Commit 0dfcff75 authored by Elena Lukashova's avatar Elena Lukashova

1. Adding cblast and lapacke-based functions required for mmse computation

to linear_preprocessing_rec.c.
2. Adding linear_preprocessing_rec.c to PHY_SRC_UE library.
3. Adding mmse_flag and mmse functionalities to dlsch_demodulation.
4. For now, dlsim_tm4 will not compile.
parent fe7ba1e6
Branches unavailable
2024.w43 2024.w42 2024.w41 2024.w40 2024.w39 2024.w38 2024.w36 2024.w35 2024.w34 2024.w33 2024.w32 2024.w31 2024.w30 2024.w29 2024.w28 2024.w27 2024.w26 2024.w25 2024.w24 2024.w23 2024.w22 2024.w21 2024.w18 2024.w17 2024.w16 2024.w15 2024.w14 2024.w13 2024.w12 2024.w11 2024.w10 2024.w09 2024.w08 2024.w06 2024.w05 2024.w04 2024.w03 2024.w02 2024.w01 2023.w51 2023.w50 2023.w49 2023.w48 2023.w47 2023.w45 2023.w43 2023.w42 2023.w41 2023.w40 2023.w39 2023.w38 2023.w37 2023.w36 2023.w34 2023.w33 2023.w32 2023.w31 2023.w30 2023.w29 2023.w28 2023.w27 2023.w26 2023.w25 2023.w24 2023.w23 2023.w22 2023.w21 2023.w20 2023.w19 2023.w18 2023.w18b 2023.w16 2023.w15 2023.w14 2023.w13 2023.w12 2023.w11 2023.w11b 2023.w10 2023.w10b 2023.w09 2023.w08 2023.w08b 2023.w07 2023.w06 2023.w05 2023.w03 2023.w02 2022.42 2022.41 2022.w51 2022.w50 2022.w49 2022.w48 2022.w47 2022.w46 2022.w45 2022.w43 2022.w42 2022.w42b 2022.w41 2022.w40 2022.w39 2022.w38 2022.w37 2022.w37b 2022.w36 2022.w35 2022.w33 2022.w32 2022.w31 2022.w31b 2022.w30 2022.w29 2022.w26 2022.w25 2022.w24 2022.w24b 2022.w23 2022.w22 2022.w21 2022.w20 2022.w19 2022.w18 2022.w17 2022.w15 2022.w15b 2022.w14a 2022.w13 2022.w13b 2022.w13a 2022.w12 2022.w10 2022.w09 2022.w09b 2022.w08 2022.w08b 2022.w07 2022.w07b 2022.w06 2022.w06a 2022.w05 2022.w05b 2022.w03_hotfix 2022.w03_b 2022.w02 2022.w01 2021.wk46 2021.wk14_a 2021.wk13_d 2021.wk13_c 2021.w51_c 2021.w51_a 2021.w50_a 2021.w49_b 2021.w49_a 2021.w48 2021.w47 2021.w46 2021.w46-powder 2021.w45 2021.w45_b 2021.w44 2021.w43 2021.w42 2021.w37 2021.w36 2021.w35 2021.w34 2021.w33 2021.w32 2021.w31 2021.w30 2021.w29 2021.w28 2021.w27 2021.w26 2021.w25 2021.w24 2021.w23 2021.w22 2021.w20 2021.w19 2021.w18_b 2021.w18_a 2021.w17_b 2021.w16 2021.w15 2021.w14 2021.w13_a 2021.w12 2021.w11 2021.w10 2021.w09 2021.w08 2021.w06 2021.w05 2021.w04 2021.w02 2020.w51_2 2020.w51 2020.w50 2020.w49 2020.w48_2 2020.w48 2020.w47 2020.w46_2 2020.w46 2020.w45_2 2020.w45 2020.w44 2020.w42_2 2020.w42 2020.w41 2020.w39 2020.w38 2020.w37 2020.w36 2020.w34 2020.w33 2020.w31 2020.w30 2020.w29 2020.w28 2020.w26 2020.w25 2020.w24 2020.w23 2020.w22 2020.w19 2020.w17 2020.w16 2020.w15 2020.w11 2020.w09 2020.w06 2020.w05 2020.w04 2020.w03 2019.w51 2019.w44 2019.w41 2019.w36 2019.w30 2019.w28 2019.w27 2019.w25 2019.w23 2019.w21 2019.w17 2019.w15 2019.w13 2019.w11 2019.w10 2019.w09 2019.w08 2019.w07 2019.w06 2019.w04 2019.w03 2018.w51 2018.w48 2018.w47 2018.w46 2018.w44 2018.w41 2018.w40 2018.w39 2018.w36 2018.w33 2018.w31 2018.w29 v2.1.0 v2.0.0 v1.2.2 v1.2.1 v1.2.0 v1.1.1 v1.1.0 v1.0.3 v1.0.2 v1.0.1 v1.0.0 setparam osa-etsi-ws-ue osa-etsi-ws-try2 osa-etsi-ws-try1 osa-etsi-ws-gNB nr-ip-over-lte nr-ip-over-lte-v.1.5 nr-ip-over-lte-v.1.4 nr-ip-over-lte-v.1.3 nr-ip-over-lte-v.1.2 nr-ip-over-lte-v.1.1 nr-ip-over-lte-v.1.0 flexran-eol develop-nr-pdcch develop-nr-2020w03 develop-nr-2020w02 develop-nr-2019w51 develop-nr-2019w50 develop-nr-2019w48 develop-nr-2019w47 develop-nr-2019w45 develop-nr-2019w43 develop-nr-2019w42 develop-nr-2019w40 develop-nr-2019w28 develop-nr-2019w23 benetel_phase_rotation benetel_gnb_rel_2.0 benetel_gnb_rel_1.0 benetel_enb_rel_2.0 benetel_enb_rel_1.0 ARC_1.3
No related merge requests found
......@@ -1177,6 +1177,7 @@ set(PHY_SRC_UE
${OPENAIR1_DIR}/PHY/LTE_UE_TRANSPORT/sss_ue.c
${OPENAIR1_DIR}/PHY/LTE_UE_TRANSPORT/dlsch_demodulation.c
${OPENAIR1_DIR}/PHY/LTE_UE_TRANSPORT/dlsch_llr_computation.c
${OPENAIR1_DIR}/PHY/LTE_UE_TRANSPORT/linear_preprocessing_rec.c
${OPENAIR1_DIR}/PHY/LTE_UE_TRANSPORT/dlsch_decoding.c
${OPENAIR1_DIR}/PHY/LTE_UE_TRANSPORT/dci_tools_ue.c
${OPENAIR1_DIR}/PHY/LTE_UE_TRANSPORT/uci_tools_ue.c
......@@ -1817,11 +1818,13 @@ endif()
# So, here are some hacks here. Hope this gets fixed in future!
if(EXISTS "/usr/include/atlas/cblas.h" OR EXISTS "/usr/include/cblas.h")
include_directories("/usr/include/atlas")
LINK_DIRECTORIES("/usr/lib/lapack")
LINK_DIRECTORIES("/usr/lib64")
LINK_DIRECTORIES("/usr/lib64/atlas") #Added because atlas libraries in CentOS 7 are here!
if(EXISTS "/usr/lib64/libblas.so" OR EXISTS "/usr/lib/libblas.so") #Case for CentOS7
list(APPEND ATLAS_LIBRARIES blas)
else() # Case for Ubuntu
list(APPEND ATLAS_LIBRARIES cblas)
endif()
......@@ -1847,6 +1850,8 @@ else()
message("No Blas/Atlas libs found, some targets will fail")
endif()
list(APPEND ATLAS_LIBRARIES lapack lapacke)
if (${XFORMS})
include_directories ("/usr/include/X11")
set(XFORMS_SOURCE
......
