/*******************************************************************************
OpenAirInterface
Copyright(c) 1999 - 2014 Eurecom
OpenAirInterface is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenAirInterface is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OpenAirInterface.The full GNU General Public License is
included in this distribution in the file called "COPYING". If not,
see .
Contact Information
OpenAirInterface Admin: openair_admin@eurecom.fr
OpenAirInterface Tech : openair_tech@eurecom.fr
OpenAirInterface Dev : openair4g-devel@lists.eurecom.fr
Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
*******************************************************************************/
/** usrp_lib.cpp
*
* Author: HongliangXU : hong-liang-xu@agilent.com
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "common_lib.h"
#ifdef __SSE4_1__
# include
#endif
#ifdef __AVX2__
# include
#endif
typedef struct
{
// --------------------------------
// variables for USRP configuration
// --------------------------------
uhd::usrp::multi_usrp::sptr usrp;
//uhd::usrp::multi_usrp::sptr rx_usrp;
//create a send streamer and a receive streamer
uhd::tx_streamer::sptr tx_stream;
uhd::rx_streamer::sptr rx_stream;
uhd::tx_metadata_t tx_md;
uhd::rx_metadata_t rx_md;
uhd::time_spec_t tm_spec;
//setup variables and allocate buffer
uhd::async_metadata_t async_md;
double sample_rate;
// time offset between transmiter timestamp and receiver timestamp;
double tdiff;
// use usrp_time_offset to get this value
int tx_forward_nsamps; //166 for 20Mhz
// --------------------------------
// Debug and output control
// --------------------------------
int num_underflows;
int num_overflows;
int num_seq_errors;
int64_t tx_count;
int64_t rx_count;
openair0_timestamp rx_timestamp;
} usrp_state_t;
static int trx_usrp_start(openair0_device *device)
{
usrp_state_t *s = (usrp_state_t*)device->priv;
// init recv and send streaming
uhd::stream_cmd_t cmd(uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS);
cmd.time_spec = s->usrp->get_time_now() + uhd::time_spec_t(0.05);
cmd.stream_now = false; // start at constant delay
s->rx_stream->issue_stream_cmd(cmd);
s->tx_md.time_spec = cmd.time_spec + uhd::time_spec_t(1-(double)s->tx_forward_nsamps/s->sample_rate);
s->tx_md.has_time_spec = true;
s->tx_md.start_of_burst = true;
s->tx_md.end_of_burst = false;
s->rx_count = 0;
s->tx_count = 0;
s->rx_timestamp = 0;
return 0;
}
static void trx_usrp_end(openair0_device *device)
{
usrp_state_t *s = (usrp_state_t*)device->priv;
s->rx_stream->issue_stream_cmd(uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS);
//send a mini EOB packet
s->tx_md.end_of_burst = true;
s->tx_stream->send("", 0, s->tx_md);
s->tx_md.end_of_burst = false;
}
static int trx_usrp_write(openair0_device *device, openair0_timestamp timestamp, void **buff, int nsamps, int cc, int flags)
{
usrp_state_t *s = (usrp_state_t*)device->priv;
s->tx_md.time_spec = uhd::time_spec_t::from_ticks(timestamp, s->sample_rate);
if(flags)
s->tx_md.has_time_spec = true;
else
s->tx_md.has_time_spec = false;
if (cc>1) {
std::vector buff_ptrs;
for (int i=0;itx_stream->send(buff_ptrs, nsamps, s->tx_md);
}
else
