/*******************************************************************************
OpenAirInterface
Copyright(c) 1999 - 2014 Eurecom
OpenAirInterface is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenAirInterface is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OpenAirInterface.The full GNU General Public License is
included in this distribution in the file called "COPYING". If not,
see .
Contact Information
OpenAirInterface Admin: openair_admin@eurecom.fr
OpenAirInterface Tech : openair_tech@eurecom.fr
OpenAirInterface Dev : openair4g-devel@lists.eurecom.fr
Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
*******************************************************************************/
#include
#include
#include
#include
#include
#include
#include "SIMULATION/TOOLS/defs.h"
#include "SIMULATION/RF/defs.h"
#include "PHY/types.h"
#include "PHY/defs.h"
#include "PHY/vars.h"
#include "MAC_INTERFACE/vars.h"
#ifdef EMOS
#include "SCHED/phy_procedures_emos.h"
#endif
#include "SCHED/defs.h"
#include "SCHED/vars.h"
#include "LAYER2/MAC/vars.h"
#ifdef XFORMS
#include "PHY/TOOLS/lte_phy_scope.h"
#endif //XFORMS
#include "OCG_vars.h"
PHY_VARS_eNB *PHY_vars_eNB;
PHY_VARS_UE *PHY_vars_UE;
void lte_param_init(unsigned char N_tx, unsigned char N_rx,unsigned char transmission_mode,uint8_t extended_prefix_flag,lte_frame_type_t frame_type, uint16_t Nid_cell,uint8_t tdd_config,
uint8_t N_RB_DL,uint8_t osf,uint32_t perfect_ce)
{
LTE_DL_FRAME_PARMS *lte_frame_parms;
printf("Start lte_param_init\n");
PHY_vars_eNB = malloc(sizeof(PHY_VARS_eNB));
PHY_vars_UE = malloc(sizeof(PHY_VARS_UE));
//PHY_config = malloc(sizeof(PHY_CONFIG));
mac_xface = malloc(sizeof(MAC_xface));
srand(1);
randominit(1);
set_taus_seed(1);
lte_frame_parms = &(PHY_vars_eNB->lte_frame_parms);
lte_frame_parms->N_RB_DL = N_RB_DL; //50 for 10MHz and 25 for 5 MHz
lte_frame_parms->N_RB_UL = N_RB_DL;
lte_frame_parms->Ncp = extended_prefix_flag;
lte_frame_parms->Nid_cell = Nid_cell;
lte_frame_parms->Nid_cell_mbsfn = 1;
lte_frame_parms->nushift = Nid_cell%6;
lte_frame_parms->nb_antennas_tx = N_tx;
lte_frame_parms->nb_antennas_rx = N_rx;
lte_frame_parms->phich_config_common.phich_resource = oneSixth;
lte_frame_parms->tdd_config = tdd_config;
lte_frame_parms->frame_type = frame_type;
// lte_frame_parms->Csrs = 2;
// lte_frame_parms->Bsrs = 0;
// lte_frame_parms->kTC = 0;44
// lte_frame_parms->n_RRC = 0;
lte_frame_parms->mode1_flag = (transmission_mode == 1)? 1 : 0;
init_frame_parms(lte_frame_parms,osf);
//copy_lte_parms_to_phy_framing(lte_frame_parms, &(PHY_config->PHY_framing));
PHY_vars_UE->is_secondary_ue = 0;
PHY_vars_UE->lte_frame_parms = *lte_frame_parms;
PHY_vars_eNB->lte_frame_parms = *lte_frame_parms;
phy_init_lte_top(lte_frame_parms);
dump_frame_parms(lte_frame_parms);
PHY_vars_UE->PHY_measurements.n_adj_cells=2;
PHY_vars_UE->PHY_measurements.adj_cell_id[0] = Nid_cell+1;
PHY_vars_UE->PHY_measurements.adj_cell_id[1] = Nid_cell+2;
