/*******************************************************************************
    OpenAirInterface 
    Copyright(c) 1999 - 2014 Eurecom

    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.


    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with OpenAirInterface.The full GNU General Public License is 
   included in this distribution in the file called "COPYING". If not, 
   see <http://www.gnu.org/licenses/>.

  Contact Information
  OpenAirInterface Admin: openair_admin@eurecom.fr
  OpenAirInterface Tech : openair_tech@eurecom.fr
  OpenAirInterface Dev  : openair4g-devel@eurecom.fr
  
  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE

 *******************************************************************************/

/*! \file PHY/LTE_TRANSPORT/prach.c
 * \brief Top-level routines for generating and decoding the PRACH physical channel V8.6 2009-03
 * \author R. Knopp
 * \date 2011
 * \version 0.1
 * \company Eurecom
 * \email: knopp@eurecom.fr
 * \note
 * \warning
 */
#ifdef __SSE2__
#include <emmintrin.h>
#include <xmmintrin.h>
#endif
#ifdef __SSE3__
#include <pmmintrin.h>
#include <tmmintrin.h>
#endif
#include "PHY/defs.h"
#include "PHY/extern.h"
//#include "prach.h"
#include "SCHED/defs.h"
#include "SCHED/extern.h"
#include "UTIL/LOG/vcd_signal_dumper.h"

//#define PRACH_DEBUG 1

uint16_t NCS_unrestricted[16] = {0,13,15,18,22,26,32,38,46,59,76,93,119,167,279,419};
uint16_t NCS_restricted[15]   = {15,18,22,26,32,38,46,55,68,82,100,128,158,202,237}; // high-speed case
uint16_t NCS_4[7]             = {2,4,6,8,10,12,15};

int16_t ru[2*839]; // quantized roots of unity
uint32_t ZC_inv[839]; // multiplicative inverse for roots u
uint16_t du[838];

typedef struct {
  uint8_t f_ra;
  uint8_t t0_ra;
  uint8_t t1_ra;
  uint8_t t2_ra;
} PRACH_TDD_PREAMBLE_MAP_elem;
typedef struct {
  uint8_t num_prach;
  PRACH_TDD_PREAMBLE_MAP_elem map[6];
} PRACH_TDD_PREAMBLE_MAP;

// This is table 5.7.1-4 from 36.211
PRACH_TDD_PREAMBLE_MAP tdd_preamble_map[64][7] = { 
  // TDD Configuration Index 0
  { {1,{{0,1,0,2}}},{1,{{0,1,0,1}}}, {1,{{0,1,0,0}}}, {1,{{0,1,0,2}}}, {1,{{0,1,0,1}}}, {1,{{0,1,0,0}}}, {1,{{0,1,0,2}}}},
  // TDD Configuration Index 1
  { {1,{{0,2,0,2}}},{1,{{0,2,0,1}}}, {1,{{0,2,0,0}}}, {1,{{0,2,0,2}}}, {1,{{0,2,0,1}}}, {1,{{0,2,0,0}}}, {1,{{0,2,0,2}}}},
  // TDD Configuration Index 2
  { {1,{{0,1,1,2}}},{1,{{0,1,1,1}}}, {1,{{0,1,1,0}}}, {1,{{0,1,0,1}}}, {1,{{0,1,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,1,1,1}}}},
  // TDD Configuration Index 3
  { {1,{{0,0,0,2}}},{1,{{0,0,0,1}}}, {1,{{0,0,0,0}}}, {1,{{0,0,0,2}}}, {1,{{0,0,0,1}}}, {1,{{0,0,0,0}}}, {1,{{0,0,0,2}}}},
  // TDD Configuration Index 4
  { {1,{{0,0,1,2}}},{1,{{0,0,1,1}}}, {1,{{0,0,1,0}}}, {1,{{0,0,0,1}}}, {1,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,0,1,1}}}},
  // TDD Configuration Index 5
  { {1,{{0,0,0,1}}},{1,{{0,0,0,0}}}, {0,{{0,0,0,0}}}, {1,{{0,0,0,0}}}, {0,{{0,0,0,1}}}, {0,{{0,0,0,0}}}, {1,{{0,0,0,1}}}},
  // TDD Configuration Index 6
  { {2,{{0,0,0,2},{0,0,1,2}}}, {2,{{0,0,0,1},{0,0,1,1}}}, {2,{{0,0,0,0},{0,0,1,0}}}, {2,{{0,0,0,1},{0,0,0,2}}}, {2,{{0,0,0,0},{0,0,0,1}}}, {2,{{0,0,0,0},{1,0,0,0}}}, {2,{{0,0,0,2},{0,0,1,1}}}},
  // TDD Configuration Index 7
  { {2,{{0,0,0,1},{0,0,1,1}}}, {2,{{0,0,0,0},{0,0,1,0}}}, {0,{{0,0,0,0},{0,0,0,0}}}, {2,{{0,0,0,1},{0,0,0,2}}}, {0,{{0,0,0,0},{0,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0}}}, {2,{{0,0,0,1},{0,0,1,0}}}},
  // TDD Configuration Index 8
  { {2,{{0,0,0,0},{0,0,1,0}}}, {0,{{0,0,0,0},{0,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0}}}, {2,{{0,0,0,0},{0,0,0,1}}}, {0,{{0,0,0,0},{0,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0}}}, {2,{{0,0,0,0},{0,0,1,1}}}},
  // TDD Configuration Index 9
  { {3,{{0,0,0,1},{0,0,0,2},{0,0,1,2}}}, {3,{{0,0,0,0},{0,0,0,1},{0,0,1,1}}}, {3,{{0,0,0,0},{0,0,1,0},{1,0,0,0}}}, {3,{{0,0,0,0},{0,0,0,1},{0,0,0,2}}}, {3,{{0,0,0,0},{0,0,0,1},{1,0,0,1}}}, {3,{{0,0,0,0},{1,0,0,0},{2,0,0,0}}}, {3,{{0,0,0,1},{0,0,0,2},{0,0,1,1}}}},
  // TDD Configuration Index 10
  { {3,{{0,0,0,0},{0,0,1,0},{0,0,1,1}}}, {3,{{0,0,0,1},{0,0,1,0},{0,0,1,1}}}, {3,{{0,0,0,0},{0,0,1,0},{1,0,1,0}}}, {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0}}}, {3,{{0,0,0,0},{0,0,0,1},{1,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0}}}, {3,{{0,0,0,0},{0,0,0,2},{0,0,1,0}}}},
  // TDD Configuration Index 11
  { {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0}}}, {3,{{0,0,0,0},{0,0,0,1},{0,0,1,0}}}, {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0}}}, {0,{{0,0,0,0},{0,0,0,0},{0,0,0,0}}}, {3,{{0,0,0,1},{0,0,1,0},{0,0,1,1}}}}
};