......@@ -36,8 +36,18 @@
#include "transport_proto_ue.h"
#include "PHY/sse_intrin.h"
#include "T.h"
#include<stdio.h>
#include<math.h>
#include <stdlib.h>
#include <string.h>
#include <lapacke_utils.h>
#include <lapacke.h>
#include <cblas.h>
#include "linear_preprocessing_rec.h"
#define NOCYGWIN_STATIC
//#define DEBUG_MMSE
/* dynamic shift for LLR computation for TM3/4
* set as command line argument, see lte-softmodem.c
......@@ -103,6 +113,7 @@ int rx_pdsch(PHY_VARS_UE *ue,
int avg[4];
int avg_0[2];
int avg_1[2];
unsigned short mmse_flag=0;
#if UE_TIMING_TRACE
uint8_t slot = 0;
......@@ -447,6 +458,7 @@ int rx_pdsch(PHY_VARS_UE *ue,
avg_1,
symbol,
nb_rb,
mmse_flag,
dlsch0_harq->mimo_mode);
LOG_D(PHY,"Channel Level TM34 avg_0 %d, avg_1 %d, rx_type %d, rx_standard %d, dlsch_demod_shift %d \n", avg_0[0],
......@@ -547,6 +559,26 @@ int rx_pdsch(PHY_VARS_UE *ue,
start_meas(&ue->generic_stat_bis[ue->current_thread_id[subframe]][slot]);
#endif
if (rx_type==rx_IC_dual_stream && mmse_flag==1){
precode_channel_est(pdsch_vars[eNB_id]->dl_ch_estimates_ext,
frame_parms,
pdsch_vars[eNB_id],
symbol,
nb_rb,
dlsch0_harq->mimo_mode);
mmse_processing_oai(pdsch_vars[eNB_id],
frame_parms,
measurements,
first_symbol_flag,
dlsch0_harq->mimo_mode,
mmse_flag,
0.0,
symbol,
nb_rb);
}
// Now channel compensation
if (dlsch0_harq->mimo_mode<LARGE_CDD) {
dlsch_channel_compensation(pdsch_vars[eNB_id]->rxdataF_ext,
......@@ -607,6 +639,7 @@ int rx_pdsch(PHY_VARS_UE *ue,
dlsch0_harq->round,
dlsch0_harq->mimo_mode,
nb_rb,
mmse_flag,
pdsch_vars[eNB_id]->log2_maxh0,
pdsch_vars[eNB_id]->log2_maxh1);
if (symbol == 5) {
......@@ -2479,6 +2512,69 @@ void dlsch_channel_compensation_TM56(int **rxdataF_ext,
_m_empty();
}
void precode_channel_est(int32_t **dl_ch_estimates_ext,
LTE_DL_FRAME_PARMS *frame_parms,
LTE_UE_PDSCH *pdsch_vars,
unsigned char symbol,
unsigned short nb_rb,
MIMO_mode_t mimo_mode){
unsigned short rb;
__m128i *dl_ch0_128,*dl_ch1_128;
unsigned char aarx=0,symbol_mod,pilots=0;
unsigned char *pmi_ext = pdsch_vars->pmi_ext;
symbol_mod = (symbol>=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol;
if ((symbol_mod == 0) || (symbol_mod == (4-frame_parms->Ncp)))
pilots=1;
for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++) {
dl_ch0_128 = (__m128i *)&dl_ch_estimates_ext[aarx][symbol*frame_parms->N_RB_DL*12]; // this is h11
dl_ch1_128 = (__m128i *)&dl_ch_estimates_ext[2+aarx][symbol*frame_parms->N_RB_DL*12]; // this is h12
for (rb=0; rb<nb_rb; rb++) {
if (mimo_mode==LARGE_CDD) {
prec2A_TM3_128(&dl_ch0_128[0],&dl_ch1_128[0]);
prec2A_TM3_128(&dl_ch0_128[1],&dl_ch1_128[1]);
if (pilots==0) {
prec2A_TM3_128(&dl_ch0_128[2],&dl_ch1_128[2]);
}
}else if (mimo_mode==DUALSTREAM_UNIFORM_PRECODING1) {
prec2A_TM4_128(0,&dl_ch0_128[0],&dl_ch1_128[0]);
prec2A_TM4_128(0,&dl_ch0_128[1],&dl_ch1_128[1]);
if (pilots==0) {
prec2A_TM4_128(0,&dl_ch0_128[2],&dl_ch1_128[2]);
}
}else if (mimo_mode==DUALSTREAM_UNIFORM_PRECODINGj) {
prec2A_TM4_128(1,&dl_ch0_128[0],&dl_ch1_128[0]);
prec2A_TM4_128(1,&dl_ch0_128[1],&dl_ch1_128[1]);
if (pilots==0) {
prec2A_TM4_128(1,&dl_ch0_128[2],&dl_ch1_128[2]);
}
}else if (mimo_mode==DUALSTREAM_PUSCH_PRECODING) {
prec2A_TM4_128(pmi_ext[rb],&dl_ch0_128[0],&dl_ch1_128[0]);
prec2A_TM4_128(pmi_ext[rb],&dl_ch0_128[1],&dl_ch1_128[1]);
if (pilots==0) {
prec2A_TM4_128(pmi_ext[rb],&dl_ch0_128[2],&dl_ch1_128[2]);
}
}else {
LOG_E(PHY,"Unknown MIMO mode\n");
return;
}
if (pilots==0){
dl_ch0_128+=3;
dl_ch1_128+=3;
}else {
dl_ch0_128+=2;
dl_ch1_128+=2;
}
}
}
}
void dlsch_channel_compensation_TM34(LTE_DL_FRAME_PARMS *frame_parms,
LTE_UE_PDSCH *pdsch_vars,
PHY_MEASUREMENTS *measurements,
......@@ -2490,6 +2586,7 @@ void dlsch_channel_compensation_TM34(LTE_DL_FRAME_PARMS *frame_parms,
int round,
MIMO_mode_t mimo_mode,
unsigned short nb_rb,
unsigned short mmse_flag,
unsigned char output_shift0,
unsigned char output_shift1) {
......@@ -2539,20 +2636,8 @@ void dlsch_channel_compensation_TM34(LTE_DL_FRAME_PARMS *frame_parms,
for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++) {
/* if (aarx==0) {
output_shift=output_shift0;
}
else {
output_shift=output_shift1;
} */
// printf("antenna %d\n", aarx);
// printf("symbol %d, rx antenna %d\n", symbol, aarx);
dl_ch0_128 = (__m128i *)&dl_ch_estimates_ext[aarx][symbol*frame_parms->N_RB_DL*12]; // this is h11
dl_ch1_128 = (__m128i *)&dl_ch_estimates_ext[2+aarx][symbol*frame_parms->N_RB_DL*12]; // this is h12
dl_ch_mag0_128 = (__m128i *)&dl_ch_mag0[aarx][symbol*frame_parms->N_RB_DL*12]; //responsible for x1
dl_ch_mag0_128b = (__m128i *)&dl_ch_magb0[aarx][symbol*frame_parms->N_RB_DL*12];//responsible for x1
dl_ch_mag1_128 = (__m128i *)&dl_ch_mag1[aarx][symbol*frame_parms->N_RB_DL*12]; //responsible for x2. always coming from tx2
......@@ -2562,48 +2647,37 @@ void dlsch_channel_compensation_TM34(LTE_DL_FRAME_PARMS *frame_parms,
rxdataF_comp1_128 = (__m128i *)&rxdataF_comp1[aarx][symbol*frame_parms->N_RB_DL*12]; //result of multipl with MF x2 on antenna of interest
for (rb=0; rb<nb_rb; rb++) {
if (mmse_flag == 0) {
// combine TX channels using precoder from pmi
if (mimo_mode==LARGE_CDD) {
prec2A_TM3_128(&dl_ch0_128[0],&dl_ch1_128[0]);
prec2A_TM3_128(&dl_ch0_128[1],&dl_ch1_128[1]);
if (pilots==0) {
prec2A_TM3_128(&dl_ch0_128[2],&dl_ch1_128[2]);
}
}
else if (mimo_mode==DUALSTREAM_UNIFORM_PRECODING1) {
}else if (mimo_mode==DUALSTREAM_UNIFORM_PRECODING1) {
