/******************************************************************************* OpenAirInterface Copyright(c) 1999 - 2014 Eurecom OpenAirInterface is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenAirInterface is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenAirInterface.The full GNU General Public License is included in this distribution in the file called "COPYING". If not, see . Contact Information OpenAirInterface Admin: openair_admin@eurecom.fr OpenAirInterface Tech : openair_tech@eurecom.fr OpenAirInterface Dev : openair4g-devel@eurecom.fr Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE *******************************************************************************/ #include "PHY/defs.h" #include "PHY/extern.h" // Mask for identifying subframe for MBMS #define MBSFN_TDD_SF3 0x80// for TDD #define MBSFN_TDD_SF4 0x40 #define MBSFN_TDD_SF7 0x20 #define MBSFN_TDD_SF8 0x10 #define MBSFN_TDD_SF9 0x08 #include "PHY/defs.h" #define MBSFN_FDD_SF1 0x80// for FDD #define MBSFN_FDD_SF2 0x40 #define MBSFN_FDD_SF3 0x20 #define MBSFN_FDD_SF6 0x10 #define MBSFN_FDD_SF7 0x08 #define MBSFN_FDD_SF8 0x04 #ifndef __SSE3__ #warning SSE3 instruction set not preset __m128i zeroM;//,tmp_over_sqrt_10,tmp_sum_4_over_sqrt_10,tmp_sign,tmp_sign_3_over_sqrt_10; //#define _mm_abs_epi16(xmmx) _mm_xor_si128((xmmx),_mm_cmpgt_epi16(zero,(xmmx))) #define _mm_abs_epi16(xmmx) _mm_add_epi16(_mm_xor_si128((xmmx),_mm_cmpgt_epi16(zeroM,(xmmx))),_mm_srli_epi16(_mm_cmpgt_epi16(zeroM,(xmmx)),15)) #define _mm_sign_epi16(xmmx,xmmy) _mm_xor_si128((xmmx),_mm_cmpgt_epi16(zeroM,(xmmy))) #endif void dump_mch(PHY_VARS_UE *phy_vars_ue,uint8_t eNB_id,uint16_t coded_bits_per_codeword,int subframe) { unsigned int nsymb_pmch=12; char fname[32],vname[32]; int N_RB_DL=phy_vars_ue->lte_frame_parms.N_RB_DL; sprintf(fname,"mch_rxF_ext0.m"); sprintf(vname,"pmch_rxF_ext0"); write_output(fname,vname,phy_vars_ue->lte_ue_pdsch_vars_MCH[eNB_id]->rxdataF_ext[0],12*N_RB_DL*nsymb_pmch,1,1); sprintf(fname,"mch_ch_ext00.m"); sprintf(vname,"pmch_ch_ext00"); write_output(fname,vname,phy_vars_ue->lte_ue_pdsch_vars_MCH[eNB_id]->dl_ch_estimates_ext[0],12*N_RB_DL*nsymb_pmch,1,1); /* write_output("dlsch%d_ch_ext01.m","dl01_ch0_ext",lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext[1],12*N_RB_DL*nsymb_pmch,1,1); write_output("dlsch%d_ch_ext10.m","dl10_ch0_ext",lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext[2],12*N_RB_DL*nsymb_pmch,1,1); write_output("dlsch%d_ch_ext11.m","dl11_ch0_ext",lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext[3],12*N_RB_DL*nsymb_pmch,1,1); write_output("dlsch%d_rho.m","dl_rho",lte_ue_pdsch_vars[eNB_id]->rho[0],12*N_RB_DL*nsymb_pmch,1,1); */ sprintf(fname,"mch_rxF_comp0.m"); sprintf(vname,"pmch_rxF_comp0"); write_output(fname,vname,phy_vars_ue->lte_ue_pdsch_vars_MCH[eNB_id]->rxdataF_comp[0],12*N_RB_DL*nsymb_pmch,1,1); sprintf(fname,"mch_rxF_llr.m"); sprintf(vname,"pmch_llr"); write_output(fname,vname, phy_vars_ue->lte_ue_pdsch_vars_MCH[eNB_id]->llr[0],coded_bits_per_codeword,1,0); sprintf(fname,"mch_mag1.m"); sprintf(vname,"pmch_mag1"); write_output(fname,vname,phy_vars_ue->lte_ue_pdsch_vars_MCH[eNB_id]->dl_ch_mag[0],12*N_RB_DL*nsymb_pmch,1,1); sprintf(fname,"mch_mag2.m"); sprintf(vname,"pmch_mag2"); write_output(fname,vname,phy_vars_ue->lte_ue_pdsch_vars_MCH[eNB_id]->dl_ch_magb[0],12*N_RB_DL*nsymb_pmch,1,1); write_output("mch00_ch0.m","pmch00_ch0", &(phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][0][0]), phy_vars_ue->lte_frame_parms.ofdm_symbol_size*12,1,1); write_output("rxsig_mch.m","rxs_mch", &phy_vars_ue->lte_ue_common_vars.rxdata[0][subframe*phy_vars_ue->lte_frame_parms.samples_per_tti], phy_vars_ue->lte_frame_parms.samples_per_tti,1,1); if (PHY_vars_eNB_g) write_output("txsig_mch.m","txs_mch", &PHY_vars_eNB_g[0][0]->lte_eNB_common_vars.txdata[0][0][subframe*phy_vars_ue->lte_frame_parms.samples_per_tti], phy_vars_ue->lte_frame_parms.samples_per_tti,1,1); } int is_pmch_subframe(uint32_t frame, int subframe, LTE_DL_FRAME_PARMS *frame_parms) { uint32_t period; uint8_t i; for (i=0; inum_MBSFN_config; i++) { // we have at least one MBSFN configuration period = 1<MBSFN_config[i].radioframeAllocationPeriod; if ((frame % period) == frame_parms->MBSFN_config[i].radioframeAllocationOffset) { if (frame_parms->MBSFN_config[i].fourFrames_flag == 0) { if (frame_parms->frame_type == FDD) { switch (subframe) { case 1: if ((frame_parms->MBSFN_config[i].mbsfn_SubframeConfig & MBSFN_FDD_SF1) > 0) return(1); break; case 2: if ((frame_parms->MBSFN_config[i].mbsfn_SubframeConfig & MBSFN_FDD_SF2) > 0) return(1); break; case 3: if ((frame_parms->MBSFN_config[i].mbsfn_SubframeConfig & MBSFN_FDD_SF3) > 0) return(1); break; case 6: if ((frame_parms->MBSFN_config[i].mbsfn_SubframeConfig & MBSFN_FDD_SF6) > 0) return(1); break; case 7: if ((frame_parms->MBSFN_config[i].mbsfn_SubframeConfig & MBSFN_FDD_SF7) > 0) return(1); break; case 8: if ((frame_parms->MBSFN_config[i].mbsfn_SubframeConfig & MBSFN_FDD_SF8) > 0) return(1); break; } } else { switch (subframe) { case 3: if ((frame_parms->MBSFN_config[i].mbsfn_SubframeConfig & MBSFN_TDD_SF3) > 0) return(1); break; case 4: if ((frame_parms->MBSFN_config[i].mbsfn_SubframeConfig & MBSFN_TDD_SF4) > 0) return(1); break; case 7: if ((frame_parms->MBSFN_config[i].mbsfn_SubframeConfig & MBSFN_TDD_SF7) > 0) return(1); break; case 8: if ((frame_parms->MBSFN_config[i].mbsfn_SubframeConfig & MBSFN_TDD_SF8) > 0) return(1); break; case 9: if ((frame_parms->MBSFN_config[i].mbsfn_SubframeConfig & MBSFN_TDD_SF9) > 0) return(1); break; } } } else { // handle 4 frames case } } } return(0); } void fill_eNB_dlsch_MCH(PHY_VARS_eNB *phy_vars_eNB,int mcs,int ndi,int rvidx, int abstraction_flag) { LTE_eNB_DLSCH_t *dlsch = phy_vars_eNB->dlsch_eNB_MCH; LTE_DL_FRAME_PARMS *frame_parms=&phy_vars_eNB->lte_frame_parms; // dlsch->rnti = M_RNTI; dlsch->harq_processes[0]->mcs = mcs; // dlsch->harq_processes[0]->Ndi = ndi; dlsch->harq_processes[0]->rvidx = rvidx; dlsch->harq_processes[0]->Nl = 1; dlsch->harq_processes[0]->TBS = TBStable[get_I_TBS(dlsch->harq_processes[0]->mcs)][frame_parms->N_RB_DL-1]; dlsch->current_harq_pid = 