uint16_t prach_root_sequence_map0_3[838] = { 129, 710, 140, 699, 120, 719, 210, 629, 168, 671, 84, 755, 105, 734, 93, 746, 70, 769, 60, 779,
					2, 837, 1, 838,
					56, 783, 112, 727, 148, 691,
					80, 759, 42, 797, 40, 799,
					35, 804, 73, 766, 146, 693,
					31, 808, 28, 811, 30, 809, 27, 812, 29, 810,
					24, 815, 48, 791, 68, 771, 74, 765, 178, 661, 136, 703,
					86, 753, 78, 761, 43, 796, 39, 800, 20, 819, 21, 818,
					95, 744, 202, 637, 190, 649, 181, 658, 137, 702, 125, 714, 151, 688,
					217, 622, 128, 711, 142, 697, 122, 717, 203, 636, 118, 721, 110, 729, 89, 750, 103, 736, 61,
					778, 55, 784, 15, 824, 14, 825,
					12, 827, 23, 816, 34, 805, 37, 802, 46, 793, 207, 632, 179, 660, 145, 694, 130, 709, 223, 616,
					228, 611, 227, 612, 132, 707, 133, 706, 143, 696, 135, 704, 161, 678, 201, 638, 173, 666, 106,
					733, 83, 756, 91, 748, 66, 773, 53, 786, 10, 829, 9, 830,
					7, 832, 8, 831, 16, 823, 47, 792, 64, 775, 57, 782, 104, 735, 101, 738, 108, 731, 208, 631, 184,
					655, 197, 642, 191, 648, 121, 718, 141, 698, 149, 690, 216, 623, 218, 621,
					152, 687, 144, 695, 134, 705, 138, 701, 199, 640, 162, 677, 176, 663, 119, 720, 158, 681, 164,
					675, 174, 665, 171, 668, 170, 669, 87, 752, 169, 670, 88, 751, 107, 732, 81, 758, 82, 757, 100,
					739, 98, 741, 71, 768, 59, 780, 65, 774, 50, 789, 49, 790, 26, 813, 17, 822, 13, 826, 6, 833,
					5, 834, 33, 806, 51, 788, 75, 764, 99, 740, 96, 743, 97, 742, 166, 673, 172, 667, 175, 664, 187,
					652, 163, 676, 185, 654, 200, 639, 114, 725, 189, 650, 115, 724, 194, 645, 195, 644, 192, 647,
					182, 657, 157, 682, 156, 683, 211, 628, 154, 685, 123, 716, 139, 700, 212, 627, 153, 686, 213,
					626, 215, 624, 150, 689,
					225, 614, 224, 615, 221, 618, 220, 619, 127, 712, 147, 692, 124, 715, 193, 646, 205, 634, 206,
					633, 116, 723, 160, 679, 186, 653, 167, 672, 79, 760, 85, 754, 77, 762, 92, 747, 58, 781, 62,
					777, 69, 770, 54, 785, 36, 803, 32, 807, 25, 814, 18, 821, 11, 828, 4, 835,
					3, 836, 19, 820, 22, 817, 41, 798, 38, 801, 44, 795, 52, 787, 45, 794, 63, 776, 67, 772, 72,
					767, 76, 763, 94, 745, 102, 737, 90, 749, 109, 730, 165, 674, 111, 728, 209, 630, 204, 635, 117,
					722, 188, 651, 159, 680, 198, 641, 113, 726, 183, 656, 180, 659, 177, 662, 196, 643, 155, 684,
					214, 625, 126, 713, 131, 708, 219, 620, 222, 617, 226, 613,
					230, 609, 232, 607, 262, 577, 252, 587, 418, 421, 416, 423, 413, 426, 411, 428, 376, 463, 395,
					444, 283, 556, 285, 554, 379, 460, 390, 449, 363, 476, 384, 455, 388, 451, 386, 453, 361, 478,
					387, 452, 360, 479, 310, 529, 354, 485, 328, 511, 315, 524, 337, 502, 349, 490, 335, 504, 324,
					515,
					323, 516, 320, 519, 334, 505, 359, 480, 295, 544, 385, 454, 292, 547, 291, 548, 381, 458, 399,
					440, 380, 459, 397, 442, 369, 470, 377, 462, 410, 429, 407, 432, 281, 558, 414, 425, 247, 592,
					277, 562, 271, 568, 272, 567, 264, 575, 259, 580,
					237, 602, 239, 600, 244, 595, 243, 596, 275, 564, 278, 561, 250, 589, 246, 593, 417, 422, 248,
					591, 394, 445, 393, 446, 370, 469, 365, 474, 300, 539, 299, 540, 364, 475, 362, 477, 298, 541,
					312, 527, 313, 526, 314, 525, 353, 486, 352, 487, 343, 496, 327, 512, 350, 489, 326, 513, 319,
					520, 332, 507, 333, 506, 348, 491, 347, 492, 322, 517,
					330, 509, 338, 501, 341, 498, 340, 499, 342, 497, 301, 538, 366, 473, 401, 438, 371, 468, 408,
					431, 375, 464, 249, 590, 269, 570, 238, 601, 234, 605,
					257, 582, 273, 566, 255, 584, 254, 585, 245, 594, 251, 588, 412, 427, 372, 467, 282, 557, 403,
					436, 396, 443, 392, 447, 391, 448, 382, 457, 389, 450, 294, 545, 297, 542, 311, 528, 344, 495,
					345, 494, 318, 521, 331, 508, 325, 514, 321, 518,
					346, 493, 339, 500, 351, 488, 306, 533, 289, 550, 400, 439, 378, 461, 374, 465, 415, 424, 270,
					569, 241, 598,
					231, 608, 260, 579, 268, 571, 276, 563, 409, 430, 398, 441, 290, 549, 304, 535, 308, 531, 358,
					481, 316, 523,
					293, 546, 288, 551, 284, 555, 368, 471, 253, 586, 256, 583, 263, 576,
					242, 597, 274, 565, 402, 437, 383, 456, 357, 482, 329, 510,
					317, 522, 307, 532, 286, 553, 287, 552, 266, 573, 261, 578,
					236, 603, 303, 536, 356, 483,
					355, 484, 405, 434, 404, 435, 406, 433,
					235, 604, 267, 572, 302, 537,
					309, 530, 265, 574, 233, 606,
					367, 472, 296, 543,
					336, 503, 305, 534, 373, 466, 280, 559, 279, 560, 419, 420, 240, 599, 258, 581, 229, 610};

uint16_t prach_root_sequence_map4[138] = {  1,138,2,137,3,136,4,135,5,134,6,133,7,132,8,131,9,130,10,129,
				       11,128,12,127,13,126,14,125,15,124,16,123,17,122,18,121,19,120,20,119,
				       21,118,22,117,23,116,24,115,25,114,26,113,27,112,28,111,29,110,30,109,
				       31,108,32,107,33,106,34,105,35,104,36,103,37,102,38,101,39,100,40,99,
				       41,98,42,97,43,96,44,95,45,94,46,93,47,92,48,91,49,90,50,89,
				       51,88,52,87,53,86,54,85,55,84,56,83,57,82,58,81,59,80,60,79,
				       61,78,62,77,63,76,64,75,65,74,66,73,67,72,68,71,69,70};

#ifdef USER_MODE
void dump_prach_config(LTE_DL_FRAME_PARMS *frame_parms,uint8_t subframe) {

  FILE *fd;

  fd = fopen("prach_config.txt","w");
  fprintf(fd,"prach_config: subframe          = %d\n",subframe);
  fprintf(fd,"prach_config: N_RB_UL           = %d\n",frame_parms->N_RB_UL);
  fprintf(fd,"prach_config: frame_type        = %s\n",(frame_parms->frame_type==1) ? "TDD":"FDD");
  if(frame_parms->frame_type==1) fprintf(fd,"prach_config: tdd_config        = %d\n",frame_parms->tdd_config);
  fprintf(fd,"prach_config: rootSequenceIndex = %d\n",frame_parms->prach_config_common.rootSequenceIndex); 
  fprintf(fd,"prach_config: prach_ConfigIndex = %d\n",frame_parms->prach_config_common.prach_ConfigInfo.prach_ConfigIndex); 
  fprintf(fd,"prach_config: Ncs_config        = %d\n",frame_parms->prach_config_common.prach_ConfigInfo.zeroCorrelationZoneConfig);
  fprintf(fd,"prach_config: highSpeedFlag     = %d\n",frame_parms->prach_config_common.prach_ConfigInfo.highSpeedFlag);
  fprintf(fd,"prach_config: n_ra_prboffset    = %d\n",frame_parms->prach_config_common.prach_ConfigInfo.prach_FreqOffset);
  fclose(fd);

}
#endif

// This function computes the du
void fill_du(uint8_t prach_fmt) {

  uint16_t iu,u,p;
  uint16_t N_ZC;
  uint16_t *prach_root_sequence_map;

  if (prach_fmt<4) {
    N_ZC = 839;
    prach_root_sequence_map = prach_root_sequence_map0_3;
  }
  else {
    N_ZC = 139;
    prach_root_sequence_map = prach_root_sequence_map4;
  }

  for (iu=0;iu<(N_ZC-1);iu++) {

    u=prach_root_sequence_map[iu];
    p=1;
    while (((u*p)%N_ZC)!=1)
      p++;
    du[u] = ((p<(N_ZC>>1)) ? p : (N_ZC-p));
  }
  