prec2A_TM4_128(0,&dl_ch0_128[0],&dl_ch1_128[0]);
prec2A_TM4_128(0,&dl_ch0_128[1],&dl_ch1_128[1]);
if (pilots==0) {
prec2A_TM4_128(0,&dl_ch0_128[2],&dl_ch1_128[2]);
}
}
else if (mimo_mode==DUALSTREAM_UNIFORM_PRECODINGj) {
}else if (mimo_mode==DUALSTREAM_UNIFORM_PRECODINGj) {
prec2A_TM4_128(1,&dl_ch0_128[0],&dl_ch1_128[0]);
prec2A_TM4_128(1,&dl_ch0_128[1],&dl_ch1_128[1]);
if (pilots==0) {
prec2A_TM4_128(1,&dl_ch0_128[2],&dl_ch1_128[2]);
}
}
else if (mimo_mode==DUALSTREAM_PUSCH_PRECODING) {
}else if (mimo_mode==DUALSTREAM_PUSCH_PRECODING) {
prec2A_TM4_128(pmi_ext[rb],&dl_ch0_128[0],&dl_ch1_128[0]);
prec2A_TM4_128(pmi_ext[rb],&dl_ch0_128[1],&dl_ch1_128[1]);
if (pilots==0) {
prec2A_TM4_128(pmi_ext[rb],&dl_ch0_128[2],&dl_ch1_128[2]);
}
}
else {
}else {
LOG_E(PHY,"Unknown MIMO mode\n");
return;
}
}
if (mod_order0>2) {
......@@ -2732,7 +2806,7 @@ void dlsch_channel_compensation_TM34(LTE_DL_FRAME_PARMS *frame_parms,
// print_shorts("rx:",rxdataF128);
// print_shorts("ch:",dl_ch0_128);
// print_shorts("pack:",rxdataF_comp0_128);
//print_shorts("pack:",rxdataF_comp0_128);
// multiply by conjugated channel
mmtmpD0 = _mm_madd_epi16(dl_ch0_128[1],rxdataF128[1]);
......@@ -2951,36 +3025,31 @@ void dlsch_channel_compensation_TM34(LTE_DL_FRAME_PARMS *frame_parms,
rxdataF_comp1_128 = (int16x8_t*)&rxdataF_comp1[aarx][symbol*frame_parms->N_RB_DL*12];
for (rb=0; rb<nb_rb; rb++) {
if (mmse_flag == 0) {
// combine TX channels using precoder from pmi
if (mimo_mode==LARGE_CDD) {
prec2A_TM3_128(&dl_ch0_128[0],&dl_ch1_128[0]);
prec2A_TM3_128(&dl_ch0_128[1],&dl_ch1_128[1]);
if (pilots==0) {
prec2A_TM3_128(&dl_ch0_128[2],&dl_ch1_128[2]);
}
}
else if (mimo_mode==DUALSTREAM_UNIFORM_PRECODING1) {
}else if (mimo_mode==DUALSTREAM_UNIFORM_PRECODING1) {
prec2A_TM4_128(0,&dl_ch0_128[0],&dl_ch1_128[0]);
prec2A_TM4_128(0,&dl_ch0_128[1],&dl_ch1_128[1]);
if (pilots==0) {
prec2A_TM4_128(0,&dl_ch0_128[2],&dl_ch1_128[2]);
}
}
else if (mimo_mode==DUALSTREAM_UNIFORM_PRECODINGj) {
}else if (mimo_mode==DUALSTREAM_UNIFORM_PRECODINGj) {
prec2A_TM4_128(1,&dl_ch0_128[0],&dl_ch1_128[0]);
prec2A_TM4_128(1,&dl_ch0_128[1],&dl_ch1_128[1]);
if (pilots==0) {
prec2A_TM4_128(1,&dl_ch0_128[2],&dl_ch1_128[2]);
}
}
else {
}else {
LOG_E(PHY,"Unknown MIMO mode\n");
return;
}
}
if (mod_order0>2) {
......@@ -3869,7 +3938,592 @@ void dlsch_channel_level_core(int **dl_ch_estimates_ext,
}
//compute average channel_level of effective (precoded) channel
void mmse_processing_oai(LTE_UE_PDSCH *pdsch_vars,
LTE_DL_FRAME_PARMS *frame_parms,
PHY_MEASUREMENTS *measurements,
unsigned char first_symbol_flag,
MIMO_mode_t mimo_mode,
unsigned short mmse_flag,
int noise_power,
unsigned char symbol,
unsigned short nb_rb){
int **rxdataF_ext = pdsch_vars->rxdataF_ext;
int **dl_ch_estimates_ext = pdsch_vars->dl_ch_estimates_ext;
unsigned char *pmi_ext = pdsch_vars->pmi_ext;
int avg_00[frame_parms->nb_antenna_ports_eNB*frame_parms->nb_antennas_rx];
int avg_01[frame_parms->nb_antenna_ports_eNB*frame_parms->nb_antennas_rx];
int symbol_mod, length, start_point, nre;
symbol_mod = (symbol>=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol;
if (((symbol_mod == 0) || (symbol_mod == (frame_parms->Ncp-1)))&&(frame_parms->nb_antenna_ports_eNB!=1))
nre=8;
else if (((symbol_mod == 0) || (symbol_mod == (frame_parms->Ncp-1)))&&(frame_parms->nb_antenna_ports_eNB==1))
nre=10;
else
nre=12;
length = nre*nb_rb;
start_point = symbol*nb_rb*12;
mmse_processing_core(rxdataF_ext,
dl_ch_estimates_ext,
noise_power,
frame_parms->nb_antenna_ports_eNB,
frame_parms->nb_antennas_rx,
length,
start_point);
/*dlsch_channel_aver_band(dl_ch_estimates_ext,
frame_parms,
chan_avg,
symbol,
nb_rb);
for (aatx=0; aatx<frame_parms->nb_antenna_ports_eNB; aatx++)
for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
H[aatx*frame_parms->nb_antennas_rx + aarx] = (float)(chan_avg[aatx*frame_parms->nb_antennas_rx + aarx].r/(32768.0)) + I*(float)(chan_avg[aatx*frame_parms->nb_antennas_rx + aarx].i/(32768.0));
// printf("H [%d] = (%f, %f) \n", aatx*frame_parms->nb_antennas_rx + aarx, creal(H[aatx*frame_parms->nb_antennas_rx + aarx]), cimag(H[aatx*frame_parms->nb_antennas_rx + aarx]));
}*/
if (first_symbol_flag == 1){
dlsch_channel_level_TM34(dl_ch_estimates_ext,
frame_parms,
pmi_ext,
avg_00,
avg_01,
symbol,
nb_rb,
mmse_flag,
mimo_mode);
avg_00[0] = (log2_approx(avg_00[0])/2) + dlsch_demod_shift+4;// + 2 ;//+ 4;
avg_01[0] = (log2_approx(avg_01[0])/2) + dlsch_demod_shift+4;// + 2 ;//+ 4;
pdsch_vars->log2_maxh0 = cmax(avg_00[0],0);
pdsch_vars->log2_maxh1 = cmax(avg_01[0],0);
}
}
void mmse_processing_core(int32_t **rxdataF_ext,
int32_t **dl_ch_estimates_ext,
int noise_power,
int n_tx,
int n_rx,
int length,
int start_point){
int aatx, aarx, re;
float imag;
float real;
float complex **W_MMSE= malloc(n_tx*n_rx*sizeof(float complex*));
for (int j=0; j<n_tx*n_rx; j++) {
W_MMSE[j] = malloc(sizeof(float complex)*length);
}
float complex *H= malloc(n_tx*n_rx*sizeof(float complex));
float complex *W_MMSE_re= malloc(n_tx*n_rx*sizeof(float complex));
float complex** dl_ch_estimates_ext_flcpx = malloc(n_tx*n_rx*sizeof(float complex*));
for (int j=0; j<n_tx*n_rx; j++) {
dl_ch_estimates_ext_flcpx[j] = malloc(sizeof(float complex)*length);
}
float complex** rxdataF_ext_flcpx = malloc(n_rx*sizeof(float complex*));
for (int j=0; j<n_rx; j++) {
rxdataF_ext_flcpx[j] = malloc(sizeof(float complex)*length);
}