0; dlsch->nb_rb = frame_parms->N_RB_DL; switch(frame_parms->N_RB_DL) { case 6: dlsch->rb_alloc[0] = 0x3f; break; case 25: dlsch->rb_alloc[0] = 0x1ffffff; break; case 50: dlsch->rb_alloc[0] = 0xffffffff; dlsch->rb_alloc[1] = 0x3ffff; break; case 100: dlsch->rb_alloc[0] = 0xffffffff; dlsch->rb_alloc[1] = 0xffffffff; dlsch->rb_alloc[2] = 0xffffffff; dlsch->rb_alloc[3] = 0xf; break; } if (abstraction_flag){ eNB_transport_info[phy_vars_eNB->Mod_id][phy_vars_eNB->CC_id].cntl.pmch_flag=1; eNB_transport_info[phy_vars_eNB->Mod_id][phy_vars_eNB->CC_id].num_pmch=1; // assumption: there is always one pmch in each SF eNB_transport_info[phy_vars_eNB->Mod_id][phy_vars_eNB->CC_id].num_common_dci=0; eNB_transport_info[phy_vars_eNB->Mod_id][phy_vars_eNB->CC_id].num_ue_spec_dci=0; eNB_transport_info[phy_vars_eNB->Mod_id][phy_vars_eNB->CC_id].dlsch_type[0]=5;// put at the reserved position for PMCH eNB_transport_info[phy_vars_eNB->Mod_id][phy_vars_eNB->CC_id].harq_pid[0]=0; eNB_transport_info[phy_vars_eNB->Mod_id][phy_vars_eNB->CC_id].ue_id[0]=255;//broadcast eNB_transport_info[phy_vars_eNB->Mod_id][phy_vars_eNB->CC_id].tbs[0]=dlsch->harq_processes[0]->TBS>>3; } } void fill_UE_dlsch_MCH(PHY_VARS_UE *phy_vars_ue,int mcs,int ndi,int rvidx,int eNB_id) { LTE_UE_DLSCH_t *dlsch = phy_vars_ue->dlsch_ue_MCH[eNB_id]; LTE_DL_FRAME_PARMS *frame_parms=&phy_vars_ue->lte_frame_parms; // dlsch->rnti = M_RNTI; dlsch->harq_processes[0]->mcs = mcs; dlsch->harq_processes[0]->rvidx = rvidx; // dlsch->harq_processes[0]->Ndi = ndi; dlsch->harq_processes[0]->Nl = 1; dlsch->harq_processes[0]->TBS = TBStable[get_I_TBS(dlsch->harq_processes[0]->mcs)][frame_parms->N_RB_DL-1]; dlsch->current_harq_pid = 0; dlsch->harq_processes[0]->nb_rb = frame_parms->N_RB_DL; switch(frame_parms->N_RB_DL) { case 6: dlsch->harq_processes[0]->rb_alloc[0] = 0x3f; break; case 25: dlsch->harq_processes[0]->rb_alloc[0] = 0x1ffffff; break; case 50: dlsch->harq_processes[0]->rb_alloc[0] = 0xffffffff; dlsch->harq_processes[0]->rb_alloc[1] = 0x3ffff; break; case 100: dlsch->harq_processes[0]->rb_alloc[0] = 0xffffffff; dlsch->harq_processes[0]->rb_alloc[1] = 0xffffffff; dlsch->harq_processes[0]->rb_alloc[2] = 0xffffffff; dlsch->harq_processes[0]->rb_alloc[3] = 0xf; break; } } void generate_mch(PHY_VARS_eNB *phy_vars_eNB,int sched_subframe,uint8_t *a,int abstraction_flag) { int G; int subframe = phy_vars_eNB->proc[sched_subframe].subframe_tx; if (abstraction_flag != 0) { if (eNB_transport_info_TB_index[phy_vars_eNB->Mod_id][phy_vars_eNB->CC_id]!=0) printf("[PHY][EMU] PMCH transport block position is different than zero %d \n", eNB_transport_info_TB_index[phy_vars_eNB->Mod_id][phy_vars_eNB->CC_id]); memcpy(phy_vars_eNB->dlsch_eNB_MCH->harq_processes[0]->b, a, phy_vars_eNB->dlsch_eNB_MCH->harq_processes[0]->TBS>>3); LOG_D(PHY, "[eNB %d] dlsch_encoding_emul pmch , tbs is %d \n", phy_vars_eNB->Mod_id, phy_vars_eNB->dlsch_eNB_MCH->harq_processes[0]->TBS>>3); memcpy(&eNB_transport_info[phy_vars_eNB->Mod_id][phy_vars_eNB->CC_id].transport_blocks[eNB_transport_info_TB_index[phy_vars_eNB->Mod_id][phy_vars_eNB->CC_id]], a, phy_vars_eNB->dlsch_eNB_MCH->harq_processes[0]->TBS>>3); eNB_transport_info_TB_index[phy_vars_eNB->Mod_id][phy_vars_eNB->CC_id]+= phy_vars_eNB->dlsch_eNB_MCH->harq_processes[0]->TBS>>3;//=eNB_transport_info[phy_vars_eNB->Mod_id].tbs[0]; }else { G = get_G(&phy_vars_eNB->lte_frame_parms, phy_vars_eNB->lte_frame_parms.N_RB_DL, phy_vars_eNB->dlsch_eNB_MCH->rb_alloc, get_Qm(phy_vars_eNB->dlsch_eNB_MCH->harq_processes[0]->mcs),1, 2,phy_vars_eNB->proc[sched_subframe].frame_tx,subframe); generate_mbsfn_pilot(phy_vars_eNB, phy_vars_eNB->lte_eNB_common_vars.txdataF[0], AMP, subframe); if (dlsch_encoding(a, &phy_vars_eNB->lte_frame_parms, 1, phy_vars_eNB->dlsch_eNB_MCH, phy_vars_eNB->proc[sched_subframe].frame_tx, subframe, &phy_vars_eNB->dlsch_rate_matching_stats, &phy_vars_eNB->dlsch_turbo_encoding_stats, &phy_vars_eNB->dlsch_interleaving_stats )<0) mac_xface->macphy_exit("problem in dlsch_encoding"); dlsch_scrambling(&phy_vars_eNB->lte_frame_parms,1,phy_vars_eNB->dlsch_eNB_MCH,G,0,subframe<<1); mch_modulation(phy_vars_eNB->lte_eNB_common_vars.txdataF[0], AMP, subframe, &phy_vars_eNB->lte_frame_parms, phy_vars_eNB->dlsch_eNB_MCH); } } void mch_extract_rbs(int **rxdataF, int **dl_ch_estimates, int **rxdataF_ext, int **dl_ch_estimates_ext, unsigned char symbol, unsigned char subframe, LTE_DL_FRAME_PARMS *frame_parms) { int pilots=0,i,j,offset,aarx; // printf("Extracting PMCH: symbol %d\n",symbol); if ((symbol==2)|| (symbol==10)) { pilots = 1; offset = 1; } else if (symbol==6) { pilots = 1; offset = 0; } for (aarx=0;aarxnb_antennas_rx;aarx++) { if (pilots==1) { for (i=offset,j=0;iN_RB_DL*6;i+=2,j++) { /* printf("MCH with pilots: i %d, j %d => %d,%d\n",i,j, *(int16_t*)&rxdataF[aarx][i+frame_parms->first_carrier_offset + (symbol*frame_parms->ofdm_symbol_size)], *(int16_t*)(1+&rxdataF[aarx][i+frame_parms->first_carrier_offset + (symbol*frame_parms->ofdm_symbol_size)])); */ rxdataF_ext[aarx][j+symbol*(frame_parms->N_RB_DL*12)] = rxdataF[aarx][i+frame_parms->first_carrier_offset + (symbol*frame_parms->ofdm_symbol_size)]; rxdataF_ext[aarx][(frame_parms->N_RB_DL*3)+j+symbol*(frame_parms->N_RB_DL*12)] = rxdataF[aarx][i+1+ (symbol*frame_parms->ofdm_symbol_size)]; dl_ch_estimates_ext[aarx][j+symbol*(frame_parms->N_RB_DL*12)] = dl_ch_estimates[aarx][i+(symbol*frame_parms->ofdm_symbol_size)]; dl_ch_estimates_ext[aarx][(frame_parms->N_RB_DL*3)+j+symbol*(frame_parms->N_RB_DL*12)] = dl_ch_estimates[aarx][i+(frame_parms->N_RB_DL*6)+(symbol*frame_parms->ofdm_symbol_size)]; } } else { memcpy((void*)&rxdataF_ext[aarx][symbol*(frame_parms->N_RB_DL*12)], (void*)&rxdataF[aarx][frame_parms->first_carrier_offset + (symbol*frame_parms->ofdm_symbol_size)], frame_parms->N_RB_DL*24); memcpy((void*)&rxdataF_ext[aarx][(frame_parms->N_RB_DL*6) + symbol*(frame_parms->N_RB_DL*12)], (void*)&rxdataF[aarx][1 + (symbol*frame_parms->ofdm_symbol_size)], frame_parms->N_RB_DL*24); memcpy((void*)&dl_ch_estimates_ext[aarx][symbol*(frame_parms->N_RB_DL*12)], (void*)&dl_ch_estimates[aarx][(symbol*frame_parms->ofdm_symbol_size)], frame_parms->N_RB_DL*48); } } } void