}

uint8_t get_num_prach_tdd(LTE_DL_FRAME_PARMS *frame_parms) {

  return(tdd_preamble_map[frame_parms->prach_config_common.prach_ConfigInfo.prach_ConfigIndex][frame_parms->tdd_config].num_prach);
}

uint8_t get_fid_prach_tdd(LTE_DL_FRAME_PARMS *frame_parms,uint8_t tdd_map_index) {

  return(tdd_preamble_map[frame_parms->prach_config_common.prach_ConfigInfo.prach_ConfigIndex][frame_parms->tdd_config].map[tdd_map_index].f_ra);
}

uint8_t get_prach_fmt(uint8_t prach_ConfigIndex,lte_frame_type_t frame_type) {

  if (frame_type == FDD) // FDD
    return(prach_ConfigIndex>>4);

  else {
    if (prach_ConfigIndex < 20)
      return (0);
    if (prach_ConfigIndex < 30)
      return (1);
    if (prach_ConfigIndex < 40)
      return (2);
    if (prach_ConfigIndex < 48)
      return (3);
    else
      return (4);
  }
}


int is_prach_subframe(LTE_DL_FRAME_PARMS *frame_parms,uint32_t frame, uint8_t subframe) {

  uint8_t prach_ConfigIndex  = frame_parms->prach_config_common.prach_ConfigInfo.prach_ConfigIndex; 
  uint8_t tdd_config         = frame_parms->tdd_config; 
  uint8_t t0_ra;
  uint8_t t1_ra;
  uint8_t t2_ra;


  if (frame_parms->frame_type == FDD) { //FDD
    //implement Table 5.7.1-2 from 36.211 (Rel-10, p.41)
    if ((((frame&1) == 1) && (subframe < 9)) ||
	(((frame&1) == 0) && (subframe == 9)))  // This is an odd frame, ignore even-only PRACH frames
      if (((prach_ConfigIndex&0xf)<3) || // 0,1,2,16,17,18,32,33,34,48,49,50
	  ((prach_ConfigIndex&0x1f)==18) || // 18,50
	  ((prach_ConfigIndex&0xf)==15))   // 15,47
	return(0);

    switch (prach_ConfigIndex&0x1f) {
    case 0:
    case 3:
      return(subframe==1);
      break;
    case 1:
    case 4:
      return(subframe==4);
      break;
    case 2:
    case 5:
      return(subframe==7);
      break;
    case 6:
      return((subframe==1) || (subframe==6));
      break;
    case 7:
      return((subframe==2) || (subframe==7));
      break;
    case 8:
      return((subframe==3) || (subframe==8));
      break;
    case 9:
      return((subframe==1) || (subframe==4) || (subframe==7));
      break;
    case 10:
      return((subframe==2) || (subframe==5) || (subframe==8));
      break;
    case 11:
      return((subframe==3) || (subframe==6) || (subframe==9));
      break;
    case 12:
      return((subframe&1)==0);
      break;
    case 13:
      return((subframe&1)==1);
      break;
    case 14:
      return(1==1);
      break;
    case 15:
      return(subframe==9);
      break;
    }
  }
  else {  // TDD

    if (prach_ConfigIndex>=64) {
      LOG_E(PHY,"[PHY] Illegal prach_ConfigIndex %d for ",prach_ConfigIndex);
      return(0);
    }

    if (tdd_preamble_map[prach_ConfigIndex][tdd_config].num_prach==0) {
      LOG_E(PHY,"[PHY] Illegal prach_ConfigIndex %d for ",prach_ConfigIndex);
      return(0);
    } 

    t0_ra = tdd_preamble_map[prach_ConfigIndex][tdd_config].map[0].t0_ra;
    t1_ra = tdd_preamble_map[prach_ConfigIndex][tdd_config].map[0].t1_ra;
    t2_ra = tdd_preamble_map[prach_ConfigIndex][tdd_config].map[0].t2_ra;
#ifdef PRACH_DEBUG    
    LOG_D(PHY,"[PRACH] Checking for PRACH format (ConfigIndex %d) in TDD subframe %d (%d,%d,%d)\n",
	  prach_ConfigIndex,
	  subframe,
	  t0_ra,t1_ra,t2_ra);
#endif    
    if ((((t0_ra == 1) && ((frame &1)==0))||  // frame is even and PRACH is in even frames
	 ((t0_ra == 2) && ((frame &1)==1))||  // frame is odd and PRACH is in odd frames
	 (t0_ra == 0)) &&                                // PRACH is in all frames
	(((subframe<5)&&(t1_ra==0)) ||                   // PRACH is in 1st half-frame
	 (((subframe>4)&&(t1_ra==1))))) {                // PRACH is in 2nd half-frame
      if (prach_ConfigIndex<48)                          // PRACH only in normal UL subframe 
	return((((subframe%5)-2)==t2_ra));
      else                                               // PRACH can be in UpPTS
	return((((subframe%5)-1)==t2_ra));
    }
    else
      return(1==2);
  }
  // shouldn't get here!
  return(2==1);
}

static short prach_tmp[45600*2] __attribute__((aligned(16)));

int32_t generate_prach(PHY_VARS_UE *phy_vars_ue,uint8_t eNB_id,uint8_t subframe, uint16_t Nf) {
  
  lte_frame_type_t frame_type         = phy_vars_ue->lte_frame_parms.frame_type;
  uint8_t tdd_config         = phy_vars_ue->lte_frame_parms.tdd_config;
  uint16_t rootSequenceIndex = phy_vars_ue->lte_frame_parms.prach_config_common.rootSequenceIndex; 
  uint8_t prach_ConfigIndex  = phy_vars_ue->lte_frame_parms.prach_config_common.prach_ConfigInfo.prach_ConfigIndex; 
  uint8_t Ncs_config         = phy_vars_ue->lte_frame_parms.prach_config_common.prach_ConfigInfo.zeroCorrelationZoneConfig;
  uint8_t restricted_set     = phy_vars_ue->lte_frame_parms.prach_config_common.prach_ConfigInfo.highSpeedFlag;
  uint8_t n_ra_prboffset     = phy_vars_ue->lte_frame_parms.prach_config_common.prach_ConfigInfo.prach_FreqOffset;
  uint8_t preamble_index     = phy_vars_ue->prach_resources[eNB_id]->ra_PreambleIndex;
  uint8_t tdd_mapindex       = phy_vars_ue->prach_resources[eNB_id]->ra_TDD_map_index;
  int16_t *prachF           = phy_vars_ue->lte_ue_prach_vars[eNB_id]->prachF;
  int16_t *prach            = (int16_t*)prach_tmp;
  int16_t *prach2;
  int16_t amp               = phy_vars_ue->lte_ue_prach_vars[eNB_id]->amp;
  int16_t Ncp;
  uint8_t n_ra_prb;
  uint16_t NCS;
  uint16_t *prach_root_sequence_map;
  uint16_t preamble_offset,preamble_shift;
  uint16_t preamble_index0,n_shift_ra,n_shift_ra_bar;
  uint16_t d_start,n_group_ra,numshift;

  uint8_t prach_fmt = get_prach_fmt(prach_ConfigIndex,frame_type);
  uint8_t Nsp=2;
  uint8_t f_ra,t1_ra;
  uint16_t N_ZC = (prach_fmt<4)?839:139;
  uint8_t not_found;
  int k;
  int16_t *Xu;
  uint16_t u;
  int32_t Xu_re,Xu_im;
  uint16_t offset,offset2;
  int prach_start;
#ifdef EXMIMO
  int overflow,j;
#endif
  int i, prach_len;
  uint16_t first_nonzero_root_idx=0; 

  //LOG_I(PHY,"[PRACH] prach_start=%d\n",prach_start);

#ifdef BIT8_TX
  prach_start = ((subframe*phy_vars_ue->lte_frame_parms.samples_per_tti)<<1)-phy_vars_ue->N_TA_offset;
#else
#ifdef EXMIMO
  prach_start =  (phy_vars_ue->rx_offset+subframe*phy_vars_ue->lte_frame_parms.samples_per_tti-openair_daq_vars.timing_advance-phy_vars_ue->N_TA_offset);
  if (prach_start<0)
    prach_start+=(phy_vars_ue->lte_frame_parms.samples_per_tti*LTE_NUMBER_OF_SUBFRAMES_PER_FRAME);
  if (prach_start>=(phy_vars_ue->lte_frame_parms.samples_per_tti*LTE_NUMBER_OF_SUBFRAMES_PER_FRAME))
    prach_start-=(phy_vars_ue->lte_frame_parms.samples_per_tti*LTE_NUMBER_OF_SUBFRAMES_PER_FRAME);
#else //normal case (simulation)
  prach_start = subframe*phy_vars_ue->lte_frame_parms.samples_per_tti-phy_vars_ue->N_TA_offset;
#endif
#endif