chan_est_to_float(dl_ch_estimates_ext,
dl_ch_estimates_ext_flcpx,
n_tx,
n_rx,
length,
start_point);
for (re=0; re<length; re++){
for (aatx=0; aatx<n_tx; aatx++){
for (aarx=0; aarx<n_rx; aarx++) {
imag = cimag(dl_ch_estimates_ext_flcpx[aatx*n_rx + aarx][re]);
real = creal(dl_ch_estimates_ext_flcpx[aatx*n_rx + aarx][re]);
H[aatx*n_rx + aarx] = real+ I*imag;
}
}
compute_MMSE(H, n_tx, noise_power, W_MMSE_re);
for (aatx=0; aatx<n_tx; aatx++){
for (aarx=0; aarx<n_rx; aarx++) {
W_MMSE[aatx*n_rx + aarx][re] = W_MMSE_re[aatx*n_rx + aarx];
}
}
}
rxdataF_to_float(rxdataF_ext,
rxdataF_ext_flcpx,
n_rx,
length,
start_point);
mult_mmse_rxdataF(W_MMSE,
rxdataF_ext_flcpx,
n_tx,
n_rx,
length,
start_point);
mult_mmse_chan_est(W_MMSE,
dl_ch_estimates_ext_flcpx,
n_tx,
n_rx,
length,
start_point);
float_to_rxdataF(rxdataF_ext,
rxdataF_ext_flcpx,
n_tx,
n_rx,
length,
start_point);
float_to_chan_est(dl_ch_estimates_ext,
dl_ch_estimates_ext_flcpx,
n_tx,
n_rx,
length,
start_point);
free(W_MMSE);
free(H);
free(W_MMSE_re);
free(dl_ch_estimates_ext_flcpx);
free(rxdataF_ext_flcpx);
}
/*THIS FUNCTION TAKES FLOAT_POINT INPUT. SHOULD NOT BE USED WITH OAI*/
void mmse_processing_core_flp(float complex** rxdataF_ext_flcpx,
float complex **H,
int32_t **rxdataF_ext,
int32_t **dl_ch_estimates_ext,
float noise_power,
int n_tx,
int n_rx,
int length,
int start_point){
int aatx, aarx, re;
float max = 0;
float one_over_max = 0;
float complex **W_MMSE= malloc(n_tx*n_rx*sizeof(float complex*));
for (int j=0; j<n_tx*n_rx; j++) {
W_MMSE[j] = malloc(sizeof(float complex)*length);
}
float complex *H_re= malloc(n_tx*n_rx*sizeof(float complex));
float complex *W_MMSE_re= malloc(n_tx*n_rx*sizeof(float complex));
for (re=0; re<length; re++){
for (aatx=0; aatx<n_tx; aatx++){
for (aarx=0; aarx<n_rx; aarx++) {
H_re[aatx*n_rx + aarx] = H[aatx*n_rx + aarx][re];
#ifdef DEBUG_MMSE
if (re == 0)
printf(" H_re[%d]= (%f + i%f)\n", aatx*n_rx + aarx, creal(H_re[aatx*n_rx + aarx]), cimag(H_re[aatx*n_rx + aarx]));
#endif
}
}
compute_MMSE(H_re, n_tx, noise_power, W_MMSE_re);
for (aatx=0; aatx<n_tx; aatx++){
for (aarx=0; aarx<n_rx; aarx++) {
W_MMSE[aatx*n_rx + aarx][re] = W_MMSE_re[aatx*n_rx + aarx];
if (fabs(creal(W_MMSE_re[aatx*n_rx + aarx])) > max)
max = fabs(creal(W_MMSE_re[aatx*n_rx + aarx]));
if (fabs(cimag(W_MMSE_re[aatx*n_rx + aarx])) > max)
max = fabs(cimag(W_MMSE_re[aatx*n_rx + aarx]));
}
}
}
one_over_max = 1.0/max;
for (re=0; re<length; re++)
for (aatx=0; aatx<n_tx; aatx++)
for (aarx=0; aarx<n_rx; aarx++){
#ifdef DEBUG_MMSE
if (re == 0)
printf(" W_MMSE[%d] = (%f + i%f)\n", aatx*n_rx + aarx, creal(W_MMSE[aatx*n_rx + aarx][re]), cimag(W_MMSE[aatx*n_rx + aarx][re]));
#endif
W_MMSE[aatx*n_rx + aarx][re] = one_over_max*W_MMSE[aatx*n_rx + aarx][re];
#ifdef DEBUG_MMSE
if (re == 0)
printf(" AFTER NORM W_MMSE[%d] = (%f + i%f), max = %f \n", aatx*n_rx + aarx, creal(W_MMSE[aatx*n_rx + aarx][re]), cimag(W_MMSE[aatx*n_rx + aarx][re]), max);
#endif
}
mult_mmse_rxdataF(W_MMSE,
rxdataF_ext_flcpx,
n_tx,
n_rx,
length,
start_point);
mult_mmse_chan_est(W_MMSE,
H,
n_tx,
n_rx,
length,
start_point);
float_to_rxdataF(rxdataF_ext,
rxdataF_ext_flcpx,
n_tx,
n_rx,
length,
start_point);
float_to_chan_est(dl_ch_estimates_ext,
H,
n_tx,
n_rx,
length,
start_point);
free(H_re);
free(W_MMSE);
free(W_MMSE_re);
}
void dlsch_channel_aver_band(int **dl_ch_estimates_ext,
LTE_DL_FRAME_PARMS *frame_parms,
struct complex32 *chan_avg,
unsigned char symbol,
unsigned short nb_rb)
{
#if defined(__x86_64__)||defined(__i386__)
short rb;
unsigned char aatx,aarx,nre=12,symbol_mod;
__m128i *dl_ch128, avg128D;
int32_t chan_est_avg[4];
symbol_mod = (symbol>=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol;
if (((symbol_mod == 0) || (symbol_mod == (frame_parms->Ncp-1)))&&(frame_parms->nb_antenna_ports_eNB!=1))
nre=8;
else if (((symbol_mod == 0) || (symbol_mod == (frame_parms->Ncp-1)))&&(frame_parms->nb_antenna_ports_eNB==1))
nre=10;
else
nre=12;
for (aatx=0; aatx<frame_parms->nb_antennas_tx; aatx++){
for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
dl_ch128=(__m128i *)&dl_ch_estimates_ext[aatx*frame_parms->nb_antennas_rx + aarx][symbol*frame_parms->N_RB_DL*12];
avg128D = _mm_setzero_si128();
// print_shorts("avg128D 1",&avg128D);
for (rb=0;rb<nb_rb;rb++) {
/* printf("symbol %d, ant %d, nre*nrb %d, rb %d \n", symbol, aatx*frame_parms->nb_antennas_rx + aarx, nb_rb*nre, rb);
print_shorts("aver dl_ch128",&dl_ch128[0]);
print_shorts("aver dl_ch128",&dl_ch128[1]);
print_shorts("aver dl_ch128",&dl_ch128[2]);
avg128D = _mm_add_epi16(avg128D, dl_ch128[0]);*/
//print_shorts("avg128D 2",&avg128D);
avg128D = _mm_add_epi16(avg128D, dl_ch128[1]);
// print_shorts("avg128D 3",&avg128D);
if (((symbol_mod == 0) || (symbol_mod == (frame_parms->Ncp-1)))&&(frame_parms->nb_antenna_ports_eNB!=1)) {
dl_ch128+=2;
}else {
avg128D = _mm_add_epi16(avg128D,dl_ch128[2]);
// print_shorts("avg128D 4",&avg128D);
dl_ch128+=3;
}
}
chan_avg[aatx*frame_parms->nb_antennas_rx + aarx].r =(((int16_t*)&avg128D)[0] +
((int16_t*)&avg128D)[2] +
((int16_t*)&avg128D)[4] +
((int16_t*)&avg128D)[6])/(nb_rb*nre);
// printf("symb %d chan_avg re [%d] = %d\n", symbol, aatx*frame_parms->nb_antennas_rx + aarx, chan_avg[aatx*frame_parms->nb_antennas_rx + aarx].r);
chan_avg[aatx*frame_parms->nb_antennas_rx + aarx].i =(((int16_t*)&avg128D)[1] +
((int16_t*)&avg128D)[3] +
((int16_t*)&avg128D)[5] +
((int16_t*)&avg128D)[7])/(nb_rb*nre);