lte_gold_mbsfn(lte_frame_parms,PHY_vars_UE->lte_gold_mbsfn_table,Nid_cell);
lte_gold_mbsfn(lte_frame_parms,PHY_vars_eNB->lte_gold_mbsfn_table,Nid_cell);
phy_init_lte_ue(PHY_vars_UE,1,0);
phy_init_lte_eNB(PHY_vars_eNB,0,0,0);
PHY_vars_UE->perfect_ce = perfect_ce;
printf("Done lte_param_init\n");
}
DCI1E_5MHz_2A_M10PRB_TDD_t DLSCH_alloc_pdu2_1E[2];
#define UL_RB_ALLOC 0x1ff;
#define CCCH_RB_ALLOC computeRIV(PHY_vars_eNB->lte_frame_parms.N_RB_UL,0,2)
int main(int argc, char **argv)
{
char c;
int i,l,aa,aarx,k;
double sigma2, sigma2_dB=0,SNR,snr0=-2.0,snr1=0.0;
uint8_t snr1set=0;
double snr_step=1,input_snr_step=1;
//mod_sym_t **txdataF;
int **txdata;
double **s_re,**s_im,**r_re,**r_im;
double iqim = 0.0;
int subframe=1;
int sched_subframe;
char fname[40];//, vname[40];
uint8_t transmission_mode = 1,n_tx=1,n_rx=2;
uint16_t Nid_cell=0;
FILE *fd;
int eNB_id = 0;
unsigned char mcs=0,awgn_flag=0,round;
int n_frames=1;
channel_desc_t *eNB2UE;
uint32_t nsymb,tx_lev,tx_lev_dB;
uint8_t extended_prefix_flag=1;
LTE_DL_FRAME_PARMS *frame_parms;
int hold_channel=0;
uint16_t NB_RB=25;
int tdd_config=3;
SCM_t channel_model=MBSFN;
unsigned char *input_buffer;
unsigned short input_buffer_length;
unsigned int ret;
unsigned int trials,errs[4]= {0,0,0,0}; //,round_trials[4]={0,0,0,0};
uint8_t N_RB_DL=25,osf=1;
uint32_t perfect_ce = 0;
lte_frame_type_t frame_type = FDD;
#ifdef XFORMS
FD_lte_phy_scope_ue *form_ue;
char title[255];
fl_initialize (&argc, argv, NULL, 0, 0);
form_ue = create_lte_phy_scope_ue();
sprintf (title, "LTE DL SCOPE UE");
fl_show_form (form_ue->lte_phy_scope_ue, FL_PLACE_HOTSPOT, FL_FULLBORDER, title);
#endif
logInit();
number_of_cards = 1;
openair_daq_vars.rx_rf_mode = 1;
/*
rxdataF = (int **)malloc16(2*sizeof(int*));
rxdataF[0] = (int *)malloc16(FRAME_LENGTH_BYTES);
rxdataF[1] = (int *)malloc16(FRAME_LENGTH_BYTES);
rxdata = (int **)malloc16(2*sizeof(int*));
rxdata[0] = (int *)malloc16(FRAME_LENGTH_BYTES);
rxdata[1] = (int *)malloc16(FRAME_LENGTH_BYTES);
*/
while ((c = getopt (argc, argv, "ahA:Cp:n:s:S:t:x:y:z:N:F:R:O:dm:i:Y")) != -1) {
switch (c) {
case 'a':
awgn_flag=1;
break;
case 'd':
frame_type = 0;
break;
case 'n':
n_frames = atoi(optarg);
break;
case 'm':
mcs=atoi(optarg);
break;
case 's':
snr0 = atof(optarg);
msg("Setting SNR0 to %f\n",snr0);
break;
case 'i':
input_snr_step = atof(optarg);
break;
case 'S':
snr1 = atof(optarg);
snr1set=1;
msg("Setting SNR1 to %f\n",snr1);
break;
case 'p': // subframe no;
subframe=atoi(optarg);
break;
case 'z':
n_rx=atoi(optarg);
if ((n_rx==0) || (n_rx>2)) {
msg("Unsupported number of rx antennas %d\n",n_rx);
exit(-1);
}
break;
case 'N':
Nid_cell = atoi(optarg);
break;
case 'R':
N_RB_DL = atoi(optarg);
if ((N_RB_DL!=6) && (N_RB_DL!=25) && (N_RB_DL!=50) && (N_RB_DL!=100)) {
printf("Unsupported Bandwidth %d\n",N_RB_DL);
exit(-1);
}
break;
case 'O':
osf = atoi(optarg);
break;
case 'Y':
perfect_ce = 1;
break;
default:
case 'h':