s->tx_stream->send(buff[0], nsamps, s->tx_md);
s->tx_md.start_of_burst = false;
return 0;
}
static int trx_usrp_read(openair0_device *device, openair0_timestamp *ptimestamp, void **buff, int nsamps, int cc)
{
usrp_state_t *s = (usrp_state_t*)device->priv;
int samples_received=0,i,j;
int nsamps2; // aligned to upper 32 or 16 byte boundary
#if defined(__x86_64) || defined(__i386__)
#ifdef __AVX2__
__m256i buff_tmp[2][nsamps>>3];
nsamps2 = (nsamps+7)>>3;
#else
__m128i buff_tmp[2][nsamps>>2];
nsamps2 = (nsamps+3)>>2;
#endif
#elif defined(__arm__)
int16x8_t buff_tmp[2][nsamps>>2];
nsamps2 = (nsamps+3)>>2;
#endif
if (device->type == USRP_B200_IF) {
if (cc>1) {
// receive multiple channels (e.g. RF A and RF B)
std::vector buff_ptrs;
for (int i=0;irx_stream->recv(buff_ptrs, nsamps, s->rx_md);
} else {
// receive a single channel (e.g. from connector RF A)
samples_received = s->rx_stream->recv(buff_tmp[0], nsamps, s->rx_md);
}
// bring RX data into 12 LSBs for softmodem RX
for (int i=0;itype == USRP_X300_IF) {
if (cc>1) {
// receive multiple channels (e.g. RF A and RF B)
std::vector buff_ptrs;
for (int i=0;irx_stream->recv(buff_ptrs, nsamps, s->rx_md);
} else {
// receive a single channel (e.g. from connector RF A)
samples_received = s->rx_stream->recv(buff[0], nsamps, s->rx_md);
}
}
if (samples_received < nsamps) {
printf("[recv] received %d samples out of %d\n",samples_received,nsamps);
}
//handle the error code
switch(s->rx_md.error_code){
case uhd::rx_metadata_t::ERROR_CODE_NONE:
break;
case uhd::rx_metadata_t::ERROR_CODE_OVERFLOW:
printf("[recv] USRP RX OVERFLOW!\n");
s->num_overflows++;
break;
case uhd::rx_metadata_t::ERROR_CODE_TIMEOUT:
printf("[recv] USRP RX TIMEOUT!\n");
break;
default:
printf("[recv] Unexpected error on RX, Error code: 0x%x\n",s->rx_md.error_code);
break;
}
s->rx_count += nsamps;
s->rx_timestamp = s->rx_md.time_spec.to_ticks(s->sample_rate);
*ptimestamp = s->rx_timestamp;
return samples_received;
}
openair0_timestamp get_usrp_time(openair0_device *device)
{
usrp_state_t *s = (usrp_state_t*)device->priv;
return s->usrp->get_time_now().to_ticks(s->sample_rate);
}
static bool is_equal(double a, double b)
{
return std::fabs(a-b) < std::numeric_limits::epsilon();
}
int trx_usrp_set_freq(openair0_device* device, openair0_config_t *openair0_cfg, int dummy) {
usrp_state_t *s = (usrp_state_t*)device->priv;
s->usrp->set_tx_freq(openair0_cfg[0].tx_freq[0]);
s->usrp->set_rx_freq(openair0_cfg[0].rx_freq[0]);
return(0);
}
int openair0_set_rx_frequencies(openair0_device* device, openair0_config_t *openair0_cfg) {
usrp_state_t *s = (usrp_state_t*)device->priv;
static int first_call=1;
static double rf_freq,diff;
uhd::tune_request_t rx_tune_req(openair0_cfg[0].rx_freq[0]);
rx_tune_req.rf_freq_policy = uhd::tune_request_t::POLICY_MANUAL;
rx_tune_req.rf_freq = openair0_cfg[0].rx_freq[0];
rf_freq=openair0_cfg[0].rx_freq[0];
s->usrp->set_rx_freq(rx_tune_req);
return(0);
}
int trx_usrp_set_gains(openair0_device* device,
openair0_config_t *openair0_cfg) {
usrp_state_t *s = (usrp_state_t*)device->priv;
s->usrp->set_tx_gain(openair0_cfg[0].tx_gain[0]);
::uhd::gain_range_t gain_range = s->usrp->get_rx_gain_range(0);
// limit to maximum gain
