/*******************************************************************************
OpenAirInterface
Copyright(c) 1999 - 2014 Eurecom
OpenAirInterface is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenAirInterface is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OpenAirInterface.The full GNU General Public License is
included in this distribution in the file called "COPYING". If not,
see .
Contact Information
OpenAirInterface Admin: openair_admin@eurecom.fr
OpenAirInterface Tech : openair_tech@eurecom.fr
OpenAirInterface Dev : openair4g-devel@lists.eurecom.fr
Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
*******************************************************************************/
/*! \file lte-ue.c
* \brief threads and support functions for real-time LTE UE target
* \author R. Knopp, F. Kaltenberger, Navid Nikaein
* \date 2015
* \version 0.1
* \company Eurecom
* \email: knopp@eurecom.fr,florian.kaltenberger@eurecom.fr, navid.nikaein@eurecom.fr
* \note
* \warning
*/
#define _GNU_SOURCE
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "rt_wrapper.h"
#include "assertions.h"
#include "PHY/types.h"
#include "PHY/defs.h"
#ifdef OPENAIR2
#include "LAYER2/MAC/defs.h"
#include "RRC/LITE/extern.h"
#endif
#include "PHY_INTERFACE/extern.h"
#undef MALLOC //there are two conflicting definitions, so we better make sure we don't use it at all
//#undef FRAME_LENGTH_COMPLEX_SAMPLES //there are two conflicting definitions, so we better make sure we don't use it at all
#ifdef EXMIMO
#include "openair0_lib.h"
#else
#include "../../ARCH/COMMON/common_lib.h"
#endif
#include "PHY/extern.h"
#include "MAC_INTERFACE/extern.h"
//#include "SCHED/defs.h"
#include "SCHED/extern.h"
#ifdef OPENAIR2
#include "LAYER2/MAC/extern.h"
#include "LAYER2/MAC/proto.h"
#endif
#include "UTIL/LOG/log_extern.h"
#include "UTIL/OTG/otg_tx.h"
#include "UTIL/OTG/otg_externs.h"
#include "UTIL/MATH/oml.h"
#include "UTIL/LOG/vcd_signal_dumper.h"
#include "UTIL/OPT/opt.h"
#define FRAME_PERIOD 100000000ULL
#define DAQ_PERIOD 66667ULL
typedef enum {
pss=0,
pbch=1,
si=2
} sync_mode_t;
int init_dlsch_threads(void);
void cleanup_dlsch_threads(void);
int32_t init_rx_pdsch_thread(void);
void cleanup_rx_pdsch_thread(void);
extern pthread_cond_t sync_cond;
extern pthread_mutex_t sync_mutex;
extern int sync_var;
extern openair0_config_t openair0_cfg[MAX_CARDS];
extern uint32_t downlink_frequency[MAX_NUM_CCs][4];
extern int32_t uplink_frequency_offset[MAX_NUM_CCs][4];
extern openair0_rf_map rf_map[MAX_NUM_CCs];
extern openair0_device openair0;
extern int oai_exit;
extern int32_t **rxdata;
extern int32_t **txdata;
//extern unsigned int tx_forward_nsamps;
//extern int tx_delay;
extern int rx_input_level_dBm;
extern uint8_t exit_missed_slots;
extern uint64_t num_missed_slots; // counter for the number of missed slots
extern void exit_fun(const char* s);
#ifdef EXMIMO
extern unsigned int rxg_max[4];
extern unsigned int rxg_med[4];
extern unsigned int rxg_byp[4];
extern unsigned int nf_max[4];
extern unsigned int nf_med[4];
extern unsigned int nf_byp[4];
extern rx_gain_t rx_gain_mode[MAX_NUM_CCs][4];
extern double tx_gain[MAX_NUM_CCs][4];
extern double rx_gain[MAX_NUM_CCs][4];
#endif
#define KHz (1000UL)
#define MHz (1000 * KHz)
typedef struct eutra_band_s {
int16_t band;
uint32_t ul_min;
uint32_t ul_max;
uint32_t dl_min;
uint32_t dl_max;
lte_frame_type_t frame_type;
} eutra_band_t;
typedef struct band_info_s {
int nbands;
eutra_band_t band_info[100];
} band_info_t;
band_info_t bands_to_scan;
static const eutra_band_t eutra_bands[] = {
{ 1, 1920 * MHz, 1980 * MHz, 2110 * MHz, 2170 * MHz, FDD},
{ 2, 1850 * MHz, 1910 * MHz, 1930 * MHz, 1990 * MHz, FDD},
{ 3, 1710 * MHz, 1785 * MHz, 1805 * MHz, 1880 * MHz, FDD},
{ 4, 1710 * MHz, 1755 * MHz, 2110 * MHz, 2155 * MHz, FDD},
{ 5, 824 * MHz, 849 * MHz, 869 * MHz, 894 * MHz, FDD},
{ 6, 830 * MHz, 840 * MHz, 875 * MHz, 885 * MHz, FDD},
{ 7, 2500 * MHz, 2570 * MHz, 2620 * MHz, 2690 * MHz, FDD},
{ 8, 880 * MHz, 915 * MHz, 925 * MHz, 960 * MHz, FDD},
{ 9, 1749900 * KHz, 1784900 * KHz, 1844900 * KHz, 1879900 * KHz, FDD},
{10, 1710 * MHz, 1770 * MHz, 2110 * MHz, 2170 * MHz, FDD},
{11, 1427900 * KHz, 1452900 * KHz, 1475900 * KHz, 1500900 * KHz, FDD},
{12, 698 * MHz, 716 * MHz, 728 * MHz, 746 * MHz, FDD},
{13, 777 * MHz, 787 * MHz, 746 * MHz, 756 * MHz, FDD},
{14, 788 * MHz, 798 * MHz, 758 * MHz, 768 * MHz, FDD},
{17, 704 * MHz, 716 * MHz, 734 * MHz, 746 * MHz, FDD},
{20, 832 * MHz, 862 * MHz, 791 * MHz, 821 * MHz, FDD},
{22, 3510 * MHz, 3590 * MHz, 3410 * MHz, 3490 * MHz, FDD},
{33, 1900 * MHz, 1920 * MHz, 1900 * MHz, 1920 * MHz, TDD},
{34, 2010 * MHz, 2025 * MHz, 2010 * MHz, 2025 * MHz, TDD},
{35, 1850 * MHz, 1910 * MHz, 1850 * MHz, 1910 * MHz, TDD},
{36, 1930 * MHz, 1990 * MHz, 1930 * MHz, 1990 * MHz, TDD},
{37, 1910 * MHz, 1930 * MHz, 1910 * MHz, 1930 * MHz, TDD},
{38, 2570 * MHz, 2620 * MHz, 2570 * MHz, 2630 * MHz, TDD},
{39, 1880 * MHz, 1920 * MHz, 1880 * MHz, 1920 * MHz, TDD},
{40, 2300 * MHz, 2400 * MHz, 2300 * MHz, 2400 * MHz, TDD},
{41, 2496 * MHz, 2690 * MHz, 2496 * MHz, 2690 * MHz, TDD},
{42, 3400 * MHz, 3600 * MHz, 3400 * MHz, 3600 * MHz, TDD},
{43, 3600 * MHz, 3800 * MHz, 3600 * MHz, 3800 * MHz, TDD},
{44, 703 * MHz, 803 * MHz, 703 * MHz, 803 * MHz, TDD},
};
/*!
* \brief This is the UE synchronize thread.
* It performs band scanning and synchonization.
* \param arg is a pointer to a \ref PHY_VARS_UE structure.
* \returns a pointer to an int. The storage is not on the heap and must not be freed.
*/
static void *UE_thread_synch(void *arg)
{
static int UE_thread_synch_retval;
int i, hw_slot_offset;
PHY_VARS_UE *UE = (PHY_VARS_UE*) arg;
int current_band = 0;
int current_offset = 0;
sync_mode_t sync_mode = pbch;
int card;
int ind;
int found;
int freq_offset=0;
UE->is_synchronized = 0;
printf("UE_thread_sync in with PHY_vars_UE %p\n",arg);
printf("waiting for sync (UE_thread_synch) \n");
pthread_mutex_lock(&sync_mutex);
printf("Locked sync_mutex, waiting (UE_sync_thread)\n");
while (sync_var<0)
pthread_cond_wait(&sync_cond, &sync_mutex);
pthread_mutex_unlock(&sync_mutex);
printf("unlocked sync_mutex (UE_sync_thread)\n");
printf("starting UE synch thread (IC %d)\n",UE->instance_cnt_synch);
ind = 0;
found = 0;
if (UE->UE_scan == 0) {
do {
current_band = eutra_bands[ind].band;
printf( "Scanning band %d, dl_min %"PRIu32", ul_min %"PRIu32"\n", current_band, eutra_bands[ind].dl_min,eutra_bands[ind].ul_min);
if ((eutra_bands[ind].dl_min <= downlink_frequency[0][0]) && (eutra_bands[ind].dl_max >= downlink_frequency[0][0])) {
for (card=0; cardUE_scan == 1) {
current_band=0;
for (card=0; cardrx_total_gain_dB;//-USRP_GAIN_OFFSET;
switch(UE->lte_frame_parms.N_RB_DL) {
case 6:
openair0_cfg[card].rx_gain[i] -= 12;
break;
case 25:
openair0_cfg[card].rx_gain[i] -= 6;
break;
case 50:
openair0_cfg[card].rx_gain[i] -= 3;
break;
case 100:
openair0_cfg[card].rx_gain[i] -= 0;
break;
default:
printf( "Unknown number of RBs %d\n", UE->lte_frame_parms.N_RB_DL );
break;
}
printf( "UE synch: setting RX gain (%d,%d) to %f\n", card, i, openair0_cfg[card].rx_gain[i] );
#endif
}
}
}
while (oai_exit==0) {
if (pthread_mutex_lock(&UE->mutex_synch) != 0) {
LOG_E( PHY, "[SCHED][UE] error locking mutex for UE initial synch thread\n" );
exit_fun("noting to add");
return &UE_thread_synch_retval;
}
while (UE->instance_cnt_synch < 0) {
// the thread waits here most of the time
pthread_cond_wait( &UE->cond_synch, &UE->mutex_synch );
}
if (pthread_mutex_unlock(&UE->mutex_synch) != 0) {
LOG_E( PHY, "[SCHED][eNB] error unlocking mutex for UE Initial Synch thread\n" );
exit_fun("nothing to add");
return &UE_thread_synch_retval;
}
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_SYNCH, 1 );
switch (sync_mode) {
case pss:
LOG_I(PHY,"[SCHED][UE] Scanning band %d (%d), freq %u\n",bands_to_scan.band_info[current_band].band, current_band,bands_to_scan.band_info[current_band].dl_min+current_offset);
lte_sync_timefreq(UE,current_band,bands_to_scan.band_info[current_band].dl_min+current_offset);
current_offset += 20000000; // increase by 20 MHz
if (current_offset > bands_to_scan.band_info[current_band].dl_max-bands_to_scan.band_info[current_band].dl_min) {
current_band++;
current_offset=0;
}
if (current_band==bands_to_scan.nbands) {
current_band=0;
oai_exit=1;
}
for (card=0; cardrx_total_gain_dB;//-USRP_GAIN_OFFSET; // 65 calibrated for USRP B210 @ 2.6 GHz
switch(UE->lte_frame_parms.N_RB_DL) {
case 6:
openair0_cfg[card].rx_gain[i] -= 12;
break;
case 25:
openair0_cfg[card].rx_gain[i] -= 6;
break;
case 50:
openair0_cfg[card].rx_gain[i] -= 3;
break;
case 100:
openair0_cfg[card].rx_gain[i] -= 0;
break;
default:
printf("Unknown number of RBs %d\n",UE->lte_frame_parms.N_RB_DL);
break;
}
printf("UE synch: setting RX gain (%d,%d) to %f\n",card,i,openair0_cfg[card].rx_gain[i]);
#endif
}
}
if (UE->UE_scan_carrier) {
for (i=0;imode ) == 0) {
hw_slot_offset = (UE->rx_offset<<1) / UE->lte_frame_parms.samples_per_tti;
LOG_I( HW, "Got synch: hw_slot_offset %d\n", hw_slot_offset );
if (UE->UE_scan_carrier == 1) {
UE->UE_scan_carrier = 0;
// rerun with new cell parameters and frequency-offset
for (i=0;irx_total_gain_dB;//-USRP_GAIN_OFFSET;
openair0_cfg[0].rx_freq[i] -= UE->lte_ue_common_vars.freq_offset;
openair0_cfg[0].tx_freq[i] = openair0_cfg[0].rx_freq[i]+uplink_frequency_offset[0][i];
downlink_frequency[0][i] = openair0_cfg[0].rx_freq[i];
freq_offset=0;
}
// reconfigure for potentially different bandwidth
switch(UE->lte_frame_parms.N_RB_DL) {
case 6:
openair0_cfg[0].sample_rate =1.92e6;
openair0_cfg[0].rx_bw =.96e6;
openair0_cfg[0].tx_bw =.96e6;
openair0_cfg[0].rx_gain[0] -= 12;
break;
case 25:
openair0_cfg[0].sample_rate =7.68e6;
openair0_cfg[0].rx_bw =2.5e6;
openair0_cfg[0].tx_bw =2.5e6;
openair0_cfg[0].rx_gain[0] -= 6;
break;
case 50:
openair0_cfg[0].sample_rate =15.36e6;
openair0_cfg[0].rx_bw =5.0e6;
openair0_cfg[0].tx_bw =5.0e6;
openair0_cfg[0].rx_gain[0] -= 3;
break;
case 100:
openair0_cfg[0].sample_rate=30.72e6;
openair0_cfg[0].rx_bw=10.0e6;
openair0_cfg[0].tx_bw=10.0e6;
openair0_cfg[0].rx_gain[0] -= 0;
break;
}
#ifndef EXMIMO
openair0.trx_set_freq_func(&openair0,&openair0_cfg[0],0);
openair0.trx_set_gains_func(&openair0,&openair0_cfg[0]);
openair0.trx_stop_func(0);
#else
openair0_set_frequencies(&openair0,&openair0_cfg[0],0);
openair0_set_gains(&openair0,&openair0_cfg[0]);
openair0_stop(0);
#endif
sleep(1);
init_frame_parms(&UE->lte_frame_parms,1);
}
else {
UE->is_synchronized = 1;
if( UE->mode == rx_dump_frame ){
FILE *fd;
if ((UE->frame_rx&1) == 0) { // this guarantees SIB1 is present
if (fd = fopen("rxsig_frame0.dat","w")) {
fwrite((void*)&UE->lte_ue_common_vars.rxdata[0][0],
sizeof(int32_t),
10*UE->lte_frame_parms.samples_per_tti,
fd);
LOG_I(PHY,"Dummping Frame ... bye bye \n");
fclose(fd);
exit(0);
}
else {
LOG_E(PHY,"Cannot open file for writing\n");
exit(0);
}
}
else {
UE->is_synchronized = 0;
}
}
#ifndef EXMIMO
UE->slot_rx = 0;
UE->slot_tx = 4;
#else
UE->slot_rx = 18;
UE->slot_tx = 2;
#endif
}
} else {
// initial sync failed
// calculate new offset and try again
if (UE->UE_scan_carrier == 1) {
if (freq_offset >= 0) {
freq_offset += 100;
freq_offset *= -1;
} else {
freq_offset *= -1;
}
if (abs(freq_offset) > 7500) {
LOG_I( PHY, "[initial_sync] No cell synchronization found, abandoning\n" );
mac_xface->macphy_exit("No cell synchronization found, abandoning");
return &UE_thread_synch_retval; // not reached
}
}
else {
}
LOG_I( PHY, "[initial_sync] trying carrier off %d Hz, rxgain %d (DL %u, UL %u)\n",
freq_offset,
UE->rx_total_gain_dB,
downlink_frequency[0][0]+freq_offset,
downlink_frequency[0][0]+uplink_frequency_offset[0][0]+freq_offset );
for (card=0; cardrx_total_gain_dB;//-USRP_GAIN_OFFSET;
#ifndef EXMIMO
openair0.trx_set_freq_func(&openair0,&openair0_cfg[0],0);
#else
openair0_set_frequencies(&openair0,&openair0_cfg[0],0);
#endif
switch(UE->lte_frame_parms.N_RB_DL) {
case 6:
openair0_cfg[card].rx_gain[i] -= 12;
break;
case 25:
openair0_cfg[card].rx_gain[i] -= 6;
break;
case 50:
openair0_cfg[card].rx_gain[i] -= 0;//3;
break;
case 100:
openair0_cfg[card].rx_gain[i] -= 0;
break;
default:
printf("Unknown number of RBs %d\n",UE->lte_frame_parms.N_RB_DL);
break;
}
#endif
}
}
if (UE->UE_scan_carrier==1) {
for (i=0;imutex_synch) != 0) {
LOG_E( PHY, "[SCHED][UE] error locking mutex for UE synch\n" );
exit_fun("noting to add");
return &UE_thread_synch_retval;
}
// indicate readiness
UE->instance_cnt_synch--;
if (pthread_mutex_unlock(&UE->mutex_synch) != 0) {
LOG_E( PHY, "[SCHED][UE] error unlocking mutex for UE synch\n" );
exit_fun("noting to add");
return &UE_thread_synch_retval;
}
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_SYNCH, 0 );
} // while !oai_exit
return &UE_thread_synch_retval;
}
/*!
* \brief This is the UE transmit thread.
* This thread performs the phy_procedures_UE_TX() on every transmit slot.
* \param arg is a pointer to a \ref PHY_VARS_UE structure.
* \returns a pointer to an int. The storage is not on the heap and must not be freed.
*/
static void *UE_thread_tx(void *arg)
{
static int UE_thread_tx_retval;
int ret;
PHY_VARS_UE *UE = (PHY_VARS_UE*)arg;
UE->instance_cnt_tx=-1;
#ifdef RTAI
RT_TASK *task = rt_task_init_schmod(nam2num("UE TX Thread"), 0, 0, 0, SCHED_FIFO, 0xF);
if (task==NULL) {
LOG_E(PHY,"[SCHED][UE] Problem starting UE TX thread!!!!\n");
return 0;
}
LOG_D(HW,"Started UE TX thread (id %p)\n",task);
#else
#ifdef LOWLATENCY
struct sched_attr attr;
unsigned int flags = 0;
attr.size = sizeof(attr);
attr.sched_flags = 0;
attr.sched_nice = 0;
attr.sched_priority = 0;
/* This creates a 1ms reservation every 10ms period*/
attr.sched_policy = SCHED_DEADLINE;
attr.sched_runtime = 900000; // each tx thread requires .5ms to finish its job
attr.sched_deadline = 1000000; // each tx thread will finish within 1ms
attr.sched_period = 1000000; // each tx thread has a period of 1ms from the starting point
if (sched_setattr(0, &attr, flags) < 0 ) {
perror("[SCHED] UE_thread_tx thread: sched_setattr failed\n");
return &UE_thread_tx_retval;
}
#else
struct sched_param sp;
sp.sched_priority = sched_get_priority_max(SCHED_FIFO)-1;
pthread_setschedparam(pthread_self(),SCHED_FIFO,&sp);
#endif
#endif
printf("waiting for sync (UE_thread_tx)\n");
pthread_mutex_lock(&sync_mutex);
printf("Locked sync_mutex, waiting (UE_thread_tx)\n");
while (sync_var<0)
pthread_cond_wait(&sync_cond, &sync_mutex);
pthread_mutex_unlock(&sync_mutex);
printf("unlocked sync_mutex, waiting (UE_thread_tx)\n");
printf("Starting UE TX thread\n");
// Lock memory from swapping. This is a process wide call (not constraint to this thread).
mlockall(MCL_CURRENT | MCL_FUTURE);
while (!oai_exit) {
if (pthread_mutex_lock(&UE->mutex_tx) != 0) {
LOG_E( PHY, "[SCHED][UE] error locking mutex for UE TX\n" );
exit_fun("nothing to add");
return &UE_thread_tx_retval;
}
while (UE->instance_cnt_tx < 0) {
// most of the time, the thread is waiting here
pthread_cond_wait( &UE->cond_tx, &UE->mutex_tx );
}
if (pthread_mutex_unlock(&UE->mutex_tx) != 0) {
LOG_E( PHY, "[SCHED][UE] error unlocking mutex for UE TX\n" );
exit_fun("nothing to add");
return &UE_thread_tx_retval;
}
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_THREAD_TX, 1 );
if ((subframe_select( &UE->lte_frame_parms, UE->slot_tx>>1 ) == SF_UL) ||
(UE->lte_frame_parms.frame_type == FDD)) {
phy_procedures_UE_TX( UE, 0, 0, UE->mode, no_relay );
}
if ((subframe_select( &UE->lte_frame_parms, UE->slot_tx>>1 ) == SF_S) &&
((UE->slot_tx&1) == 1)) {
phy_procedures_UE_S_TX( UE, 0, 0, no_relay );
}
UE->slot_tx += 2;
if (UE->slot_tx >= 20) {
UE->slot_tx -= 20;
UE->frame_tx++;
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_FRAME_NUMBER_TX_UE, UE->frame_tx );
}
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_SUBFRAME_NUMBER_TX_UE, UE->slot_tx>>1 );
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_THREAD_TX, 0 );
if (pthread_mutex_lock(&UE->mutex_tx) != 0) {
LOG_E( PHY, "[SCHED][UE] error locking mutex for UE TX thread\n" );
exit_fun("nothing to add");
return &UE_thread_tx_retval;
}
UE->instance_cnt_tx--;
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME(VCD_SIGNAL_DUMPER_VARIABLES_UE_INST_CNT_TX, UE->instance_cnt_tx);
if (pthread_mutex_unlock(&UE->mutex_tx) != 0) {
LOG_E( PHY, "[SCHED][UE] error unlocking mutex for UE TX thread\n" );
exit_fun("nothing to add");
return &UE_thread_tx_retval;
}
}
return &UE_thread_tx_retval;
}
/*!
* \brief This is the UE receive thread.
* This thread performs the phy_procedures_UE_RX() on every received slot.
* \param arg is a pointer to a \ref PHY_VARS_UE structure.
* \returns a pointer to an int. The storage is not on the heap and must not be freed.
*/
/*
#ifdef OAI_USRP
void rescale(int16_t *input,int length)
{
#if defined(__x86_64__) || defined(__i386__)
__m128i *input128 = (__m128i *)input;
#elif defined(__arm__)
int16x8_t *input128 = (int16x8_t *)input;
#endif
int i;
for (i=0; i>2; i++) {
#if defined(__x86_64__) || defined(__i386__)
input128[i] = _mm_srai_epi16(input128[i],4);
#elif defined(__arm__)
input128[i] = vshrq_n_s16(input128[i],4);
#endif
}
}
#endif
*/
static void *UE_thread_rx(void *arg)
{
static int UE_thread_rx_retval;
PHY_VARS_UE *UE = (PHY_VARS_UE*)arg;
int i;
int ret;
UE->instance_cnt_rx=-1;
#ifdef RTAI
RT_TASK *task = rt_task_init_schmod(nam2num("UE RX Thread"), 0, 0, 0, SCHED_FIFO, 0xF);
if (task==NULL) {
LOG_E(PHY,"[SCHED][UE] Problem starting UE RX thread!!!!\n");
return &UE_thread_rx_retval;
}
LOG_D(HW,"Started UE RX thread (id %p)\n",task);
#else
#ifdef LOWLATENCY
struct sched_attr attr;
unsigned int flags = 0;
attr.size = sizeof(attr);
attr.sched_flags = 0;
attr.sched_nice = 0;
attr.sched_priority = 0;
// This creates a .5ms reservation every 1ms period
attr.sched_policy = SCHED_DEADLINE;
attr.sched_runtime = 900000; // each rx thread requires 1ms to finish its job
attr.sched_deadline = 1000000; // each rx thread will finish within 1ms
attr.sched_period = 1000000; // each rx thread has a period of 1ms from the starting point
if (sched_setattr(0, &attr, flags) < 0 ) {
perror("[SCHED] UE_thread_rx : sched_setattr failed\n");
return &UE_thread_rx_retval;
}
#else
struct sched_param sp;
sp.sched_priority = sched_get_priority_max(SCHED_FIFO)-1;
pthread_setschedparam(pthread_self(),SCHED_FIFO,&sp);
#endif
#endif
// Lock memory from swapping. This is a process wide call (not constraint to this thread).
mlockall(MCL_CURRENT | MCL_FUTURE);
printf("waiting for sync (UE_thread_rx)\n");
pthread_mutex_lock(&sync_mutex);
printf("Locked sync_mutex, waiting (UE_thread_rx)\n");
while (sync_var<0)
pthread_cond_wait(&sync_cond, &sync_mutex);
pthread_mutex_unlock(&sync_mutex);
printf("unlocked sync_mutex, waiting (UE_thread_rx)\n");
printf("Starting UE RX thread\n");
while (!oai_exit) {
if (pthread_mutex_lock(&UE->mutex_rx) != 0) {
LOG_E( PHY, "[SCHED][UE] error locking mutex for UE RX\n" );
exit_fun("nothing to add");
return &UE_thread_rx_retval;
}
while (UE->instance_cnt_rx < 0) {
// most of the time, the thread is waiting here
pthread_cond_wait( &UE->cond_rx, &UE->mutex_rx );
}
if (pthread_mutex_unlock(&UE->mutex_rx) != 0) {
LOG_E( PHY, "[SCHED][UE] error unlocking mutex for UE RX\n" );
exit_fun("nothing to add");
return &UE_thread_rx_retval;
}
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_THREAD_RX, 1 );
for (i=0; i<2; i++) {
if ((subframe_select( &UE->lte_frame_parms, UE->slot_rx>>1 ) == SF_DL) ||
(UE->lte_frame_parms.frame_type == FDD)) {
/*
#ifdef OAI_USRP
// this does the adjustments of RX signal amplitude to bring into least 12 significant bits
int slot_length = UE->lte_frame_parms.samples_per_tti>>1;
int rx_offset = (UE->slot_rx)*slot_length + UE->rx_offset;
int frame_length = UE->lte_frame_parms.samples_per_tti*10;
int aa;
if (rx_offset > frame_length)
rx_offset-=frame_length;
if (rx_offset >= 0) {
if (rx_offset + slot_length < frame_length)
for (aa=0;aalte_frame_parms.nb_antennas_rx;aa++)
rescale((int16_t*)&UE->lte_ue_common_vars.rxdata[aa][rx_offset&(~0x3)],
slot_length);
else {
int diff = rx_offset + slot_length - frame_length;
for (aa=0;aalte_frame_parms.nb_antennas_rx;aa++){
rescale((int16_t*)&UE->lte_ue_common_vars.rxdata[aa][rx_offset&(~0x3)],
slot_length-diff);
rescale((int16_t*)&UE->lte_ue_common_vars.rxdata[aa][0],
diff);
}
}
}
else {
for (aa=0;aalte_frame_parms.nb_antennas_rx;aa++){
rescale((int16_t*)&UE->lte_ue_common_vars.rxdata[aa][(frame_length+rx_offset)&(~0x3)],
-rx_offset);
rescale((int16_t*)&UE->lte_ue_common_vars.rxdata[aa][0],
slot_length+rx_offset);
}
}
#endif
*/
phy_procedures_UE_RX( UE, 0, 0, UE->mode, no_relay, NULL );
}
if ((subframe_select( &UE->lte_frame_parms, UE->slot_rx>>1 ) == SF_S) &&
((UE->slot_rx&1) == 0)) {
/*
#ifdef OAI_USRP
// this does the adjustments of RX signal amplitude to bring into least 12 significant bits
int slot_length = UE->lte_frame_parms.samples_per_tti>>1;
int rx_offset = (UE->slot_rx)*slot_length + UE->rx_offset;
int frame_length = UE->lte_frame_parms.samples_per_tti*10;
if (rx_offset > frame_length)
rx_offset-=frame_length;
int aa;
if (rx_offset >= 0) {
if (rx_offset + slot_length < frame_length)
for (aa=0;aalte_frame_parms.nb_antennas_rx;aa++)
rescale((int16_t*)&UE->lte_ue_common_vars.rxdata[aa][rx_offset&(~0x3)],
slot_length);
else {
int diff = rx_offset + slot_length - frame_length;
for (aa=0;aalte_frame_parms.nb_antennas_rx;aa++){
rescale((int16_t*)&UE->lte_ue_common_vars.rxdata[aa][rx_offset&(~0x3)],
slot_length-diff);
rescale((int16_t*)&UE->lte_ue_common_vars.rxdata[aa][0],
diff);
}
}
}
else {
for (aa=0;aalte_frame_parms.nb_antennas_rx;aa++){
rescale((int16_t*)&UE->lte_ue_common_vars.rxdata[aa][(frame_length+rx_offset)&(~0x3)],
-rx_offset);
rescale((int16_t*)&UE->lte_ue_common_vars.rxdata[aa][0],
slot_length+rx_offset);
}
}
#endif
*/
phy_procedures_UE_RX( UE, 0, 0, UE->mode, no_relay, NULL );
}
#ifdef OPENAIR2
if (i==0) {
ret = mac_xface->ue_scheduler(UE->Mod_id,
UE->frame_tx,
UE->slot_rx>>1,
subframe_select(&UE->lte_frame_parms,UE->slot_tx>>1),
0,
0/*FIXME CC_id*/);
if (ret == CONNECTION_LOST) {
LOG_E( PHY, "[UE %"PRIu8"] Frame %"PRIu32", subframe %u RRC Connection lost, returning to PRACH\n",
UE->Mod_id, UE->frame_rx, UE->slot_tx>>1 );
UE->UE_mode[0] = PRACH;
} else if (ret == PHY_RESYNCH) {
LOG_E( PHY, "[UE %"PRIu8"] Frame %"PRIu32", subframe %u RRC Connection lost, trying to resynch\n",
UE->Mod_id, UE->frame_rx, UE->slot_tx>>1 );
UE->UE_mode[0] = RESYNCH;
} else if (ret == PHY_HO_PRACH) {
LOG_I( PHY, "[UE %"PRIu8"] Frame %"PRIu32", subframe %u, return to PRACH and perform a contention-free access\n",
UE->Mod_id, UE->frame_rx, UE->slot_tx>>1 );
UE->UE_mode[0] = PRACH;
}
}
#endif
UE->slot_rx++;
if (UE->slot_rx == 20) {
UE->slot_rx = 0;
UE->frame_rx++;
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_FRAME_NUMBER_RX_UE, UE->frame_rx );
}
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_SUBFRAME_NUMBER_RX_UE, UE->slot_rx>>1 );
}
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_THREAD_RX, 0 );
if (pthread_mutex_lock(&UE->mutex_rx) != 0) {
LOG_E( PHY, "[SCHED][UE] error locking mutex for UE RX\n" );
exit_fun("noting to add");
return &UE_thread_rx_retval;
}
UE->instance_cnt_rx--;
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME(VCD_SIGNAL_DUMPER_VARIABLES_UE_INST_CNT_RX, UE->instance_cnt_rx);
if (pthread_mutex_unlock(&UE->mutex_rx) != 0) {
LOG_E( PHY, "[SCHED][UE] error unlocking mutex for UE RX\n" );
exit_fun("noting to add");
return &UE_thread_rx_retval;
}
}
// thread finished
return &UE_thread_rx_retval;
}
#ifndef EXMIMO
#define RX_OFF_MAX 10
#define RX_OFF_MIN 5
#define RX_OFF_MID ((RX_OFF_MAX+RX_OFF_MIN)/2)
/*!
* \brief This is the main UE thread.
* This thread controls the other three UE threads:
* - UE_thread_rx
* - UE_thread_tx
* - UE_thread_synch
* \param arg unused
* \returns a pointer to an int. The storage is not on the heap and must not be freed.
*/
void *UE_thread(void *arg)
{
UNUSED(arg)
static int UE_thread_retval;
PHY_VARS_UE *UE = PHY_vars_UE_g[0][0];
int spp = openair0_cfg[0].samples_per_packet;
int slot=1, frame=0, hw_subframe=0, rxpos=0, txpos=spp*openair0_cfg[0].tx_scheduling_advance;
#ifdef __AVX2__
int dummy[2][spp] __attribute__((aligned(32)));
#else
int dummy[2][spp] __attribute__((aligned(16)));
#endif
int dummy_dump = 0;
int tx_enabled = 0;
int start_rx_stream = 0;
int rx_off_diff = 0;
int rx_correction_timer = 0;
int first_rx = 0;
RTIME T0;
unsigned int rxs;
openair0_timestamp timestamp;
#ifdef RTAI
RT_TASK *task = rt_task_init_schmod(nam2num("UE thread"), 0, 0, 0, SCHED_FIFO, 0xF);
if (task==NULL) {
LOG_E(PHY,"[SCHED][UE] Problem starting UE thread!!!!\n");
return 0;
}
#else
#ifdef LOWLATENCY
struct sched_attr attr;
unsigned int flags = 0;
attr.size = sizeof(attr);
attr.sched_flags = 0;
attr.sched_nice = 0;
attr.sched_priority = 0;//sched_get_priority_max(SCHED_DEADLINE);
// This creates a .5 ms reservation
attr.sched_policy = SCHED_DEADLINE;
attr.sched_runtime = 100000;
attr.sched_deadline = 500000;
attr.sched_period = 500000;
if (sched_setattr(0, &attr, flags) < 0 ) {
perror("[SCHED] main eNB thread: sched_setattr failed\n");
exit_fun("Nothing to add");
return &UE_thread_retval;
}
LOG_I(HW,"[SCHED][eNB] eNB main deadline thread %lu started on CPU %d\n",
(unsigned long)gettid(), sched_getcpu());
#else
struct sched_param sp;
sp.sched_priority = sched_get_priority_max(SCHED_FIFO);
pthread_setschedparam(pthread_self(),SCHED_FIFO,&sp);
#endif
#endif
// Lock memory from swapping. This is a process wide call (not constraint to this thread).
mlockall(MCL_CURRENT | MCL_FUTURE);
printf("waiting for sync (UE_thread)\n");
pthread_mutex_lock(&sync_mutex);
printf("Locked sync_mutex, waiting (UE_thread)\n");
while (sync_var<0)
pthread_cond_wait(&sync_cond, &sync_mutex);
pthread_mutex_unlock(&sync_mutex);
printf("unlocked sync_mutex, waiting (UE_thread)\n");
printf("starting UE thread\n");
T0 = rt_get_time_ns();
first_rx = 1;
rxpos=0;
while (!oai_exit) {
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_HW_SUBFRAME, hw_subframe );
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_HW_FRAME, frame );
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_DUMMY_DUMP, dummy_dump );
while (rxpos < (1+hw_subframe)*UE->lte_frame_parms.samples_per_tti) {
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_READ, 1 );
#ifndef USRP_DEBUG
DevAssert( UE->lte_frame_parms.nb_antennas_rx <= 2 );
void* rxp[2];
for (int i=0; ilte_frame_parms.nb_antennas_rx; i++)
rxp[i] = (dummy_dump==0) ? (void*)&rxdata[i][rxpos] : (void*)dummy[i];
/*
if (dummy_dump == 0)
printf("writing %d samples to %d (first_rx %d)\n",spp - ((first_rx==1) ? rx_off_diff : 0),rxpos,first_rx);
*/
if (UE->mode != loop_through_memory) {
rxs = openair0.trx_read_func(&openair0,
×tamp,
rxp,
spp - ((first_rx==1) ? rx_off_diff : 0),
UE->lte_frame_parms.nb_antennas_rx);
if (rxs != (spp- ((first_rx==1) ? rx_off_diff : 0))) {
exit_fun("problem in rx");
return &UE_thread_retval;
}
}
if (rx_off_diff !=0)
LOG_D(PHY,"frame %d, rx_offset %d, rx_off_diff %d\n",UE->frame_rx,UE->rx_offset,rx_off_diff);
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_READ, 0 );
// Transmit TX buffer based on timestamp from RX
if ((tx_enabled==1) && (UE->mode!=loop_through_memory)) {
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_WRITE, 1 );
DevAssert( UE->lte_frame_parms.nb_antennas_tx <= 2 );
void* txp[2];
for (int i=0; ilte_frame_parms.nb_antennas_tx; i++)
txp[i] = (void*)&txdata[i][txpos];
openair0.trx_write_func(&openair0,
(timestamp+openair0_cfg[0].tx_scheduling_advance-openair0_cfg[0].tx_sample_advance),
txp,
spp - ((first_rx==1) ? rx_off_diff : 0),
UE->lte_frame_parms.nb_antennas_tx,
1);
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_WRITE, 0 );
}
else if (UE->mode == loop_through_memory)
rt_sleep_ns(1000000);
#else
// define USRP_DEBUG is active
rt_sleep_ns(1000000);
#endif
rx_off_diff = 0;
first_rx = 0;
rxpos += spp;
txpos += spp;
if (txpos >= 10*PHY_vars_UE_g[0][0]->lte_frame_parms.samples_per_tti)
txpos -= 10*PHY_vars_UE_g[0][0]->lte_frame_parms.samples_per_tti;
}
if (rxpos >= 10*PHY_vars_UE_g[0][0]->lte_frame_parms.samples_per_tti)
rxpos -= 10*PHY_vars_UE_g[0][0]->lte_frame_parms.samples_per_tti;
if (UE->is_synchronized == 1) {
LOG_D( HW, "UE_thread: hw_frame %d, hw_subframe %d (time %lli)\n", frame, hw_subframe, rt_get_time_ns()-T0 );
if (start_rx_stream == 1) {
LOG_D(PHY,"Locking mutex_rx (IC %d)\n",UE->instance_cnt_rx);
if (pthread_mutex_lock(&UE->mutex_rx) != 0) {
LOG_E( PHY, "[SCHED][UE] error locking mutex for UE RX thread\n" );
exit_fun("nothing to add");
return &UE_thread_retval;
}
int instance_cnt_rx = ++UE->instance_cnt_rx;
LOG_D(PHY,"Unlocking mutex_rx (IC %d)\n",instance_cnt_rx);
if (pthread_mutex_unlock(&UE->mutex_rx) != 0) {
LOG_E( PHY, "[SCHED][UE] error unlocking mutex for UE RX thread\n" );
exit_fun("nothing to add");
return &UE_thread_retval;
}
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME(VCD_SIGNAL_DUMPER_VARIABLES_UE_INST_CNT_RX, instance_cnt_rx);
if (instance_cnt_rx == 0) {
LOG_D(HW,"signalling rx thread to wake up, hw_frame %d, hw_subframe %d (time %lli)\n", frame, hw_subframe, rt_get_time_ns()-T0 );
if (pthread_cond_signal(&UE->cond_rx) != 0) {
LOG_E( PHY, "[SCHED][UE] ERROR pthread_cond_signal for UE RX thread\n" );
exit_fun("nothing to add");
return &UE_thread_retval;
}
LOG_D(HW,"signalled rx thread to wake up, hw_frame %d, hw_subframe %d (time %lli)\n", frame, hw_subframe, rt_get_time_ns()-T0 );
if (UE->mode == loop_through_memory) {
printf("Processing subframe %d",UE->slot_rx>>1);
getchar();
}
if (UE->mode == rx_calib_ue) {
if (frame == 10) {
LOG_D(PHY,
"[SCHED][UE] Found cell with N_RB_DL %"PRIu8", PHICH CONFIG (%d,%d), Nid_cell %"PRIu16", NB_ANTENNAS_TX %"PRIu8", frequency offset "PRIi32" Hz, RSSI (digital) %hu dB, measured Gain %d dB, total_rx_gain %"PRIu32" dB, USRP rx gain %f dB\n",
UE->lte_frame_parms.N_RB_DL,
UE->lte_frame_parms.phich_config_common.phich_duration,
UE->lte_frame_parms.phich_config_common.phich_resource,
UE->lte_frame_parms.Nid_cell,
UE->lte_frame_parms.nb_antennas_tx_eNB,
UE->lte_ue_common_vars.freq_offset,
UE->PHY_measurements.rx_power_avg_dB[0],
UE->PHY_measurements.rx_power_avg_dB[0] - rx_input_level_dBm,
UE->rx_total_gain_dB,
openair0_cfg[0].rx_gain[0]
);
exit_fun("[HW][UE] UE in RX calibration mode, exiting");
return &UE_thread_retval;
}
}
} else {
LOG_E( PHY, "[SCHED][UE] UE RX thread busy (IC %d)!!\n", instance_cnt_rx);
if (instance_cnt_rx > 1) {
exit_fun("instance_cnt_rx > 1");
return &UE_thread_retval;
}
}
if ((tx_enabled==1)&&(UE->mode != loop_through_memory)) {
if (pthread_mutex_lock(&UE->mutex_tx) != 0) {
LOG_E( PHY, "[SCHED][UE] error locking mutex for UE TX thread\n" );
exit_fun("nothing to add");
return &UE_thread_retval;
}
int instance_cnt_tx = ++UE->instance_cnt_tx;
if (pthread_mutex_unlock(&UE->mutex_tx) != 0) {
LOG_E( PHY, "[SCHED][UE] error unlocking mutex for UE TX thread\n" );
exit_fun("nothing to add");
return &UE_thread_retval;
}
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME(VCD_SIGNAL_DUMPER_VARIABLES_UE_INST_CNT_TX, instance_cnt_tx);
if (instance_cnt_tx == 0) {
if (pthread_cond_signal(&UE->cond_tx) != 0) {
LOG_E( PHY, "[SCHED][UE] ERROR pthread_cond_signal for UE TX thread\n" );
exit_fun("nothing to add");
return &UE_thread_retval;
}
LOG_D(HW,"signalled tx thread to wake up, hw_frame %d, hw_subframe %d (time %lli)\n", frame, hw_subframe, rt_get_time_ns()-T0 );
} else {
LOG_E( PHY, "[SCHED][UE] UE TX thread busy (IC %d)!!\n" );
if (instance_cnt_tx>1) {
exit_fun("instance_cnt_tx > 1");
return &UE_thread_retval;
}
}
}
}
} else {
// we are not yet synchronized
if ((hw_subframe == 9) && (dummy_dump == 0)) {
// Wake up initial synch thread
if (pthread_mutex_lock(&UE->mutex_synch) != 0) {
LOG_E( PHY, "[SCHED][UE] error locking mutex for UE initial synch thread\n" );
exit_fun("nothing to add");
return &UE_thread_retval;
}
int instance_cnt_synch = ++UE->instance_cnt_synch;
if (pthread_mutex_unlock(&UE->mutex_synch) != 0) {
LOG_E( PHY, "[SCHED][UE] error unlocking mutex for UE initial synch thread\n" );
exit_fun("nothing to add");
return &UE_thread_retval;
}
dummy_dump = 1;
if (instance_cnt_synch == 0) {
if (pthread_cond_signal(&UE->cond_synch) != 0) {
LOG_E( PHY, "[SCHED][UE] ERROR pthread_cond_signal for UE sync thread\n" );
exit_fun("nothing to add");
return &UE_thread_retval;
}
} else {
LOG_E( PHY, "[SCHED][UE] UE sync thread busy!!\n" );
exit_fun("nothing to add");
return &UE_thread_retval;
}
}
}
hw_subframe++;
slot+=2;
if (hw_subframe==10) {
hw_subframe = 0;
first_rx = 1;
frame++;
slot = 1;
int fail = pthread_mutex_lock(&UE->mutex_synch);
int instance_cnt_synch = UE->instance_cnt_synch;
fail = fail || pthread_mutex_unlock(&UE->mutex_synch);
if (fail) {
LOG_E( PHY, "[SCHED][UE] error (un-)locking mutex for UE synch\n" );
exit_fun("noting to add");
return &UE_thread_retval;
}
if (instance_cnt_synch < 0) {
// the UE_thread_synch is ready
if (UE->is_synchronized == 1) {
rx_off_diff = 0;
LTE_DL_FRAME_PARMS *frame_parms = &UE->lte_frame_parms; // for macro FRAME_LENGTH_COMPLEX_SAMPLES
// LOG_I(PHY,"UE->rx_offset %d\n",UE->rx_offset);
if ((UE->rx_offset > RX_OFF_MAX) && (start_rx_stream == 0)) {
start_rx_stream=1;
frame=0;
// dump ahead in time to start of frame
#ifndef USRP_DEBUG
if (UE->mode != loop_through_memory) {
rxs = openair0.trx_read_func(&openair0,
×tamp,
(void**)rxdata,
UE->rx_offset,
UE->lte_frame_parms.nb_antennas_rx);
if (rxs != UE->rx_offset) {
exit_fun("problem in rx");
return &UE_thread_retval;
}
UE->rx_offset=0;
tx_enabled = 1;
}
else
rt_sleep_ns(1000000);
#else
rt_sleep_ns(10000000);
#endif
} else if ((UE->rx_offset<(FRAME_LENGTH_COMPLEX_SAMPLES/2)) &&
(UE->rx_offset > RX_OFF_MIN) &&
(start_rx_stream==1) &&
(rx_correction_timer == 0)) {
rx_off_diff = -UE->rx_offset + RX_OFF_MIN;
LOG_D(PHY,"UE->rx_offset %d > %d, diff %d\n",UE->rx_offset,RX_OFF_MIN,rx_off_diff);
rx_correction_timer = 5;
} else if ((UE->rx_offset>(FRAME_LENGTH_COMPLEX_SAMPLES/2)) &&
(UE->rx_offset < (FRAME_LENGTH_COMPLEX_SAMPLES-RX_OFF_MIN)) &&
(start_rx_stream==1) &&
(rx_correction_timer == 0)) { // moving to the left so drop rx_off_diff samples
rx_off_diff = FRAME_LENGTH_COMPLEX_SAMPLES - RX_OFF_MIN - UE->rx_offset;
LOG_D(PHY,"UE->rx_offset %d < %d, diff %d\n",UE->rx_offset,FRAME_LENGTH_COMPLEX_SAMPLES-RX_OFF_MIN,rx_off_diff);
rx_correction_timer = 5;
}
if (rx_correction_timer>0)
rx_correction_timer--;
}
dummy_dump=0;
}
}
#if defined(ENABLE_ITTI)
itti_update_lte_time(frame, slot);
#endif
}
return &UE_thread_retval;
}
#endif
#ifdef EXMIMO
/* This is the main UE thread. Initially it is doing a periodic get_frame. One synchronized it gets woken up by the kernel driver using the RTAI message mechanism (rt_send and rt_receive). */
void *UE_thread(void *arg)
{
PHY_VARS_UE *UE=PHY_vars_UE_g[0][0];
#ifdef RTAI
RT_TASK *task;
#endif
// RTIME in, out, diff;
int slot=0,frame=0,hw_slot,last_slot,next_slot;
// unsigned int aa;
int delay_cnt;
RTIME time_in;
int hw_slot_offset=0,rx_offset_mbox=0,mbox_target=0,mbox_current=0;
int diff2;
int i, ret;
int CC_id,card;
volatile unsigned int *DAQ_MBOX = openair0_daq_cnt();
int wait_sync_cnt = 0;
int first_synch = 1;
#ifdef LOWLATENCY
struct sched_attr attr;
unsigned int flags = 0;
// unsigned long mask = 1; // processor 0
#endif
int freq_offset;
#ifdef RTAI
task = rt_task_init_schmod(nam2num("UE thread"), 0, 0, 0, SCHED_FIFO, 0xF);
if (task==NULL) {
LOG_E(PHY,"[SCHED][UE] Problem starting UE thread!!!!\n");
return 0;
}
#endif
#ifdef HARD_RT
rt_make_hard_real_time();
#endif
#ifdef LOWLATENCY
attr.size = sizeof(attr);
attr.sched_flags = 0;
attr.sched_nice = 0;
attr.sched_priority = 0;
// This creates a .25 ms reservation
attr.sched_policy = SCHED_DEADLINE;
attr.sched_runtime = (0.1 * 100) * 10000;
attr.sched_deadline = (0.25 * 100) * 10000;
attr.sched_period = (0.5 * 100) * 10000;
// pin the UE main thread to CPU0
// if (pthread_setaffinity_np(pthread_self(), sizeof(mask),&mask) <0) {
// perror("[MAIN_ENB_THREAD] pthread_setaffinity_np failed\n");
// }
if (sched_setattr(0, &attr, flags) < 0 ) {
perror("[SCHED] main UE thread: sched_setattr failed\n");
exit_fun("Nothing to add");
} else {
LOG_I(HW,"[SCHED][eNB] eNB main deadline thread %ld started on CPU %d\n",
gettid(),sched_getcpu());
}
#endif
mlockall(MCL_CURRENT | MCL_FUTURE);
printf("waiting for sync (UE_thread)\n");
pthread_mutex_lock(&sync_mutex);
printf("Locked sync_mutex, waiting (UE_thread)\n");
while (sync_var<0)
pthread_cond_wait(&sync_cond, &sync_mutex);
pthread_mutex_unlock(&sync_mutex);
printf("unlocked sync_mutex, waiting (UE_thread)\n");
printf("starting UE thread\n");
freq_offset = 0; //-7500;
first_synch = 1;
while (!oai_exit) {
hw_slot = (((((volatile unsigned int *)DAQ_MBOX)[0]+1)%150)<<1)/15; //the slot the hw is about to store
if (UE->is_synchronized) {
if (first_synch == 1) {
first_synch = 0;
for (card=0; cardrx_offset * 150) / (10*UE->lte_frame_parms.samples_per_tti);
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME(VCD_SIGNAL_DUMPER_VARIABLES_UE_RX_OFFSET, UE->rx_offset);
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME(VCD_SIGNAL_DUMPER_VARIABLES_UE_OFFSET_MBOX, rx_offset_mbox);
//this is the mbox counter where we should be
mbox_target = (((((slot+1)%20)*15+1)>>1) + rx_offset_mbox + 1)%150;
// round up to the next multiple of two (mbox counter from express MIMO gives only even numbers)
mbox_target = ((mbox_target+1)-((mbox_target-1)%2))%150;
//this is the mbox counter where we are
mbox_current = ((volatile unsigned int *)DAQ_MBOX)[0];
//this is the time we need to sleep in order to synchronize with the hw (in multiples of DAQ_PERIOD)
if ((mbox_current>=120) && (mbox_target<30)) //handle the frame wrap-arround
diff2 = 150-mbox_current+mbox_target;
else if ((mbox_current<30) && (mbox_target>=120))
diff2 = -150+mbox_target-mbox_current;
else
diff2 = mbox_target - mbox_current;
if (diff2 <(-7)) {
LOG_D(HW,"UE Frame %d: missed slot, proceeding with next one (slot %d, hw_slot %d, diff %d)\n",frame, slot, hw_slot, diff2);
if (frame>0) {
if (exit_missed_slots==1)
exit_fun("[HW][UE] missed slot");
else {
num_missed_slots++;
LOG_W(HW,"[UE] just missed slot (total missed slots %ld)\n", num_missed_slots);
}
}
slot++;
if (slot==20) {
slot=0;
frame++;
}
// update thread slot/frame counters because of skipped slot
UE->slot_rx++;
UE->slot_tx++;
if (UE->slot_rx == 20) {
UE->slot_rx = 0;
UE->frame_rx++;
}
if (UE->slot_tx == 20) {
UE->slot_tx = 0;
UE->frame_tx++;
}
continue;
}
if (diff2>8)
LOG_D(HW,"UE Frame %d: skipped slot, waiting for hw to catch up (slot %d, hw_slot %d, mbox_current %d, mbox_target %d, diff %d)\n",frame, slot, hw_slot, mbox_current, mbox_target, diff2);
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME(VCD_SIGNAL_DUMPER_VARIABLES_DAQ_MBOX, *DAQ_MBOX);
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME(VCD_SIGNAL_DUMPER_VARIABLES_DIFF, diff2);
// This loop implements the delay of 1 slot to allow for processing
delay_cnt = 0;
while ((diff2>0) && (!oai_exit) ) {
time_in = rt_get_time_ns();
//LOG_D(HW,"eNB Frame %d delaycnt %d : hw_slot %d (%d), slot %d (%d), diff %d, time %llu\n",frame,delay_cnt,hw_slot,((volatile unsigned int *)DAQ_MBOX)[0],slot,mbox_target,diff2,time_in);
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME(VCD_SIGNAL_DUMPER_VARIABLES_DAQ_MBOX, *DAQ_MBOX);
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_RT_SLEEP,1);
ret = rt_sleep_ns(diff2*DAQ_PERIOD);
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_RT_SLEEP,0);
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME(VCD_SIGNAL_DUMPER_VARIABLES_DAQ_MBOX, *DAQ_MBOX);
if (ret)
LOG_D(HW,"eNB Frame %d, time %llu: rt_sleep_ns returned %d\n",frame, time_in);
hw_slot = (((((volatile unsigned int *)DAQ_MBOX)[0]+1)%150)<<1)/15;
//LOG_D(HW,"eNB Frame %d : hw_slot %d, time %llu\n",frame,hw_slot,rt_get_time_ns());
delay_cnt++;
if (delay_cnt == 30) {
LOG_D(HW,"UE frame %d: HW stopped ... \n",frame);
exit_fun("[HW][UE] HW stopped");
}
mbox_current = ((volatile unsigned int *)DAQ_MBOX)[0];
if ((mbox_current>=135) && (mbox_target<15)) //handle the frame wrap-arround
diff2 = 150-mbox_current+mbox_target;
else if ((mbox_current<15) && (mbox_target>=135))
diff2 = -150+mbox_target-mbox_current;
else
diff2 = mbox_target - mbox_current;
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME(VCD_SIGNAL_DUMPER_VARIABLES_DAQ_MBOX, *DAQ_MBOX);
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME(VCD_SIGNAL_DUMPER_VARIABLES_DIFF, diff2);
}
// on even slots, schedule processing of entire subframe
if ((slot&1) == 0) {
if (pthread_mutex_lock(&UE->mutex_rx) != 0) {
LOG_E(PHY,"[SCHED][UE] error locking mutex for UE RX thread\n");
exit_fun("nothing to add");
} else {
int instance_cnt_rx = ++UE->instance_cnt_rx;
pthread_mutex_unlock(&UE->mutex_rx);
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME(VCD_SIGNAL_DUMPER_VARIABLES_UE_INST_CNT_RX, instance_cnt_rx);
if (instance_cnt_rx == 0) {
LOG_D(HW,"Scheduling UE RX for frame %d (hw frame %d), subframe %d (%d), mode %d\n",UE->frame_rx,frame,slot>>1,UE->slot_rx>>1,UE->mode);
if (pthread_cond_signal(&UE->cond_rx) != 0) {
LOG_E(PHY,"[SCHED][UE] ERROR pthread_cond_signal for UE RX thread\n");
exit_fun("nothing to add");
} else {
// printf("UE_thread: cond_signal for RX ok (%p) @ %llu\n",(void*)&UE->cond_rx,rt_get_time_ns()-T0);
}
if (UE->mode == rx_calib_ue) {
if (frame == 10) {
LOG_D(PHY,
"[SCHED][UE] Found cell with N_RB_DL %d, PHICH CONFIG (%d,%d), Nid_cell %d, NB_ANTENNAS_TX %d, initial frequency offset %d Hz, frequency offset %d Hz, RSSI (digital) %d dB, measured Gain %d dB, total_rx_gain %d dB, USRP rx gain %f dB\n",
UE->lte_frame_parms.N_RB_DL,
UE->lte_frame_parms.phich_config_common.phich_duration,
UE->lte_frame_parms.phich_config_common.phich_resource,
UE->lte_frame_parms.Nid_cell,
UE->lte_frame_parms.nb_antennas_tx_eNB,
freq_offset,
UE->lte_ue_common_vars.freq_offset,
UE->PHY_measurements.rx_power_avg_dB[0],
UE->PHY_measurements.rx_power_avg_dB[0] - rx_input_level_dBm,
UE->rx_total_gain_dB,
openair0_cfg[0].rx_gain[0]
);
exit_fun("[HW][UE] UE in RX calibration mode, exiting");
}
}
} else {
LOG_E(PHY,"[SCHED][UE] UE RX thread busy!!\n");
exit_fun("nothing to add");
}
}
if (pthread_mutex_lock(&UE->mutex_tx) != 0) {
LOG_E(PHY,"[SCHED][UE] error locking mutex for UE TX thread\n");
exit_fun("nothing to add");
} else {
int instance_cnt_tx = ++UE->instance_cnt_tx;
pthread_mutex_unlock(&UE->mutex_tx);
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME(VCD_SIGNAL_DUMPER_VARIABLES_UE_INST_CNT_TX, instance_cnt_tx);
if (instance_cnt_tx == 0) {
LOG_D(HW,"Scheduling UE TX for frame %d (hw frame %d), subframe %d (%d), mode %d\n",UE->frame_tx,frame,slot>>1,UE->slot_tx>>1,UE->mode);
if (pthread_cond_signal(&UE->cond_tx) != 0) {
LOG_E(PHY,"[SCHED][UE] ERROR pthread_cond_signal for UE TX thread\n");
exit_fun("nothing to add");
} else {
// printf("UE_thread: cond_signal for RX ok (%p) @ %llu\n",(void*)&UE->cond_rx,rt_get_time_ns()-T0);
}
} else {
LOG_E(PHY,"[SCHED][UE] UE TX thread busy!!\n");
exit_fun("nothing to add");
}
}
}
/*
if ((slot%2000)<10)
LOG_D(HW,"fun0: doing very hard work\n");
*/
// now increment slot and frame counters
slot++;
if (slot==20) {
slot=0;
frame++;
}
} else if (UE->is_synchronized == 0) { // we are not yet synchronized
hw_slot_offset = 0;
first_synch = 1;
slot = 0;
// wait until we can lock mutex_synch
//printf("Locking mutex_synch (UE_thread)\n");
if (pthread_mutex_lock(&UE->mutex_synch) != 0) {
LOG_E(PHY,"[SCHED][UE] error locking mutex for UE initial synch thread\n");
exit_fun("noting to add");
} else {
if (UE->instance_cnt_synch < 0) {
wait_sync_cnt=0;
openair0_config(&openair0_cfg[0],1);
// openair0_set_gains(&openair0,&openair0_cfg[0]);
printf("Getting frame\n");
openair0_get_frame(0);
rt_sleep_ns(FRAME_PERIOD);
// increment instance count for sync thread
UE->instance_cnt_synch++;
pthread_mutex_unlock(&UE->mutex_synch);
if (pthread_cond_signal(&UE->cond_synch) != 0) {
LOG_E(PHY,"[SCHED][UE] ERROR pthread_cond_signal for UE sync thread\n");
exit_fun("nothing to add");
}
} else {
wait_sync_cnt++;
pthread_mutex_unlock(&UE->mutex_synch);
if (wait_sync_cnt>1000)
exit_fun("waiting to long for synch thread");
else
rt_sleep_ns(FRAME_PERIOD);
}
}
/*
if (initial_sync(UE,mode)==0) {
if (mode == rx_calib_ue) {
exit_fun("[HW][UE] UE in RX calibration mode");
}
else {
is_synchronized = 1;
//start the streaming DMA transfers
for (card=0;cardrx_offset<<1) / UE->lte_frame_parms.samples_per_tti;
}
}
else {
if (freq_offset >= 0) {
freq_offset += 100;
freq_offset *= -1;
}
else {
freq_offset *= -1;
}
if (abs(freq_offset) > 7500) {
LOG_I(PHY,"[initial_sync] No cell synchronization found, abondoning\n");
mac_xface->macphy_exit("No cell synchronization found, abondoning");
}
else {
// LOG_I(PHY,"[initial_sync] trying carrier off %d Hz\n",freq_offset);
#ifndef USRP
for (CC_id=0;CC_idinstance_cnt_tx = -1;
UE->instance_cnt_rx = -1;
UE->instance_cnt_synch = -1;
pthread_mutex_init(&UE->mutex_tx,NULL);
pthread_mutex_init(&UE->mutex_rx,NULL);
pthread_mutex_init(&UE->mutex_synch,NULL);
pthread_cond_init(&UE->cond_tx,NULL);
pthread_cond_init(&UE->cond_rx,NULL);
pthread_cond_init(&UE->cond_synch,NULL);
pthread_create(&UE->thread_tx,NULL,UE_thread_tx,(void*)UE);
pthread_setname_np( UE->thread_tx, "UE_thread_tx" );
pthread_create(&UE->thread_rx,NULL,UE_thread_rx,(void*)UE);
pthread_setname_np( UE->thread_rx, "UE_thread_rx" );
pthread_create(&UE->thread_synch,NULL,UE_thread_synch,(void*)UE);
pthread_setname_np( UE->thread_synch, "UE_thread_synch" );
UE->frame_tx = 0;
UE->frame_rx = 0;
}
#ifdef OPENAIR2
void fill_ue_band_info(void)
{
UE_EUTRA_Capability_t *UE_EUTRA_Capability = UE_rrc_inst[0].UECap->UE_EUTRA_Capability;
int i,j;
bands_to_scan.nbands = UE_EUTRA_Capability->rf_Parameters.supportedBandListEUTRA.list.count;
for (i=0; irf_Parameters.supportedBandListEUTRA.list.array[i]->bandEUTRA) {
memcpy(&bands_to_scan.band_info[i],
&eutra_bands[j],
sizeof(eutra_band_t));
printf("Band %d (%lu) : DL %u..%u Hz, UL %u..%u Hz, Duplex %s \n",
bands_to_scan.band_info[i].band,
UE_EUTRA_Capability->rf_Parameters.supportedBandListEUTRA.list.array[i]->bandEUTRA,
bands_to_scan.band_info[i].dl_min,
bands_to_scan.band_info[i].dl_max,
bands_to_scan.band_info[i].ul_min,
bands_to_scan.band_info[i].ul_max,
(bands_to_scan.band_info[i].frame_type==FDD) ? "FDD" : "TDD");
break;
}
}
}
#endif
int setup_ue_buffers(PHY_VARS_UE **phy_vars_ue, openair0_config_t *openair0_cfg, openair0_rf_map rf_map[MAX_NUM_CCs])
{
//#ifndef EXMIMO
// uint16_t N_TA_offset = 0;
//#endif
int i, CC_id;
LTE_DL_FRAME_PARMS *frame_parms;
for (CC_id=0; CC_idlte_frame_parms);
} else {
printf("phy_vars_UE[%d] not initialized\n", CC_id);
return(-1);
}
//#ifndef EXMIMO
// if (frame_parms->frame_type == TDD) {
// if (frame_parms->N_RB_DL == 100)
// N_TA_offset = 624;
// else if (frame_parms->N_RB_DL == 50)
// N_TA_offset = 624/2;
// else if (frame_parms->N_RB_DL == 25)
// N_TA_offset = 624/4;
// }
//#endif
#ifdef EXMIMO
openair0_cfg[CC_id].tx_num_channels = 0;
openair0_cfg[CC_id].rx_num_channels = 0;
// replace RX signal buffers with mmaped HW versions
for (i=0; inb_antennas_rx; i++) {
printf("Mapping UE CC_id %d, rx_ant %d, freq %u on card %d, chain %d\n",CC_id,i,downlink_frequency[CC_id][i],rf_map[CC_id].card,rf_map[CC_id].chain+i);
free(phy_vars_ue[CC_id]->lte_ue_common_vars.rxdata[i]);
phy_vars_ue[CC_id]->lte_ue_common_vars.rxdata[i] = (int32_t*) openair0_exmimo_pci[rf_map[CC_id].card].adc_head[rf_map[CC_id].chain+i];
if (openair0_cfg[rf_map[CC_id].card].rx_freq[rf_map[CC_id].chain+i]) {
printf("Error with rf_map! A channel has already been allocated!\n");
return(-1);
} else {
openair0_cfg[rf_map[CC_id].card].rx_freq[rf_map[CC_id].chain+i] = downlink_frequency[CC_id][i];
openair0_cfg[rf_map[CC_id].card].rx_gain[rf_map[CC_id].chain+i] = rx_gain[CC_id][i];
openair0_cfg[rf_map[CC_id].card].rxg_mode[rf_map[CC_id].chain+i] = rx_gain_mode[CC_id][i];
openair0_cfg[rf_map[CC_id].card].rx_num_channels++;
}
printf("rxdata[%d] @ %p\n",i,phy_vars_ue[CC_id]->lte_ue_common_vars.rxdata[i]);
}
for (i=0; inb_antennas_tx; i++) {
printf("Mapping UE CC_id %d, tx_ant %d, freq %u on card %d, chain %d\n",CC_id,i,downlink_frequency[CC_id][i],rf_map[CC_id].card,rf_map[CC_id].chain+i);
free(phy_vars_ue[CC_id]->lte_ue_common_vars.txdata[i]);
phy_vars_ue[CC_id]->lte_ue_common_vars.txdata[i] = (int32_t*) openair0_exmimo_pci[rf_map[CC_id].card].dac_head[rf_map[CC_id].chain+i];
if (openair0_cfg[rf_map[CC_id].card].tx_freq[rf_map[CC_id].chain+i]) {
printf("Error with rf_map! A channel has already been allocated!\n");
return(-1);
} else {
openair0_cfg[rf_map[CC_id].card].tx_freq[rf_map[CC_id].chain+i] = downlink_frequency[CC_id][i]+uplink_frequency_offset[CC_id][i];
openair0_cfg[rf_map[CC_id].card].tx_gain[rf_map[CC_id].chain+i] = tx_gain[CC_id][i];
openair0_cfg[rf_map[CC_id].card].tx_num_channels++;
}
printf("txdata[%d] @ %p\n",i,phy_vars_ue[CC_id]->lte_ue_common_vars.txdata[i]);
}
#else
// replace RX signal buffers with mmaped HW versions
rxdata = (int32_t**)malloc16( frame_parms->nb_antennas_rx*sizeof(int32_t*) );
txdata = (int32_t**)malloc16( frame_parms->nb_antennas_tx*sizeof(int32_t*) );
for (i=0; inb_antennas_rx; i++) {
printf( "Mapping UE CC_id %d, rx_ant %d, freq %u on card %d, chain %d\n", CC_id, i, downlink_frequency[CC_id][i], rf_map[CC_id].card, rf_map[CC_id].chain+i );
free( phy_vars_ue[CC_id]->lte_ue_common_vars.rxdata[i] );
rxdata[i] = (int32_t*)malloc16_clear( 307200*sizeof(int32_t) );
phy_vars_ue[CC_id]->lte_ue_common_vars.rxdata[i] = rxdata[i]; // what about the "-N_TA_offset" ? // N_TA offset for TDD
}
for (i=0; inb_antennas_tx; i++) {
printf( "Mapping UE CC_id %d, tx_ant %d, freq %u on card %d, chain %d\n", CC_id, i, downlink_frequency[CC_id][i], rf_map[CC_id].card, rf_map[CC_id].chain+i );
free( phy_vars_ue[CC_id]->lte_ue_common_vars.txdata[i] );
txdata[i] = (int32_t*)malloc16_clear( 307200*sizeof(int32_t) );
phy_vars_ue[CC_id]->lte_ue_common_vars.txdata[i] = txdata[i];
}
// rxdata[x] points now to the same memory region as phy_vars_ue[CC_id]->lte_ue_common_vars.rxdata[x]
// txdata[x] points now to the same memory region as phy_vars_ue[CC_id]->lte_ue_common_vars.txdata[x]
// be careful when releasing memory!
// because no "release_ue_buffers"-function is available, at least rxdata and txdata memory will leak (only some bytes)
#endif
}
return 0;
}