printf("%s -h(elp) -p(subframe) -N cell_id -g channel_model -n n_frames -t Delayspread -s snr0 -S snr1 -i snr increment -z RXant \n",argv[0]);
printf("-h This message\n");
printf("-a Use AWGN Channel\n");
printf("-p Use extended prefix mode\n");
printf("-d Use TDD\n");
printf("-n Number of frames to simulate\n");
printf("-s Starting SNR, runs from SNR0 to SNR0 + 5 dB. If n_frames is 1 then just SNR is simulated\n");
printf("-S Ending SNR, runs from SNR0 to SNR1\n");
printf("-t Delay spread for multipath channel\n");
printf("-g [A,B,C,D,E,F,G] Use 3GPP SCM (A,B,C,D) or 36-101 (E-EPA,F-EVA,G-ETU) models (ignores delay spread and Ricean factor)\n");
printf("-x Transmission mode (1,2,6 for the moment)\n");
printf("-y Number of TX antennas used in eNB\n");
printf("-z Number of RX antennas used in UE\n");
printf("-i Relative strength of first intefering eNB (in dB) - cell_id mod 3 = 1\n");
printf("-j Relative strength of second intefering eNB (in dB) - cell_id mod 3 = 2\n");
printf("-N Nid_cell\n");
printf("-R N_RB_DL\n");
printf("-O oversampling factor (1,2,4,8,16)\n");
printf("-A Interpolation_filname Run with Abstraction to generate Scatter plot using interpolation polynomial in file\n");
printf("-C Generate Calibration information for Abstraction (effective SNR adjustment to remove Pe bias w.r.t. AWGN)\n");
printf("-f Output filename (.txt format) for Pe/SNR results\n");
printf("-F Input filename (.txt format) for RX conformance testing\n");
exit (-1);
break;
}
}
sched_subframe = (subframe+9)%10;
if (awgn_flag == 1)
channel_model = AWGN;
// check that subframe is legal for eMBMS
if ((subframe == 0) || (subframe == 5) || // TDD and FDD SFn 0,5;
((frame_type == FDD) && ((subframe == 4) || (subframe == 9))) || // FDD SFn 4,9;
((frame_type == TDD ) && ((subframe<3) || (subframe==6)))) { // TDD SFn 1,2,6;
printf("Illegal subframe %d for eMBMS transmission (frame_type %d)\n",subframe,frame_type);
exit(-1);
}
if (transmission_mode==2)
n_tx=2;
lte_param_init(n_tx,n_rx,transmission_mode,extended_prefix_flag,frame_type,Nid_cell,tdd_config,N_RB_DL,osf,perfect_ce);
if (snr1set==0) {
if (n_frames==1)
snr1 = snr0+.1;
else
snr1 = snr0+5.0;
}
printf("SNR0 %f, SNR1 %f\n",snr0,snr1);
frame_parms = &PHY_vars_eNB->lte_frame_parms;
if (awgn_flag == 0)
sprintf(fname,"embms_%d_%d.m",mcs,N_RB_DL);
else
sprintf(fname,"embms_awgn_%d_%d.m",mcs,N_RB_DL);
fd = fopen(fname,"w");
if (awgn_flag==0)
fprintf(fd,"SNR_%d_%d=[];errs_mch_%d_%d=[];mch_trials_%d_%d=[];\n",
mcs,N_RB_DL,
mcs,N_RB_DL,
mcs,N_RB_DL);
else
fprintf(fd,"SNR_awgn_%d_%d=[];errs_mch_awgn_%d_%d=[];mch_trials_awgn_%d_%d=[];\n",
mcs,N_RB_DL,
mcs,N_RB_DL,
mcs,N_RB_DL);
fflush(fd);
txdata = PHY_vars_eNB->lte_eNB_common_vars.txdata[0];
s_re = malloc(2*sizeof(double*));
s_im = malloc(2*sizeof(double*));
r_re = malloc(2*sizeof(double*));
r_im = malloc(2*sizeof(double*));
nsymb = 12;
printf("FFT Size %d, Extended Prefix %d, Samples per subframe %d, Symbols per subframe %d, AWGN %d\n",NUMBER_OF_OFDM_CARRIERS,
frame_parms->Ncp,frame_parms->samples_per_tti,nsymb,awgn_flag);
for (i=0; i<2; i++) {
s_re[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
bzero(s_re[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
s_im[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
bzero(s_im[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
r_re[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
bzero(r_re[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
r_im[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
bzero(r_im[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
}
eNB2UE = new_channel_desc_scm(PHY_vars_eNB->lte_frame_parms.nb_antennas_tx,
PHY_vars_UE->lte_frame_parms.nb_antennas_rx,
channel_model,
N_RB2sampling_rate(PHY_vars_eNB->lte_frame_parms.N_RB_DL),
N_RB2channel_bandwidth(PHY_vars_eNB->lte_frame_parms.N_RB_DL),
0,
0,
0);
// Create transport channel structures for 2 transport blocks (MIMO)
PHY_vars_eNB->dlsch_eNB_MCH = new_eNB_dlsch(1,8,N_RB_DL,0,&PHY_vars_eNB->lte_frame_parms);
if (!PHY_vars_eNB->dlsch_eNB_MCH) {
printf("Can't get eNB dlsch structures\n");
exit(-1);
}
PHY_vars_UE->dlsch_ue_MCH[0] = new_ue_dlsch(1,8,MAX_TURBO_ITERATIONS_MBSFN,N_RB_DL,0);
PHY_vars_eNB->lte_frame_parms.num_MBSFN_config = 1;
PHY_vars_eNB->lte_frame_parms.MBSFN_config[0].radioframeAllocationPeriod = 0;
PHY_vars_eNB->lte_frame_parms.MBSFN_config[0].radioframeAllocationOffset = 0;
PHY_vars_eNB->lte_frame_parms.MBSFN_config[0].fourFrames_flag = 0;
PHY_vars_eNB->lte_frame_parms.MBSFN_config[0].mbsfn_SubframeConfig=0xff; // activate all possible subframes
PHY_vars_UE->lte_frame_parms.num_MBSFN_config = 1;
PHY_vars_UE->lte_frame_parms.MBSFN_config[0].radioframeAllocationPeriod = 0;
PHY_vars_UE->lte_frame_parms.MBSFN_config[0].radioframeAllocationOffset = 0;
PHY_vars_UE->lte_frame_parms.MBSFN_config[0].fourFrames_flag = 0;
PHY_vars_UE->lte_frame_parms.MBSFN_config[0].mbsfn_SubframeConfig=0xff; // activate all possible subframes
fill_eNB_dlsch_MCH(PHY_vars_eNB,mcs,1,0,0);
fill_UE_dlsch_MCH(PHY_vars_UE,mcs,1,0,0);
if (is_pmch_subframe(0,subframe,&PHY_vars_eNB->lte_frame_parms)==0) {
printf("eNB is not configured for MBSFN in subframe %d\n",subframe);
exit(-1);
} else if (is_pmch_subframe(0,subframe,&PHY_vars_UE->lte_frame_parms)==0) {
printf("UE is not configured for MBSFN in subframe %d\n",subframe);
exit(-1);
}
input_buffer_length = PHY_vars_eNB->dlsch_eNB_MCH->harq_processes[0]->TBS/8;
input_buffer = (unsigned char *)malloc(input_buffer_length+4);
memset(input_buffer,0,input_buffer_length+4);
for (i=0; iframe_tx=0;
PHY_vars_eNB->proc[sched_subframe].frame_tx=0;
PHY_vars_eNB->proc[sched_subframe].subframe_tx=subframe;
errs[0]=0;
errs[1]=0;
errs[2]=0;
errs[3]=0;
/*
round_trials[0] = 0;
round_trials[1] = 0;
round_trials[2] = 0;
round_trials[3] = 0;*/
printf("********************** SNR %f (step %f)\n",SNR,snr_step);
for (trials = 0; trialsfirst_run = 1;
eNB2UE->first_run = 1;