if (openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0] > gain_range.stop()) {
printf("RX Gain 0 too high, reduce by %f dB\n",
openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0] - gain_range.stop());
exit(-1);
}
s->usrp->set_rx_gain(openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0]);
printf("Setting USRP RX gain to %f (rx_gain %f,gain_range.stop() %f)\n", openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0],openair0_cfg[0].rx_gain[0],gain_range.stop());
return(0);
}
int trx_usrp_stop(int card) {
return(0);
}
rx_gain_calib_table_t calib_table_b210[] = {
{3500000000.0,46.0},
{2660000000.0,53.0},
{2300000000.0,54.0},
{1880000000.0,55.0},
{816000000.0,62.0},
{-1,0}};
rx_gain_calib_table_t calib_table_x310[] = {
{3500000000.0,77.0},
{2660000000.0,80.0},
{2300000000.0,81.0},
{1880000000.0,82.0},
{816000000.0,85.0},
{-1,0}};
void set_rx_gain_offset(openair0_config_t *openair0_cfg, int chain_index) {
int i=0;
// loop through calibration table to find best adjustment factor for RX frequency
double min_diff = 6e9,diff;
while (openair0_cfg->rx_gain_calib_table[i].freq>0) {
diff = fabs(openair0_cfg->rx_freq[chain_index] - openair0_cfg->rx_gain_calib_table[i].freq);
printf("cal %d: freq %f, offset %f, diff %f\n",
i,
openair0_cfg->rx_gain_calib_table[i].freq,
openair0_cfg->rx_gain_calib_table[i].offset,diff);
if (min_diff > diff) {
min_diff = diff;
openair0_cfg->rx_gain_offset[chain_index] = openair0_cfg->rx_gain_calib_table[i].offset;
}
i++;
}
}
int trx_usrp_get_stats(openair0_device* device) {
return(0);
}
int trx_usrp_reset_stats(openair0_device* device) {
return(0);
}
int openair0_dev_init_usrp(openair0_device* device, openair0_config_t *openair0_cfg)
{
uhd::set_thread_priority_safe(1.0);
usrp_state_t *s = (usrp_state_t*)malloc(sizeof(usrp_state_t));
memset(s, 0, sizeof(usrp_state_t));
// Initialize USRP device
std::string args = "type=b200";
uhd::device_addrs_t device_adds = uhd::device::find(args);
size_t i;
printf("Checking for USRPs\n");
if(device_adds.size() == 0)
{
double usrp_master_clock = 184.32e6;
std::string args = "type=x300";
// workaround for an api problem, master clock has to be set with the constructor not via set_master_clock_rate
args += boost::str(boost::format(",master_clock_rate=%f") % usrp_master_clock);
uhd::device_addrs_t device_adds = uhd::device::find(args);
if(device_adds.size() == 0)
{
std::cerr<<"No USRP Device Found. " << std::endl;
free(s);
return -1;
}
printf("Found USRP X300\n");
s->usrp = uhd::usrp::multi_usrp::make(args);
// s->usrp->set_rx_subdev_spec(rx_subdev);
// s->usrp->set_tx_subdev_spec(tx_subdev);
// lock mboard clocks
s->usrp->set_clock_source("internal");
//Setting device type to USRP X300/X310
device->type=USRP_X300_IF;
// this is not working yet, master clock has to be set via constructor
// set master clock rate and sample rate for tx & rx for streaming
//s->usrp->set_master_clock_rate(usrp_master_clock);
openair0_cfg[0].rx_gain_calib_table = calib_table_x310;
switch ((int)openair0_cfg[0].sample_rate) {
case 30720000:
// from usrp_time_offset
openair0_cfg[0].samples_per_packet = 2048;
openair0_cfg[0].tx_sample_advance = 15;
openair0_cfg[0].tx_scheduling_advance = 8*openair0_cfg[0].samples_per_packet;
break;
case 15360000:
openair0_cfg[0].samples_per_packet = 2048;
openair0_cfg[0].tx_sample_advance = 45;
openair0_cfg[0].tx_scheduling_advance = 5*openair0_cfg[0].samples_per_packet;
break;
case 7680000:
openair0_cfg[0].samples_per_packet = 1024;
openair0_cfg[0].tx_sample_advance = 50;
openair0_cfg[0].tx_scheduling_advance = 5*openair0_cfg[0].samples_per_packet;
break;
case 1920000:
openair0_cfg[0].samples_per_packet = 256;
openair0_cfg[0].tx_sample_advance = 50;
openair0_cfg[0].tx_scheduling_advance = 8*openair0_cfg[0].samples_per_packet;
break;
default:
printf("Error: unknown sampling rate %f\n",openair0_cfg[0].sample_rate);
exit(-1);
break;
}
} else {
printf("Found USRP B200");
s->usrp = uhd::usrp::multi_usrp::make(args);
// s->usrp->set_rx_subdev_spec(rx_subdev);
// s->usrp->set_tx_subdev_spec(tx_subdev);
// do not explicitly set the clock to "internal", because this will disable the gpsdo
// // lock mboard clocks
// s->usrp->set_clock_source("internal");
// set master clock rate and sample rate for tx & rx for streaming
device->type = USRP_B200_IF;
s->usrp->set_master_clock_rate(30.72e6);
openair0_cfg[0].rx_gain_calib_table = calib_table_b210;
switch ((int)openair0_cfg[0].sample_rate) {
case 30720000:
// from usrp_time_offset
openair0_cfg[0].samples_per_packet = 2048;
openair0_cfg[0].tx_sample_advance = 115;
openair0_cfg[0].tx_scheduling_advance = 11*openair0_cfg[0].samples_per_packet;
break;
case 15360000:
openair0_cfg[0].samples_per_packet = 2048;
openair0_cfg[0].tx_sample_advance = 113;
openair0_cfg[0].tx_scheduling_advance = 5*openair0_cfg[0].samples_per_packet;
break;
case 7680000:
openair0_cfg[0].samples_per_packet = 1024;
openair0_cfg[0].tx_sample_advance = 70;//103;
openair0_cfg[0].tx_scheduling_advance = 5*openair0_cfg[0].samples_per_packet;
break;
case 1920000:
openair0_cfg[0].samples_per_packet = 256;
openair0_cfg[0].tx_sample_advance = 40;
openair0_cfg[0].tx_scheduling_advance = 8*openair0_cfg[0].samples_per_packet;
break;
default:
printf("Error: unknown sampling rate %f\n",openair0_cfg[0].sample_rate);
exit(-1);
break;
}
}
for(i=0;iusrp->get_rx_num_channels();i++) {
if (iusrp->set_rx_rate(openair0_cfg[0].sample_rate,i);
s->usrp->set_rx_bandwidth(openair0_cfg[0].rx_bw,i);
printf("Setting rx freq/gain on channel %lu/%lu : BW %f (readback %f)\n",i,s->usrp->get_rx_num_channels(),openair0_cfg[0].rx_bw/1e6,s->usrp->get_rx_bandwidth(i)/1e6);
s->usrp->set_rx_freq(openair0_cfg[0].rx_freq[i],i);
set_rx_gain_offset(&openair0_cfg[0],i);
::uhd::gain_range_t gain_range = s->usrp->get_rx_gain_range(i);
// limit to maximum gain
if (openair0_cfg[0].rx_gain[i]-openair0_cfg[0].rx_gain_offset[i] > gain_range.stop()) {
printf("RX Gain %lu too high, lower by %f dB\n",i,openair0_cfg[0].rx_gain[i]-openair0_cfg[0].rx_gain_offset[i] - gain_range.stop());
exit(-1);
}
s->usrp->set_rx_gain(openair0_cfg[0].rx_gain[i]-openair0_cfg[0].rx_gain_offset[i],i);
printf("RX Gain %lu %f (%f) => %f (max %f)\n",i,
openair0_cfg[0].rx_gain[i],openair0_cfg[0].rx_gain_offset[i],
openair0_cfg[0].rx_gain[i]-openair0_cfg[0].rx_gain_offset[i],gain_range.stop());
}
}
for(i=0;iusrp->get_tx_num_channels();i++) {