  // First compute physical root sequence
  if (restricted_set == 0) {
    if (Ncs_config>15) {
      LOG_E(PHY,"[PHY] FATAL, Illegal Ncs_config for unrestricted format %d\n",Ncs_config);
      mac_xface->macphy_exit("PRACH: Illegal Ncs_config for unrestricted format");
    }
    NCS = NCS_unrestricted[Ncs_config];      
  }
  else {
    if (Ncs_config>14) {
      LOG_E(PHY,"[PHY] FATAL, Illegal Ncs_config for restricted format %d\n",Ncs_config);
      mac_xface->macphy_exit("PRACH: Illegal Ncs_config for restricted format");
    }
    NCS = NCS_restricted[Ncs_config];
  }

  n_ra_prb = n_ra_prboffset;
  prach_root_sequence_map = (prach_fmt<4) ? prach_root_sequence_map0_3 : prach_root_sequence_map4;
 
  if (frame_type == TDD) { // TDD

    if (tdd_preamble_map[prach_ConfigIndex][tdd_config].num_prach==0) {
      LOG_E(PHY,"[PHY][UE %d] Illegal prach_ConfigIndex %d for ",phy_vars_ue->Mod_id,prach_ConfigIndex);
    } 

    // adjust n_ra_prboffset for frequency multiplexing (p.36 36.211)
    f_ra = tdd_preamble_map[prach_ConfigIndex][tdd_config].map[tdd_mapindex].f_ra;
    if (prach_fmt < 4) {
      if ((f_ra&1) == 0) {
	n_ra_prb = n_ra_prboffset + 6*(f_ra>>1);
      }    
      else {
	n_ra_prb = phy_vars_ue->lte_frame_parms.N_RB_UL - 6 - n_ra_prboffset + 6*(f_ra>>1);
      }
    }
    else {
      if ((tdd_config >2) && (tdd_config<6)) 
	Nsp = 2;
      t1_ra = tdd_preamble_map[prach_ConfigIndex][tdd_config].map[0].t1_ra;
        
      if ((((Nf&1)*(2-Nsp)+t1_ra)&1) == 0) {
	n_ra_prb = 6*f_ra;
      }
      else {
	n_ra_prb = phy_vars_ue->lte_frame_parms.N_RB_UL - 6*(f_ra+1);
      }
    }
  }

  // This is the relative offset (for unrestricted case) in the root sequence table (5.7.2-4 from 36.211) for the given preamble index
  preamble_offset = ((NCS==0)? preamble_index : (preamble_index/(N_ZC/NCS)));
  
  if (restricted_set == 0) {
    // This is the \nu corresponding to the preamble index 
    preamble_shift  = (NCS==0)? 0 : (preamble_index % (N_ZC/NCS));
    preamble_shift *= NCS;    
  }
  else { // This is the high-speed case

#ifdef PRACH_DEBUG
    LOG_D(PHY,"[UE %d] High-speed mode, NCS_config %d\n",phy_vars_ue->Mod_id,Ncs_config);
#endif

    not_found = 1;
    preamble_index0 = preamble_index;
    // set preamble_offset to initial rootSequenceIndex and look if we need more root sequences for this
    // preamble index and find the corresponding cyclic shift
    preamble_offset = 0; // relative rootSequenceIndex;
    while (not_found == 1) {
      // current root depending on rootSequenceIndex and preamble_offset
      u = prach_root_sequence_map[(rootSequenceIndex + preamble_offset)%N_ZC];
      if ( (du[u]<(N_ZC/3)) && (du[u]>=NCS) ) {
	n_shift_ra     = du[u]/NCS;
	d_start        = (du[u]<<1) + (n_shift_ra * NCS);
	n_group_ra     = N_ZC/d_start;
	n_shift_ra_bar = max(0,(N_ZC-(du[u]<<1)-(n_group_ra*d_start))/N_ZC);
      }
      else if  ( (du[u]>=(N_ZC/3)) && (du[u]<=((N_ZC - NCS)>>1)) ) {
	n_shift_ra     = (N_ZC - (du[u]<<1))/NCS;
	d_start        = N_ZC - (du[u]<<1) + (n_shift_ra * NCS);
	n_group_ra     = du[u]/d_start;
	n_shift_ra_bar = min(n_shift_ra,max(0,(du[u]- (n_group_ra*d_start))/NCS));
      }
      else {
	n_shift_ra     = 0;
	n_shift_ra_bar = 0;
      }
      // This is the number of cyclic shifts for the current root u
      numshift = (n_shift_ra*n_group_ra) + n_shift_ra_bar;

      if (numshift>0 && preamble_index0==preamble_index)
	first_nonzero_root_idx = preamble_offset;

      if (preamble_index0 < numshift) {
	not_found      = 0;
	preamble_shift = (d_start * (preamble_index0/n_shift_ra)) + ((preamble_index0%n_shift_ra)*NCS);
            
      }
      else {  // skip to next rootSequenceIndex and recompute parameters
	preamble_offset++;
	preamble_index0 -= numshift;
      }
    }
  }
  
  // now generate PRACH signal
#ifdef PRACH_DEBUG
  if (NCS>0)
    LOG_D(PHY,"Generate PRACH for RootSeqIndex %d, Preamble Index %d, NCS %d (NCS_config %d, N_ZC/NCS %d) n_ra_prb %d: Preamble_offset %d, Preamble_shift %d\n",
	   rootSequenceIndex,preamble_index,NCS,Ncs_config,N_ZC/NCS,n_ra_prb,
	   preamble_offset,preamble_shift);
#endif

  //  nsymb = (frame_parms->Ncp==0) ? 14:12;
  //  subframe_offset = (unsigned int)frame_parms->ofdm_symbol_size*subframe*nsymb;
  
  k = (12*n_ra_prb) - 6*phy_vars_ue->lte_frame_parms.N_RB_UL;
  if (k<0)
    k+=phy_vars_ue->lte_frame_parms.ofdm_symbol_size;
  k*=12;
  k+=13;

  Xu = (int16_t*)phy_vars_ue->X_u[preamble_offset-first_nonzero_root_idx];

  /*
    k+=(12*phy_vars_ue->lte_frame_parms.first_carrier_offset);
    if (k>(12*phy_vars_ue->lte_frame_parms.ofdm_symbol_size))
    k-=(12*phy_vars_ue->lte_frame_parms.ofdm_symbol_size);
  */
  k*=2;
  switch (phy_vars_ue->lte_frame_parms.N_RB_UL) {
  case 6:
    memset((void*)prachF,0,4*1536);
    break;
  case 15:
    memset((void*)prachF,0,4*3072);
    break;
  case 25:
    memset((void*)prachF,0,4*6144);
    break;
  case 50:
    memset((void*)prachF,0,4*12288);
    break;
  case 75:
    memset((void*)prachF,0,4*19432);
    break;
  case 100:
    memset((void*)prachF,0,4*24576);
    break;
  }

  for (offset=0,offset2=0;offset<N_ZC;offset++,offset2+=preamble_shift) {

    if (offset2 >= N_ZC)
      offset2 -= N_ZC;