// printf("symb %d chan_avg im [%d] = %d\n", symbol, aatx*frame_parms->nb_antennas_rx + aarx, chan_avg[aatx*frame_parms->nb_antennas_rx + aarx].i);
//printf("symb %d chan_avg im [%d] = %d\n", symbol, aatx*frame_parms->nb_antennas_rx + aarx, chan_avg[aatx*frame_parms->nb_antennas_rx + aarx].i);
chan_est_avg[aatx*frame_parms->nb_antennas_rx + aarx] = (((int32_t)chan_avg[aatx*frame_parms->nb_antennas_rx + aarx].i)<<16)|(((int32_t)chan_avg[aatx*frame_parms->nb_antennas_rx + aarx].r) & 0xffff);
//printf("symb %d chan_est_avg [%d] = %d\n", symbol, aatx*frame_parms->nb_antennas_rx + aarx, chan_est_avg[aatx*frame_parms->nb_antennas_rx + aarx]);
dl_ch128=(__m128i *)&dl_ch_estimates_ext[aatx*frame_parms->nb_antennas_rx + aarx][symbol*frame_parms->N_RB_DL*12];
for (rb=0;rb<nb_rb;rb++) {
dl_ch128[0] = _mm_set1_epi32(chan_est_avg[aatx*frame_parms->nb_antennas_rx + aarx]);
dl_ch128[1] = _mm_set1_epi32(chan_est_avg[aatx*frame_parms->nb_antennas_rx + aarx]);
if (((symbol_mod == 0) || (symbol_mod == (frame_parms->Ncp-1)))&&(frame_parms->nb_antenna_ports_eNB!=1)) {
dl_ch128+=2;
}else {
dl_ch128[2] = _mm_set1_epi32(chan_est_avg[aatx*frame_parms->nb_antennas_rx + aarx]);
dl_ch128+=3;
}
}
}
}
_mm_empty();
_m_empty();
#elif defined(__arm__)
#endif
}
void rxdataF_to_float(int32_t **rxdataF_ext,
float complex **rxdataF_f,
int n_rx,
int length,
int start_point)
{
short re;
int aarx;
int16_t imag;
int16_t real;
for (aarx=0; aarx<n_rx; aarx++) {
for (re=0; re<length; re++){
imag = (int16_t) (rxdataF_ext[aarx][start_point + re] >> 16);
real = (int16_t) (rxdataF_ext[aarx][start_point + re] & 0xffff);
rxdataF_f[aarx][re] = (float)(real/(32768.0)) + I*(float)(imag/(32768.0));
#ifdef DEBUG_MMSE
if (re==0){
printf("rxdataF_to_float: aarx = %d, real= %d, imag = %d\n", aarx, real, imag);
//printf("rxdataF_to_float: rxdataF_ext[%d][%d] = %d\n", aarx, start_point + re, rxdataF_ext[aarx][start_point + re]);
//printf("rxdataF_to_float: ant %d, re = %d, rxdataF_f real = %f, rxdataF_f imag = %f \n", aarx, re, creal(rxdataF_f[aarx][re]), cimag(rxdataF_f[aarx][re]));
}
#endif
}
}
}
void chan_est_to_float(int32_t **dl_ch_estimates_ext,
float complex **dl_ch_estimates_ext_f,
int n_tx,
int n_rx,
int length,
int start_point)
{
short re;
int aatx,aarx;
int16_t imag;
int16_t real;
for (aatx=0; aatx<n_tx; aatx++){
for (aarx=0; aarx<n_rx; aarx++) {
for (re=0; re<length; re++){
imag = (int16_t) (dl_ch_estimates_ext[aatx*n_rx + aarx][start_point + re] >> 16);
real = (int16_t) (dl_ch_estimates_ext[aatx*n_rx + aarx][start_point+ re] & 0xffff);
dl_ch_estimates_ext_f[aatx*n_rx + aarx][re] = (float)(real/(32768.0)) + I*(float)(imag/(32768.0));
#ifdef DEBUG_MMSE
if (re==0){
printf("ant %d, re = %d, real = %d, imag = %d \n", aatx*n_rx + aarx, re, real, imag);
printf("ant %d, re = %d, real = %f, imag = %f \n", aatx*n_rx + aarx, re, creal(dl_ch_estimates_ext_f[aatx*n_rx + aarx][re]), cimag(dl_ch_estimates_ext_f[aatx*n_rx + aarx][re]));
}
#endif
}
}
}
}
void float_to_chan_est(int32_t **dl_ch_estimates_ext,
float complex **dl_ch_estimates_ext_f,
int n_tx,
int n_rx,
int length,
int start_point)
{
short re;
int aarx, aatx;
int16_t imag;
int16_t real;
for (aatx=0; aatx<n_tx; aatx++){
for (aarx=0; aarx<n_rx; aarx++) {
for (re=0; re<length; re++){
if (cimag(dl_ch_estimates_ext_f[aatx*n_rx + aarx][re])<-1)
imag = 0x8000;
else if (cimag(dl_ch_estimates_ext_f[aatx*n_rx + aarx][re])>=1)
imag = 0x7FFF;
else
imag = cimag(dl_ch_estimates_ext_f[aatx*n_rx + aarx][re])*32768;
if (creal(dl_ch_estimates_ext_f[aatx*n_rx + aarx][re])<-1)
real = 0x8000;
else if (creal(dl_ch_estimates_ext_f[aatx*n_rx + aarx][re])>=1)
real = 0x7FFF;
else
real = creal(dl_ch_estimates_ext_f[aatx*n_rx + aarx][re])*32768;
dl_ch_estimates_ext[aatx*n_rx + aarx][start_point + re] = (((int32_t)imag)<<16)|((int32_t)real & 0xffff);
#ifdef DEBUG_MMSE
if (re==0){
printf(" float_to_chan_est: chan est real = %f, chan est imag = %f\n",creal(dl_ch_estimates_ext_f[aatx*n_rx + aarx][re]), cimag(dl_ch_estimates_ext_f[aatx*n_rx + aarx][re]));
printf("float_to_chan_est: real fixed = %d, imag fixed = %d\n", real, imag);
printf("float_to_chan_est: ant %d, re = %d, dl_ch_estimates_ext = %d \n", aatx*n_rx + aarx, re, dl_ch_estimates_ext[aatx*n_rx + aarx][start_point + re]);
}
#endif
}
}
}
}
void float_to_rxdataF(int32_t **rxdataF_ext,
float complex **rxdataF_f,
int n_tx,
int n_rx,
int length,
int start_point)
{
short re;
int aarx;
int16_t imag;
int16_t real;
for (aarx=0; aarx<n_rx; aarx++) {
for (re=0; re<length; re++){
if (cimag(rxdataF_f[aarx][re])<-1)
imag = 0x8000;
else if (cimag(rxdataF_f[aarx][re])>=1)
imag = 0x7FFF;
else
imag = cimag(rxdataF_f[aarx][re])*32768;
if (creal(rxdataF_f[aarx][re])<-1)
real = 0x8000;
else if (creal(rxdataF_f[aarx][re])>=1)
real = 0x7FFF;
else
real = creal(rxdataF_f[aarx][re])*32768;
rxdataF_ext[aarx][start_point + re] = (((int32_t)imag)<<16)|(((int32_t)real) & 0xffff);
#ifdef DEBUG_MMSE
if (re==0){
printf(" float_to_rxdataF: real = %f, imag = %f\n",creal(rxdataF_f[aarx][re]), cimag(rxdataF_f[aarx][re]));
printf("float_to_rxdataF: real fixed = %d, imag fixed = %d\n", real, imag);
printf("float_to_rxdataF: ant %d, re = %d, rxdataF_ext = %d \n", aarx, re, rxdataF_ext[aarx][symbol*nb_rb*12 + re]);
}
#endif
}
}
}
void mult_mmse_rxdataF(float complex** Wmmse,
float complex** rxdataF_ext_f,
int n_tx,
int n_rx,
int length,
int start_point)
{
short re;
int aarx, aatx;