if (iusrp->set_tx_rate(openair0_cfg[0].sample_rate,i);
s->usrp->set_tx_bandwidth(openair0_cfg[0].tx_bw,i);
printf("Setting tx freq/gain on channel %lu/%lu: BW %f (readback %f)\n",i,s->usrp->get_tx_num_channels(),openair0_cfg[0].tx_bw/1e6,s->usrp->get_tx_bandwidth(i)/1e6);
s->usrp->set_tx_freq(openair0_cfg[0].tx_freq[i],i);
s->usrp->set_tx_gain(openair0_cfg[0].tx_gain[i],i);
}
}
// display USRP settings
std::cout << boost::format("Actual master clock: %fMHz...") % (s->usrp->get_master_clock_rate()/1e6) << std::endl;
// create tx & rx streamer
uhd::stream_args_t stream_args_rx("sc16", "sc16");
//stream_args_rx.args["spp"] = str(boost::format("%d") % 2048);//(openair0_cfg[0].rx_num_channels*openair0_cfg[0].samples_per_packet));
for (i = 0; irx_stream = s->usrp->get_rx_stream(stream_args_rx);
std::cout << boost::format("rx_max_num_samps %u") % (s->rx_stream->get_max_num_samps()) << std::endl;
//openair0_cfg[0].samples_per_packet = s->rx_stream->get_max_num_samps();
uhd::stream_args_t stream_args_tx("sc16", "sc16");
//stream_args_tx.args["spp"] = str(boost::format("%d") % 2048);//(openair0_cfg[0].tx_num_channels*openair0_cfg[0].samples_per_packet));
for (i = 0; itx_stream = s->usrp->get_tx_stream(stream_args_tx);
std::cout << boost::format("tx_max_num_samps %u") % (s->tx_stream->get_max_num_samps()) << std::endl;
s->usrp->set_time_now(uhd::time_spec_t(0.0));
for (i=0;iusrp->get_rx_rate(i)/1e6) << std::endl;
std::cout << boost::format("Actual RX frequency: %fGHz...") % (s->usrp->get_rx_freq(i)/1e9) << std::endl;
std::cout << boost::format("Actual RX gain: %f...") % (s->usrp->get_rx_gain(i)) << std::endl;
std::cout << boost::format("Actual RX bandwidth: %fM...") % (s->usrp->get_rx_bandwidth(i)/1e6) << std::endl;
std::cout << boost::format("Actual RX antenna: %s...") % (s->usrp->get_rx_antenna(i)) << std::endl;
}
}
for (i=0;iusrp->get_tx_rate(i)/1e6) << std::endl;
std::cout << boost::format("Actual TX frequency: %fGHz...") % (s->usrp->get_tx_freq(i)/1e9) << std::endl;
std::cout << boost::format("Actual TX gain: %f...") % (s->usrp->get_tx_gain(i)) << std::endl;
std::cout << boost::format("Actual TX bandwidth: %fM...") % (s->usrp->get_tx_bandwidth(i)/1e6) << std::endl;
std::cout << boost::format("Actual TX antenna: %s...") % (s->usrp->get_tx_antenna(i)) << std::endl;
}
}
std::cout << boost::format("Device timestamp: %f...") % (s->usrp->get_time_now().get_real_secs()) << std::endl;
device->priv = s;
device->trx_start_func = trx_usrp_start;
device->trx_write_func = trx_usrp_write;
device->trx_read_func = trx_usrp_read;
device->trx_get_stats_func = trx_usrp_get_stats;
device->trx_reset_stats_func = trx_usrp_reset_stats;
device->trx_end_func = trx_usrp_end;
device->trx_stop_func = trx_usrp_stop;
device->trx_set_freq_func = trx_usrp_set_freq;
device->trx_set_gains_func = trx_usrp_set_gains;
s->sample_rate = openair0_cfg[0].sample_rate;
// TODO:
// init tx_forward_nsamps based usrp_time_offset ex
if(is_equal(s->sample_rate, (double)30.72e6))
s->tx_forward_nsamps = 176;
if(is_equal(s->sample_rate, (double)15.36e6))
s->tx_forward_nsamps = 90;
if(is_equal(s->sample_rate, (double)7.68e6))
s->tx_forward_nsamps = 50;
return 0;
}