memset(&PHY_vars_eNB->lte_eNB_common_vars.txdataF[0][0][0],0,FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX*sizeof(mod_sym_t));
generate_mch(PHY_vars_eNB,sched_subframe,input_buffer,0);
PHY_ofdm_mod(PHY_vars_eNB->lte_eNB_common_vars.txdataF[0][0], // input,
txdata[0], // output
frame_parms->ofdm_symbol_size,
LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*nsymb, // number of symbols
frame_parms->nb_prefix_samples, // number of prefix samples
CYCLIC_PREFIX);
if (n_frames==1) {
write_output("txsigF0.m","txsF0", &PHY_vars_eNB->lte_eNB_common_vars.txdataF[0][0][subframe*nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size],
nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size,1,1);
//if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1)
//write_output("txsigF1.m","txsF1", &PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][1][subframe*nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size],nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size,1,1);
}
tx_lev = 0;
for (aa=0; aalte_frame_parms.nb_antennas_tx; aa++) {
tx_lev += signal_energy(&PHY_vars_eNB->lte_eNB_common_vars.txdata[eNB_id][aa]
[subframe*PHY_vars_eNB->lte_frame_parms.samples_per_tti],
PHY_vars_eNB->lte_frame_parms.samples_per_tti);
}
tx_lev_dB = (unsigned int) dB_fixed(tx_lev);
if (n_frames==1) {
printf("tx_lev = %d (%d dB)\n",tx_lev,tx_lev_dB);
// write_output("txsig0.m","txs0", &PHY_vars_eNB->lte_eNB_common_vars.txdata[0][0][subframe* PHY_vars_eNB->lte_frame_parms.samples_per_tti],
// PHY_vars_eNB->lte_frame_parms.samples_per_tti,1,1);
}
for (i=0; i<2*frame_parms->samples_per_tti; i++) {
for (aa=0; aalte_frame_parms.nb_antennas_tx; aa++) {
s_re[aa][i] = ((double)(((short *)PHY_vars_eNB->lte_eNB_common_vars.txdata[0][aa]))[(2*subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti) + (i<<1)]);
s_im[aa][i] = ((double)(((short *)PHY_vars_eNB->lte_eNB_common_vars.txdata[0][aa]))[(2*subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti) +(i<<1)+1]);
}
}
//Multipath channel
multipath_channel(eNB2UE,s_re,s_im,r_re,r_im,
2*frame_parms->samples_per_tti,hold_channel);
//AWGN
sigma2_dB = 10*log10((double)tx_lev) +10*log10((double)PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size/(NB_RB*12)) - SNR;
sigma2 = pow(10,sigma2_dB/10);
if (n_frames==1)
printf("Sigma2 %f (sigma2_dB %f)\n",sigma2,sigma2_dB);
for (i=0; i<2*frame_parms->samples_per_tti; i++) {
for (aa=0; aalte_frame_parms.nb_antennas_rx; aa++) {
//printf("s_re[0][%d]=> %f , r_re[0][%d]=> %f\n",i,s_re[aa][i],i,r_re[aa][i]);
((short*) PHY_vars_UE->lte_ue_common_vars.rxdata[aa])[(2*subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti)+2*i] =
(short) (r_re[aa][i] + sqrt(sigma2/2)*gaussdouble(0.0,1.0));
((short*) PHY_vars_UE->lte_ue_common_vars.rxdata[aa])[(2*subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti)+2*i+1] =
(short) (r_im[aa][i] + (iqim*r_re[aa][i]) + sqrt(sigma2/2)*gaussdouble(0.0,1.0));
}
}
for (l=2; l<12; l++) {
slot_fep_mbsfn(PHY_vars_UE,
l,
subframe%10,
0,
0);
if (PHY_vars_UE->perfect_ce==1) {
// fill in perfect channel estimates
freq_channel(eNB2UE,PHY_vars_UE->lte_frame_parms.N_RB_DL,12*PHY_vars_UE->lte_frame_parms.N_RB_DL + 1);
for(k=0; knb_antennas_tx; aa++) {
for (aarx=0; aarxnb_antennas_rx; aarx++) {
for (i=0; iN_RB_DL*12; i++) {
((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[k][(aa<<1)+aarx])[2*i+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(eNB2UE->chF[aarx+(aa*frame_parms->nb_antennas_rx)][i].x*AMP);
((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[k][(aa<<1)+aarx])[2*i+1+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(eNB2UE->chF[aarx+(aa*frame_parms->nb_antennas_rx)][i].y*AMP);
}
}
}
}
}
rx_pmch(PHY_vars_UE,
0,
subframe%10,
l);
}
PHY_vars_UE->dlsch_ue_MCH[0]->harq_processes[0]->G = get_G(&PHY_vars_UE->lte_frame_parms,
PHY_vars_UE->dlsch_ue_MCH[0]->harq_processes[0]->nb_rb,
PHY_vars_UE->dlsch_ue_MCH[0]->harq_processes[0]->rb_alloc_even,
get_Qm(PHY_vars_UE->dlsch_ue_MCH[0]->harq_processes[0]->mcs),
1,2,
PHY_vars_UE->frame_tx,subframe,0);
PHY_vars_UE->dlsch_ue_MCH[0]->harq_processes[0]->Qm = get_Qm(PHY_vars_UE->dlsch_ue_MCH[0]->harq_processes[0]->mcs);
dlsch_unscrambling(&PHY_vars_UE->lte_frame_parms,1,PHY_vars_UE->dlsch_ue_MCH[0],
PHY_vars_UE->dlsch_ue_MCH[0]->harq_processes[0]->G,
PHY_vars_UE->lte_ue_pdsch_vars_MCH[0]->llr[0],0,subframe<<1);
ret = dlsch_decoding(PHY_vars_UE,
PHY_vars_UE->lte_ue_pdsch_vars_MCH[0]->llr[0],
&PHY_vars_UE->lte_frame_parms,
PHY_vars_UE->dlsch_ue_MCH[0],
PHY_vars_UE->dlsch_ue_MCH[0]->harq_processes[0],
subframe,
0,0,0);
if (n_frames==1)
printf("MCH decoding returns %d\n",ret);
if (ret == (1+PHY_vars_UE->dlsch_ue_MCH[0]->max_turbo_iterations))
errs[0]++;
PHY_vars_UE->frame_tx++;
PHY_vars_eNB->proc[sched_subframe].frame_tx++;
}
printf("errors %d/%d (Pe %e)\n",errs[round],trials,(double)errs[round]/trials);
if (awgn_flag==0)
fprintf(fd,"SNR_%d_%d = [SNR_%d_%d %f]; errs_mch_%d_%d =[errs_mch_%d_%d %d]; mch_trials_%d_%d =[mch_trials_%d_%d %d];\n",
mcs,N_RB_DL,mcs,N_RB_DL,SNR,
mcs,N_RB_DL,mcs,N_RB_DL,errs[0],
mcs,N_RB_DL,mcs,N_RB_DL,trials);
else
fprintf(fd,"SNR_awgn_%d = [SNR_awgn_%d %d]; errs_mch_awgn_%d =[errs_mch_awgn_%f %d]; mch_trials_awgn_%d =[mch_trials_awgn_%d %d];\n",
mcs,N_RB_DL,mcs,N_RB_DL,SNR,
mcs,N_RB_DL,mcs,N_RB_DL,errs[0],
mcs,N_RB_DL,mcs,N_RB_DL,trials);
fflush(fd);
if (errs[0] == 0)
break;
}
if (n_frames==1) {
printf("Dumping PMCH files ( G %d)\n",PHY_vars_UE->dlsch_ue_MCH[0]->harq_processes[0]->G);
dump_mch(PHY_vars_UE,0,
PHY_vars_UE->dlsch_ue_MCH[0]->harq_processes[0]->G,
subframe);
}
printf("Freeing dlsch structures\n");
free_eNB_dlsch(PHY_vars_eNB->dlsch_eNB_MCH);
free_ue_dlsch(PHY_vars_UE->dlsch_ue_MCH[0]);
fclose(fd);
printf("Freeing channel I/O\n");
for (i=0; i<2; i++) {
free(s_re[i]);
free(s_im[i]);
free(r_re[i]);
free(r_im[i]);
}
free(s_re);
free(s_im);
free(r_re);
free(r_im);
// lte_sync_time_free();
return(0);
}