mch_channel_level(int **dl_ch_estimates_ext, LTE_DL_FRAME_PARMS *frame_parms, int *avg, uint8_t symbol, unsigned short nb_rb){ int i,aarx,nre; __m128i *dl_ch128,avg128; for (aarx=0;aarxnb_antennas_rx;aarx++) { //clear average level avg128 = _mm_xor_si128(avg128,avg128); // 5 is always a symbol with no pilots for both normal and extended prefix dl_ch128=(__m128i *)&dl_ch_estimates_ext[aarx][symbol*frame_parms->N_RB_DL*12]; if ((symbol == 2) || (symbol == 6) || (symbol == 10)) nre = (frame_parms->N_RB_DL*6); else nre = (frame_parms->N_RB_DL*12); for (i=0;i<(nre>>2);i++) { avg128 = _mm_add_epi32(avg128,_mm_madd_epi16(dl_ch128[0],dl_ch128[0])); } avg[aarx] = (((int*)&avg128)[0] + ((int*)&avg128)[1] + ((int*)&avg128)[2] + ((int*)&avg128)[3])/nre; // printf("Channel level : %d\n",avg[(aatx<<1)+aarx]); } _mm_empty(); _m_empty(); } void mch_channel_compensation(int **rxdataF_ext, int **dl_ch_estimates_ext, int **dl_ch_mag, int **dl_ch_magb, int **rxdataF_comp, LTE_DL_FRAME_PARMS *frame_parms, unsigned char symbol, unsigned char mod_order, unsigned char output_shift) { int aarx,nre,i; __m128i *dl_ch128,*dl_ch_mag128,*dl_ch_mag128b,*rxdataF128,*rxdataF_comp128; __m128i mmtmpD0,mmtmpD1,mmtmpD2,mmtmpD3,QAM_amp128,QAM_amp128b; if ((symbol == 2) || (symbol == 6) || (symbol == 10)) nre = frame_parms->N_RB_DL*6; else nre = frame_parms->N_RB_DL*12; if (mod_order == 4) { QAM_amp128 = _mm_set1_epi16(QAM16_n1); // 2/sqrt(10) QAM_amp128b = _mm_setzero_si128(); } else if (mod_order == 6) { QAM_amp128 = _mm_set1_epi16(QAM64_n1); // QAM_amp128b = _mm_set1_epi16(QAM64_n2); } for (aarx=0;aarxnb_antennas_rx;aarx++) { dl_ch128 = (__m128i *)&dl_ch_estimates_ext[aarx][symbol*frame_parms->N_RB_DL*12]; dl_ch_mag128 = (__m128i *)&dl_ch_mag[aarx][symbol*frame_parms->N_RB_DL*12]; dl_ch_mag128b = (__m128i *)&dl_ch_magb[aarx][symbol*frame_parms->N_RB_DL*12]; rxdataF128 = (__m128i *)&rxdataF_ext[aarx][symbol*frame_parms->N_RB_DL*12]; rxdataF_comp128 = (__m128i *)&rxdataF_comp[aarx][symbol*frame_parms->N_RB_DL*12]; for (i=0;i<(nre>>2);i+=2) { if (mod_order>2) { // get channel amplitude if not QPSK mmtmpD0 = _mm_madd_epi16(dl_ch128[0],dl_ch128[0]); mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift); mmtmpD1 = _mm_madd_epi16(dl_ch128[1],dl_ch128[1]); mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift); mmtmpD0 = _mm_packs_epi32(mmtmpD0,mmtmpD1); // store channel magnitude here in a new field of dlsch dl_ch_mag128[0] = _mm_unpacklo_epi16(mmtmpD0,mmtmpD0); dl_ch_mag128b[0] = dl_ch_mag128[0]; dl_ch_mag128[0] = _mm_mulhi_epi16(dl_ch_mag128[0],QAM_amp128); dl_ch_mag128[0] = _mm_slli_epi16(dl_ch_mag128[0],1); dl_ch_mag128[1] = _mm_unpackhi_epi16(mmtmpD0,mmtmpD0); dl_ch_mag128b[1] = dl_ch_mag128[1]; dl_ch_mag128[1] = _mm_mulhi_epi16(dl_ch_mag128[1],QAM_amp128); dl_ch_mag128[1] = _mm_slli_epi16(dl_ch_mag128[1],1); dl_ch_mag128b[0] = _mm_mulhi_epi16(dl_ch_mag128b[0],QAM_amp128b); dl_ch_mag128b[0] = _mm_slli_epi16(dl_ch_mag128b[0],1); dl_ch_mag128b[1] = _mm_mulhi_epi16(dl_ch_mag128b[1],QAM_amp128b); dl_ch_mag128b[1] = _mm_slli_epi16(dl_ch_mag128b[1],1); } // multiply