    Xu_re = (((int32_t)Xu[offset<<1]*amp)>>15);
    Xu_im = (((int32_t)Xu[1+(offset<<1)]*amp)>>15);
    prachF[k++]= ((Xu_re*ru[offset2<<1]) - (Xu_im*ru[1+(offset2<<1)]))>>15;
    prachF[k++]= ((Xu_im*ru[offset2<<1]) + (Xu_re*ru[1+(offset2<<1)]))>>15;

    if (k==(12*2*phy_vars_ue->lte_frame_parms.ofdm_symbol_size))
      k=0;
  }

  switch (prach_fmt) {
  case 0:
    Ncp = 3168;
    break;
  case 1:
  case 3:
    Ncp = 21024;
    break;
  case 2:
    Ncp = 6240;
    break;
  case 4:
    Ncp = 448;
    break;
  default:
    Ncp = 3168;
    break;
  }

  switch (phy_vars_ue->lte_frame_parms.N_RB_UL) {
  case 6:
    Ncp>>=4;
    prach+=4; // makes prach2 aligned to 128-bit
    break;
  case 15:
    Ncp>>=3;
    break;
  case 25:
    Ncp>>=2;
    break;
  case 50:
    Ncp>>=1;
    break;
  case 75:
    Ncp=(Ncp*3)>>2;
    break;
  }


  prach2 = prach+(Ncp<<1);
  // do IDFT
  switch (phy_vars_ue->lte_frame_parms.N_RB_UL) {
  case 6:
    if (prach_fmt == 4) {
      fft(prachF,prach2,twiddle_ifft256,rev256,8,4,0);
      //TODO: account for repeated format in fft output
      memcpy((void*)prach,(void*)(prach+512),Ncp<<2);
      prach_len=256+Ncp;
    }
    else {
      ifft1536(prachF,prach2);
      memcpy((void*)prach,(void*)(prach+3072),Ncp<<2);
      prach_len = 1536+Ncp;
      if (prach_fmt>1) {
	memcpy((void*)(prach2+3072),(void*)prach2,6144);
	prach_len = 2*1536+Ncp;
      }
    }
    break;
  case 15:
    if (prach_fmt == 4) {
      fft(prachF,prach2,twiddle_ifft512,rev512,9,4,0);
      //TODO: account for repeated format in fft output
      memcpy((void*)prach,(void*)(prach+1024),Ncp<<2);
      prach_len = 512+Ncp;
    }
    else {
      ifft3072(prachF,prach2);
      memcpy((void*)prach,(void*)(prach+6144),Ncp<<2);
      prach_len = 3072+Ncp;
      if (prach_fmt>1) {
	memcpy((void*)(prach2+6144),(void*)prach2,12288);
	prach_len = 2*3072+Ncp;
      }
    }
    break;
  case 25:
  default:
    if (prach_fmt == 4) {
      fft(prachF,prach2,twiddle_ifft1024,rev1024,10,5,0);
      //TODO: account for repeated format in fft output
      memcpy((void*)prach,(void*)(prach+2048),Ncp<<2);
      prach_len = 1024+Ncp;
    }
    else {
      ifft6144(prachF,prach2);
      /*for (i=0;i<6144*2;i++)
	prach2[i]<<=1;*/
      memcpy((void*)prach,(void*)(prach+12288),Ncp<<2);
      prach_len = 6144+Ncp;
      if (prach_fmt>1){
	memcpy((void*)(prach2+12288),(void*)prach2,24576);
	prach_len = 2*6144+Ncp;
      }
    }
    break;
  case 50:
    if (prach_fmt == 4) {
      fft(prachF,prach2,twiddle_ifft2048,rev2048,11,5,0);
      //TODO: account for repeated format in fft output
      memcpy((void*)prach,(void*)(prach+4096),Ncp<<2);
      prach_len = 2048+Ncp;
    }
    else {
      ifft12288(prachF,prach2);
      memcpy((void*)prach,(void*)(prach+24576),Ncp<<2);
      prach_len = 12288+Ncp;
      if (prach_fmt>1) {
	memcpy((void*)(prach2+24576),(void*)prach2,49152);
	prach_len = 2*12288+Ncp;
      }
    }
    break;
  case 75:
    if (prach_fmt == 4) {
      ifft3072(prachF,prach2);
      //TODO: account for repeated format in fft output
      memcpy((void*)prach,(void*)(prach+6144),Ncp<<2);
      prach_len = 3072+Ncp;
    }
    else {
      ifft18432(prachF,prach2);
      memcpy((void*)prach,(void*)(prach+36864),Ncp<<2);
      prach_len = 18432+Ncp;
      if (prach_fmt>1) {
	memcpy((void*)(prach2+36834),(void*)prach2,73728);
	prach_len = 2*18432+Ncp;
      }
    }
    break;
  case 100:
    if (prach_fmt == 4) {
      fft(prachF,prach2,twiddle_ifft4096,rev4096,12,6,0);
      //TODO: account for repeated format in fft output
      memcpy((void*)prach,(void*)(prach+8192),Ncp<<2);
      prach_len = 4096+Ncp;
    }
    else {
      ifft24576(prachF,prach2);
      memcpy((void*)prach,(void*)(prach+49152),Ncp<<2);
      prach_len = 24576+Ncp;
      if (prach_fmt>1) {
	memcpy((void*)(prach2+49152),(void*)prach2,98304);
	prach_len = 2* 24576+Ncp;
      }
    } 
    break;
  }

  //LOG_D(PHY,"prach_len=%d\n",prach_len);
  
  if (prach_fmt==4) {
    //TODO: account for repeated format in fft output
    LOG_E(PHY,"prach_fmt4 not fully implemented");
    mac_xface->macphy_exit("prach_fmt4 not fully implemented");
  }
  else {
#ifdef BIT8_TX
    for (i=0; i<prach_len; i++) {
      ((int8_t*)(&phy_vars_ue->lte_ue_common_vars.txdata[aa][prach_start]))[2*i] = (int8_t)(prach[2*i]);
      ((int8_t*)(&phy_vars_ue->lte_ue_common_vars.txdata[aa][prach_start]))[2*i+1] = (int8_t)(prach[2*i+1]);
    }
#else
#ifdef EXMIMO
    overflow = prach_start + prach_len - LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_ue->lte_frame_parms.samples_per_tti;
    LOG_D(PHY,"prach_start=%d, overflow=%d\n",prach_start,overflow);
    for (i=prach_start,j=0; i<min(phy_vars_ue->lte_frame_parms.samples_per_tti*LTE_NUMBER_OF_SUBFRAMES_PER_FRAME,prach_start+prach_len); i++,j++) {
      ((int16_t*)phy_vars_ue->lte_ue_common_vars.txdata[0])[2*i] = prach[2*j]<<4;
      ((int16_t*)phy_vars_ue->lte_ue_common_vars.txdata[0])[2*i+1] = prach[2*j+1]<<4;
    }
    for (i=0;i<overflow;i++,j++) {
      ((int16_t*)phy_vars_ue->lte_ue_common_vars.txdata[0])[2*i] = prach[2*j]<<4;
      ((int16_t*)phy_vars_ue->lte_ue_common_vars.txdata[0])[2*i+1] = prach[2*j+1]<<4;
    }
#else
    for (i=0; i<prach_len; i++) {
      ((int16_t*)(&phy_vars_ue->lte_ue_common_vars.txdata[0][prach_start]))[2*i] = prach[2*i];
      ((int16_t*)(&phy_vars_ue->lte_ue_common_vars.txdata[0][prach_start]))[2*i+1] = prach[2*i+1];
    }
#endif
#endif
  }
  
  //  apply_625_Hz(phy_vars_ue,prach);
  return(signal_energy((int*)prach,256));
}
__m128i mmtmpX0,mmtmpX1,mmtmpX2,mmtmpX3;
int16_t prach_ifft[4][1024*4];


void rx_prach(PHY_VARS_eNB *phy_vars_eNB,uint8_t subframe,uint16_t *preamble_energy_list, uint16_t *preamble_delay_list, uint16_t Nf, uint8_t tdd_mapindex) {

  int i;
  lte_frame_type_t frame_type         = phy_vars_eNB->lte_frame_parms.frame_type;

  uint8_t tdd_config         = phy_vars_eNB->lte_frame_parms.tdd_config;
  uint16_t rootSequenceIndex = phy_vars_eNB->lte_frame_parms.prach_config_common.rootSequenceIndex; 
  uint8_t prach_ConfigIndex  = phy_vars_eNB->lte_frame_parms.prach_config_common.prach_ConfigInfo.prach_ConfigIndex; 
  uint8_t Ncs_config         = phy_vars_eNB->lte_frame_parms.prach_config_common.prach_ConfigInfo.zeroCorrelationZoneConfig;
  uint8_t restricted_set     = phy_vars_eNB->lte_frame_parms.prach_config_common.prach_ConfigInfo.highSpeedFlag;
  uint8_t n_ra_prboffset     = phy_vars_eNB->lte_frame_parms.prach_config_common.prach_ConfigInfo.prach_FreqOffset;
  int16_t *prachF           = phy_vars_eNB->lte_eNB_prach_vars.prachF; 
  int16_t **rxsigF          = phy_vars_eNB->lte_eNB_prach_vars.rxsigF;
  int16_t *prach[4];
  int16_t *prach2;
  uint8_t n_ra_prb;
  uint8_t preamble_index;
  uint16_t NCS,NCS2;
  uint16_t preamble_offset=0,preamble_offset_old;
  int16_t preamble_shift=0;
  uint32_t preamble_shift2;
  uint16_t preamble_index0=0,n_shift_ra=0,n_shift_ra_bar;
  uint16_t d_start=0,n_group_ra;
  uint16_t numshift=0;
  uint16_t *prach_root_sequence_map;
  uint8_t prach_fmt = get_prach_fmt(prach_ConfigIndex,frame_type);
  uint8_t Nsp=2;
  uint8_t f_ra,t1_ra;
  uint16_t N_ZC = (prach_fmt <4)?839:139;
  uint8_t not_found;
  //  LTE_DL_FRAME_PARMS *frame_parms = &phy_vars_eNB->lte_frame_parms;
  //  uint16_t subframe_offset;
  int k;
  uint16_t u;
  int16_t *Xu;
  uint16_t offset;
  int16_t Ncp;
  uint16_t first_nonzero_root_idx=0; 
  uint8_t new_dft=0;
  uint8_t aa;
  int32_t lev;
  int16_t levdB;
  int fft_size,log2_ifft_size;
  uint8_t nb_ant_rx = 1; //phy_vars_eNB->lte_frame_parms.nb_antennas_rx;
  
  for (aa=0;aa<nb_ant_rx;aa++) {
    prach[aa] = (int16_t*)&phy_vars_eNB->lte_eNB_common_vars.rxdata[0][aa][subframe*phy_vars_eNB->lte_frame_parms.samples_per_tti-phy_vars_eNB->N_TA_offset];
    //    remove_625_Hz(phy_vars_eNB,prach[aa]);
  }
  // First compute physical root sequence
  if (restricted_set == 0) {
    if (Ncs_config>15) {
      LOG_E(PHY,"FATAL, Illegal Ncs_config for unrestricted format %d\n",Ncs_config);
      mac_xface->macphy_exit("PRACH Illegal Ncs_config for unrestricted format");
    }
    NCS = NCS_unrestricted[Ncs_config];      
  }
  else {
    if (Ncs_config>14) {
      LOG_E(PHY,"FATAL, Illegal Ncs_config for restricted format %d\n",Ncs_config);
      mac_xface->macphy_exit("PRACH Illegal Ncs_config for restricted format");
    }
    NCS = NCS_restricted[Ncs_config];
  }

  start_meas(&phy_vars_eNB->rx_prach);

  n_ra_prb = n_ra_prboffset;
  prach_root_sequence_map = (prach_fmt < 4) ? prach_root_sequence_map0_3 : prach_root_sequence_map4;
  
  if (frame_type == TDD) { // TDD
    // adjust n_ra_prboffset for frequency multiplexing (p.36 36.211)

    f_ra = tdd_preamble_map[prach_ConfigIndex][tdd_config].map[tdd_mapindex].f_ra;
      
    if (prach_fmt < 4) {
      if ((f_ra&1) == 0) {
	n_ra_prb = n_ra_prboffset + 6*(f_ra>>1);
      }    
      else {
	n_ra_prb = phy_vars_eNB->lte_frame_parms.N_RB_UL - 6 - n_ra_prboffset + 6*(f_ra>>1);
      }

    }
    else {
      if ((tdd_config >2) && (tdd_config<6)) 
	Nsp = 2;
      t1_ra = tdd_preamble_map[prach_ConfigIndex][tdd_config].map[0].t1_ra;
          
      if ((((Nf&1)*(2-Nsp)+t1_ra)&1) == 0) {
	n_ra_prb = 6*f_ra;
      }
      else {
	n_ra_prb = phy_vars_eNB->lte_frame_parms.N_RB_UL - 6*(f_ra+1);
      }

    }
  }

  //    printf("NCS %d\n",NCS);
  // PDP is oversampled, e.g. 1024 sample instead of 839
  // Adapt the NCS (zero-correlation zones) with oversampling factor e.g. 1024/839
  NCS2 = (N_ZC==839) ? ((NCS<<10)/839) : ((NCS<<8)/139);
  if (NCS2==0)
      NCS2 = N_ZC;

  switch (prach_fmt) {
  case 0:
    Ncp = 3168;
    break; 
  case 1:
  case 3:
    Ncp = 21024;
    break;
  case 2:
    Ncp = 6240;
    break;
  case 4:
    Ncp = 448;
    break;
  default:
    Ncp = 3168;
    break;
  }
  
  switch (phy_vars_eNB->lte_frame_parms.N_RB_UL) {
  case 6:
    Ncp>>=4;
    break;
  case 15:
    Ncp>>=3;
    break;
  case 25:
    Ncp>>=2;
    break;
  case 50:
    Ncp>>=1;
    break;
  case 75:
    Ncp=(Ncp*3)>>2;
    break;
  }

  //  nsymb = (frame_parms->Ncp==0) ? 14:12;
  //  subframe_offset = (unsigned int)frame_parms->ofdm_symbol_size*subframe*nsymb;

  preamble_offset_old = 99;

  for (preamble_index=0 ; preamble_index<64 ; preamble_index++) { 
    if (restricted_set == 0) {      
      // This is the relative offset in the root sequence table (5.7.2-4 from 36.211) for the given preamble index
      preamble_offset = ((NCS==0)? preamble_index : (preamble_index/(N_ZC/NCS)));
      if (preamble_offset != preamble_offset_old) {
	preamble_offset_old = preamble_offset;
	new_dft = 1;
	// This is the \nu corresponding to the preamble index 
	preamble_shift  = 0;
      }

      else {
	preamble_shift  -= NCS;
	if (preamble_shift < 0)
	  preamble_shift+=N_ZC;
      }
    }
    else { // This is the high-speed case
      new_dft = 0;
      // set preamble_offset to initial rootSequenceIndex and look if we need more root sequences for this
      // preamble index and find the corresponding cyclic shift
      // Check if all shifts for that root have been processed
      if (preamble_index0 == numshift) {
	not_found = 1;
	new_dft   = 1;
	preamble_index0 -= numshift;
	(preamble_offset==0 && numshift==0) ? (preamble_offset) : (preamble_offset++);
	while (not_found == 1) {
	  // current root depending on rootSequenceIndex 
	  u = prach_root_sequence_map[(rootSequenceIndex + preamble_offset)%N_ZC];
	  if ( (du[u]<(N_ZC/3)) && (du[u]>=NCS) ) {
	    n_shift_ra     = du[u]/NCS;
	    d_start        = (du[u]<<1) + (n_shift_ra * NCS);
	    n_group_ra     = N_ZC/d_start;
	    n_shift_ra_bar = max(0,(N_ZC-(du[u]<<1)-(n_group_ra*d_start))/N_ZC);
	  }
	  else if  ( (du[u]>=(N_ZC/3)) && (du[u]<=((N_ZC - NCS)>>1)) ) {
	    n_shift_ra     = (N_ZC - (du[u]<<1))/NCS;
	    d_start        = N_ZC - (du[u]<<1) + (n_shift_ra * NCS);
	    n_group_ra     = du[u]/d_start;
	    n_shift_ra_bar = min(n_shift_ra,max(0,(du[u]- (n_group_ra*d_start))/NCS));
	  }
	  else {
	    n_shift_ra     = 0;
	    n_shift_ra_bar = 0;
	  }
	  // This is the number of cyclic shifts for the current root u
	  numshift = (n_shift_ra*n_group_ra) + n_shift_ra_bar;
	  // skip to next root and recompute parameters if numshift==0
	  (numshift>0) ? (not_found = 0) : (preamble_offset++);
	}
      }
      preamble_shift = -((d_start * (preamble_index0/n_shift_ra)) + ((preamble_index0%n_shift_ra)*NCS)); // minus because the channel is h(t -\tau + Cv)
      (preamble_shift < 0) ? (preamble_shift+=N_ZC) : preamble_shift;
      preamble_index0++;
      if (preamble_index == 0)
              first_nonzero_root_idx = preamble_offset;
    }
  
    // Compute DFT of RX signal (conjugate input, results in conjugate output) for each new rootSequenceIndex
#ifdef PRACH_DEBUG
    LOG_I(PHY,"preamble index %d: offset %d, preamble shift %d\n",preamble_index,preamble_offset,preamble_shift);
#endif
    log2_ifft_size = 10;
    fft_size = 6144;
    if (new_dft == 1) {
      new_dft = 0;
      Xu=(int16_t*)phy_vars_eNB->X_u[preamble_offset-first_nonzero_root_idx];
        
      for (aa=0;aa<nb_ant_rx;aa++) {
	prach2 = prach[aa] + (Ncp<<1);

	k = (12*n_ra_prb) - 6*phy_vars_eNB->lte_frame_parms.N_RB_UL;
	if (k<0)
	  k+=(phy_vars_eNB->lte_frame_parms.ofdm_symbol_size);
	k*=12;
	k+=13; // phi + K/2
	//      k+=(12*phy_vars_eNB->lte_frame_parms.first_carrier_offset);
	//      if (k>(12*phy_vars_eNB->lte_frame_parms.ofdm_symbol_size))
	//	k-=(12*phy_vars_eNB->lte_frame_parms.ofdm_symbol_size);
            
	// printf("First prach carrier : k %d\n",k);
	k*=2;

	// do DFT
	switch (phy_vars_eNB->lte_frame_parms.N_RB_UL) {
	case 6:
	  if (prach_fmt == 4) {
	    fft(prach2,rxsigF[aa],twiddle_fft256,rev256,8,4,0);
	  }
	  else {
	    fft1536(prach2,rxsigF[aa]);
	    if (prach_fmt>1)
	      fft1536(prach2+3072,rxsigF[aa]+3072);
	  }
                
	  break;
	case 15:
	  if (prach_fmt == 4) {
	    fft(prach2,rxsigF[aa],twiddle_fft512,rev512,9,4,0);
	  }
	  else {
	    fft3072(prach2,rxsigF[aa]);
	    if (prach_fmt>1)
	      fft3072(prach2+6144,rxsigF[aa]+6144);
	  }
	  break;
	case 25:
	default:
	  if (prach_fmt == 4) {
	    fft(prach2,rxsigF[aa],twiddle_fft1024,rev1024,10,5,0);
	    fft_size = 1024;
	  }
	  else {
	    fft6144(prach2,rxsigF[aa]);
	    if (prach_fmt>1)
	      fft6144(prach2+12288,rxsigF[aa]+12288);
	    fft_size = 6144;
	  }
	  break;
	case 50:
	  if (prach_fmt == 4) {
	    fft(prach2,rxsigF[aa],twiddle_fft2048,rev2048,11,5,0);
	  }
	  else {
	    fft12288(prach2,rxsigF[aa]);
	    if (prach_fmt>1)
	      fft12288(prach2+24576,rxsigF[aa]+24576);
	  }
	  break;
	case 75:
	  if (prach_fmt == 4) {
	    fft3072(prach2,rxsigF[aa]);
	  }
	  else {
	    fft18432(prach2,rxsigF[aa]);
	    if (prach_fmt>1)
	      fft18432(prach2+36864,rxsigF[aa]+36864);
	  }
	  break;
	case 100:
	  if (prach_fmt == 4) {
	    fft(prach2,rxsigF[aa],twiddle_fft4096,rev4096,12,6,0);
	  }
	  else {
	    fft24576(prach2,rxsigF[aa]);
	    if (prach_fmt>1)
	      fft24576(prach2+49152,rxsigF[aa]+49152);
	  } 
	  break;
	}
            
	memset(prachF,0,4*1024);



	// write_output("prach_rx0.m","prach_rx0",prach[0],6144+792,1,1);	
	// write_output("prach_rx1.m","prach_rx1",prach[1],6144+792,1,1);	
	//write_output("prach_rxF0.m","prach_rxF0",rxsigF[0],24576,1,1);	
	// write_output("prach_rxF1.m","prach_rxF1",rxsigF[1],6144,1,1);	

	// Do componentwise product with Xu*
	for (offset=0;offset<(N_ZC<<1);offset+=2) {
	  prachF[offset]   = (int16_t)(((int32_t)Xu[offset]*rxsigF[aa][k]   + (int32_t)Xu[offset+1]*rxsigF[aa][k+1])>>15);
	  prachF[offset+1] = (int16_t)(((int32_t)Xu[offset]*rxsigF[aa][k+1] - (int32_t)Xu[offset+1]*rxsigF[aa][k])>>15);
	  /*
	  if (offset<16)
	    printf("Xu[%d] %d %d, rxsigF[%d][%d] %d %d\n",offset,Xu[offset],Xu[offset+1],aa,k,rxsigF[aa][k],rxsigF[aa][k+1]);
	  */
	  /*
			  mmtmpX0 = _mm_madd_epi16(*(__m128i*)&Xu[offset],*(__m128i*)&rxsigF[aa][k<<1]);
			  mmtmpX1 = _mm_shufflelo_epi16(*(__m128i*)&Xu[offset],_MM_SHUFFLE(2,3,0,1));
			  mmtmpX1 = _mm_shufflehi_epi16(mmtmpX1,_MM_SHUFFLE(2,3,0,1));
			  mmtmpX1 = _mm_sign_epi16(mmtmpX1,*(__m128i*)&conjugate[0]);
			  mmtmpX1 = _mm_madd_epi16(mmtmpX1,*(__m128i*)&rxsigF[aa][k<<1]);
			  mmtmpX0 = _mm_srai_epi32(mmtmpX0,15);
			  mmtmpX1 = _mm_srai_epi32(mmtmpX1,15);
			  mmtmpX2 = _mm_unpacklo_epi32(mmtmpX0,mmtmpX1);
			  mmtmpX3 = _mm_unpackhi_epi32(mmtmpX0,mmtmpX1);
			  *(__m128i*)&prachF[offset] = _mm_packs_epi32(mmtmpX2,mmtmpX3);
			  */
	  k+=2;
	  if (k==(12*2*phy_vars_eNB->lte_frame_parms.ofdm_symbol_size))
            k=0;
	}
	// Now do IFFT of size 1024 (N_ZC=839) or 256 (N_ZC=139)
	if (N_ZC == 839) {
	  log2_ifft_size = 10;
	  fft(prachF,prach_ifft[aa],twiddle_ifft1024,rev1024,10,10,0);
	}
	else {
	  fft(prachF,prach_ifft[aa],twiddle_ifft256,rev256,8,8,0);
	  log2_ifft_size = 8;      
	}

	// write_output("prach_rxF_comp0.m","prach_rxF_comp0",prachF,1024,1,1);
	// write_output("prach_rxF_comp1.m","prach_rxF_comp1",prachF,1024,1,1);
        
      }// antennas_rx

      // write_output("prach_ifft0.m","prach_t0",prach_ifft[0],2048,1,1);
      // write_output("prach_ifft1.m","prach_t1",prach_ifft[1],2048,1,1);

    } // new dft

    // check energy in nth time shift
    preamble_shift2 = ((preamble_shift==0) ? 0 : ((preamble_shift<<log2_ifft_size)/N_ZC));
    preamble_energy_list[preamble_index] = 0;
    for (i=0;i<NCS2;i++) {
      lev = 0;
      for (aa=0; aa<nb_ant_rx; aa++) {            
	lev += (int32_t)prach_ifft[aa][(preamble_shift2+i)<<2]*prach_ifft[aa][(preamble_shift2+i)<<2] + (int32_t)prach_ifft[aa][1+((preamble_shift2+i)<<2)]*prach_ifft[aa][1+((preamble_shift2+i)<<2)];
      }
      levdB = dB_fixed_times10(lev);        

      if (levdB>preamble_energy_list[preamble_index] ) {
	preamble_energy_list[preamble_index]  = levdB;
	preamble_delay_list[preamble_index]   = (i*fft_size)>>log2_ifft_size;          
      } 
    }
#ifdef PRACH_DEBUG
    LOG_D(PHY,"[RAPROC] Preamble %d => %d dB, %d (shift %d (%d), NCS2 %d(%d), Ncp %d)\n",preamble_index,preamble_energy_list[preamble_index],preamble_delay_list[preamble_index],preamble_shift2,preamble_shift, NCS2,NCS,Ncp);
#endif
    //  exit(-1);
  }// preamble_index
  stop_meas(&phy_vars_eNB->rx_prach);

}

void init_prach_tables(int N_ZC) {

  int i,m;

  // Compute the modular multiplicative inverse 'iu' of u s.t. iu*u = 1 mod N_ZC
  ZC_inv[0] = 0;
  ZC_inv[1] = 1;
  for (i=2;i<N_ZC;i++) {
    for (m=2;m<N_ZC;m++)
      if (((i*m)%N_ZC) == 1) {
	ZC_inv[i] = m;
	break;
      }
#ifdef PRACH_DEBUG
    if (i<16)
      printf("i %d : inv %d\n",i,ZC_inv[i]);
#endif
  }

  // Compute quantized roots of unity
  for (i=0;i<N_ZC;i++) {
    ru[i<<1]     = (int16_t)(floor(32767.0*cos(2*M_PI*(double)i/N_ZC))); 
    ru[1+(i<<1)] = (int16_t)(floor(32767.0*sin(2*M_PI*(double)i/N_ZC))); 
#ifdef PRACH_DEBUG
    if (i<16)
      printf("i %d : runity %d,%d\n",i,ru[i<<1],ru[1+(i<<1)]);
#endif
  }
}

void compute_prach_seq(PRACH_CONFIG_COMMON *prach_config_common,
		       lte_frame_type_t frame_type,
		       uint32_t X_u[64][839]) {

  // Compute DFT of x_u => X_u[k] = x_u(inv(u)*k)^* X_u[k] = exp(j\pi u*inv(u)*k*(inv(u)*k+1)/N_ZC)
  unsigned int k,inv_u,i,NCS=0,num_preambles;
  int N_ZC;
  unsigned char prach_fmt = get_prach_fmt(prach_config_common->prach_ConfigInfo.prach_ConfigIndex,frame_type);
  uint16_t *prach_root_sequence_map;
  uint16_t u, preamble_offset;
  uint16_t n_shift_ra,n_shift_ra_bar, d_start,n_group_ra,numshift;
  uint8_t not_found;

  vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_UE_COMPUTE_PRACH, VCD_FUNCTION_IN);

#ifdef PRACH_DEBUG
  LOG_I(PHY,"compute_prach_seq: NCS_config %d, prach_fmt %d\n",prach_config_common->prach_ConfigInfo.zeroCorrelationZoneConfig, prach_fmt);
#endif

  if (prach_fmt>=4) {
    LOG_E(PHY, "PRACH sequence is only precomputed for prach_fmt<4 (have %d)\n");
    mac_xface->macphy_exit("PRACH sequence is only precomputed for prach_fmt<4");
  }

  N_ZC = (prach_fmt < 4) ? 839 : 139;
  //init_prach_tables(N_ZC); //moved to phy_init_lte_ue/eNB, since it takes to long in real-time

  (prach_fmt < 4) ? (prach_root_sequence_map = prach_root_sequence_map0_3) : (prach_root_sequence_map = prach_root_sequence_map4);    


#ifdef PRACH_DEBUG
  LOG_I(PHY,"compute_prach_seq: done init prach_tables\n");
#endif  
  
  if (prach_config_common->prach_ConfigInfo.highSpeedFlag== 0) {
      
#ifdef PRACH_DEBUG
    LOG_I(PHY,"Low speed prach : NCS_config %d\n",prach_config_common->prach_ConfigInfo.zeroCorrelationZoneConfig);
#endif
    if (prach_config_common->prach_ConfigInfo.zeroCorrelationZoneConfig>15) {
      LOG_E(PHY,"FATAL, Illegal Ncs_config for unrestricted format %d\n",prach_config_common->prach_ConfigInfo.zeroCorrelationZoneConfig);
      mac_xface->macphy_exit("PRACH Illegal Ncs_config for unrestricted format");
    }
    else {
      NCS = NCS_unrestricted[prach_config_common->prach_ConfigInfo.zeroCorrelationZoneConfig];
    }
    num_preambles = (NCS==0) ? 64 : ((64*NCS)/N_ZC);
    if (NCS>0) num_preambles++;
    preamble_offset = 0;
  }
  else {
      
#ifdef PRACH_DEBUG
    LOG_I(PHY,"high speed prach : NCS_config %d\n",prach_config_common->prach_ConfigInfo.zeroCorrelationZoneConfig);
#endif
    if (prach_config_common->prach_ConfigInfo.zeroCorrelationZoneConfig>14) {
      LOG_E(PHY,"FATAL, Illegal Ncs_config for restricted format %d\n",prach_config_common->prach_ConfigInfo.zeroCorrelationZoneConfig);
      mac_xface->macphy_exit("PRACH Illegal Ncs_config for restricted format");
    }
    else {
      NCS = NCS_restricted[prach_config_common->prach_ConfigInfo.zeroCorrelationZoneConfig];
      fill_du(prach_fmt);
    }
    num_preambles = 64; // compute ZC sequence for 64 possible roots
    // find first non-zero shift root (stored in preamble_offset)
    not_found = 1;
    preamble_offset = 0;
    while (not_found == 1) {
      // current root depending on rootSequenceIndex 
      u = prach_root_sequence_map[(prach_config_common->rootSequenceIndex + preamble_offset)%N_ZC];
      if ( (du[u]<(N_ZC/3)) && (du[u]>=NCS) ) {
	n_shift_ra     = du[u]/NCS;
	d_start        = (du[u]<<1) + (n_shift_ra * NCS);
	n_group_ra     = N_ZC/d_start;
	n_shift_ra_bar = max(0,(N_ZC-(du[u]<<1)-(n_group_ra*d_start))/N_ZC);
      }
      else if  ( (du[u]>=(N_ZC/3)) && (du[u]<=((N_ZC - NCS)>>1)) ) {
	n_shift_ra     = (N_ZC - (du[u]<<1))/NCS;
	d_start        = N_ZC - (du[u]<<1) + (n_shift_ra * NCS);
	n_group_ra     = du[u]/d_start;
	n_shift_ra_bar = min(n_shift_ra,max(0,(du[u]- (n_group_ra*d_start))/NCS));
      }
      else {
	n_shift_ra     = 0;
	n_shift_ra_bar = 0;
      }
      // This is the number of cyclic shifts for the current root u
      numshift = (n_shift_ra*n_group_ra) + n_shift_ra_bar;
      // skip to next root and recompute parameters if numshift==0
      (numshift>0) ? (not_found = 0) : (preamble_offset++);
    }
  }

#ifdef PRACH_DEBUG
  if (NCS>0)
    LOG_I(PHY,"Initializing %d preambles for PRACH (NCS_config %d, NCS %d, N_ZC/NCS %d)\n",num_preambles,prach_config_common->prach_ConfigInfo.zeroCorrelationZoneConfig,NCS,N_ZC/NCS);
#endif

  for (i=0;i<num_preambles;i++) {
    u = prach_root_sequence_map[(prach_config_common->rootSequenceIndex+i+preamble_offset)%N_ZC];
        
    inv_u = ZC_inv[u]; // multiplicative inverse of u
    

    // X_u[0] stores the first ZC sequence where the root u has a non-zero number of shifts
    // for the unrestricted case X_u[0] is the first root indicated by the rootSequenceIndex

    for (k=0;k<N_ZC;k++) {
        // 420 is the multiplicative inverse of 2 (required since ru is exp[j 2\pi n])
        X_u[i][k] = ((uint32_t*)ru)[(((k*(1+(inv_u*k)))%N_ZC)*420)%N_ZC];
        //        printf("X_u[%d][%d] (%d)(%d)(%d) : %d,%d\n",i,k,u*inv_u*k*(1+(inv_u*k)),u*inv_u*k*(1+(inv_u*k))/2,(u*inv_u*k*(1+(inv_u*k))/2)%N_ZC,((int16_t*)&X_u[i][k])[0],((int16_t*)&X_u[i][k])[1]);
    }
  }
  vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_UE_COMPUTE_PRACH, VCD_FUNCTION_OUT);

}