float complex* rxdata_re = malloc(n_rx*sizeof(float complex));
float complex* rxdata_mmse_re = malloc(n_rx*sizeof(float complex));
float complex* Wmmse_re = malloc(n_tx*n_rx*sizeof(float complex));
for (re=0;re<length; re++){
for (aarx=0; aarx<n_rx; aarx++){
rxdata_re[aarx] = rxdataF_ext_f[aarx][re];
#ifdef DEBUG_MMSE
if (re==0)
printf("mult_mmse_rxdataF before: rxdata_re[%d] = (%f, %f)\n", aarx, creal(rxdata_re[aarx]), cimag(rxdata_re[aarx]));
#endif
}
for (aatx=0; aatx<n_tx; aatx++){
for (aarx=0; aarx<n_rx; aarx++){
Wmmse_re[aatx*n_rx + aarx] = Wmmse[aatx*n_rx + aarx][re];
}
}
mutl_matrix_matrix_col_based(Wmmse_re, rxdata_re, n_rx, n_tx, n_rx, 1, rxdata_mmse_re);
for (aarx=0; aarx<n_rx; aarx++){
rxdataF_ext_f[aarx][re] = rxdata_mmse_re[aarx];
#ifdef DEBUG_MMSE
if (re==0)
printf("mult_mmse_rxdataF after: rxdataF_ext_f[%d] = (%f, %f)\n", aarx, creal(rxdataF_ext_f[aarx][re]), cimag(rxdataF_ext_f[aarx][re]));
#endif
}
}
free(rxdata_re);
free(rxdata_mmse_re);
free(Wmmse_re);
}
void mult_mmse_chan_est(float complex** Wmmse,
float complex** dl_ch_estimates_ext_f,
int n_tx,
int n_rx,
int length,
int start_point)
{
short re;
int aarx, aatx;
float complex* chan_est_re = malloc(n_tx*n_rx*sizeof(float complex));
float complex* chan_est_mmse_re = malloc(n_tx*n_rx*sizeof(float complex));
float complex* Wmmse_re = malloc(n_tx*n_rx*sizeof(float complex));
for (re=0;re<length; re++){
for (aatx=0; aatx<n_tx; aatx++){
for (aarx=0; aarx<n_rx; aarx++){
chan_est_re[aatx*n_rx + aarx] = dl_ch_estimates_ext_f[aatx*n_rx + aarx][re];
Wmmse_re[aatx*n_rx + aarx] = Wmmse[aatx*n_rx + aarx][re];
#ifdef DEBUG_MMSE
if (re==0)
printf("mult_mmse_chan_est: chan_est_re[%d] = (%f, %f)\n", aatx*n_rx + aarx, creal(chan_est_re[aatx*n_rx + aarx]), cimag(chan_est_re[aatx*n_rx + aarx]));
#endif
}
}
mutl_matrix_matrix_col_based(Wmmse_re, chan_est_re, n_rx, n_tx, n_rx, n_tx, chan_est_mmse_re);
for (aatx=0; aatx<n_tx; aatx++){
for (aarx=0; aarx<n_rx; aarx++){
dl_ch_estimates_ext_f[aatx*n_rx + aarx][re] = chan_est_mmse_re[aatx*n_rx + aarx];
#ifdef DEBUG_MMSE
if (re==0)
printf("mult_mmse_chan_est: dl_ch_estimates_ext_f[%d][%d] = (%f, %f)\n", aatx*n_rx + aarx, re, creal(dl_ch_estimates_ext_f[aatx*n_rx + aarx][re]), cimag(dl_ch_estimates_ext_f[aatx*n_rx + aarx][re]));
#endif
}
}
}
free(Wmmse_re);
free(chan_est_re);
free(chan_est_mmse_re);
}
//compute average channel_level of effective (precoded) channel
void dlsch_channel_level_TM34(int **dl_ch_estimates_ext,
......@@ -3879,11 +4533,11 @@ void dlsch_channel_level_TM34(int **dl_ch_estimates_ext,
int *avg_1,
uint8_t symbol,
unsigned short nb_rb,
unsigned int mmse_flag,
MIMO_mode_t mimo_mode){
#if defined(__x86_64__)||defined(__i386__)
short rb;
unsigned char aarx,nre=12,symbol_mod;
__m128i *dl_ch0_128,*dl_ch1_128, dl_ch0_128_tmp, dl_ch1_128_tmp, avg_0_128D, avg_1_128D;
......@@ -3914,11 +4568,12 @@ void dlsch_channel_level_TM34(int **dl_ch_estimates_ext,
avg_1_128D = _mm_setzero_si128();
for (rb=0; rb<nb_rb; rb++) {
// printf("rb %d : \n",rb);
// print_shorts("ch0\n",&dl_ch0_128[0]);
//print_shorts("ch0\n",&dl_ch0_128[0]);
//print_shorts("ch1\n",&dl_ch1_128[0]);
dl_ch0_128_tmp = _mm_load_si128(&dl_ch0_128[0]);
dl_ch1_128_tmp = _mm_load_si128(&dl_ch1_128[0]);
if (mmse_flag == 0){
if (mimo_mode==LARGE_CDD)
prec2A_TM3_128(&dl_ch0_128_tmp,&dl_ch1_128_tmp);
else if (mimo_mode==DUALSTREAM_UNIFORM_PRECODING1)
......@@ -3927,6 +4582,7 @@ void dlsch_channel_level_TM34(int **dl_ch_estimates_ext,
prec2A_TM4_128(1,&dl_ch0_128_tmp,&dl_ch1_128_tmp);
else if (mimo_mode==DUALSTREAM_PUSCH_PRECODING)
prec2A_TM4_128(pmi_ext[rb],&dl_ch0_128_tmp,&dl_ch1_128_tmp);
}
// mmtmpD0 = _mm_madd_epi16(dl_ch0_128_tmp,dl_ch0_128_tmp);
avg_0_128D = _mm_add_epi32(avg_0_128D,_mm_madd_epi16(dl_ch0_128_tmp,dl_ch0_128_tmp));
......@@ -3936,6 +4592,7 @@ void dlsch_channel_level_TM34(int **dl_ch_estimates_ext,
dl_ch0_128_tmp = _mm_load_si128(&dl_ch0_128[1]);
dl_ch1_128_tmp = _mm_load_si128(&dl_ch1_128[1]);
if (mmse_flag == 0){
if (mimo_mode==LARGE_CDD)
prec2A_TM3_128(&dl_ch0_128_tmp,&dl_ch1_128_tmp);
else if (mimo_mode==DUALSTREAM_UNIFORM_PRECODING1)
......@@ -3944,6 +4601,7 @@ void dlsch_channel_level_TM34(int **dl_ch_estimates_ext,
prec2A_TM4_128(1,&dl_ch0_128_tmp,&dl_ch1_128_tmp);
else if (mimo_mode==DUALSTREAM_PUSCH_PRECODING)
prec2A_TM4_128(pmi_ext[rb],&dl_ch0_128_tmp,&dl_ch1_128_tmp);
}
// mmtmpD1 = _mm_madd_epi16(dl_ch0_128_tmp,dl_ch0_128_tmp);
avg_0_128D = _mm_add_epi32(avg_0_128D,_mm_madd_epi16(dl_ch0_128_tmp,dl_ch0_128_tmp));
......@@ -3958,6 +4616,7 @@ void dlsch_channel_level_TM34(int **dl_ch_estimates_ext,
dl_ch0_128_tmp = _mm_load_si128(&dl_ch0_128[2]);
dl_ch1_128_tmp = _mm_load_si128(&dl_ch1_128[2]);
if (mmse_flag == 0){
if (mimo_mode==LARGE_CDD)
prec2A_TM3_128(&dl_ch0_128_tmp,&dl_ch1_128_tmp);
else if (mimo_mode==DUALSTREAM_UNIFORM_PRECODING1)
......@@ -3966,6 +4625,7 @@ void dlsch_channel_level_TM34(int **dl_ch_estimates_ext,
prec2A_TM4_128(1,&dl_ch0_128_tmp,&dl_ch1_128_tmp);
else if (mimo_mode==DUALSTREAM_PUSCH_PRECODING)
prec2A_TM4_128(pmi_ext[rb],&dl_ch0_128_tmp,&dl_ch1_128_tmp);
}
// mmtmpD2 = _mm_madd_epi16(dl_ch0_128_tmp,dl_ch0_128_tmp);
avg_1_128D = _mm_add_epi32(avg_1_128D,_mm_madd_epi16(dl_ch1_128_tmp,dl_ch1_128_tmp));
......
/* These functions compute linear preprocessing for
the UE using LAPACKE and CBLAS modules of
LAPACK libraries.
MMSE and MMSE whitening filters are available.