by conjugated channel mmtmpD0 = _mm_madd_epi16(dl_ch128[0],rxdataF128[0]); // print_ints("re",&mmtmpD0); // mmtmpD0 contains real part of 4 consecutive outputs (32-bit) mmtmpD1 = _mm_shufflelo_epi16(dl_ch128[0],_MM_SHUFFLE(2,3,0,1)); mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1)); mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)&conjugate[0]); // print_ints("im",&mmtmpD1); mmtmpD1 = _mm_madd_epi16(mmtmpD1,rxdataF128[0]); // mmtmpD1 contains imag part of 4 consecutive outputs (32-bit) mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift); // print_ints("re(shift)",&mmtmpD0); mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift); // print_ints("im(shift)",&mmtmpD1); mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1); mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1); // print_ints("c0",&mmtmpD2); // print_ints("c1",&mmtmpD3); rxdataF_comp128[0] = _mm_packs_epi32(mmtmpD2,mmtmpD3); // print_shorts("rx:",rxdataF128); // print_shorts("ch:",dl_ch128); // print_shorts("pack:",rxdataF_comp128); // multiply by conjugated channel mmtmpD0 = _mm_madd_epi16(dl_ch128[1],rxdataF128[1]); // mmtmpD0 contains real part of 4 consecutive outputs (32-bit) mmtmpD1 = _mm_shufflelo_epi16(dl_ch128[1],_MM_SHUFFLE(2,3,0,1)); mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1)); mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)conjugate); mmtmpD1 = _mm_madd_epi16(mmtmpD1,rxdataF128[1]); // mmtmpD1 contains imag part of 4 consecutive outputs (32-bit) mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift); mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift); mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1); mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1); rxdataF_comp128[1] = _mm_packs_epi32(mmtmpD2,mmtmpD3); // print_shorts("rx:",rxdataF128+1); // print_shorts("ch:",dl_ch128+1); // print_shorts("pack:",rxdataF_comp128+1); dl_ch128+=2; dl_ch_mag128+=2; dl_ch_mag128b+=2; rxdataF128+=2; rxdataF_comp128+=2; } } _mm_empty(); _m_empty(); } void mch_detection_mrc(LTE_DL_FRAME_PARMS *frame_parms, int **rxdataF_comp, int **dl_ch_mag, int **dl_ch_magb, unsigned char symbol) { int i; __m128i *rxdataF_comp128_0,*rxdataF_comp128_1,*dl_ch_mag128_0,*dl_ch_mag128_1,*dl_ch_mag128_0b,*dl_ch_mag128_1b; if (frame_parms->nb_antennas_rx>1) { rxdataF_comp128_0 = (__m128i *)&rxdataF_comp[0][symbol*frame_parms->N_RB_DL*12]; rxdataF_comp128_1 = (__m128i *)&rxdataF_comp[1][symbol*frame_parms->N_RB_DL*12]; dl_ch_mag128_0 = (__m128i *)&dl_ch_mag[0][symbol*frame_parms->N_RB_DL*12]; dl_ch_mag128_1 = (__m128i *)&dl_ch_mag[1][symbol*frame_parms->N_RB_DL*12]; dl_ch_mag128_0b = (__m128i *)&dl_ch_magb[0][symbol*frame_parms->N_RB_DL*12]; dl_ch_mag128_1b = (__m128i *)&dl_ch_magb[1][symbol*frame_parms->N_RB_DL*12]; // MRC on each re of rb, both on MF output and magnitude (for 16QAM/64QAM llr computation) for (i=0;iN_RB_DL*3;i++) { rxdataF_comp128_0[i] = _mm_adds_epi16(_mm_srai_epi16(rxdataF_comp128_0[i],1),_mm_srai_epi16(rxdataF_comp128_1[i],1)); dl_ch_mag128_0[i] = _mm_adds_epi16(_mm_srai_epi16(dl_ch_mag128_0[i],1),_mm_srai_epi16(dl_ch_mag128_1[i],1)); dl_ch_mag128_0b[i] = _mm_adds_epi16(_mm_srai_epi16(dl_ch_mag128_0b[i],1),_mm_srai_epi16(dl_ch_mag128_1b[i],1)); } } _mm_empty(); _m_empty(); } int mch_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms, int **rxdataF_comp, short *dlsch_llr, unsigned char symbol, short **llr32p) { uint32_t *rxF = (uint32_t*)&rxdataF_comp[0][(symbol*frame_parms->N_RB_DL*12)]; uint32_t *llr32; int i,len; if (symbol==2) { llr32 = (uint32_t*)dlsch_llr; } else { llr32 = (uint32_t*)(*llr32p); } if (!llr32) { msg("dlsch_qpsk_llr: llr is null, symbol %d, llr32=%p\n",symbol, llr32); return(-1); } if ((symbol==2) || (symbol==6) || (symbol==10)) { len = frame_parms->N_RB_DL*6; } else { len = frame_parms->N_RB_DL*12; } // printf("dlsch_qpsk_llr: symbol %d,len %d,pbch_pss_sss_adjust %d\n",symbol,len,pbch_pss_sss_adjust); for (i=0;iN_RB_DL*12)]; __m128i *ch_mag; __m128i llr128[2],xmm0; int i,len; unsigned char len_mod4=0; uint32_t *llr32; if (symbol==2) { llr32 = (uint32_t*)dlsch_llr; } else { llr32 = (uint32_t*)*llr32p; } ch_mag = (__m128i*)&dl_ch_mag[0][(symbol*frame_parms->N_RB_DL*12)]; if ((symbol==2) || (symbol==6) || (symbol==10)) { len = frame_parms->N_RB_DL*6; } else { len = frame_parms->N_RB_DL*12; } // update output pointer according to number of REs in this symbol (<<2 because 4 bits per RE) if (symbol==2) *llr32p = dlsch_llr + (len<<2); else *llr32p += (len<<2); len_mod4 = len&3; len>>=2; // length in quad words (4 REs) len+=(len_mod4==0 ? 0 : 1); for (i=0;iN_RB_DL*12)]; int i,len,len2; // int j=0; unsigned char len_mod4; short *llr; int16_t *llr2; if (symbol==2) llr = dlsch_llr; else llr = *llr_save; ch_mag = (__m128i*)&dl_ch_mag[0][(symbol*frame_parms->N_RB_DL*12)]; ch_magb = (__m128i*)&dl_ch_magb[0][(symbol*frame_parms->N_RB_DL*12)]; if ((symbol==2) || (symbol==6) || (symbol==10)) { len = frame_parms->N_RB_DL*6; } else { len = frame_parms->N_RB_DL*12; } llr2 = llr; llr += (len*6); len_mod4 =len&3; len2=len>>2; // length in quad words (4 REs) len2+=(len_mod4?0:1); for (i=0;i mag (%d,%d) (%d,%d)\n",i,((short *)&ch_mag[i])[0],((short *)&ch_magb[i])[0], ((short *)&rxF[i])[0],((short *)&rxF[i])[1]); */ // loop over all LLRs in quad word (24 coded bits) /* for (j=0;j<8;j+=2) { llr2[0] = ((short *)&rxF[i])[j]; llr2[1] = ((short *)&rxF[i])[j+1]; llr2[2] = _mm_extract_epi16(xmm1,j); llr2[3] = _mm_extract_epi16(xmm1,j+1);//((short *)&xmm1)[j+1]; llr2[4] = _mm_extract_epi16(xmm2,j);//((short *)&xmm2)[j]; llr2[5] = _mm_extract_epi16(xmm2,j+1);//((short *)&xmm2)[j+1]; llr2+=6; } */ llr2[0] = ((short *)&rxF[i])[0]; llr2[1] = ((short *)&rxF[i])[1]; llr2[2] = _mm_extract_epi16(xmm1,0); llr2[3] = _mm_extract_epi16(xmm1,1);//((short *)&xmm1)[j+1]; llr2[4] = _mm_extract_epi16(xmm2,0);//((short *)&xmm2)[j]; llr2[5] = _mm_extract_epi16(xmm2,1);//((short *)&xmm2)[j+1]; llr2+=6; llr2[0] = ((short *)&rxF[i])[2]; llr2[1] = ((short *)&rxF[i])[3]; llr2[2] = _mm_extract_epi16(xmm1,2); llr2[3] = _mm_extract_epi16(xmm1,3);//((short *)&xmm1)[j+1]; llr2[4] = _mm_extract_epi16(xmm2,2);//((short *)&xmm2)[j]; llr2[5] = _mm_extract_epi16(xmm2,3);//((short *)&xmm2)[j+1]; llr2+=6; llr2[0] = ((short *)&rxF[i])[4]; llr2[1] = ((short *)&rxF[i])[5]; llr2[2] = _mm_extract_epi16(xmm1,4); llr2[3] = _mm_extract_epi16(xmm1,5);//((short *)&xmm1)[j+1]; llr2[4] = _mm_extract_epi16(xmm2,4);//((short *)&xmm2)[j]; llr2[5] = _mm_extract_epi16(xmm2,5);//((short *)&xmm2)[j+1]; llr2+=6; llr2[0] = ((short *)&rxF[i])[6]; llr2[1] = ((short *)&rxF[i])[7]; llr2[2] = _mm_extract_epi16(xmm1,6); llr2[3] = _mm_extract_epi16(xmm1,7);//((short *)&xmm1)[j+1]; llr2[4] = _mm_extract_epi16(xmm2,6);//((short *)&xmm2)[j]; llr2[5] = _mm_extract_epi16(xmm2,7);//((short *)&xmm2)[j+1]; llr2+=6; } *llr_save = llr; _mm_empty(); _m_empty(); } int avg_pmch[4]; int rx_pmch(PHY_VARS_UE *phy_vars_ue, unsigned char eNB_id, uint8_t subframe, unsigned char symbol) { LTE_UE_COMMON *lte_ue_common_vars = &phy_vars_ue->lte_ue_common_vars; LTE_UE_PDSCH **lte_ue_pdsch_vars = &phy_vars_ue->lte_ue_pdsch_vars_MCH[eNB_id]; LTE_DL_FRAME_PARMS *frame_parms = &phy_vars_ue->lte_frame_parms; LTE_UE_DLSCH_t **dlsch_ue = &phy_vars_ue->dlsch_ue_MCH[eNB_id]; int avgs,aarx; //printf("*********************mch: symbol %d\n",symbol); mch_extract_rbs(lte_ue_common_vars->rxdataF, lte_ue_common_vars->dl_ch_estimates[eNB_id], lte_ue_pdsch_vars[eNB_id]->rxdataF_ext, lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext, symbol, subframe, frame_parms); if (symbol == 2) { mch_channel_level(lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext, frame_parms, avg_pmch, symbol, frame_parms->N_RB_DL); } avgs = 0; for (aarx=0;aarxnb_antennas_rx;aarx++) avgs = cmax(avgs,avg_pmch[aarx]); if (get_Qm(dlsch_ue[0]->harq_processes[0]->mcs)==2) lte_ue_pdsch_vars[eNB_id]->log2_maxh = (log2_approx(avgs)/2) ;// + 2 else lte_ue_pdsch_vars[eNB_id]->log2_maxh = (log2_approx(avgs)/2); // + 5;// + 2 mch_channel_compensation(lte_ue_pdsch_vars[eNB_id]->rxdataF_ext, lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext, lte_ue_pdsch_vars[eNB_id]->dl_ch_mag, lte_ue_pdsch_vars[eNB_id]->dl_ch_magb, lte_ue_pdsch_vars[eNB_id]->rxdataF_comp, frame_parms, symbol, get_Qm(dlsch_ue[0]->harq_processes[0]->mcs), lte_ue_pdsch_vars[eNB_id]->log2_maxh); if (frame_parms->nb_antennas_rx > 1) mch_detection_mrc(frame_parms, lte_ue_pdsch_vars[eNB_id]->rxdataF_comp, lte_ue_pdsch_vars[eNB_id]->dl_ch_mag, lte_ue_pdsch_vars[eNB_id]->dl_ch_magb, symbol); switch (get_Qm(dlsch_ue[0]->harq_processes[0]->mcs)) { case 2 : mch_qpsk_llr(frame_parms, lte_ue_pdsch_vars[eNB_id]->rxdataF_comp, lte_ue_pdsch_vars[eNB_id]->llr[0], symbol, lte_ue_pdsch_vars[eNB_id]->llr128); break; case 4: mch_16qam_llr(frame_parms, lte_ue_pdsch_vars[eNB_id]->rxdataF_comp, lte_ue_pdsch_vars[eNB_id]->llr[0], lte_ue_pdsch_vars[eNB_id]->dl_ch_mag, symbol, lte_ue_pdsch_vars[eNB_id]->llr128); break; case 6: mch_64qam_llr(frame_parms, lte_ue_pdsch_vars[eNB_id]->rxdataF_comp, lte_ue_pdsch_vars[eNB_id]->llr[0], lte_ue_pdsch_vars[eNB_id]->dl_ch_mag, lte_ue_pdsch_vars[eNB_id]->dl_ch_magb, symbol, lte_ue_pdsch_vars[eNB_id]->llr128); break; } return(0); }