m
528 32 l
640 32 l
640 64 l
h
528 101 m
528 48 l
736 48 l
736 101 l
h
392 376 m
392 296 l
512 296 l
512 376 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
392 376 m
392 296 l
512 296 l
512 376 l
h
136 312 m
136 272 l
200 272 l
200 312 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
624 336 m
624 336 l
624 336 l
624 336 l
h
608 336 m
608 336 l
608 336 l
608 336 l
h
\tiny\bf LTE\\
MODEM
576 384 m
576 336 l
640 336 l
640 384 l
h
624 336 m
624 336 l
624 336 l
624 336 l
h
608 336 m
608 336 l
608 336 l
608 336 l
h
624 336 m
624 336 l
624 336 l
624 336 l
h
608 336 m
608 336 l
608 336 l
608 336 l
h
624 336 m
624 336 l
624 336 l
624 336 l
h
608 336 m
608 336 l
608 336 l
608 336 l
h
96 408 m
96 360 l
208 360 l
208 408 l
h
624 336 m
624 336 l
624 336 l
624 336 l
h
608 336 m
608 336 l
608 336 l
608 336 l
h
\tiny\bf LTE/NR/NB\\
PDCP
128 320 m
128 280 l
192 280 l
192 320 l
h
624 336 m
624 336 l
624 336 l
624 336 l
h
608 336 m
608 336 l
608 336 l
608 336 l
h
\tiny\bf LTE\\
RRC
112 464 m
112 440 l
648 440 l
648 464 l
h
432 224 m
432 224 l
432 224 l
432 224 l
h
\bf OSS/BSS/MEC
192 296 m
232 296 l
232 404 l
256 404 l
144 288 m
144 320 l
384 368 m
448 368 l
384 352 m
448 352 l
152 456 m
152 368 l
304 456 m
304 408 l
456 456 m
456 416 l
600 456 m
600 409 l
512 368 m
576 368 l
512 352 m
576 352 l
88 384 m
8 384 l
128 264 m
8 264 l
OAI Functional Splits
576 384 m
576 336 l
640 336 l
640 384 l
h
\bf\tiny LTE-L1
192 368 m
96 368 l
192 368 m
96 368 l
192 368 m
96 368 l
\bf\tiny Management
\bf\tiny data (user/control plane)
\bf\tiny configuration
576 384 m
576 336 l
640 336 l
640 384 l
h
\tiny\bf LTE\\
MAC-RLC
288 432 m
288 432 l
288 432 l
288 432 l
h
240 460 m
240 40 l
520 40 l
520 460 l
h
384 416 m
384 416 l
384 416 l
384 416 l
h
560 416 m
560 336 l
656 336 l
656 416 l
h
88 456 m
88 40 l
216 40 l
216 221 l
216 261 l
216 456 l
100.8 456 l
88 456 l
\bf\tiny Radio-Cloud Center (RCC)
\tiny\bf Radio-Access Unit (RAU)
136 248 m
136 208 l
200 208 l
200 248 l
h
128 256 m
128 216 l
192 216 l
192 256 l
h
\tiny\bf NR\\
RRC
128 229 m
112 229 l
112 261 l
112 360 l
488 368 m
488 304 l
504 304 l
504 368 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
624 336 m
624 336 l
624 336 l
624 336 l
h
608 336 m
608 336 l
608 336 l
608 336 l
h
624 336 m
624 336 l
624 336 l
624 336 l
h
608 336 m
608 336 l
608 336 l
608 336 l
h
624 336 m
624 336 l
624 336 l
624 336 l
h
608 336 m
608 336 l
608 336 l
608 336 l
h
384 368 m
448 368 l
384 352 m
448 352 l
576 384 m
576 336 l
640 336 l
640 384 l
h
\bf\tiny NR-L1
\tiny\bf NR\\
MAC-RLC
488 368 m
488 304 l
504 304 l
504 368 l
h
\tiny PRECODE
\tiny PRECODE
576 384 m
576 336 l
640 336 l
640 384 l
h
624 336 m
624 336 l
624 336 l
624 336 l
h
608 336 m
608 336 l
608 336 l
608 336 l
h
\tiny\bf NR\\
MODEM
512 368 m
576 368 l
512 352 m
576 352 l
560 231 m
560 160 l
656 160 l
656 231 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
624 336 m
624 336 l
624 336 l
624 336 l
h
608 336 m
608 336 l
608 336 l
608 336 l
h
624 336 m
624 336 l
624 336 l
624 336 l
h
608 336 m
608 336 l
608 336 l
608 336 l
h
624 336 m
624 336 l
624 336 l
624 336 l
h
608 336 m
608 336 l
608 336 l
608 336 l
h
336 264 m
536 264 l
336 248 m
536 248 l
576 384 m
576 336 l
640 336 l
640 384 l
h
\bf\tiny LTE-L1
576 384 m
576 336 l
640 336 l
640 384 l
h
\tiny\bf LTE\\
MAC-RLC
488 368 m
488 304 l
504 304 l
504 368 l
h
\tiny PRECODE
576 384 m
576 336 l
640 336 l
640 384 l
h
624 336 m
624 336 l
624 336 l
624 336 l
h
608 336 m
608 336 l
608 336 l
608 336 l
h
\tiny\bf LTE\\
MODEM
232 264 m
256 264 l
256 424 m
224 424 l
224 316 l
256 316 l
64 264 m
64 264 l
528 288 m
528 208 l
736 208 l
736 288 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
\tiny\bf NR\\
MAC-RLC
576 384 m
576 336 l
640 336 l
640 384 l
h
\tiny\bf NB-IoT\\
MAC-RLC
128 264 m
8 264 l
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
576 384 m
576 336 l
640 336 l
640 384 l
h
624 336 m
624 336 l
624 336 l
624 336 l
h
608 336 m
608 336 l
608 336 l
608 336 l
h
624 336 m
624 336 l
624 336 l
624 336 l
h
608 336 m
608 336 l
608 336 l
608 336 l
h
336 264 m
536 264 l
336 248 m
536 248 l
576 384 m
576 336 l
640 336 l
640 384 l
h
\bf\tiny NR-L1
488 368 m
488 304 l
504 304 l
504 368 l
h
\tiny PRECODE
576 384 m
576 336 l
640 336 l
640 384 l
h
624 336 m
624 336 l
624 336 l
624 336 l
h
608 336 m
608 336 l
608 336 l
608 336 l
h
\tiny\bf NR\\
MODEM
528 288 m
528 208 l
736 208 l
736 288 l
h
\tiny\bf Remote Radio-Unit (RRU)
336 72 m
576 72 l
336 86 m
576 88 l
576 384 m
576 336 l
640 336 l
640 384 l
h
\tiny\bf NB-IoT\\
RRC
128 264 m
8 264 l
104 360 m
104 88 l
120 88 l
192 88 m
256 88 l
528 64 m
528 32 l
640 32 l
640 64 l
h
\tiny\bf NB-IoT\\
L1/MODEM
224 384 m
208 384 l
192 240 m
256 240 l
232 240 m
232 168 l
256 168 l
224 192 m
224 192 l
224 192 m
224 192 l
224 312 m
224 72 l
256 72 l
OAI Functional Splits
\tiny\begin{itemize}
\item OAI currently implements the following entities in openairinterface5g
\begin{itemize}
\item LTE-MODEM (eNB 36.211 OFDM modulation/demodulation)
\item LTE-L1 (eNB 36.211/212/213)
\item LTE-MACRLC (eNB 36.321/322)
\item LTE-PDCP (eNB PDCP/GTPU 36.323)
\item LTE-RRC (eNB RRC/SCTP 36.331)
\end{itemize}
\item Each entity comprises
\begin{itemize}
\item a northbound interface (backhaul/midhaul/fronthaul and configuration)
\item a southbound interface (midaul/fronthaul and configuration)
\item one or two management interfaces
\item Three computing nodes
\begin{itemize}
\item {\bf Radio Cloud Center (RCC)} : multiple RRC/PDCP entities
\item {\bf Radio-Access Unit (RAU)}: multiple MACRLC entities with medium-latency midhaul and L1 entities with low-latency fronthaul.
\item {\bf Remote Radio-Unit (RRU)}: Equipment at radio site. Varying degrees of processing elements depending on fronthaul/midhaul interface.
\end{itemize}
\end{itemize}
\item Each entity has a configuration which is a local file or received via the management interface
\item default interface between all entities is implemented using a UDP socket. Transport is configurable via a dynamically-loadable networking device
\end{itemize}
288 192 m
288 64 l
432 64 l
432 192 l
h
OAI entity
336 171 m
336 208 l
384 171 m
384 208 l
336 171 m
336 208 l
384 171 m
384 208 l
240 80 m
288 80 l
240 80 m
288 80 l
16 0 0 16 288 224 e
16 0 0 16 288 224 e
\tiny\bf Northbound interface
\tiny\bf Southbound interface
\tiny\bf data
\tiny\bf data
\tiny\bf in-band configuration
\tiny\bf in-band configuration
\tiny\bf OSS/BSS
\tiny\bf FlexRAN
240 80 m
288 80 l
\tiny\tt .conf
511.895 513.539 m
511.895 14.2386 l
734.284 14.2386 l
734.284 513.539 l
h
511.895 513.539 m
511.895 14.2386 l
734.284 14.2386 l
734.284 513.539 l
h
511.895 513.539 m
511.895 14.2386 l
734.284 14.2386 l
734.284 513.539 l
h
16 432 m
16 112 l
192 112 l
192 432 l
h
16 432 m
16 112 l
192 112 l
192 432 l
h
Functional Splits (Current)
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
MAC TX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PDCP TX
\end{tiny}
\setstretch{.5}\begin{tiny}
RLC TX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
MAC RX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PDCP RX
\end{tiny}
\setstretch{.5}\begin{tiny}
RLC RX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
RRC
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
GTP-C
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
GTP-U
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PHY TX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PHY RX
\end{tiny}
384 432 m
384 384 l
384 432 m
384 384 l
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt rf\_device}
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
MAC TX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PDCP TX
\end{tiny}
\setstretch{.5}\begin{tiny}
RLC TX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
MAC RX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PDCP RX
\end{tiny}
\setstretch{.5}\begin{tiny}
RLC RX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
RRC
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
GTP-C
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
GTP-U
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PHY TX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PHY RX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt if\_device}
\end{tiny}
3GPP\_eNodeB
3GPP\_BBU
\tiny to MME
\tiny to S-PGw
384 432 m
384 384 l
384 432 m
384 384 l
\tiny to MME
\tiny to S-PGw
160 112 m
160 112 l
160 112 l
160 112 l
h
144 112 m
144 112 l
144 112 l
144 112 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt USB3 or PCIe}
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt NFGI\_IF5 / ethernet}
\end{tiny}
16 432 m
16 112 l
192 112 l
192 432 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
MAC TX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PDCP TX
\end{tiny}
\setstretch{.5}\begin{tiny}
RLC TX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
MAC RX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PDCP RX
\end{tiny}
\setstretch{.5}\begin{tiny}
RLC RX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
RRC
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
GTP-C
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
GTP-U
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
upper-PHY RX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt if\_device}
\end{tiny}
NGFI\_RCC (IF4.5)
384 432 m
384 384 l
384 432 m
384 384 l
\tiny to MME
\tiny to S-PGw
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt NFGI\_IF4p5 / ethernet}
\end{tiny}
\setstretch{.5}\begin{tiny}
upper-PHY TX
\end{tiny}
384 432 m
384 384 l
\tiny to NGFI\_RRU
384 432 m
384 384 l
\tiny to NGFI\_RRU or RRH\_gw
384 432 m
384 384 l
\tiny to RF Device
1.83417 462.604 m
1.83417 50.8252 l
207.006 50.8252 l
207.006 462.604 l
h
1.83417 462.604 m
1.83417 50.8252 l
207.006 50.8252 l
207.006 462.604 l
h
16 432 m
16 112 l
192 112 l
192 432 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
MAC TX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PDCP TX
\end{tiny}
\setstretch{.5}\begin{tiny}
RLC TX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
MAC RX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PDCP RX
\end{tiny}
\setstretch{.5}\begin{tiny}
RLC RX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
RRC
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
GTP-C
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
GTP-U
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt if\_device}
\end{tiny}
NGFI\_RCC (IF1'')
384 432 m
384 384 l
384 432 m
384 384 l
\tiny to MME
\tiny to S-PGw
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt NFGI\_IF1pp} / ethernet
\end{tiny}
16 432 m
16 112 l
192 112 l
192 432 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PDCP TX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PDCP RX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
RRC
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
GTP-C
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
GTP-U
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt if\_device}
\end{tiny}
NGFI\_RCC (IF1')
384 432 m
384 384 l
384 432 m
384 384 l
\tiny to MME
\tiny to S-PGw
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt NFGI\_IF1p} / ethernet
\end{tiny}
\tiny to NGFI\_RRU
384 432 m
384 384 l
\tiny to NGFI\_RAU
384 432 m
384 384 l
\tiny to NGFI\_RAU
Functional Splits (Current)
1.83417 462.604 m
1.83417 50.8252 l
207.006 50.8252 l
207.006 462.604 l
h
16 432 m
16 112 l
192 112 l
192 432 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
upper-PHY RX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt if\_device}
\end{tiny}
NGFI\_RAU(IF1'')
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt NFGI\_IF4p5 / ethernet}
\end{tiny}
\setstretch{.5}\begin{tiny}
upper-PHY TX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt if\_device}
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt NFGI\_IF1pp / ethernet}
\end{tiny}
384 432 m
384 384 l
\tiny to NGFI\_RCC
384 432 m
384 384 l
\tiny to NGFI\_RRU
1.83417 462.604 m
1.83417 50.8252 l
207.006 50.8252 l
207.006 462.604 l
h
1.83417 462.604 m
1.83417 50.8252 l
207.006 50.8252 l
207.006 462.604 l
h
1.83417 462.604 m
1.83417 50.8252 l
207.006 50.8252 l
207.006 462.604 l
h
16 432 m
16 112 l
192 112 l
192 432 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt if\_device}
\end{tiny}
NGFI\_RRU (IF5)
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt NFGI\_IF5/ ethernet}
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt rf\_device}
\end{tiny}
NGFI\_RRU (IF4.5)
384 432 m
384 384 l
\tiny to NGFI\_RCC, NGFI\_RAU,3GPP\_BBU
384 432 m
384 384 l
\tiny to RF Device
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt USB3, PCIe, CPRI}
\end{tiny}
16 432 m
16 112 l
192 112 l
192 432 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt if\_device}
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt NFGI\_IF4p5/ ethernet}
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt rf\_device}
\end{tiny}
384 432 m
384 384 l
\tiny to NGFI\_RCC, NGFI\_RAU
384 432 m
384 384 l
\tiny to RF Device
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt USB3, PCIe, CPRI}
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
lower-PHY RX
\end{tiny}
\setstretch{.5}\begin{tiny}
lower-PHY TX
\end{tiny}
16 432 m
16 112 l
192 112 l
192 432 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt if\_device}
\end{tiny}
\setstretch{.5}\begin{tiny}
upper-PHY TX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt if\_device}
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt NFGI\_IF1pp\_4P5 / ethernet}
\end{tiny}
384 432 m
384 384 l
\tiny to NGFI\_RCC, NGFI\_RAU
384 432 m
384 384 l
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt USB3, PCIe, CPRI}
\end{tiny}
\tiny to RF Device
Functional Splits (Current)
NGFI\_RRU\par
(IF1'')
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
lower-PHY RX
\end{tiny}
\setstretch{.5}\begin{tiny}
lower-PHY TX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
upper-PHY RX
\end{tiny}
Some Notes on usage of splits
\tiny\begin{itemize}
\item IF4p5 corresponds to the split-point at the input (TX) and output (RX) of the OFDM symbol generator (i.e. frequency-domain signals). According to NGFI, IF4 is "Resource mapping and IFFT" and "FFT and Resource demapping". We currently do not try to exploit multiplexing gains for unused spectral components. So, IF4p5 is simply compressed transmitted or received resource elements in the usable channel band.
\item The simplest deployment for DAS (indoor) is one NGFI\_RCC (IF4p5) and many NGFI\_RRU (IF4p5). Spatio-temportal filtering (Precoding, later) is done in RCC and RRU perform IFFT/FFT and signal generation/acquisition. Fronthaul rates in this case are feasible with 1GbE copper links. This allows for PoE in addition to fronthaul data.
\item More complex indoor, for instance with RCC in a common data center with outdoor RRS, could be
\begin{enumerate}
\item RCC-RAU with IF1'', RAU-RRU with IF4p5. Spatio-temporal filtering is done in frequency-domain in RAU along with full TX and RX processing (L1/L2) for the indoor RRS. Note that IF1' fronthaul on TX to RRU would be difficult because spatio-temporal filtering should be used. RRU does only IFFT/FFT and signal generation/acquisition
\item RCC-RAU with IF1', RAU-RRU with IF4p5. Here RCC does L2, RAU does L1 and precoding for RRS.
\end{enumerate}
\item A massive-MIMO solution would consist either of
\begin{enumerate}
\item an embedded RAU with processing (Spatio-temporal in frequency-domain, lower/upper PHY TX/RX) like the IF1' DAS solution above
\item or more simply a high-speed fronthaul (IF4p5) with an RAU for multiple sites
\item directly connected to RCC via high-speed IF4p5 (several virtual cells, precoder and IFFT/FFT in array).
\end{enumerate}
\item RCC solution with IF1'' would cater to evolved-PDCP for heterogenity (4G,5G,WIFI,IoT)
\item Currently supported node functionalities
\begin{enumerate}
\item {\tt 3GPP\_eNodeB}
\item {\tt 3GPP\_eNodeB\_BBU} [NGFI\_IF5]
\item {\tt NGFI\_RCC} [NGFI\_IF4p5]
\item {\tt NGFI\_RRU} [NGFI\_IF5]
\item {\tt NGFI\_RRU} [NGFI\_IF4p5]
\end{enumerate}
\end{itemize}
RU - L1 negotiation
64 448 m
64 256 l
256 256 l
256 448 l
h
64 448 m
64 256 l
256 256 l
256 448 l
h
RRU Entity
RAU/RCC Entity
544 192 m
544 256 l
256 320 m
448 320 l
448 288 m
256 288 l
544 192 m
544 256 l
\tiny\tt .conf
\tiny\tt .conf
\tiny\tt fronthaul data (IF5,IF4p5)
256 320 m
448 320 l
448 288 m
256 288 l
\tiny\tt RRU control/config
\begin{small}
Control and Configuration protocol
\begin{enumerate}
\item RAU$\rightarrow$ RRU : heartbeat (capabilities request)
\item RRU$\rightarrow$ RAU: capabilities indication
\item RAU$\rightarrow$ RRU: configuration (band, dl\_Carrier,ul\_Carrier, dl\_RS\_EPRE, rx/tx attenuation)
\end{enumerate}
\end{small}
During steady state, the control port manages the link quality and status (packet losses, synchronization state, start/stop, etc.)
\begin{small}
\begin{itemize}
\item IF5 interface
\begin{itemize}
\item DL subframes with timestamp (16-bit samples)
\item UL subframes with timestamp (16-bit samples)
\item optional A-law compression (13$\rightarrow$8bit)
\end{itemize}
\item IF4p5 interface
\begin{itemize}
\item DL packets, ofdm symbols with frame/subframe/symbol count
\item UL packets, ofdm symbols with frame/subframe/symbol count (16-bit)
\item UL PRACH packets with frame/subframe count (16-bit)
\item optional A-law compression (13$\rightarrow$8bit)
\end{itemize}
\end{itemize}
\end{small}
RU - L1 data plane
544 288 m
544 256 l
704 256 l
704 288 l
h
IF5 Packet Format (16-bit)
64 352 m
64 320 l
224 320 l
224 352 l
h
64 352 m
64 320 l
224 320 l
224 352 l
h
64 352 m
64 320 l
224 320 l
224 352 l
h
64 352 m
64 320 l
224 320 l
224 352 l
h
0
16
32
48
15
31
47
63
64 320 m
64 288 l
544 288 l
544 320 l
h
544 320 m
544 288 l
704 288 l
704 320 l
h
64 288 m
64 256 l
384 256 l
384 288 l
h
384 288 m
384 256 l
544 256 l
544 288 l
h
544 288 m
544 256 l
704 256 l
704 288 l
h
\small Destination Address
\small Source
\small Type (0x1234)
\small RF Config
\small Address
64 160 m
64 128 l
384 128 l
384 160 l
h
\small Frame Check Sequence
256 240 m
256 240 l
256 240 l
\small Timestamp
5 63.5079 m
5 46.9999 l
645 46.9999 l
645 63.5079 l
h
64 256 m
64 224 l
384 224 l
384 256 l
h
64 256 m
64 224 l
384 224 l
384 256 l
h
64 256 m
64 224 l
384 224 l
384 256 l
h
64 256 m
64 224 l
384 224 l
384 256 l
h
256 240 m
256 240 l
256 240 l
166 304 m
165.917 272.508 l
166.247 272.508 l
486 304 m
486.316 272.508 l
485.986 272.508 l
486.316 256 m
486.646 224 l
485.657 224 l
486.316 256 m
486.646 224 l
485.657 224 l
\tiny $I_0$
\tiny $Q_0$
\tiny $I_1$
\tiny $Q_1$
\tiny $Q_{N-2}$
\tiny $Q_{N-2}$
\tiny $I_{N-1}$
\tiny $Q_{N-1}$
\tiny
\begin{itemize}
\item {\bf Type:} 2 byte (16 bit) field that specifies the RoE protocol
\item {\bf RX Config:} 16-bit. Currently just antenna index (0-7). Can later be used for gain/timing adjustments.
\item {\bf Timstamp:} Timestamp in samples of the first sample of the received packet.
\end{itemize}
\begin{itemize}
\item {\bf data block :} Uncompressed IQ samples, 16-bit resolution for each real and imaginary component. $N$ complex samples per packet. $N$ can be configured at initialization.
\end{itemize}
IF5 Packet Format (8-bit)
64 352 m
64 320 l
224 320 l
224 352 l
h
64 352 m
64 320 l
224 320 l
224 352 l
h
64 352 m
64 320 l
224 320 l
224 352 l
h
64 352 m
64 320 l
224 320 l
224 352 l
h
0
16
32
48
15
31
47
63
64 320 m
64 288 l
544 288 l
544 320 l
h
544 320 m
544 288 l
704 288 l
704 320 l
h
64 288 m
64 256 l
384 256 l
384 288 l
h
384 288 m
384 256 l
544 256 l
544 288 l
h
544 288 m
544 256 l
704 256 l
704 288 l
h
384 256 m
384 224 l
704 224 l
704 256 l
h
\small Destination Address
\small Source
\small Type (0xBEEF)
\small RX Flags
\small Address
544 288 m
544 256 l
704 256 l
704 288 l
h
\small FIFO\_status
544 288 m
544 256 l
704 256 l
704 288 l
h
\tiny SeqNum
\tiny rsvd
248.997 435.732 m
248.997 403.732 l
\small Word0
5 63.5079 m
5 46.9999 l
645 46.9999 l
645 63.5079 l
h
64 256 m
64 224 l
384 224 l
384 256 l
h
64 256 m
64 224 l
384 224 l
384 256 l
h
64 256 m
64 224 l
384 224 l
384 256 l
h
166 304 m
165.917 272.508 l
166.247 272.508 l
486 304 m
486.316 272.508 l
485.986 272.508 l
486.316 256 m
486.646 224 l
485.657 224 l
\tiny $I_0$
248.997 435.732 m
248.997 403.732 l
248.997 435.732 m
248.997 403.732 l
248.997 435.732 m
248.997 403.732 l
248.997 435.732 m
248.997 403.732 l
248.997 435.732 m
248.997 403.732 l
248.997 435.732 m
248.997 403.732 l
\tiny $Q_0$
\tiny $I_1$
\tiny $Q_1$
\tiny $I_2$
\tiny $Q_2$
\tiny $I_3$
\tiny $Q_3$
\tiny $I_{638}$
\tiny $Q_{638}$
\tiny $I_{639}$
\tiny $Q_{639}$
\tiny
\begin{itemize}
\item {\bf Type:} 2 byte (16 bit) field that specifies the RoE protocol
\item {\bf RX Flags:} overrun indicator. should be '0'.
\item {\bf FIFO status:} 2 bytes. should be '0'.
\item {\bf SeqNum:} 1 byte. Sequence number of the ethernet packet.
\item {\bf rsvd:} 1 byte. shoult be '0'. \item {\bf Word0:} 4 byte (32-bit). should be '0'.
\item {\bf Timstamp:} Timestamp in samples of the first sample of the received packet. \end{itemize}
\begin{itemize}
\item {\bf data block :} Uncompressed IQ samples, 8-bit resolution for each real and imaginary component. 640 complex samples per packet.
\end{itemize}
384 256 m
384 224 l
704 224 l
704 256 l
h
\small Timestamp
64 256 m
64 224 l
384 224 l
384 256 l
h
486 304 m
486.316 272.508 l
485.986 272.508 l
248.997 435.732 m
248.997 403.732 l
248.997 435.732 m
248.997 403.732 l
\tiny $I_4$
\tiny $Q_4$
\tiny $I_5$
\tiny $Q_5$
64 160 m
64 128 l
384 128 l
384 160 l
h
\small Frame Check Sequence
IF4p5 Packet Formats (RAW)
272 512 m
272 512 l
272 512 l
272 512 l
h
64 352 m
64 320 l
224 320 l
224 352 l
h
64 352 m
64 320 l
224 320 l
224 352 l
h
64 352 m
64 320 l
224 320 l
224 352 l
h
64 352 m
64 320 l
224 320 l
224 352 l
h
0
16
32
48
15
31
47
63
64 320 m
64 288 l
544 288 l
544 320 l
h
544 320 m
544 288 l
704 288 l
704 320 l
h
64 288 m
64 256 l
384 256 l
384 288 l
h
384 288 m
384 256 l
544 256 l
544 288 l
h
544 288 m
544 256 l
704 256 l
704 288 l
h
64 256 m
64 224 l
384 224 l
384 256 l
h
384 256 m
384 224 l
704 224 l
704 256 l
h
64 160 m
64 96 l
704 96 l
704 160 l
h
\small Destination Address
\small Source
\small Type (0x080A)
\small Subtype (0x0021)
\small Address
\small LTE PRACH Configuration
\small Reserved
\small PRACH data block (one antenna)
64 160 m
64 128 l
384 128 l
384 160 l
h
\small Frame Check Sequence
384 160 m
384 128 l
704 128 l
704 160 l
h
IF4p5 PRACH Packet (RRU$\rightarrow$ RAU,RCC)
\tiny
\begin{itemize}
\item {\bf Type:} 2 byte (16 bit) field that specifies the RoE protocol
\item {\bf Subtype:} 2 byte (16 bit) field that specifies the packet subtype
\item {\bf Reserved:} 4 byte (32 bit) field reserved
\item {\bf LTE PRACH conf:} 4 byte (32-bit) field that details the configuration of the LTE PRACH packet
\end{itemize}
\vskip 3pt
\begin{tabular}{|c|c|}
\hline
{\bf field (0 is LSB, 31 is MSB)} & {\bf description}\\ \hline
rsvd (0:2) & Reserved.\\ \hline
ant (3:5) & 3-bit Antenna index of LTE PRACH packet\\ \hline
RF Num (6:21) & 16-bit field indicating the Radio Frame number of this received PRACH packet\\ \hline
SF Num (22:25) & 4-bit field indicating the sub-frame number in the radio frame for the LTE PRACH packet\\
& Valid range of 0 to 9.\\ \hline
Exponent (26:31) & FFT exponent output (0 if unscaled) \\
\hline
\end{tabular}
\begin{itemize}
\item {\bf PRACH data block:} Uncompressed IQ samples
\end{itemize}
64 256 m
64 224 l
384 224 l
384 256 l
h
64 256 m
64 224 l
384 224 l
384 256 l
h
\tiny RE 0 (Real)
\tiny RE 0 (Imag)
\tiny RE 1 (Real)
\tiny RE 1 (Imag)
166 304 m
165.917 272.508 l
166.247 272.508 l
486 304 m
486.316 272.508 l
485.986 272.508 l
64 256 m
64 224 l
384 224 l
384 256 l
h
64 256 m
64 224 l
384 224 l
384 256 l
h
\tiny RE 837 (Real)
\tiny RE 837 (Imag)
\tiny RE 838 (Real)
\tiny RE 838 (Imag)
166 304 m
165.917 272.508 l
166.247 272.508 l
486 304 m
486.316 272.508 l
485.986 272.508 l
6.00001 47.492 m
6.00001 32 l
646 32 l
646 47.492 l
h
528 16 m
528 16 l
528 16 l
528 16 l
h
560 16 m
560 16 l
560 16 l
560 16 l
h
64 224 m
64 192 l
224 192 l
224 224 l
h
224 224 m
224 192 l
384 192 l
384 224 l
h
384 224 m
384 192 l
544 192 l
544 224 l
h
544 224 m
544 192 l
704 192 l
704 224 l
h
64 192 m
64 160 l
224 160 l
224 192 l
h
224 192 m
224 160 l
384 160 l
384 192 l
h
384 192 m
384 160 l
544 160 l
544 192 l
h
544 192 m
544 160 l
704 160 l
704 192 l
h
\small Gain 0
\small Gain 1
\small Gain 4
\small Gain 5
\small Gain 2
\small Gain 3
\small Gain 6
\small Gain 7
272 512 m
272 512 l
272 512 l
272 512 l
h
64 352 m
64 320 l
224 320 l
224 352 l
h
64 352 m
64 320 l
224 320 l
224 352 l
h
64 352 m
64 320 l
224 320 l
224 352 l
h
64 352 m
64 320 l
224 320 l
224 352 l
h
0
16
32
48
15
31
47
63
64 320 m
64 288 l
544 288 l
544 320 l
h
544 320 m
544 288 l
704 288 l
704 320 l
h
64 288 m
64 256 l
384 256 l
384 288 l
h
384 288 m
384 256 l
544 256 l
544 288 l
h
544 288 m
544 256 l
704 256 l
704 288 l
h
64 256 m
64 224 l
384 224 l
384 256 l
h
384 256 m
384 224 l
704 224 l
704 256 l
h
\small Destination Address
\small Source
\small Type (0x080A)
\small Subtype (0x0019)
\small Address
\small Frame status
\small Reserved
64 160 m
64 128 l
384 128 l
384 160 l
h
\small Frame Check Sequence
\tiny
\begin{itemize}
\item {\bf Type:} 2 byte (16 bit) field that specifies the RoE protocol
\item {\bf Subtype:} 2 byte (16 bit) field that specifies the packet subtype
\item {\bf Reserved:} 4 byte (32 bit) field reserved
\item {\bf Frame Status:} 4 byte (32 bit) field
\end{itemize}
\vskip 3pt
\begin{tabular}{|c|c|}
\hline
{\bf field (0 is LSB, 31 is MSB)} & {\bf description}\\ \hline
{\bf ant} (0:2) & The number of Antenna Carriers represented in the packet. Antenna numbers \\
& range from 0 to 7 with valid inputs being 0,1, 3 and 7 (1,2,4,8 antennas)\\ \hline
{\bf ant start} (3:5) & starting antenna number\\ \hline
{\bf RF Num} (6:21) & 16-bit field indicating the Radio Frame number of the UL\_RE samples\\ \hline
{\bf SF Num} (22:25) & 4-bit field indicating the sub-frame number in the radio frame for the UL\_RE samples\\
& Valid range of 0 to 9.\\ \hline
{\bf Sym Num:} (26:29) & Symbol number. Valid range of 0 to 13. \\
{\bf rsvd:} (30:31) & reserved\\
\hline
\end{tabular}
\begin{itemize}
\item {\bf ULRE data block:} compressed IQ samples (8-bit A-law). $N$ is the number of resource elements $N_{\mathrm{RB}}^{\mathrm{UL}}$.
\end{itemize}
5 63.5079 m
5 46.9999 l
645 46.9999 l
645 63.5079 l
h
64 256 m
64 224 l
384 224 l
384 256 l
h
64 256 m
64 224 l
384 224 l
384 256 l
h
64 256 m
64 224 l
384 224 l
384 256 l
h
64 256 m
64 224 l
384 224 l
384 256 l
h
IF4p5 Packets : ULRE (RRU$\rightarrow$ RAU,RCC)
256 240 m
256 240 l
256 240 l
166 304 m
165.917 272.508 l
166.247 272.508 l
486 304 m
486.316 272.508 l
485.986 272.508 l
486.316 256 m
486.646 224 l
485.657 224 l
486.316 256 m
486.646 224 l
485.657 224 l
258.16 141.771 m
258.16 141.771 l
418.597 191.907 m
418.597 191.907 l
429.181 79.9357 m
429.181 79.9357 l
\tiny RE 0\\Ant 1 (Re)
\tiny RE 0\\Ant 1 (Im)
\tiny RE 1\\Ant 1 (Re)
\tiny RE 1\\Ant 1 (Im)
\tiny RE 2\\Ant 1 (Re)
\tiny RE 2\\Ant 1 (Im)
\tiny RE 3\\Ant 1 (Re)
\tiny RE 3\\Ant 1 (Im)
\tiny RE $N-4$\\Ant $R$ (Re)
\tiny RE $N-4$\\Ant $R$ (Im)
\tiny RE $N-3$\\Ant $R$ (Re)
\tiny RE $N-3$\\Ant $R$ (Im)
\tiny RE $N-2$\\Ant $R$ (Re)
\tiny RE $N-2$\\Ant $R$ (Im)
\tiny RE $N-1$\\Ant $R$ (Re)
\tiny RE $N-1$\\Ant $R$ (Im)
248.997 435.732 m
248.997 403.732 l
248.997 435.732 m
248.997 403.732 l
248.997 435.732 m
248.997 403.732 l
248.997 435.732 m
248.997 403.732 l
248.997 435.732 m
248.997 403.732 l
248.997 435.732 m
248.997 403.732 l
248.997 435.732 m
248.997 403.732 l
248.997 435.732 m
248.997 403.732 l
272 512 m
272 512 l
272 512 l
272 512 l
h
64 352 m
64 320 l
224 320 l
224 352 l
h
64 352 m
64 320 l
224 320 l
224 352 l
h
64 352 m
64 320 l
224 320 l
224 352 l
h
64 352 m
64 320 l
224 320 l
224 352 l
h
0
16
32
48
15
31
47
63
64 320 m
64 288 l
544 288 l
544 320 l
h
544 320 m
544 288 l
704 288 l
704 320 l
h
64 288 m
64 256 l
384 256 l
384 288 l
h
384 288 m
384 256 l
544 256 l
544 288 l
h
544 288 m
544 256 l
704 256 l
704 288 l
h
64 256 m
64 224 l
384 224 l
384 256 l
h
384 256 m
384 224 l
704 224 l
704 256 l
h
\small Destination Address
\small Source
\small Type (0x080A)
\small Subtype (0x0020)
\small Address
\small Frame status
\small Reserved
64 160 m
64 128 l
384 128 l
384 160 l
h
\small Frame Check Sequence
\tiny
\begin{itemize}
\item {\bf Type:} 2 byte (16 bit) field that specifies the RoE protocol
\item {\bf Subtype:} 2 byte (16 bit) field that specifies the packet subtype
\item {\bf Reserved:} 4 byte (32 bit) field reserved
\item {\bf Frame Status:} 4 byte (32 bit) field
\end{itemize}
\vskip 3pt
\begin{tabular}{|c|c|}
\hline
{\bf field (0 is LSB, 31 is MSB)} & {\bf description}\\ \hline
{\bf ant} (0:2) & The number of Antenna Carriers represented in the packet. Antenna numbers \\
& range from 0 to 7 with valid inputs being 0,1, 3 and 7 (1,2,4,8 antennas)\\ \hline
{\bf ant start} (3:5) & starting antenna number\\ \hline
{\bf RF Num} (6:21) & 16-bit field indicating the Radio Frame number of this DLRE packet\\ \hline
{\bf SF Num} (22:25) & 4-bit field indicating the sub-frame number in the radio frame for the DLRE packet\\
& Valid range of 0 to 9.\\ \hline
{\bf Sym Num:} (26:29) & Symbol number. Valid range of 0 to 13. \\
{\bf rsvd:} (30:31) & reserved\\
\hline
\end{tabular}
\begin{itemize}
\item DLRE data block : compressed IQ samples (8-bit A-law). $N$ is the number of resource elements $N_{\mathrm{RB}}^{\mathrm{DL}}$.
\end{itemize}
IF4p5 Packets : DLRE (RAU,RCC $\rightarrow$RRU)
258.16 141.771 m
258.16 141.771 l
418.597 191.907 m
418.597 191.907 l
429.181 79.9357 m
429.181 79.9357 l
5 63.5079 m
5 46.9999 l
645 46.9999 l
645 63.5079 l
h
64 256 m
64 224 l
384 224 l
384 256 l
h
64 256 m
64 224 l
384 224 l
384 256 l
h
64 256 m
64 224 l
384 224 l
384 256 l
h
64 256 m
64 224 l
384 224 l
384 256 l
h
166 304 m
165.917 272.508 l
166.247 272.508 l
486 304 m
486.316 272.508 l
485.986 272.508 l
486.316 256 m
486.646 224 l
485.657 224 l
486.316 256 m
486.646 224 l
485.657 224 l
\tiny RE 0\\Ant 1 (Re)
\tiny RE 0\\Ant 1 (Im)
\tiny RE 1\\Ant 1 (Re)
\tiny RE 1\\Ant 1 (Im)
\tiny RE 2\\Ant 1 (Re)
\tiny RE 2\\Ant 1 (Im)
\tiny RE 3\\Ant 1 (Re)
\tiny RE 3\\Ant 1 (Im)
\tiny RE $N-4$\\Ant $R$ (Re)
\tiny RE $N-4$\\Ant $R$ (Im)
\tiny RE $N-3$\\Ant $R$ (Re)
\tiny RE $N-3$\\Ant $R$ (Im)
\tiny RE $N-2$\\Ant $R$ (Re)
\tiny RE $N-2$\\Ant $R$ (Im)
\tiny RE $N-1$\\Ant $R$ (Re)
\tiny RE $N-1$\\Ant $R$ (Im)
248.997 435.732 m
248.997 403.732 l
248.997 435.732 m
248.997 403.732 l
248.997 435.732 m
248.997 403.732 l
248.997 435.732 m
248.997 403.732 l
248.997 435.732 m
248.997 403.732 l
248.997 435.732 m
248.997 403.732 l
248.997 435.732 m
248.997 403.732 l
248.997 435.732 m
248.997 403.732 l
640 128 m
640 32 l
704 32 l
704 128 l
h
640 480 m
640 176 l
720 176 l
720 480 l
h
328.159 119.72 m
328.159 15.3556 l
554.022 15.3556 l
554.022 119.72 l
h
96 784 m
96 496 l
224 496 l
224 784 l
h
-192 928 m
-192 944 l
-192 944 l
-192 928 l
h
96 784 m
96 496 l
224 496 l
224 784 l
h
\begin{small}L1 Instance 0\end{small}
LI instance 1
\begin{small}MAC/RLC/PDCP Instance 0\end{small}
364 518 m
364 518 l
364 518 l
364 518 l
h
96 784 m
96 496 l
224 496 l
224 784 l
h
128 768 m
128 704 l
192 704 l
192 768 l
h
\setstretch{.5}\begin{tiny}
DL/UL Scheduler
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
MAC RX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PDCP RX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
MAC TX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PDCP TX
\end{tiny}
180 460 m
340 460 l
180 460 m
340 460 l
\begin{tiny}1ms TICK\end{tiny}
392.067 448.35 m
232.502 360 l
\begin{tiny}$\mathrm{DCI}_0$, Transport Blocks\end{tiny}
\begin{tiny}$\mathrm{DCI}_1$\end{tiny}
\begin{tiny}$\mathrm{DCI}_2$\end{tiny}
\setstretch{.5}\begin{tiny}
RLC RX
\end{tiny}
\setstretch{.5}\begin{tiny}
RLC TX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PHY RX $n$\\
$\mathrm{eNB}_0$
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PHY RX $n$\\
$\mathrm{eNB}_1$
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PHY RX $n$\\
$\mathrm{eNB}_2$
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PHY TX $n+4$\\
$\mathrm{eNB}_0$
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PHY TX $n+4$\\
$\mathrm{eNB}_1$
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PHY TX $n+4$\\
$\mathrm{eNB}_2$
\end{tiny}
234.502 211.006 m
387 210 l
243.386 213.48 m
243.386 213.48 l
232.502 250.102 m
387.004 250.371 l
232.502 310 m
387 310 l
232.502 346.88 m
387 347 l
336.917 451.424 m
185.872 274.589 l
232.5 410 m
386.079 409.083 l
\begin{tiny}Transport Blocks\end{tiny}
\begin{tiny}Transport Blocks\end{tiny}
\setstretch{.5}\begin{tiny}CQI/SR/ACK/NAK/PHR\\Transport Blocks\end{tiny}
\setstretch{.5}\begin{tiny}CQI/SR/ACK/NAK/PHR\\Transport Blocks\end{tiny}
\setstretch{.5}\begin{tiny}CQI/SR/ACK/NAK/PHR\\Transport Blocks\end{tiny}
180 460 m
340 460 l
180 460 m
340 460 l
\begin{tiny}1ms TICK\end{tiny}
\begin{tiny}$\mathrm{DCI}_0$, Transport Blocks\end{tiny}
184.502 313 m
332 313 l
\begin{small}MAC/RLC/PDCP Instance 1\end{small}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
MAC TX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PDCP TX
\end{tiny}
\setstretch{.5}\begin{tiny}
RLC TX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
MAC TX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PDCP TX
\end{tiny}
\setstretch{.5}\begin{tiny}
RLC TX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
MAC RX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PDCP RX
\end{tiny}
\setstretch{.5}\begin{tiny}
RLC RX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
MAC RX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PDCP RX
\end{tiny}
\setstretch{.5}\begin{tiny}
RLC RX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PHY RX \\
$\mathrm{eNB}_0$
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PHY TX \\
$\mathrm{eNB}_0$
\end{tiny}
\setstretch{.5}\begin{tiny}CQI/SR/ACK/NAK/PHR\\Transport Blocks\end{tiny}
128 768 m
128 704 l
192 704 l
192 768 l
h
\setstretch{.5}\begin{tiny}
DL/UL Scheduler
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
MAC RX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PDCP RX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
MAC TX
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PDCP TX
\end{tiny}
\setstretch{.5}\begin{tiny}
RLC RX
\end{tiny}
\setstretch{.5}\begin{tiny}
RLC TX
\end{tiny}
RU/L1 Instances and Component Carriers
96 784 m
96 496 l
224 496 l
224 784 l
h
96 784 m
96 496 l
224 496 l
224 784 l
h
364 518 m
364 518 l
364 518 l
364 518 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
$\mathrm{RU}_3$
\end{tiny}
144 480 m
144 32 l
176 32 l
176 480 l
h
176 432 m
176 432 l
192 464 m
176 464 l
190.041 464 m
190.041 464 l
190.041 464 m
190.041 464 l
192 464 m
176 464 l
192 464 m
176 464 l
192 464 m
176 464 l
192 464 m
176 464 l
192 464 m
176 464 l
192 464 m
176 464 l
192 464 m
176 464 l
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
$\mathrm{RU}_0$
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
$\mathrm{RU}_1$
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
$\mathrm{RU}_2$
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
$\mathrm{RU}_4$
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
$\mathrm{RU}_5$
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
$\mathrm{RU}_6$
\end{tiny}
144 464 m
129.959 464 l
144 464 m
129.959 464 l
144 464 m
129.959 464 l
144 464 m
129.959 464 l
144 464 m
129.959 464 l
144 464 m
129.959 464 l
144 464 m
129.959 464 l
144 464 m
129.959 464 l
144 464 m
129.959 464 l
144 464 m
129.959 464 l
144 464 m
129.959 464 l
144 464 m
129.959 464 l
144 464 m
129.959 464 l
144 464 m
129.959 464 l
640 400 m
640 400 l
640 400 l
640 400 l
h
\small\begin{itemize}
\item {\em Radio Unit} (RU) is
\begin{itemize}
\item an entity managing a set of {\bf physical} antennas. It can have a {\em local RF unit} or {\em remote RF unit}
\item performs precoding of multiple eNB TX streams and OFDM modulation (TX) and demodulation (RX) (part of 36.211)
\end{itemize}
\item {\em L1 Instance} (indexed by {\tt Mod\_id}, or {\tt enb\_mod\_id}) is a separate set of threads and contexts for the eNB/gNB procedures. There is one MAC/RLC entity associated to all :1 component carriers.
\item {\em L1 Component Carrier} (indexed by {\tt CC\_id}) is
\begin{itemize}
\item a software entity managing the L1 procedures (36.213,36.212,36.211) and can act on
\begin{itemize}
\item sectored antenna component
\item Rel10+ component carrier
\item virtual cell for DAS or Massive-MIMO array
\end{itemize}
\item each L1 instance is managed by one or two threads which operate on a subframe (TX and RX) and can have a {\em local RU} or {\em remote RU}
\item if a remote radio unit the eNB performs the 36.213 specifications only (HARQ, etc.) and connects to the remainder via the IF2 midhaul interface.
\end{itemize}
\end{itemize}
RU/L1 Instances and Component Carriers
RU/L1 Instances and Component Carriers
\small\begin{itemize}
\item RU may have both an {\tt if\_device} for fronthaul and an {\tt rf\_device} for interconnection with a local RF unit
\item if the {\tt rf\_device} is absent, it must have a southbound fronthaul interface (either IF5 or IF4p5) depending on the local processing of the remote RU
\item if the {\tt if\_device} is absent, it must have a southbound RF interface and {\tt rf\_device}.
\item three types of L1 processing are performed by the RU \begin{itemize}
\item subset of common L1 procedures from 36.211 specifications
\item fronthaul compression/decompression
\item framing
\end{itemize}
\item on TX
\begin{itemize}
\item A-law compression for (NGFI\_RAU\_IF4p5, NGFI\_RAU\_IF5)
\item A-law decompression (for NGFI\_RRU\_IF4p5 and NGFI\_RRU\_IF5)
\item OFDM modulation and cyclic prefix insertion (for NGFI\_RRU\_IF4p5,NGFI\_RAU\_IF5,3GPP\_eNodeB\_BBU,3GPP\_eNodeB)
\item Precoding (for NGFI\_RAU\_IF5, NGFI\_RAU\_IF4p5,3GPP\_eNodeB\_BBU,3GPP\_eNodeB)
\end{itemize}
\end{itemize}
RU/L1 Instances and Component Carriers
\small\begin{itemize}
\item on RX
\begin{itemize}
\item A-law compression for (NGFI\_RRU\_IF4p5, NGFI\_RRU\_IF5)
\item A-law decompression (for NGFI\_RAU\_IF4p5 and 3GPP\_eNodeB\_BBU)
\item cyclic prefix removal, frequency-shifting, OFDM demodulation, PRACH DFT (for NGFI\_RRU\_IF4p5, NGFI\_RAU\_IF5, 3GPP\_eNodeB\_BBU, 3GPP\_eNodeB)
\end{itemize}
\item On TX path
\begin{itemize}
\item L1 instances/component carriers operate on a set of logical antenna ports (0-3 for TM1-6, 4 for eMBMS, 5 for TM7, 6 for positioning, 7-8 for TM8, etc.)
\item each L1 instance has a list of RUs and the logical antenna ports are mapped to the physical antennas attached to the RUs via the precoding function
\end{itemize}
\end{itemize}
\small\begin{itemize}
\item Example configurations
\begin{itemize}
\item {\em itsolated eNB:} one instance and one or several component carriers (multiple-frequencies or antenna sectors). Potentially multiple radio-units (for CoMP). Here there is a common MACRLC instnance driving multiple L1 procedures
\item {\em indoor DAS system (RCC split with L1/L2 RAU) Multiple layer 2 instances each driving one or more component carriers} here the RAU implements multiple L1/L2 instances and precoding function. Usually with IF2/IF1'' xhaul to RCC or potentially also MAC/RLC in RAU with IF1' xhaul to RCC.
\item {\em massive-MIMO array} same as 2nd indoor DAS system (i.e. integrated L1/L2 RAU with array)
\end{itemize}
\end{itemize}
RU/L1 Instances and Component Carriers
288 384 m
288 96 l
672 96 l
672 384 l
h
301.83 142.941 m
301.83 103.286 l
648 104 l
648 144 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt if\_device}
\end{tiny}
301.83 142.941 m
301.83 103.286 l
648 104 l
648 144 l
h
\setstretch{.5}\begin{tiny}
{\tt NFGI\_IF4p5 / ethernet}
\end{tiny}
\setstretch{.5}\begin{tiny}
upper-PHY TX (212,213)
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt if\_device}
\end{tiny}
389.83 375.941 m
389.83 336.286 l
616 336 l
616 376 l
h
\setstretch{.5}\begin{tiny}
{\tt NFGI\_IF1pp / ethernet}
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt if\_device}
\end{tiny}
\setstretch{.5}\begin{tiny}
TX PRECODING\\RX COMBINING
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt if\_device}
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt if\_device}
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt if\_device}
\end{tiny}
\small\begin{itemize}
\item Example: RAU with {\tt NGFI\_IF1pp} xhaul (MAC/PHY split) northbound, {\tt NGFI\_IF4p5} fronthaul southbound, 2 vCell logical interfaces (2 L1/L2 instances, or 1 L2 instance and 2 CCs), 4 RRUs with {\tt NGFI\_IF4p5}
\end{itemize}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
upper-PHY RX (212,213)
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
upper-PHY RX (212,213)
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
upper-PHY TX (212,213)
\end{tiny}
184.83 261.941 m
184.83 128 l
272 128 l
272 261.941 l
h
184.83 261.941 m
184.83 128 l
272 128 l
272 261.941 l
h
184.83 261.941 m
184.83 128 l
272 128 l
272 261.941 l
h
184.83 261.941 m
184.83 128 l
272 128 l
272 261.941 l
h
\setstretch{.5}\begin{tiny}
$\mathrm{RU}_0$
\end{tiny}
\setstretch{.5}\begin{tiny}
$\mathrm{RU}_1$
\end{tiny}
\setstretch{.5}\begin{tiny}
$\mathrm{RU}_2$
\end{tiny}
\setstretch{.5}\begin{tiny}
$\mathrm{RU}_3$
\end{tiny}
184.83 261.941 m
184.83 128 l
272 128 l
272 261.941 l
h
\setstretch{.5}\begin{tiny}
$\mathrm{eNB}_0$
\end{tiny}
184.83 261.941 m
184.83 128 l
272 128 l
272 261.941 l
h
\setstretch{.5}\begin{tiny}
$\mathrm{eNB}_1$
\end{tiny}
RAU Example (DAS)
168 416 m
168 32 l
576 32 l
576 416 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PHY RX0
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt if\_device}
\end{tiny}
176 176 m
176 136 l
552 136 l
552 176 l
h
\setstretch{.5}\begin{tiny}
{\tt NGFI\_IF4p5 / ethernet}
\end{tiny}
\setstretch{.5}\begin{tiny}
PHY TX0
\end{tiny}
184 360 m
184 336 l
552 336 l
552 360 l
h
\setstretch{.5}\begin{tiny}
{\tt if\_device}
\end{tiny}
184 408 m
184 368 l
552 368 l
552 408 l
h
\setstretch{.5}\begin{tiny}
{\tt NGFI\_IF1p / ethernet}
\end{tiny}
184 264 m
184 224 l
552 224 l
552 264 l
h
\setstretch{.5}\begin{tiny}
TX PRECODING\\RX COMBINING
\end{tiny}
\small\begin{itemize}
\item Example: massive-MIMO RAU with {\tt NGFI\_IF1p} fronthaul northbound, 8 L1 component carriers,1 L2 instances, many local RRUs with {\tt NGFI\_IF4p5} southbound
\end{itemize}
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt if\_device}
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt if\_device}
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
{\tt if\_device}
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PHY RX1
\end{tiny}
\setstretch{.5}\begin{tiny}
PHY TX1
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PHY RX7
\end{tiny}
\setstretch{.5}\begin{tiny}
PHY TX7
\end{tiny}
184 320 m
184 288 l
552 288 l
552 320 l
h
\setstretch{.5}\begin{tiny}
RLC
\end{tiny}
184 280 m
184 248 l
552 248 l
552 280 l
h
\setstretch{.5}\begin{tiny}
MAC
\end{tiny}
376 208 m
448 208 l
184.83 261.941 m
184.83 128 l
272 128 l
272 261.941 l
h
\setstretch{.5}\begin{tiny}
$\mathrm{eNB}_0$
\end{tiny}
184.83 261.941 m
184.83 128 l
272 128 l
272 261.941 l
h
\setstretch{.5}\begin{tiny}
$\mathrm{eNB}_1$
\end{tiny}
184.83 261.941 m
184.83 128 l
272 128 l
272 261.941 l
h
\setstretch{.5}\begin{tiny}
$\mathrm{eNB}_7$
\end{tiny}
184.83 261.941 m
184.83 128 l
272 128 l
272 261.941 l
h
\setstretch{.5}\begin{tiny}
$\mathrm{RU}_{0\cdots 15}$
\end{tiny}
184.83 261.941 m
184.83 128 l
272 128 l
272 261.941 l
h
\setstretch{.5}\begin{tiny}
$\mathrm{RU}_{16\cdots 31}$
\end{tiny}
184.83 261.941 m
184.83 128 l
272 128 l
272 261.941 l
h
\setstretch{.5}\begin{tiny}
$\mathrm{RU}_{32\cdots 47}$
\end{tiny}
184.83 261.941 m
184.83 128 l
272 128 l
272 261.941 l
h
\setstretch{.5}\begin{tiny}
$\mathrm{RU}_{48\cdots 63}$
\end{tiny}
RAU Example (Massive-MIMO)
330 430 m
330 390 l
380 390 l
380 430 l
h
232 384 m
232 256 l
543.99 256 l
543.99 384 l
h
96 136 m
96 48 l
540 48 l
540 136 l
h
88 192 m
88 80 l
248 80 l
248 192 l
h
88 192 m
88 80 l
248 80 l
248 192 l
h
153 232 m
153 176 l
228 176 l
228 232 l
h
\small\begin{itemize}
\item IF5 transports packets of size equal to a subframe and corresponding to a 1ms chunk of signal in the time-domain. This is done via the functions send\_if5 and recv\_if5, in the layer1 transport procedures ({\tt openair1/PHY/LTE\_TRANSPORT/if5\_tools.c}). A timestamp is given along with the samples, corresponding to the time (in samples) of the first sample of the packet.
\item each block can be compressed with A-law compression, yielding a compression rate of .5.
\end{itemize}
RU Procedures (NGFI\_IF5)
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PHY RX $n$\\
$\mathrm{eNB}_2$ (211,212)
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PHY TX $n+4$\\
$\mathrm{eNB}_2$ (211,212)
\end{tiny}
144 480 m
144 32 l
176 32 l
176 480 l
h
\setstretch{.5}\begin{tiny}
$\mathrm{RU}_0$
\end{tiny}
371.001 106.337 m
323.502 106.337 l
323.502 106.337 l
371.001 106.337 m
323.502 106.337 l
323.502 106.337 l
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PHY RX $n$\\
$\mathrm{eNB}_1$ (211,212)
\end{tiny}
371.001 106.337 m
323.502 106.337 l
323.502 106.337 l
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PHY RX $n$\\
$\mathrm{eNB}_0$ (211,212)
\end{tiny}
371.001 106.337 m
323.502 106.337 l
323.502 106.337 l
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PHY TX $n+4$\\
$\mathrm{eNB}_1$ (211,212)
\end{tiny}
371.001 106.337 m
323.502 106.337 l
323.502 106.337 l
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PHY TX $n+4$\\
$\mathrm{eNB}_0$ (211,212)
\end{tiny}
371.001 106.337 m
323.502 106.337 l
323.502 106.337 l
132 294 m
132 208 l
384 208 l
384 294 l
h
144.991 145.396 m
289.432 145.382 l
144.991 120.982 m
289.432 121.382 l
\tiny {\tt RU->ru\_time.rxdata[0]}
\tiny {\tt RU->ru\_time.rxdata[R-1]}
153 232 m
153 176 l
228 176 l
228 232 l
h
\setstretch{.5}\tt\tiny slot\_fep\_ul\par36.211
153 232 m
153 176 l
228 176 l
228 232 l
h
184 268 m
196 268 l
184 244 m
196 244 l
\tiny {\tt eNB->common\_vars.rxdataF[0]}
\tiny {\tt eNB->common\_vars.rxdataF[R-1]}
273 269 m
412 268 l
415.263 120.984 m
575 120.608 l
153 232 m
153 176 l
228 176 l
228 232 l
h
\tiny $\mathrm{Alaw}^{-1}()$
56 128 m
110.531 128.542 l
\tiny from IF5 {\tt if\_device}
680 104 m
680 104 l
680 104 l
680 104 l
h
544 324 m
544 144 l
576 144 l
576 324 l
h
\setstretch{.5}\tt\tiny P\\R\\E\\C\\O\\D\\I\\N\\G\\
632 360 m
632 188 l
660 188 l
660 360 l
h
\tiny {\tt RU->ru\_time.txdata[0]}
700 264 m
735.133 264 l
632 264.556 m
671.833 265 l
\setstretch{.5}\tt\tiny do\_ofdm\_mod\_rt()\par 36.211
\setstretch{.5}\begin{tiny}
{\tt openair1/SCHED/ru-procedures.c}
\end{tiny}
517.232 240.387 m
576.078 240 l
576.078 240 l
517.232 240.387 m
576.078 240 l
576.078 240 l
517.232 240.387 m
576.078 240 l
576.078 240 l
517.232 240.387 m
576.078 240 l
576.078 240 l
\tiny $\mathrm{Alaw}()$
\tiny to IF5 {\tt if\_device}
56 240 m
356.214 240.281 l
700 264 m
735.133 264 l
\tiny {\tt RU->ru\_time.txdata[T-1]}
\setstretch{.5}\begin{tiny}
{\tt recv\_IF5()}
\end{tiny}
\setstretch{.5}\begin{tiny}
{\tt send\_IF5()}
\end{tiny}
\setstretch{.5}\begin{tiny}
{\tt ru\_fep\_full()}
\end{tiny}
IF5 RU eNB end
\tiny $\mathrm{7.5kHz}()$
\setstretch{.5}\begin{tiny}
{\tt ru\_thread()}
\end{tiny}
\setstretch{.5}\begin{tiny}
{\tt ru\_thread\_asynch\_rxtx()}
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
96 136 m
96 48 l
540 48 l
540 136 l
h
88 192 m
88 80 l
248 80 l
248 192 l
h
88 192 m
88 80 l
248 80 l
248 192 l
h
153 232 m
153 176 l
228 176 l
228 232 l
h
\small\begin{itemize}
\item IF4p5 transports packets of size equal to an OFDM symbol (for DLRE and ULRE) indexed by the symbol, subframe and frame number. This is done via the functions send\_if4p5 and recv\_if4p5, in the layer1 transport procedures ({\tt openair1/PHY/LTE\_TRANSPORT/if4\_tools.c}).
\item each block are compressed with A-law compression, yielding a compression rate of .5.
\end{itemize}
RU Procedures (NGFI\_IF4p5)
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PHY RX $n$\\
$\mathrm{eNB}_2$ (211,212)
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PHY TX $n+4$\\
$\mathrm{eNB}_2$ (211,212)
\end{tiny}
144 480 m
144 32 l
176 32 l
176 480 l
h
\setstretch{.5}\begin{tiny}
$\mathrm{RU}_0$
\end{tiny}
371.001 106.337 m
323.502 106.337 l
323.502 106.337 l
371.001 106.337 m
323.502 106.337 l
323.502 106.337 l
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PHY RX $n$\\
$\mathrm{eNB}_1$ (211,212)
\end{tiny}
371.001 106.337 m
323.502 106.337 l
323.502 106.337 l
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PHY RX $n$\\
$\mathrm{eNB}_0$ (211,212)
\end{tiny}
371.001 106.337 m
323.502 106.337 l
323.502 106.337 l
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PHY TX $n+4$\\
$\mathrm{eNB}_1$ (211,212)
\end{tiny}
371.001 106.337 m
323.502 106.337 l
323.502 106.337 l
330 430 m
330 390 l
380 390 l
380 430 l
h
\setstretch{.5}\begin{tiny}
PHY TX $n+4$\\
$\mathrm{eNB}_0$ (211,212)
\end{tiny}
371.001 106.337 m
323.502 106.337 l
323.502 106.337 l
175.991 137.396 m
575 138.93 l
175.991 112.982 m
575 114.329 l
153 232 m
153 176 l
228 176 l
228 232 l
h
\tiny $\mathrm{Alaw}^{-1}()$
56 120 m
141.531 120.07 l
\tiny from IF4p5 {\tt if\_device}
680 104 m
680 104 l
680 104 l
680 104 l
h
544 324 m
544 144 l
576 144 l
576 324 l
h
\setstretch{.5}\tt\tiny P\\R\\E\\C\\O\\D\\I\\N\\G\\
700 264 m
735.133 264 l
\setstretch{.5}\begin{tiny}
{\tt openair1/SCHED/ru-procedures.c}
\end{tiny}
517.232 240.387 m
576.078 240 l
576.078 240 l
517.232 240.387 m
576.078 240 l
576.078 240 l
517.232 240.387 m
576.078 240 l
576.078 240 l
517.232 240.387 m
576.078 240 l
576.078 240 l
\tiny $\mathrm{Alaw}()$
\tiny to IF4p5 {\tt if\_device}
56 240 m
356.214 240.281 l
700 264 m
735.133 264 l
\setstretch{.5}\begin{tiny}
{\tt recv\_IF4p5()}
\end{tiny}
\setstretch{.5}\begin{tiny}
{\tt send\_IF4p5()}
\end{tiny}
IF4p5 RU eNB end
153 232 m
153 176 l
228 176 l
228 232 l
h
111.191 120.045 m
112 70 l
142 69.9344 l
-36 68 m
-36 68 l
175.991 112.982 m
575 114.329 l
\tiny {\tt eNB->common\_vars.rxdataF[0]}
\tiny {\tt eNB->common\_vars.rxdataF[R-1]}
\tiny {\tt eNB->prach\_vars.prachF[0$\cdots$ R-1]}
\setstretch{.5}\begin{tiny}
{\tt ru\_thread()}
\end{tiny}
330 430 m
330 390 l
380 390 l
380 430 l
h
232 384 m
232 256 l
543.99 256 l
543.99 384 l
h
96 136 m
96 48 l
540 48 l
540 136 l
h
132 294 m
132 208 l
384 208 l
384 294 l
h
96 384 m
96 148 l
544 148 l
544 256 l
224 256 l
224 384 l
h
444 164 m
444 84.382 l
522.222 84.382 l
522.222 164 l
h
132 294 m
132 208 l
384 208 l
384 294 l
h
444 164 m
444 84.382 l
522.222 84.382 l
522.222 164 l
h
153 232 m
153 176 l
228 176 l
228 232 l
h
RU Procedures (NGFI\_IF4p5)
\setstretch{.5}\begin{tiny}
$\mathrm{RU}_0$
\end{tiny}
144.991 145.396 m
289.432 145.382 l
144.991 120.982 m
289.432 121.382 l
\tiny {\tt RU->ru\_time.rxdata[0]}
\tiny {\tt RU->ru\_time.rxdata[R-1]}
153 232 m
153 176 l
228 176 l
228 232 l
h
\setstretch{.5}\tt\tiny slot\_fep\_ul\par36.211
153 232 m
153 176 l
228 176 l
228 232 l
h
184 268 m
196 268 l
184 244 m
196 244 l
273 269 m
412 268 l
415.263 120.984 m
575 120.608 l
56 128 m
110.531 128.542 l
\tiny from {\tt rf\_device}
680 104 m
680 104 l
680 104 l
680 104 l
h
632 360 m
632 188 l
660 188 l
660 360 l
h
\tiny {\tt RU->ru\_time.txdata[0]}
380.13 336.98 m
149.46 336.349 l
632 264.556 m
671.833 265 l
\setstretch{.5}\tt\tiny do\_ofdm\_mod\_rt()\par 36.211
\setstretch{.5}\begin{tiny}
{\tt openair1/SCHED/ru-procedures.c}
\end{tiny}
\tiny to {\tt rf\_device}
58 240 m
114.121 240.053 l
380.45 296 m
149.46 295.058 l
\tiny {\tt RU->ru\_time.txdata[T-1]}
\setstretch{.5}\begin{tiny}
{\tt ru\_fep\_full()}
\end{tiny}
IF4p5 RU remote-end
153 232 m
153 176 l
228 176 l
228 232 l
h
\tiny $\mathrm{Alaw}^{-1}()$
153 232 m
153 176 l
228 176 l
228 232 l
h
\tiny $\mathrm{Alaw}()$
\tiny $\mathrm{7.5kHz}()$
153 232 m
153 176 l
228 176 l
228 232 l
h
\setstretch{.5}\begin{tiny}
{\tt recv\_IF4p5()}
\end{tiny}
\setstretch{.5}\begin{tiny}
{\tt send\_IF4p5()}
\end{tiny}
485.71 128.939 m
581.963 129.331 l
\tiny to {\tt if\_device}
\tiny from {\tt if\_device}
58 240 m
114.121 240.053 l
131 344 m
131 316 l
276 316 l
276 344 l
h
\setstretch{.5}\tt\tiny ru\_prach\_procedures\par36.211
440.514 328 m
477 327.572 l
\tt\tiny ru\_prach\_procedures()
153 232 m
153 176 l
228 176 l
228 232 l
h
\setstretch{.5}\tt\tiny rx\_prachl\par36.211
199.412 220.391 m
200 104 l
236.674 103.978 l
178.262 196.069 m
179.06 92 l
236.674 91.6468 l
65.0054 121.159 m
65.0054 121.159 l
65.0054 121.159 l
65.0054 121.159 l
h
\setstretch{.5}\begin{tiny}
{\tt ru\_thread\_prach()}
\end{tiny}
\setstretch{.5}\begin{tiny}
{\tt ru\_thread()}
\end{tiny}
65.0054 357.66 m
65.0054 357.66 l
65.0054 357.66 l
65.0054 357.66 l
h
\setstretch{.5}\begin{tiny}
{\tt ru\_thread\_asynch\_rxtx()}
\end{tiny}
\tiny to {\tt if\_device}
485.71 128.939 m
581.963 129.331 l
175.695 380 m
176.42 128 l
OAI IF1pp Interface
\tiny\begin{itemize}
\item OAI IF1pp is the interface between the 36.213 Physical Layer Procedures (HARQ, SR, CSI, etc.) and the transport/physical channel processing
\item it can be networked, although this is not used as an xhaul interface at the moment.
\end{itemize}
96 384 m
96 320 l
640 320 l
640 384 l
h
128 368 m
128 336 l
352 336 l
352 368 l
h
128 368 m
128 336 l
352 336 l
352 368 l
h
\tiny {\tt phy\_procedures\_lte\_eNB\_TX}
\tiny {\tt phy\_procedures\_lte\_eNB\_RX}
96 384 m
96 320 l
640 320 l
640 384 l
h
\small PHY transport and physical channel procedures
\tiny {\tt common\_signal\_procedures()}
\tiny {\tt pmch\_procedures()}
\tiny {\tt generate\_dlsch\_parameters\_from\_dci()}
\tiny {\tt generate\_ulsch\_parameters\_from\_dci()}
\tiny {\tt phy\_config\_dedicated\_step2()}
\tiny {\tt generate\_dci\_top()}
\tiny {\tt generate\_phich\_top()}
\tiny {\tt pdsch\_procedures()}
175.695 380 m
176.42 128 l
175.695 380 m
176.42 128 l
175.695 380 m
176.42 128 l
175.695 380 m
176.42 128 l
175.695 380 m
176.42 128 l
175.695 380 m
176.42 128 l
175.695 380 m
176.42 128 l
175.695 380 m
176.42 128 l
\tiny {\tt pucch\_procedures()}
\tiny {\tt process\_Msg3()}
175.695 380 m
176.42 128 l
\tiny {\tt rx\_ulsch()}
175.695 380 m
176.42 128 l
\tiny {\tt ulsch\_decoding()}
175.695 380 m
176.42 128 l
\tiny {\tt extract\_cqi()}
175.695 380 m
176.42 128 l
\tiny {\tt get\_Msg3\_alloc\_ret()}
175.695 380 m
176.42 128 l
\tiny {\tt lte\_est\_timing\_advance\_pusch()}
175.695 380 m
176.42 128 l
\tiny {\tt lte\_eNB\_I0\_measurements()}
175.695 380 m
176.42 128 l
\tiny {\tt process\_HARQ\_info()}
175.695 380 m
176.42 128 l
\small {\tt 36.213}\par
{\tt openair1/SCHED}
\small {\tt 36.211/212}\par
{\tt openair1/PHY}
120 528 m
120 0 l
592 0 l
592 528 l
h
180 524 m
180 476 l
588 476 l
588 524 l
h
248 520 m
248 483.903 l
400 484 l
400 520 l
h
180 493.216 m
180 452 l
536 452 l
536 493.216 l
h
404 480 m
404 472 l
404 472 l
404 480 l
h
340 488 m
340 464 l
444 464 l
444 488 l
h
312 456 m
312 432 l
424 432 l
424.001 456 l
h
144 448 m
144 360 l
536 360 l
536 448 l
h
144 260 m
144 116 l
536 116 l
536 260 l
h
144 344 m
144 264 l
536 264 l
536 344 l
h
128 440 m
128 384 l
224 384 l
224 440 l
h
\tt\tiny generate\_dci\_top()
0 424 m
0 32 l
48 32 l
48 424 l
h
M\\
A\\
C
64 416 m
172 416 l
\tt\tiny DCI\_PDU
128 440 m
128 384 l
224 384 l
224 440 l
h
\setstretch{.5}\tt\tiny dlsch\_coding()\par36.212
64 416 m
172 416 l
\tt\tiny DLSCH\_PDU\_0
128 440 m
128 384 l
224 384 l
224 440 l
h
64 416 m
172 416 l
\tt\tiny DLSCH\_PDU\_1\_0
128 440 m
128 384 l
224 384 l
224 440 l
h
64 416 m
172 416 l
\tt\tiny DLSCH\_PDU\_1\_1
312 456 m
312 432 l
424 432 l
424.001 456 l
h
\setstretch{.5}\tt\tiny generate\_pcfich()\par36.212,36.211
304 408 m
304 384 l
400 384 l
400 408 l
h
\setstretch{.5}\tt\tiny generate\_dci0()\par36.212
408 400 m
408 352 l
520 352 l
520 400 l
h
\setstretch{.5}\tt\tiny pdcch\_scrambling()\par pdcch\_modulation\par pdcch\_interleaving\par36.211
\setstretch{.5}\tt\tiny dlsch\_coding()\par36.212
\setstretch{.5}\tt\tiny dlsch\_coding()\par36.212
268 426.729 m
293 426.729 l
268 399.17 m
293 399.17 l
405 397.373 m
421 397.373 l
294 320 m
294 296 l
392 296 l
392 320 l
h
\setstretch{.5}\tt\tiny dlsch\_encoding()\par36.212
268 399.17 m
293 399.17 l
408 322.774 m
408 288 l
520 288 l
520 322.774 l
h
\setstretch{.5}\tt\tiny dlsch\_scrambling()\par dlsch\_modulation()\par36.211
405 397.373 m
421 397.373 l
294 320 m
294 296 l
392 296 l
392 320 l
h
\setstretch{.5}\tt\tiny dlsch\_encoding()\par36.212
408 251 m
408 144 l
520 144 l
520 251 l
h
\setstretch{.5}\tt\tiny dlsch\_scrambling()\par dlsch\_modulation()\par[2-4 layers]\par 36.211
405 397.373 m
421 397.373 l
294 320 m
294 296 l
392 296 l
392 320 l
h
\setstretch{.5}\tt\tiny dlsch\_encoding()\par36.212
405 397.373 m
421 397.373 l
268 399.17 m
293 399.17 l
268 399.17 m
293 399.17 l
552 428 m
552 428 l
405 409 m
600 408.924 l
520 381 m
600 380.885 l
521 292.923 m
600 293.648 l
\tt\tiny openair1/SCHED/phy\_procedures\_lte\_eNb.c:pdsch\_procedures()
\tt\tiny openair1/SCHED/phy\_procedures\_lte\_eNb.c:pdsch\_procedures()
\tt\tiny openair1/PHY/LTE\_TRANSPORT/dci.c
360 104 m
360 104 l
360 104 l
360 104 l
h
144 344 m
144 264 l
536 264 l
536 344 l
h
128 440 m
128 384 l
224 384 l
224 440 l
h
\setstretch{.5}\tt\tiny dlsch\_coding()\par36.212
\tt\tiny MCH\_PDU
294 320 m
294 296 l
392 296 l
392 320 l
h
\setstretch{.5}\tt\tiny dlsch\_encoding()\par36.212
268 399.17 m
293 399.17 l
408 322.774 m
408 288 l
520 288 l
520 322.774 l
h
\setstretch{.5}\tt\tiny dlsch\_scrambling()\par mch\_modulation()\par36.211
405 397.373 m
421 397.373 l
\tt\tiny openair1/SCHED/phy\_procedures\_lte\_eNb.c:pmch\_procedures()
64 416 m
172 416 l
128 488 m
128 452 l
172 452 l
172 488 l
h
140 472 m
140 472 l
140 472 l
140 472 l
h
\setstretch{.5}\tt\tiny UL CNTL\\36.213
188 476 m
188 460 l
316 460 l
316 476 l
h
\tt\tiny generate\_phich\_top()
172 468 m
188 468 l
\setstretch{.5}\tt\tiny generate\_phich()\par36.212,36.211
405 397.373 m
421 397.373 l
445 457 m
600 456.672 l
520.262 58 m
600 58.7558 l
\tt\tiny openair1/PHY/LTE\_TRANSPORT/phich.c
\tiny PHICH REs
\tiny PCFICH REs
\tiny PDCCH REs
\tiny PDSCH REs
104.077 0 0 104.077 528 236 e
\tiny PMCH REs
\setstretch{.5}\tt\tiny generate\_pilots\_slot()\par generate\_pss/sss/pbch()\par36.211
248 488.695 m
248 488.695 l
248 488.695 l
248 488.695 l
h
\tt\tiny openair1/SCHED/phy\_procedures\_lte\_eNb.c:common\_signal\_procedures()
401 507 m
600.424 507.963 l
\tiny CS-RS/PSS/SSS/PBCH REs
576 332 m
592 324 l
\tt\tiny openair1/SCHED/phy\_procedures\_lte\_eNb.c:phy\_procedures\_eNB\_TX()
eNB TX Procedures
\tiny eNodeB\_3GPP or NGFI\_RCC\_IF4p5
232 276 m
232 240 l
240 240 l
240 276 l
h
\tt\tiny IF2 split points
232 276 m
232 240 l
240 240 l
240 276 l
h
521 292.923 m
600 293.648 l
521 292.923 m
600 293.648 l
539.766 93 m
539.306 79.0026 l
340 79.7439 l
447.064 116 m
447.064 92 l
632 92 l
632 116 l
h
304 384 m
304 320 l
368 320 l
368 384 l
h
225.588 267.631 m
225.588 257.004 l
451.999 257.004 l
451.999 267.631 l
h
286.577 417.212 m
286.577 407.581 l
412.989 407.581 l
412.989 417.212 l
h
-66.4757 363.53 m
-66.4757 358.467 l
-65.4632 358.467 l
-65.4632 363.53 l
h
330 430 m
330 390 l
380 390 l
380 430 l
h
\begin{tiny}
\tt {\bf phy\_procedures\_eNB\_TX}(sched\_subframe,eNB,abstraction\_flag,r\_type,rn)
\end{tiny}
\begin{tiny} eNB instance and component carriers \end{tiny}
\begin{tiny} subframe where TX was scheduled \end{tiny}
293.168 472.33 m
189.522 511.272 l
372.849 474.127 m
310.542 512.47 l
\setstretch{.5}\begin{tiny} Flag to indicate 212/213 Split\\(transport channels, no 211 procedures) \end{tiny}
432.16 473.528 m
526.22 499.29 l
27.6629 0 0 27.6629 531.612 404.032 e
526.819 478.92 m
598.712 484.312 l
\begin{tiny} Experimental (for relays)\end{tiny}
\begin{tiny}
\bf\tt Check for dead UEs
\end{tiny}
304 384 m
304 320 l
368 320 l
368 384 l
h
340.45 451.636 m
340.45 417.212 l
\begin{tiny}\tt eNB$\rightarrow$CC\_id==0?\end{tiny}
\begin{tiny}
\bf\tt Call eNB\_dlsch\_ulsch\_scheduler [MAC]
\end{tiny}
340.45 451.636 m
340.45 417.212 l
340.45 451.636 m
340.45 417.212 l
340.45 451.636 m
340.45 417.212 l
418.155 336 m
528 336 l
528 248 l
340 247.665 l
\tiny no
225.588 267.631 m
225.588 257.004 l
451.999 257.004 l
451.999 267.631 l
h
\begin{tiny}\tt is PMCH subframe?\end{tiny}
\begin{tiny}
\bf\tt Call pmch\_procedures
\end{tiny}
340.45 451.636 m
340.45 417.212 l
340 97.4877 m
340 52 l
\tiny no
\setstretch{.5}
\begin{tiny}
\bf\tt Call common\_signal\_procedures\\
(CS-RS/PSS/SSS/PBCH)
\end{tiny}
417.889 180.561 m
540 180 l
539.532 116 l
352 0 m
352 12 l
384 12 l
384 12 l
384 0 l
368 -12 l
368 -12 l
h
eNB TX Flowchart
225.588 267.631 m
225.588 257.004 l
451.999 257.004 l
451.999 267.631 l
h
\setstretch{.5}\begin{tiny}
\bf\tt Call get\_dci\_sdu [MAC]\\ dci=first\_dci
\end{tiny}
368.672 502.411 m
368 524 l
304 384 m
304 320 l
368 320 l
368 384 l
h
\setstretch{.5}\begin{tiny}\tt dci not empty and DL dci?\end{tiny}
368.672 502.411 m
368 524 l
368.297 357.206 m
368 380 l
260 356 m
260 328 l
476 328 l
476 356 l
h
\setstretch{.5}\begin{tiny}
\bf\tt Call generate\_dlsch\_params\_from\_dci\\
dci=next(dci)
\end{tiny}
\tt\tiny no
260 342 m
240.242 342 l
240 472 l
368 472 l
445.666 417.484 m
512.662 417.484 l
512.662 303.725 l
367.862 303.725 l
367.862 288.454 l
260 356 m
260 328 l
476 328 l
476 356 l
h
\setstretch{.5}\begin{tiny}
\bf\tt Call phy\_config\_dedicated\_step2\\
dci=first\_dci
\end{tiny}
272 200 m
344.961 161.229 l
416 200 l
344.961 235.739 l
h
\setstretch{.5}\begin{tiny}\tt dci not empty and UL dci?\end{tiny}
368.297 357.206 m
368 380 l
260 356 m
260 328 l
476 328 l
476 356 l
h
\setstretch{.5}\begin{tiny}
\bf\tt Call generate\_ulsch\_params\_from\_dci\\
dci=next(dci)
\end{tiny}
\tt\tiny no
260 123 m
240.242 123 l
240 252 l
368 252 l
416 200 m
488 200 l
489 96 l
345 96 l
344.862 77.0895 l
272 80 m
272 48 l
416 48 l
416 80 l
h
\setstretch{.5}\begin{tiny}
\bf\tt Call generate\_dci\_top\\
Call generate\_phich\_top
\end{tiny}
368.297 357.206 m
368 380 l
352 0 m
352 12 l
384 12 l
384 12 l
384 0 l
368 -12 l
368 -12 l
h
344 24 m
344 48 l
\tt\tiny yes
\tt\tiny yes
eNB TX Flowchart
240 96 m
240 56 l
496 56 l
496 96 l
h
\setstretch{.5}\begin{tiny}
\bf\tt dlsch\_eNB[UE].subframe\_active=false\par [no PUCCH ACK to be checked in TTI n+k]\par
UE=next(UE)
\end{tiny}
288 464 m
368 432 l
448 464 l
368 496 l
h
288 464 m
368 432 l
448 464 l
368 496 l
h
368 528 m
368 512 l
288 464 m
368 432 l
448 464 l
368 496 l
h
\setstretch{.5}\begin{tiny}\tt is dlsch\_SI active?\end{tiny}
368 528 m
368 504 l
\setstretch{.5}\begin{tiny}\tt is dlsch\_P active?\end{tiny}
368 528 m
368 504 l
\setstretch{.5}\begin{tiny}\tt is dlsch\_RA active?\end{tiny}
\tt\tiny no
\tt\tiny no
\tt\tiny no
368 528 m
368 504 l
456 480 m
456 464 l
648 464 l
648 480 l
h
\setstretch{.5}\begin{tiny}
\bf\tt Call pdsch\_procedures(dlsch\_SI)
\end{tiny}
448 464 m
536 464 l
536 448 l
536 432 m
536 424 l
368 424 l
\tt\tiny yes
456 480 m
456 464 l
648 464 l
648 480 l
h
\setstretch{.5}\begin{tiny}
\bf\tt Call pdsch\_procedures(dlsch\_P)
\end{tiny}
448 464 m
536 464 l
536 448 l
536 432 m
536 424 l
368 424 l
\tt\tiny yes
456 480 m
456 464 l
648 464 l
648 480 l
h
\setstretch{.5}\begin{tiny}
\bf\tt Call pdsch\_procedures(dlsch\_RA)
\end{tiny}
448 464 m
536 464 l
536 448 l
536 432 m
536 424 l
368 424 l
\tt\tiny yes
256 232 m
256 208 l
480 208 l
480 232 l
h
\setstretch{.5}\begin{tiny}
\bf\tt UE=first\_UE from UE\_list \par [list of UE with t-CRNTI or CRNTI]
\end{tiny}
288 464 m
368 432 l
448 464 l
368 496 l
h
\setstretch{.5}\begin{tiny}\tt is dlsch\_UE active?\end{tiny}
368 528 m
368 504 l
368 528 m
368 504 l
456 480 m
456 464 l
648 464 l
648 480 l
h
\setstretch{.5}\begin{tiny}
\bf\tt Call pdsch\_procedures(dlsch\_UE)
\end{tiny}
\tt\tiny yes
448 464 m
536 464 l
536 448 l
536 432 m
536 424 l
368 424 l
\tt\tiny no
416 88 m
416 88 l
416 88 l
416 88 l
h
320 32 m
368 16 l
416 32 l
368 48 l
h
\setstretch{.5}\begin{tiny}\tt UE=NULL?\end{tiny}
368 72 m
368 56 l
320 40 m
224 40 l
224 168 l
288 168 l
\tt\tiny no
352 0 m
352 12 l
384 12 l
384 12 l
384 0 l
368 -12 l
368 -12 l
h
416 40 m
640 40 l
640 24 l
\tt\tiny yes
512 48 m
512 32 l
544 32 l
544 48 l
h
528 80 m
528 48 l
\bf\setstretch{.5}\tiny IF4p5 \par [All Frequency-domain Signals are created]
eNB TX Flowchart
130 527 m
130 -1 l
608 0 l
608 528 l
h
388 288 m
388 208 l
584 208 l
584 288 l
h
141 449 m
141 361 l
580.427 361 l
580 448 l
h
464 428 m
464 396 l
576 396 l
576 428 l
h
462.358 361 m
462.358 287.368 l
602 287.368 l
602 361 l
h
462.358 361 m
462.358 287.368 l
602 287.368 l
602 361 l
h
492 200 m
492 16 l
596 16 l
596 200 l
h
130 202.157 m
130 16 l
484 16 l
484 204 l
h
\tt\tiny openair1/SCHED/phy\_procedures\_lte\_eNb.c:phy\_procedures\_eNB\_RX()
0 424 m
0 32 l
48 32 l
48 424 l
h
M\\
A\\
C
64 416 m
172 416 l
\setstretch{.5}\tt\tiny RACH Preamble
534 125.858 m
688 126 l
\tt\tiny ULSCH\_SDU(UE\_id)
\tiny eNB\_common\_vars.rxdataF[0]
\tiny eNB\_common\_vars.rxdataF[R-1]
273 269 m
412 268 l
273 245 m
412 244 l
184 128 m
184 100 l
276 100 l
276 128 l
h
\setstretch{.5}\tt\tiny rx\_ulsch(UE\_id)\par36.211
208 240 m
208 128 l
\tt\tiny LTE\_TRANSPORT/prach.c
\tt\tiny openair1/PHY/LTE\_TRANSPORT/ulsch\_demodulation.c
393 285 m
393 229 l
552 228 l
552 284 l
h
\tt\tiny lte\_eNB\_I0\_measurements()
280 32 m
280 199 l
308 199 l
308 32 l
h
\setstretch{.5}\tt\tiny ulsch\_extract\_rbs\_single()\par36.211
332 32 m
332 199 l
360 199 l
360 32 l
h
\setstretch{.5}\tt\tiny lte\_ul\_channel\_estimation()\par36.211
332 32 m
332 199 l
360 199 l
360 32 l
h
\setstretch{.5}\tt\tiny ulsch\_detection\_mrc()\par36.211
332 32 m
332 199 l
360 199 l
360 32 l
h
\setstretch{.5}\tt\tiny frequency\_equalization()\par36.211
332 32 m
332 199 l
360 199 l
360 32 l
h
\setstretch{.5}\tt\tiny lte\_idft()\par36.211
332 32 m
332 199 l
360 199 l
360 32 l
h
\setstretch{.5}\tt\tiny ulsch\_XXX\_llr()\par36.211
332 32 m
332 199 l
360 199 l
360 32 l
h
\setstretch{.5}\tt\tiny ulsch\_decoding()\par36.212
332 32 m
332 199 l
360 199 l
360 32 l
h
\setstretch{.5}\tt\tiny ulsch\_channel\_compensation()\par36.211
476 118 m
504.475 118 l
564 220 m
564 220 l
564 220 l
564 220 l
h
\tt\tiny ulsch\_decoding.c
476 118 m
504.475 118 l
\tt\tiny ACK/NAK,RI,CQI
131 344 m
131 316 l
276 316 l
276 344 l
h
\setstretch{.5}\tt\tiny pucch\_procedures(UE\_id)\par36.211
153 232 m
153 176 l
228 176 l
228 232 l
h
\setstretch{.5}\tt\tiny rx\_pucchl\par36.211
476 118 m
504.475 118 l
551.76 312.126 m
687 312.231 l
\tt\tiny ACK/NAK
\tt\tiny SR
440.514 328 m
477 327.572 l
\tt\tiny TRANSPORT/pucch.c
373.112 244.28 m
373.112 316 l
344.968 268.786 m
345.381 316 l
131 344 m
131 316 l
276 316 l
276 344 l
h
\setstretch{.5}\tt\tiny prach\_procedures\par36.211
405.275 413 m
464 412.625 l
440.514 328 m
477 327.572 l
\tt\tiny openair1/SCHED/phy\_procedures\_lte\_eNb.c:prach\_procedures()
153 232 m
153 176 l
228 176 l
228 232 l
h
\setstretch{.5}\tt\tiny rx\_prachl\par36.211
\setstretch{.5}\tt\tiny E\_PRACH>Lmin\par36.211
\tt\tiny LTE\_ESTIMATION/lte\_eNB\_I0\_measurements.c
eNB PHY RX Procedures
0 416 m
144 416 l
\tiny {\tt eNB->prach\_vars.prachF[0$\cdots$ R-1]}
160 268 m
160 128 l
0 296 m
0 264 l
736 264 l
736 296 l
h
0 296 m
0 264 l
736 264 l
736 296 l
h
0 296 m
0 264 l
736 264 l
736 296 l
h
0 296 m
0 264 l
736 264 l
736 296 l
h
0 296 m
0 264 l
736 264 l
736 296 l
h
0 296 m
0 264 l
736 264 l
736 296 l
h
0 296 m
0 264 l
736 264 l
736 296 l
h
0 296 m
0 264 l
736 264 l
736 296 l
h
184 128 m
184 100 l
276 100 l
276 128 l
h
\setstretch{.5}\tt\tiny rx\_ulsch(UE\_id)\par36.211
\tiny$\mathbf{R}_{r,l}=\mathrm{DFT}_{N_{\mathrm{fft}}}(\mathbf{r}_{r,l}\odot\mathbf{F}_{7.5}),r=0,1,\cdots,R-1,l=0,1,\cdots,N_{\mathrm{symb}}-1$ (\tt\bf eNB\_common\_vars$\rightarrow$rxdataF[][])%,N_{\mathrm{fft}}=2^{1+\left\lceil\log_2 12N^{\mathrm{RB}}_{\mathrm{DL}}\right\rceil$
153 232 m
153 176 l
228 176 l
228 232 l
h
\setstretch{.5}\tt\tiny slot\_fep\_ul\par36.211
144 440 m
176 440 l
272 328 m
272 328 l
144 440 m
176 440 l
\tiny $\mathbf{r}_{r,l}$
\tiny $\mathbf{R}_{r,l}$
\tiny $\mathbf{R}_{\mathrm{ext},r,l}$
\tiny $R_{\mathrm{ext},r,l}(n)={R}_{r,l}(12\mathrm{firstPRB}+n),n=0,1,\cdots,12N_{\mathrm{PRB}}-1$ (\tt\bf eNB\_pusch\_vars$\rightarrow$ulsch\_rxdataF\_ext[][])
\tiny $\mathbf{\hat{H}}_{r,l}$
\tiny $\mathbf{\hat{H}}_{r,l} = \mathbf{R}_{\mathrm{ext},r,l}\odot\mathbf{DRS}^*_{l}(\mathrm{cyclicShift},n_{\mathrm{DMRS}^{(2)}},n_{\mathrm{PRS}})$, (\tt\bf eNB\_pusch\_vars$\rightarrow$drs\_ch\_estimates[])
\tiny $\mathbf{R}_{\mathrm{comp},r,l}$
\tiny $\mathbf{R}_{\mathrm{comp},0,l}$
\tiny $\mathbf{R}_{\mathrm{comp},0,l}=\frac{1}{R}\sum_{r=0}^{R-1}\mathbf{R}_{\mathrm{comp},r,l}$
\tiny $\mathbf{R}_{\mathrm{comp},0,l}$
\tiny $\mathbf{r}_{\mathrm{comp},0,l}$
\tiny $R_{\mathrm{comp},0,l}(n)=R_{\mathrm{comp},0,l}(n)\dot Q_8\left(\frac{1}{|\hat{H}(n)|^2+I_0}\right), \hat{H}(n)=\sum_{r=0}^{R-1}\hat{H}_{r}(n)$
\tiny $\mathbf{R}_{\mathrm{comp},r,l}=\mathbf{\hat{H}}_r\odot\mathbf{R}_{\mathrm{ext},r,l}2^{-\log_2|H_\mathrm{max}|}, \mathbf{\hat{H}}_r = \frac{1}{2}(\mathbf{\hat{H}}_{r,3}+\mathbf{\hat{H}}_{r,10})$\par (\tt\bf eNB\_pusch\_vars$\rightarrow$ulsch\_rxdataF\_comp)
\tiny $\mathbf{\lambda}_{l}$
\tiny QPSK : $\lambda_l(2n)=\mathrm{Re}(r_{\mathrm{comp},0,l}(n)), \lambda_l(2n+1)=\mathrm{Im}(r_{\mathrm{comp},0,l}(n))$ (\tt\bf eNB\_pusch\_vars$\rightarrow$ulsch\_llr)
\tiny ${\mathbf r}_{\mathrm{comp},0,l} = \mathrm{IDFT}_{12N_{\mathrm{PRB}}}({\mathbf R}_{\mathrm{comp},0,l})$
\tiny 16QAM : $\lambda_l(4n)=\mathrm{Re}(r_{\mathrm{comp},0,l}(n)), \lambda_l(4n+2)=\mathrm{Im}(r_{\mathrm{comp},0,l}(n))$\par$\lambda_l(4n+1)=|\mathrm{Re}(r_{\mathrm{comp},0,l}(n))|-2\overline{|h(n)|},\lambda_l(4n+3)=|\mathrm{Im}(r_{\mathrm{comp},0,l}(n))|-2\overline{|h(n)|}$
280 32 m
280 199 l
308 199 l
308 32 l
h
\setstretch{.5}\tt\tiny ulsch\_extract\_rbs\_single()\par36.211
332 32 m
332 199 l
360 199 l
360 32 l
h
\setstretch{.5}\tt\tiny lte\_ul\_channel\_estimation()\par36.211
332 32 m
332 199 l
360 199 l
360 32 l
h
\setstretch{.5}\tt\tiny ulsch\_channel\_compensation()\par36.211
332 32 m
332 199 l
360 199 l
360 32 l
h
\setstretch{.5}\tt\tiny ulsch\_detection\_mrc()\par36.211
332 32 m
332 199 l
360 199 l
360 32 l
h
\setstretch{.5}\tt\tiny frequency\_equalization()\par36.211
332 32 m
332 199 l
360 199 l
360 32 l
h
\setstretch{.5}\tt\tiny lte\_idft()\par36.211
332 32 m
332 199 l
360 199 l
360 32 l
h
\setstretch{.5}\tt\tiny ulsch\_XXX\_llr()\par36.211
304 236 m
304 236 l
304 236 l
304 236 l
h
eNB ULSCH Demodulation
eNB PRACH Detection
0 296 m
0 264 l
736 264 l
736 296 l
h
\tiny$\mathbf{R}_{r}=\mathrm{DFT}_{N_{\mathrm{PRACH}}}(\mathbf{r}_{r}),r=0,1,\cdots,R-1$ (\tt\bf lte\_eNB\_prach\_vars$\rightarrow$rxsigF[])%,N_{\mathrm{fft}}=2^{1+\left\lceil\log_2 12N^{\mathrm{RB}}_{\mathrm{DL}}\right\rceil$
0 296 m
0 264 l
736 264 l
736 296 l
h
\tiny$\mathbf{R}_{\mathrm{comp},r}=\mathbf{R}_{r}\odot \mathbf{X}^*_u[i],r=0,1,\cdots,R-1$ (\tt\bf lte\_eNB\_prach\_vars$\rightarrow$prachF[])%,N_{\mathrm{fft}}=2^{1+\left\lceil\log_2 12N^{\mathrm{RB}}_{\mathrm{DL}}\right\rceil$
0 296 m
0 264 l
736 264 l
736 296 l
h
\tiny$\mathbf{r}_{839,r}=\mathrm{IDFT}_{1024}\left(\mathbf{R}_{\mathrm{comp},r}\right), r=0,1,\cdots,R-1$ (\tt\bf lte\_eNB\_prach\_vars$\rightarrow$prach\_ifft[])
112 460 m
112 400 l
176 400 l
176 460 l
h
\tiny $\mathbf{r}_{r}$
144 440 m
176 440 l
DFT
\tiny $\mathbf{R}_{r}$
268 480 m
268 452 l
300 452 l
300 480 l
h
$\odot$
176 428 m
208 428 l
208 456 l
268 456 l
208 428 m
208 400 l
268 400 l
\tiny $\mathbf{X}^*_{u}(0)$
\tiny $\mathbf{X}^*_{u}(1)$
284 480 m
284 468 l
284 372 m
284 384 l
268 480 m
268 452 l
300 452 l
300 480 l
h
\tiny$R\times\mathrm{IDFT}_{1024}$
300 456 m
336 456 l
300 456 m
336 456 l
268 480 m
268 452 l
300 452 l
300 480 l
h
\tiny$R\times\mathrm{IDFT}_{1024}$
268 480 m
268 452 l
300 452 l
300 480 l
h
\tiny$\sum_{r}|\cdot|^2$
268 480 m
268 452 l
300 452 l
300 480 l
h
\tiny$\sum_{r}|\cdot|^2$
268 480 m
268 452 l
300 452 l
300 480 l
h
\tiny max peak in size $\mathrm{NCS}_2$ window, keep delay
412 456 m
440 456 l
412 400 m
440 400 l
500 460 m
532 460 l
500 460 m
532 460 l
500 460 m
532 460 l
624 456 m
672 456 l
624 456 m
672 456 l
268 480 m
268 452 l
300 452 l
300 480 l
h
\tiny max peak in size $\mathrm{NCS}_2$ window, keep delay
\tiny\tt preamble\_energy\_list[]\par preamble\_delay\_list[]
\tiny $\mathbf{r}_{839,r}$
\small\begin{itemize}
\item PRACH detection is a quasi-optimal non-coherent receiver for vector observations (multiple antennas)
\item correlation is done in the frequency-domain, number of correlations (in the example above 2) depends on {\em zeroCorrelationConfig} configuration parameter
\item peak-detection (for delay estimation) is performed in each NCS time-window
\end{itemize}
268 480 m
268 452 l
300 452 l
300 480 l
h
$\odot$
340 416 m
340 340 l
564 340 l
564 416 l
h
268 480 m
268 452 l
300 452 l
300 480 l
h
\tiny$\sum_{r,l,i}|\cdot|^2$
\begin{tiny}$\stackbin{<}{>}\sigma^2[\mathrm{dB}]$\end{tiny}
eNB PUCCH1 Detection
184 128 m
184 100 l
276 100 l
276 128 l
h
\setstretch{.5}\tt\tiny rx\_pucch()\par36.211
153 232 m
153 176 l
228 176 l
228 232 l
h
\setstretch{.5}\tt\tiny slot\_fep\_ul\par36.211
144 440 m
176 440 l
144 440 m
176 440 l
\tiny $\mathbf{r}_{r,l}$
\tiny $\mathbf{R}_{r,l}$
\tiny $\mathbf{Z}^*_{l}e^{-j2\pi f/16},-3\leq f\leq 2$
308 448 m
352 448 l
$\odot$
308 448 m
352 448 l
392 484 m
392 456 l
328 448 m
328 400 l
352 400 l
$\odot$
392 484 m
392 456 l
\tiny $\mathbf{Z}^*_{l}$
288 496 m
288 496 l
288 496 l
288 496 l
h
308 448 m
352 448 l
412 408 m
412 392 l
464 392 l
464 408 l
h
\tiny$\mathbf{\hat{H}}$
$\odot$
420 392 m
420 376 l
384 400 m
384 368 l
412 368 l
428 368 m
464 368 l
\tiny$\mathrm{sgn}(\mathrm{Re}(\cdot))$
444 368 m
444 352 l
464 352 l
\tiny$\mathrm{sgn}(\mathrm{Im}(\cdot))$
532 408 m
532 408 l
532 408 l
532 408 l
h
\tiny PUCCH1 (Scheduling Request)
\tiny PUCCH1a/1b (ACK/NAK)
\small\begin{itemize}
\item PUCCH1 detection is a quasi-optimal non-coherent receiver (energy detector) for vector observations (multiple antennas) for scheduling request. Care is taken to handle residual frequency-offset.
\item PUCCH1A/1B detection is quasi-coherent based on a rough channel estimate obtained on the 3 symbols without data modulation. \item In both cases, correlation is done in the frequency-domain
\end{itemize}
\small\begin{itemize}
\item Threads (all in {\tt targets/RT/USER/lte-ru.c})
\begin{itemize}
\item {\tt ru\_thread}: Thread per RU which sequentially
performs
\begin{itemize}
\item read from south interface (RF or IF fronthaul)
\item RX processing for subframe $n$ (if necessary).
\item wakeup eNBs that are waiting for signal (if necessary)
\item wait for eNB task completion (if necessary)
\item do TX processing for subframe $n+4$ (if necessary). Note that this can spawn multiple worker threads for very high order spatial processing (e.g. massive-MIMO or DAS for UDN)
\item do outgoing fronthaul (RF or IF fronthaul)
\end{itemize}
\item {\tt ru\_thread\_prach}: Thread for PRACH processing in remote RU (DFT on RX, IF4p5 RRU)
\item {\tt ru\_thread\_asynch}: Thread for asynchronous reception from fronthaul interface (TX direction in RRU). %Allows for some jitter so as not to block the RRU real-time processing.
\end{itemize}
\item Synchronization on fronthaul interface
\begin{itemize}
\item {\em synch\_to\_ext\_device} : synchronizes to incoming samples from RF or Fronthaul interface using blocking read
\item {\em synch\_to\_other} : synchronizes via POSIX mechanism to other source (other CC, timer) which maintains real-time.
\end{itemize}
\end{itemize}
RU Threads
\small\begin{itemize}
\item Threads (all in {\tt targets/RT/USER/lte-enb.c})
\begin{itemize}
\item multi RX/TX thread mode (optional)
\begin{itemize}
\item {\tt eNB\_thread\_rxtx}: 2 threads per CC/Instance which do both RX procedures for subframe $n$ and TX procedures for subframe $n+4$. One operates on even subframes, one on odd. This allows 1ms subframe processing to use multiple-cores.
\end{itemize}
\item common RU-eNB RX/TX thread (default if single RU/eNB)
\begin{itemize}
\item calls {\tt eNB\_top}: procedure per CC/Instance which sequentially
\begin{itemize}
\item blocks on signal from RU
\item RX/TX processing for subframe $n$ and $n+4$
\item signals completion to RU
\end{itemize}
\end{itemize}
\item {\tt eNB\_prach}: Thread per CC\_id/Instance for PRACH processing
\end{itemize}
\end{itemize}
eNB Threads
400 400 m
400 388 l
520 388 l
520 400 l
h
400 432 m
400 420 l
520 420 l
520 432 l
h
400 448 m
400 436 l
528 436 l
528 448 l
h
400 448 m
400 436 l
528 436 l
528 448 l
h
192 388 m
192 364 l
272 364 l
272 388 l
h
32 480 m
32 464 l
112 464 l
112 480 l
h
eNB Timing (multi-thread mode)
32 480 m
32 464 l
112 464 l
112 480 l
h
\tiny SF $n+1$
32 480 m
32 464 l
112 464 l
112 480 l
h
\tiny SF $n+2$
32 480 m
32 464 l
112 464 l
112 480 l
h
\tiny SF $n+3$
\tiny $n$
32 480 m
32 464 l
112 464 l
112 480 l
h
\tiny$n+4$
32 480 m
32 464 l
112 464 l
112 480 l
h
\tiny SF $n+4$
32 480 m
212 572
352 480 c
384 464 m
384 464 l
380 472 m
380 472 l
\tiny\begin{itemize}
\item The current processing requires approximately 1ms peak in each direction (basically 1 core RX, 1core TX). The current architecture will work on a single core if the sum of RX and TX procedures is limited to 1ms. It can fit on 2 cores if the sum of RX,TX and PRACH is less than 2ms.
\item three threads, RX-TX even, RX-TX odd and PRACH. RX-TX blocks until woken by the RU thread with a new RX subframe $n$ that is linked to this eNB process. The RX-TX thread performs ue-specific processing for subframe $n$ and then TX common and ue-specific processing for subframe $n+4$ (frequency-domain generation only). This insures the data dependency between TX $n+4$ and RX $n$ is respected. The duration of this thread should be less than 2ms which can compensate some jitter on the RX processing.
\end{itemize}
32 480 m
32 464 l
112 464 l
112 480 l
h
\tiny SF $n$
\tiny LTE HARQ periodicity (FDD, TDD can be longer)
\tiny PRACH $n$
32 480 m
32 464 l
112 464 l
112 480 l
h
32 480 m
32 464 l
112 464 l
112 480 l
h
\tiny $n+1$
\tiny $n$
32 480 m
32 464 l
112 464 l
112 480 l
h
\tiny$n+5$
32 480 m
32 464 l
112 464 l
112 480 l
h
\tiny $n+1$
124 424 m
172 416
152 392 c
204 424 m
228 424
236 416 c
192 396 m
196 416 l
32 480 m
32 464 l
112 464 l
112 480 l
h
\tiny $n-1$
32 480 m
32 464 l
112 464 l
112 480 l
h
\tiny$n+3$
32 480 m
32 464 l
112 464 l
112 480 l
h
\tiny $n-1$
32 480 m
32 464 l
112 464 l
112 480 l
h
\tiny $n+2$
32 480 m
32 464 l
112 464 l
112 480 l
h
\tiny$n+6$
32 480 m
32 464 l
112 464 l
112 480 l
h
284 424 m
308 424
316 436 c
\tiny $n+2$
268 452 m
276 436 l
\tiny RU thread
\tiny RX-TX thread (even)
400 448 m
400 436 l
528 436 l
528 448 l
h
400 448 m
400 436 l
528 436 l
528 448 l
h
\tiny RX-TX thread (odd)
\tiny PRACH
192 396 m
196 416 l
96 384 m
96 320 l
640 320 l
640 384 l
h
96 384 m
96 320 l
640 320 l
640 384 l
h
96 384 m
96 320 l
640 320 l
640 384 l
h
96 384 m
96 320 l
640 320 l
640 384 l
h
128 368 m
128 336 l
352 336 l
352 368 l
h
128 368 m
128 336 l
352 336 l
352 368 l
h
175.695 380 m
176.42 128 l
OAI IF1'' Interface (can be NFAPI)
\tiny\begin{itemize}
\item OAI IF1'' is the interface between the 36.321 Medium-Access (MAC) Layer Procedures and the 36.213 Physical Layer Procedures. It links several PHY instances to one MAC instance.
\item It is a configurable (dynamically loadable) module which can implement an (N)FAPI P5/P7 or a simpler interface.
\end{itemize}
128 368 m
128 336 l
352 336 l
352 368 l
h
\tiny Random-Access
\tiny Events
\small PHY procedures
\tiny {\tt initiate\_ra\_proc()}
\tiny {\tt terminate\_ra\_proc()}
\tiny {\tt cancel\_ra\_proc()}
\tiny {\tt phy\_config\_dedicated()}
\tiny {\tt phy\_config\_sib1()}
\tiny {\tt phy\_config\_sib2()}
\tiny {\tt phy\_config\_sib13()}
175.695 380 m
176.42 128 l
175.695 380 m
176.42 128 l
175.695 380 m
176.42 128 l
175.695 380 m
176.42 128 l
175.695 380 m
176.42 128 l
175.695 380 m
176.42 128 l
175.695 380 m
176.42 128 l
\tiny {\tt eNB\_dlsch\_ulsch\_scheduler()}
\tiny {\tt get\_dcii\_sdu()}
175.695 380 m
176.42 128 l
\tiny {\tt get\_dlsch\_sdu()}
175.695 380 m
176.42 128 l
\tiny {\tt rx\_sdu()}
175.695 380 m
176.42 128 l
\tiny {\tt get\_mch\_sdu()}
175.695 380 m
176.42 128 l
\tiny {\tt SR\_indication()}
175.695 380 m
176.42 128 l
128 368 m
128 336 l
352 336 l
352 368 l
h
\tiny PHY Config
\tiny Scheduling
\small {\tt 36.213/36.321}\\
{\tt openair2/LAYER2/MAC}
\small {\tt 36.211/212}\par
{\tt openair1/PHY}
96 384 m
96 320 l
640 320 l
640 384 l
h
\small OAI MAC interface
\tiny {\tt phy\_config\_mib()}
175.695 380 m
176.42 128 l
175.695 380 m
176.42 128 l
175.695 380 m
176.42 128 l
175.695 380 m
176.42 128 l
175.695 380 m
176.42 128 l
\small UL-Indication
\small Config-Req
\small Schedule-Resp
\tiny Northbound interface
\tiny Southbound interface
OAI IF1'' Interface
\tiny\begin{itemize}
\item The PHY end uses three basic messages
\begin{itemize}
\item {\tt CONFIG\_REQ}: this provides the cell configuration and UE-specific configuration to the PHY instances. This comprises the following FAPI P5/P7 messages
\begin{enumerate}
\item CONFIG.request
\item UE\_CONFIG.request (**not used in OAI PHY)
\end{enumerate}
\item {\tt UL\_INDICATION} This is an uplink indication that sends all UL information received in one TTI, including PRACH, if available. It also provides the subframe indication for the DL scheduler. It maps to the following FAPI P7 messages
\begin{enumerate}
\item {\tt SUBFRAME.indication}
\item {\tt HARQ.indication}
\item {\tt CRC.indication }
\item {\tt RX\_ULSCH.indication}
\item {\tt RX\_SR.indication}
\item {\tt RX\_CQI.indication}
\item {\tt RACH.indication}
\item {\tt SRS.indication}
\end{enumerate}
\item {\tt SCHEDULE\_REQUEST} This message contains the scheduling response information and comprises the following FAPI P7 messages
\begin{enumerate}
\item {\tt DL\_CONFIG.request}
\item {\tt UL\_CONFIG.request}
\item {\tt TX.request}
\item {\tt HI\_DCI0.request}
\end{enumerate}
\end{itemize}
\item The module is registered both by PHY and MAC and can implement different types of transport (NFAPI, function call, FAPI over UDP, etc.). During registration, fuction pointers for the different messages are provided for the module to interact with either PHY or MAC or both if they are executing in the same machine. Note that for a networked implementation (e.g. NFAPI), there are north and south components running in different machines.
\end{itemize}
OAI IF1'' Interface
\small\begin{itemize}
\item The PHY-layer timing is assumed to be
\begin{enumerate}
\item wait for subframe indication $n$ from HW
\item trigger PRACH if $n$ has PRACH (parallel thread)
\item trigger UE specific RX procedures for $n$ if $n$ is UL
\item assemble {\tt UL\_INDICATION} and send to MAC
\item wait for {\tt SCHEDULE\_REQUEST}
\item do TX procedures if $n+4$ is TX and RX programming if $n+4+k$ is UL
\end{enumerate}
\item The MAC-layer timing is assumed to be
\begin{enumerate}
\item do all UL processing for subframe $n$ if $n$ is UL after unraveling of UL\_INDICATION in MAC module
\item wait for call to {\tt eNB\_dlsch\_ulsch\_scheduler}
\item do DL scheduling for $n+4$ if it is DL
\item do UL scheduling for $n+8$ if it is UL
\item return from eNB\_dlsch\_ulsch\_scheduler
\item let MAC module form SCHEDULE\_REQUEST
\end{enumerate}
\end{itemize}
96 384 m
96 320 l
640 320 l
640 384 l
h
128 368 m
128 336 l
352 336 l
352 368 l
h
128 368 m
128 336 l
352 336 l
352 368 l
h
OAI MAC
128 368 m
128 336 l
352 336 l
352 368 l
h
\tiny Random-Access
\tiny Events
128 368 m
128 336 l
352 336 l
352 368 l
h
\tiny PHY Config
\tiny Scheduling
\small {\tt 36.321}\\
{\tt openair2/LAYER2/MAC}
175.695 380 m
176.42 128 l
176 496 m
176 384 l
400 384 l
400 496 l
h
176 496 m
176 384 l
400 384 l
400 496 l
h
\small RRC
384 384 m
272 144 l
384 384 m
384 144 l
384 384 m
528 144 l
608 384 m
528 144 l
\small RLC
176 496 m
176 384 l
400 384 l
400 496 l
h
\small Preprocessor
160 256 m
528 144 l
272 312 m
608 384 l
472 504 m
472 232 l
152 232 l
152 40 l
728 40 l
736 40 l
736 504 l
h
\small {\tt 36.322}\\
{\tt openair2/LAYER2/RLC}
\small {\tt user customizable scheduling module}
TX Precoding
\small\begin{itemize}
\item Spatio-temporal filtering for muli-cell (vCell) and multi-user transmission. Input and output are frequency-domain signals.
\item can be applied to Rel-10/11/12/13 physical channels and Rel-8 common channels
\begin{itemize}
\item UE-specific precoding (TM7-10)
\item vCell-specific precoding (PDCCH + TM1-6) for groups of UEs
\item PMCH vCells
\end{itemize}
\item Precoding applicable to
\begin{enumerate}
\item indoor DAS
\item outdoor co-localized arrays (e,g, Massive-MIMO)
\item outdoor CoMP
\end{enumerate}
\end{itemize}
208 480 m
208 80 l
512 80 l
512 480 l
h
128 448 m
208 448.44 l
128 448 m
208 448.44 l
128 448 m
208 448.44 l
400 160
480 192
528 160
400 160
400 160 u
400 96
448 128
512 144
576 96
496 80
400 96
400 96 u
480 160 m
480 160 l
496 160 m
496 160 l
400 96
448 128
512 144
576 96
496 80
400 96
400 96 u
\small UE
\small vCell
\small vCell
TX Precoding
608 516 m
607 37 l
679 37 l
680 516 l
h
632 360 m
632 188 l
660 188 l
660 360 l
h
TX Precoding (to RF device)
208 480 m
208 80 l
512 80 l
512 480 l
h
128 448 m
208 448.44 l
128 448 m
208 448.44 l
128 448 m
208 448.44 l
\tt eNB[0]
\tt eNB[1]
\tt eNB[CC\_max]
128 448 m
208 448.44 l
128 448 m
208 448.44 l
128 448 m
208 448.44 l
128 448 m
208 448.44 l
128 448 m
208 448.44 l
128 448 m
208 448.44 l
128 448 m
208 448.44 l
528 464 m
528 416 l
592 416 l
592 464 l
h
\tiny\tt rf\_device[0]
528 464 m
528 416 l
592 416 l
592 464 l
h
\tiny\tt rf\_device[1]
528 464 m
528 416 l
592 416 l
592 464 l
h
\tiny\tt rf\_device[N-1]
192 432 m
192 368 l
272 368 l
272 432 l
h
192 432 m
192 368 l
272 368 l
272 432 l
h
192 432 m
192 368 l
272 368 l
272 432 l
h
\tiny\tt common signal precoding(vCell)\\ PBCH,PSS/SSS,PCFICH/PHICH/PDCCH\\
PDSCH - TM1-6
\tiny\tt UE-specific signal precoding(vCell)\\
UE-RS,PDSCH - TM7-10
\tiny\tt PMCH precoding
145 413.44 m
192 384 l
145 413.44 m
192 288 l
145 413.44 m
192 192 l
145 349.44 m
192 384 l
145 349.44 m
191.982 288.048 l
145 349.44 m
191.982 192.084 l
145 157.44 m
192 384 l
192 384 l
145 157.44 m
191.982 288.048 l
145 157.44 m
191.982 192.084 l
400 384 m
449 447.637 l
400.059 384.077 m
449 431.796 l
400.059 384.077 m
449 383.637 l
400.059 384.077 m
449 367.763 l
400.059 384.077 m
449 143.57 l
400.059 384.077 m
449 127.637 l
400 288 m
449 383.637 l
400.001 288.002 m
449 367.763 l
400.001 288.002 m
449 143.57 l
400.001 288.002 m
449 127.637 l
400 192 m
449 447.637 l
400.001 288.002 m
449 447.637 l
400.001 288.002 m
448.966 431.763 l
400.001 192.005 m
449 367.763 l
400.001 192.005 m
449 143.57 l
400.001 192.005 m
449 127.637 l
\tiny phy\_vars\_eNB.txdataF
\tiny phy\_vars\_eNB.txdata
632 264.556 m
671.833 265 l
\setstretch{.5}\tt\tiny do\_ofdm\_mod\_rt()\par 36.211
TX Precoding (to IF device, NGFI\_IFv4p5)
208 480 m
208 80 l
512 80 l
512 480 l
h
128 448 m
208 448.44 l
128 448 m
208 448.44 l
128 448 m
208 448.44 l
\tt eNB[0]
\tt eNB[1]
\tt eNB[CC\_max]
128 448 m
208 448.44 l
128 448 m
208 448.44 l
128 448 m
208 448.44 l
128 448 m
208 448.44 l
128 448 m
208 448.44 l
128 448 m
208 448.44 l
128 448 m
208 448.44 l
528 464 m
528 416 l
592 416 l
592 464 l
h
\tiny\tt if\_device[0]
528 464 m
528 416 l
592 416 l
592 464 l
h
\tiny\tt if\_device[1]
528 464 m
528 416 l
592 416 l
592 464 l
h
\tiny\tt if\_device[N-1]
192 432 m
192 368 l
272 368 l
272 432 l
h
192 432 m
192 368 l
272 368 l
272 432 l
h
192 432 m
192 368 l
272 368 l
272 432 l
h
\tiny\tt common signal precoding(vCell)\\ PBCH,PSS/SSS,PCFICH/PHICH/PDCCH\\
PDSCH - TM1-6
\tiny\tt UE-specific signal precoding(vCell)\\
UE-RS,PDSCH - TM7-10
\tiny\tt PMCH precoding
145 413.44 m
192 384 l
145 413.44 m
192 288 l
145 413.44 m
192 192 l
145 349.44 m
192 384 l
145 349.44 m
191.982 288.048 l
145 349.44 m
191.982 192.084 l
145 157.44 m
192 384 l
192 384 l
145 157.44 m
191.982 288.048 l
145 157.44 m
191.982 192.084 l
400 384 m
449 447.637 l
400.059 384.077 m
449 431.796 l
400.059 384.077 m
449 383.637 l
400.059 384.077 m
449 367.763 l
400.059 384.077 m
449 143.57 l
400.059 384.077 m
449 127.637 l
400 288 m
449 383.637 l
400.001 288.002 m
449 367.763 l
400.001 288.002 m
449 143.57 l
400.001 288.002 m
449 127.637 l
400 192 m
449 447.637 l
400.001 288.002 m
449 447.637 l
400.001 288.002 m
448.966 431.763 l
400.001 192.005 m
449 367.763 l
400.001 192.005 m
449 143.57 l
400.001 192.005 m
449 127.637 l
448 544 m
448 544 l
432 544 m
432 544 l
624 432 m
672 432 l
624 432 m
672 432 l
624 432 m
672 432 l
\tiny NGFI\_IFv4p5
\tiny NGFI\_IFv4p5
\tiny NGFI\_IFv4p5