Functions are using RowMajor storage of the
matrices, like in conventional C. Traditional
Fortran functions of LAPACK employ ColumnMajor
data storage. */
#include<stdio.h>
#include<math.h>
#include<complex.h>
#include <stdlib.h>
#include <cblas.h>
#include <string.h>
#include <lapacke_utils.h>
#include <lapacke.h>
//#define DEBUG_PREPROC
void transpose (int N, float complex *A, float complex *Result)
{
// COnputes C := alpha*op(A)*op(B) + beta*C,
enum CBLAS_TRANSPOSE transa = CblasTrans;
enum CBLAS_TRANSPOSE transb = CblasNoTrans;
int rows_opA = N; // number of rows in op(A) and in C
int col_opB = N; //number of columns of op(B) and in C
int col_opA = N; //number of columns in op(A) and rows in op(B)
int col_B; //number of columns in B
float complex alpha = 1.0+I*0;
int lda = rows_opA;
float complex beta = 0.0+I*0;
int ldc = rows_opA;
int i;
float complex* B;
int ldb = col_opB;
if (transb == CblasNoTrans) {
B = (float complex*)calloc(ldb*col_opB,sizeof(float complex));
col_B= col_opB;
}
else {
B = (float complex*)calloc(ldb*col_opA, sizeof(float complex));
col_B = col_opA;
}
float complex* C = (float complex*)malloc(ldc*col_opB*sizeof(float complex));
for (i=0; i<lda*col_B; i+=N+1)
B[i]=1.0+I*0;
cblas_cgemm(CblasRowMajor, transa, transb, rows_opA, col_opB, col_opA, &alpha, A, lda, B, ldb, &beta, C, ldc);
memcpy(Result, C, N*N*sizeof(float complex));
free(B);
free(C);
}
void conjugate_transpose (int N, float complex *A, float complex *Result)
{
// Computes C := alpha*op(A)*op(B) + beta*C,
enum CBLAS_TRANSPOSE transa = CblasConjTrans;
enum CBLAS_TRANSPOSE transb = CblasNoTrans;
int rows_opA = N; // number of rows in op(A) and in C
int col_opB = N; //number of columns of op(B) and in C
int col_opA = N; //number of columns in op(A) and rows in op(B)
int col_B; //number of columns in B
float complex alpha = 1.0+I*0;
int lda = rows_opA;
float complex beta = 0.0+I*0;
int ldc = rows_opA;
int i;
float complex* B;
int ldb = col_opB;
if (transb == CblasNoTrans) {
B = (float complex*)calloc(ldb*col_opB,sizeof(float complex));
col_B= col_opB;
}
else {
B = (float complex*)calloc(ldb*col_opA, sizeof(float complex));
col_B = col_opA;
}
float complex* C = (float complex*)malloc(ldc*col_opB*sizeof(float complex));
for (i=0; i<lda*col_B; i+=N+1)
B[i]=1.0+I*0;
cblas_cgemm(CblasRowMajor, transa, transb, rows_opA, col_opB, col_opA, &alpha, A, lda, B, ldb, &beta, C, ldc);
memcpy(Result, C, N*N*sizeof(float complex));
free(B);
free(C);
}
void H_hermH_plus_sigma2I (int N, int M, float complex *A, float sigma2, float complex *Result)
{
//C := alpha*op(A)*op(B) + beta*C,
enum CBLAS_TRANSPOSE transa = CblasConjTrans;
enum CBLAS_TRANSPOSE transb = CblasNoTrans;
int rows_opA = N; // number of rows in op(A) and in C
int col_opB = N; //number of columns of op(B) and in C
int col_opA = N; //number of columns in op(A) and rows in op(B)
int col_C = N; //number of columns in B
float complex alpha = 1.0+I*0;
int lda = col_opA;
float complex beta = 1.0 + I*0;
int ldc = col_opA;
int i;
float complex* C = (float complex*)calloc(ldc*col_opB, sizeof(float complex));
for (i=0; i<lda*col_C; i+=N+1)
C[i]=sigma2*(1.0+I*0);
cblas_cgemm(CblasRowMajor, transa, transb, rows_opA, col_opB, col_opA, &alpha, A, lda, A, lda, &beta, C, ldc);
memcpy(Result, C, N*M*sizeof(float complex));
free(C);
}
void HH_herm_plus_sigma2I (int M, int N, float complex *A, float sigma2, float complex *Result)
{
//C := alpha*op(A)*op(B) + beta*C,
enum CBLAS_TRANSPOSE transa = CblasNoTrans;
enum CBLAS_TRANSPOSE transb = CblasConjTrans;
int k = N; //number of columns in op(A) and rows in op(B),k
float complex alpha = 1.0+I*0;
int lda = N;
int ldb = N;
int ldc = M;
int i;
float complex* C = (float complex*)calloc(M*M, sizeof(float complex));
for (i=0; i<M*M; i+=M+1)
C[i]=1.0+I*0;
cblas_cgemm(CblasRowMajor, transa, transb, M, M, k, &alpha, A, lda, A, ldb, &sigma2, C, ldc);
memcpy(Result, C, M*M*sizeof(float complex));
free(C);
}
void eigen_vectors_values (int N, float complex *A, float complex *Vectors, float *Values_Matrix)
{
// This function computes ORTHONORMAL eigenvectors and eigenvalues of matrix A,
// where Values_Matrix is a diagonal matrix of eigenvalues.
// A=Vectors*Values_Matrix*Vectors'
char jobz = 'V';
char uplo = 'U';
int order_A = N;
int lda = N;
int i;
float* Values = (float*)malloc(sizeof(float)*1*N);
LAPACKE_cheev(LAPACK_ROW_MAJOR, jobz, uplo, order_A, A, lda, Values);
memcpy(Vectors, A, N*N*sizeof(float complex));
for (i=0; i<lda; i+=1)
Values_Matrix[i*(lda+1)]=Values[i];
free(Values);
}
void lin_eq_solver (int N, float complex* A, float complex* B, float complex* Result)
{
int n = N;
int lda = N;
int ldb = N;
int nrhs = N;
char transa = 'N';
int* IPIV = malloc(N*N*sizeof(int));
// Compute LU-factorization
LAPACKE_cgetrf(LAPACK_ROW_MAJOR, n, nrhs, A, lda, IPIV);
// Solve AX=B
LAPACKE_cgetrs(LAPACK_ROW_MAJOR, transa, n, nrhs, A, lda, IPIV, B, ldb);
// cgetrs( "N", N, 4, A, lda, IPIV, B, ldb, INFO )
memcpy(Result, B, N*N*sizeof(float complex));
free(IPIV);
}
void mutl_matrix_matrix_row_based(float complex* M0, float complex* M1, int rows_M0, int col_M0, int rows_M1, int col_M1, float complex* Result ){
enum CBLAS_TRANSPOSE transa = CblasNoTrans;
enum CBLAS_TRANSPOSE transb = CblasNoTrans;
int rows_opA = rows_M0; // number of rows in op(A) and in C
int col_opB = col_M1; //number of columns of op(B) and in C
int col_opA = col_M0; //number of columns in op(A) and rows in op(B)
float complex alpha =1.0;
int lda = col_M0;
float complex beta = 0.0;
int ldc = col_M1;
int ldb = col_M1;
#ifdef DEBUG_PREPROC
int i=0;
printf("rows_M0 %d, col_M0 %d, rows_M1 %d, col_M1 %d\n", rows_M0, col_M0, rows_M1, col_M1);
for(i=0; i<rows_M0*col_M0; ++i)
printf(" rows_opA = %d, col_opB = %d, W_MMSE[%d] = (%f + i%f)\n", rows_opA, col_opB, i , creal(M0[i]), cimag(M0[i]));
for(i=0; i<rows_M1*col_M1; ++i)
printf(" M1[%d] = (%f + i%f)\n", i , creal(M1[i]), cimag(M1[i]));
#endif
cblas_cgemm(CblasRowMajor, transa, transb, rows_opA, col_opB, col_opA, &alpha, M0, lda, M1, ldb, &beta, Result, ldc);
#ifdef DEBUG_PREPROC
for(i=0; i<rows_opA*col_opB; ++i)
printf(" result[%d] = (%f + i%f)\n", i , creal(Result[i]), cimag(Result[i]));
#endif
}
void mutl_matrix_matrix_col_based(float complex* M0, float complex* M1, int rows_M0, int col_M0, int rows_M1, int col_M1, float complex* Result ){
enum CBLAS_TRANSPOSE transa = CblasNoTrans;
enum CBLAS_TRANSPOSE transb = CblasNoTrans;
int rows_opA = rows_M0; // number of rows in op(A) and in C
int col_opB = col_M1; //number of columns of op(B) and in C
int col_opA = col_M0; //number of columns in op(A) and rows in op(B)
float complex alpha =1.0;
int lda = col_M0;
float complex beta = 0.0;
int ldc = rows_M1;
int ldb = rows_M1;
#ifdef DEBUG_PREPROC
int i = 0;
printf("rows_M0 %d, col_M0 %d, rows_M1 %d, col_M1 %d\n", rows_M0, col_M0, rows_M1, col_M1);
for(i=0; i<rows_M0*col_M0; ++i)
printf(" rows_opA = %d, col_opB = %d, W_MMSE[%d] = (%f + i%f)\n", rows_opA, col_opB, i , creal(M0[i]), cimag(M0[i]));
for(i=0; i<rows_M1*col_M1; ++i)
printf(" M1[%d] = (%f + i%f)\n", i , creal(M1[i]), cimag(M1[i]));
#endif
cblas_cgemm(CblasColMajor, transa, transb, rows_opA, col_opB, col_opA, &alpha, M0, lda, M1, ldb, &beta, Result, ldc);
#ifdef DEBUG_PREPROC
for(i=0; i<rows_opA*col_opB; ++i)
printf(" result[%d] = (%f + i%f)\n", i , creal(Result[i]), cimag(Result[i]));
#endif
}
/*FILTERS */
void compute_MMSE(float complex* H, int order_H, float sigma2, float complex* W_MMSE)
{
int N = order_H;
float complex* H_hermH_sigmaI = malloc(N*N*sizeof(float complex));
float complex* H_herm = malloc(N*N*sizeof(float complex));
H_hermH_plus_sigma2I(N, N, H, sigma2, H_hermH_sigmaI);
#ifdef DEBUG_PREPROC
int i =0;
for(i=0;i<N*N;i++)
printf(" H_hermH_sigmaI[%d] = (%f + i%f)\n", i , creal(H_hermH_sigmaI[i]), cimag(H_hermH_sigmaI[i]));
#endif
conjugate_transpose (N, H, H_herm); //equals H_herm
#ifdef DEBUG_PREPROC
for(i=0;i<N*N;i++)
printf(" H_herm[%d] = (%f + i%f)\n", i , creal(H_herm[i]), cimag(H_herm[i]));
#endif
lin_eq_solver(N, H_hermH_sigmaI, H_herm, W_MMSE);
#ifdef DEBUG_PREPROC
for(i=0;i<N*N;i++)
printf(" W_MMSE[%d] = (%f + i%f)\n", i , creal(W_MMSE[i]), cimag(W_MMSE[i]));
#endif
free(H_hermH_sigmaI);
free(H_herm);
}
#if 0
void compute_white_filter(float complex* H_re,
int order_H,
float sigma2,
float complex* W_Wh_0_re,
float complex* W_Wh_1_re){
int aatx, aarx, re;
int i,j;
int M =n_rx;
int N = n_tx;
int sigma2=noise_power;
float complex *H0_re = malloc(n_rx*(n_tx>>2)*sizeof(float complex));
float complex *H1_re = malloc(n_rx*(n_tx>>2)*sizeof(float complex));
float complex *R_corr_col_n_0_re = malloc(n_rx*n_tx*sizeof(float complex));
float complex *R_corr_col_n_1_re = malloc(n_rx*n_tx*sizeof(float complex));
float complex *U_0_re = malloc(n_rx*n_tx*sizeof(float complex));
float complex *U_1_re = malloc(n_rx*n_tx*sizeof(float complex));
float complex *U_0_herm_re = malloc(n_rx*n_tx*sizeof(float complex));
float complex *U_1_herm_re = malloc(n_rx*n_tx*sizeof(float complex));
float complex *D_0_re = malloc(n_rx*n_tx*sizeof(float complex));
float complex *D_1_re = malloc(n_rx*n_tx*sizeof(float complex));
float complex *W_Wh_0_re = malloc(n_rx*n_tx*sizeof(float complex));
float complex *W_Wh_1_re = malloc(n_rx*n_tx*sizeof(float complex));
for (aatx=0; aatx<n_tx/2; aatx++){
for (aarx=0; aarx<n_rx; aarx++) {
H0_re[aatx*n_rx + aarx] = H_re[aatx*n_rx + aarx][re]; // H0 gets [0 1 2 3; 4,5,6,7].' coefficients of H
H1_re[aatx*n_rx + aarx] = H_re[aatx*n_rx + aarx + 8][re]; // H1 gets [8 9 10 11; 12, 13, 14, 15].' coefficients of H
if (re == 0)
printf("ant %d, H_re = (%f + i%f) \n", aatx*n_rx + aarx, creal(H[aatx*n_rx + aarx][re]), cimag(H[aatx*n_rx + aarx][re]));
}
}
//HH_herm_plus_sigma2I(n_rx, (n_tx>>2), H1_re, sigma2, R_corr_col_n_0_re);
HH_herm_plus_sigma2I(n_rx, (n_tx>>2), H0_re, sigma2, R_corr_col_n_1_re);
eigen_vectors_values(n_rx, R_corr_col_n_0_re, U_0_re, D_0_re);
eigen_vectors_values(n_rx, R_corr_col_n_1_re, U_1_re, D_1_re);
transpose (n_rx, U_0_re, U_0_herm_re);
transpose (n_rx, U_1_re, U_1_herm_re);
sigma = (float)(sqrt((double)(sigma2)));
/*The inverse of a diagonal matrix is obtained by replacing each element in the diagonal with its reciprocal.
A square root of a diagonal matrix is given by the diagonal matrix, whose diagonal entries are just the square
roots of the original matrix.*/
D_0_re_inv_sqrt[0] = sqrt_float(1/D_0_re_inv[0]);
D_0_re_inv_sqrt[5] = sqrt_float(1/D_0_re_inv[5]);
D_0_re_inv_sqrt[10] = sqrt_float(1/D_0_re_inv[10]);
D_0_re_inv_sqrt[15] = sqrt_float(1/D_0_re_inv[15]);
D_1_re_inv[0] = sqrt_float(1/D_1_re_inv[0]);
D_1_re_inv[5] = sqrt_float(1/D_1_re_inv[5]);
D_1_re_inv[10] = sqrt_float(1/D_1_re_inv[10]);
D_1_re_inv[15] = sqrt_float(1/D_1_re_inv[15]);
now only to multiply
free(H0);
free(H1);
free(R_corr_col_n_0);
free(R_corr_col_n_1);
}
#endif
float sqrt_float(float x, float sqrt_x)
{
sqrt_x = (float)(sqrt((double)(x)));
return sqrt_x;
}
\ No newline at end of file
#include<stdio.h>
#include<math.h>
#include<complex.h>
#include <stdlib.h>
#include "PHY/defs_UE.h"
/* FUNCTIONS FOR LINEAR PREPROCESSING: MMSE, WHITENNING, etc*/
void transpose(int N, float complex *A, float complex *Result);
void conjugate_transpose(int N, float complex *A, float complex *Result);
void H_hermH_plus_sigma2I(int N, int M, float complex *A, float sigma2, float complex *Result);
void HH_herm_plus_sigma2I(int M, int N, float complex *A, float sigma2, float complex *Result);
void eigen_vectors_values(int N, float complex *A, float complex *Vectors, float *Values_Matrix);
void lin_eq_solver(int N, float complex *A, float complex* B);
//float complex* lin_eq_solver (int N, float complex* A, float complex* B);
/* mutl_matrix_matrix_row_based performs multiplications when matrix is row-oriented H[0], H[1]; H[2], H[3]*/
void mutl_matrix_matrix_row_based(float complex* M0, float complex* M1, int rows_M0, int col_M0, int rows_M1, int col_M1, float complex* Result );
/* mutl_matrix_matrix_col_based performs multiplications matrix is column-oriented H[0], H[2]; H[1], H[3]*/
void mutl_matrix_matrix_col_based(float complex* M0, float complex* M1, int rows_M0, int col_M0, int rows_M1, int col_M1, float complex* Result );
void compute_MMSE(float complex* H, int order_H, float sigma2, float complex* W_MMSE);
void compute_white_filter(float complex* H, int order_H, float sigma2, float complex* U_1, float complex* D_1);
void mmse_processing_oai(LTE_UE_PDSCH *pdsch_vars,
LTE_DL_FRAME_PARMS *frame_parms,
PHY_MEASUREMENTS *measurements,
unsigned char first_symbol_flag,
MIMO_mode_t mimo_mode,
unsigned short mmse_flag,
int noise_power,
unsigned char symbol,
unsigned short nb_rb);
void precode_channel_est(int32_t **dl_ch_estimates_ext,
LTE_DL_FRAME_PARMS *frame_parms,
LTE_UE_PDSCH *pdsch_vars,
unsigned char symbol,
unsigned short nb_rb,
MIMO_mode_t mimo_mode);
void rxdataF_to_float(int32_t **rxdataF_ext,
float complex **rxdataF_f,
int n_rx,
int length,
int start_point);
void chan_est_to_float(int32_t **dl_ch_estimates_ext,
float complex **dl_ch_estimates_ext_f,
int n_tx,
int n_rx,
int length,
int start_point);
void float_to_chan_est(int32_t **dl_ch_estimates_ext,
float complex **dl_ch_estimates_ext_f,
int n_tx,
int n_rx,
int length,
int start_point);
void float_to_rxdataF(int32_t **rxdataF_ext,
float complex **rxdataF_f,
int n_tx,
int n_rx,
int length,
int start_point);
void mult_mmse_rxdataF(float complex** Wmmse,
float complex** rxdataF_ext_f,
int n_tx,
int n_rx,
int length,
int start_point);
void mult_mmse_chan_est(float complex** Wmmse,
float complex** dl_ch_estimates_ext_f,
int n_tx,
int n_rx,
int length,
int start_point);
void mmse_processing_core(int32_t **rxdataF_ext,
int32_t **dl_ch_estimates_ext,
int sigma2,
int n_tx,
int n_rx,
int length,
int start_point);
void mmse_processing_core_flp(float complex** rxdataF_ext_flcpx,
float complex **H,
int32_t **rxdataF_ext,
int32_t **dl_ch_estimates_ext,
float sigma2,
int n_tx,
int n_rx,
int length,
int start_point);
void whitening_processing_core_flp(float complex** rxdataF_ext_flcpx,
float complex **H,
int32_t **rxdataF_ext,
int32_t **dl_ch_estimates_ext,
float sigma2,
int n_tx,
int n_rx,
int length,
int start_point);
float sqrt_float(float x, float sqrt_x);
......@@ -925,6 +925,7 @@ void dlsch_channel_compensation_TM34(LTE_DL_FRAME_PARMS *frame_parms,
int round,
MIMO_mode_t mimo_mode,
unsigned short nb_rb,
unsigned short mmse_flag,
unsigned char output_shift0,
unsigned char output_shift1);
......@@ -957,6 +958,7 @@ void dlsch_channel_level_TM34(int **dl_ch_estimates_ext,
int *avg_1,
uint8_t symbol,
unsigned short nb_rb,
unsigned int mmse_flag,
MIMO_mode_t mimo_mode);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment