/*******************************************************************************
    OpenAirInterface
    Copyright(c) 1999 - 2014 Eurecom

    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.


    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with OpenAirInterface.The full GNU General Public License is
    included in this distribution in the file called "COPYING". If not,
    see <http://www.gnu.org/licenses/>.

   Contact Information
   OpenAirInterface Admin: openair_admin@eurecom.fr
   OpenAirInterface Tech : openair_tech@eurecom.fr
   OpenAirInterface Dev  : openair4g-devel@lists.eurecom.fr

   Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE

 *******************************************************************************/

#include <string.h>
#include <math.h>
#include <unistd.h>
#include <stdint.h>
#include <stdio.h>
#include <time.h>

#include "SIMULATION/TOOLS/defs.h"
#include "SIMULATION/RF/defs.h"
#include "PHY/types.h"
#include "PHY/defs.h"
#include "PHY/extern.h"
#include "MAC_INTERFACE/extern.h"

#ifdef OPENAIR2
#include "LAYER2/MAC/defs.h"
#include "LAYER2/MAC/extern.h"
#include "UTIL/LOG/log_if.h"
#include "UTIL/LOG/log_extern.h"
#include "RRC/LITE/extern.h"
#include "PHY_INTERFACE/extern.h"
#include "UTIL/OCG/OCG.h"
#include "UTIL/OPT/opt.h" // to test OPT
#endif

#include "UTIL/FIFO/types.h"

#ifdef IFFT_FPGA
#include "PHY/LTE_REFSIG/mod_table.h"
#endif

#include "SCHED/defs.h"
#include "SCHED/extern.h"

#ifdef XFORMS
#include "forms.h"
#include "phy_procedures_sim_form.h"
#endif

#include "oaisim.h"

#define RF
#define DEBUG_SIM

int number_rb_ul;
int first_rbUL ;

extern Signal_buffers_t *signal_buffers_g;



void do_DL_sig(double **r_re0,double **r_im0,
               double **r_re,double **r_im,
               double **s_re,double **s_im,
               channel_desc_t *eNB2UE[NUMBER_OF_eNB_MAX][NUMBER_OF_UE_MAX][MAX_NUM_CCs],
               node_desc_t *enb_data[NUMBER_OF_eNB_MAX],
               node_desc_t *ue_data[NUMBER_OF_UE_MAX],
               uint16_t next_slot,uint8_t abstraction_flag,LTE_DL_FRAME_PARMS *frame_parms,
               uint8_t UE_id,
               int CC_id)
{

  int32_t att_eNB_id=-1;
  int32_t **txdata,**rxdata;

  uint8_t eNB_id=0;
  double tx_pwr;
  double rx_pwr;
  int32_t rx_pwr2;
  uint32_t i,aa;
  uint32_t slot_offset,slot_offset_meas;

  double min_path_loss=-200;
  uint8_t hold_channel=0;
  //  uint8_t aatx,aarx;
  uint8_t nb_antennas_rx = eNB2UE[0][0][CC_id]->nb_rx; // number of rx antennas at UE
  uint8_t nb_antennas_tx = eNB2UE[0][0][CC_id]->nb_tx; // number of tx antennas at eNB

  LTE_DL_FRAME_PARMS *fp;
  //  int subframe_sched = ((next_slot>>1) == 0) ? 9 : ((next_slot>>1)-1);


  if (next_slot==0)
    hold_channel = 0;
  else
    hold_channel = 1;

  if (abstraction_flag != 0) {
    //for (UE_id=0;UE_id<NB_UE_INST;UE_id++) {

    if (!hold_channel) {
      // calculate the random channel from each eNB
      for (eNB_id=0; eNB_id<NB_eNB_INST; eNB_id++) {

        random_channel(eNB2UE[eNB_id][UE_id][CC_id],abstraction_flag);
        /*
        for (i=0;i<eNB2UE[eNB_id][UE_id]->nb_taps;i++)
        printf("eNB2UE[%d][%d]->a[0][%d] = (%f,%f)\n",eNB_id,UE_id,i,eNB2UE[eNB_id][UE_id]->a[0][i].x,eNB2UE[eNB_id][UE_id]->a[0][i].y);
        */
        freq_channel(eNB2UE[eNB_id][UE_id][CC_id], frame_parms->N_RB_DL,frame_parms->N_RB_DL*12+1);
      }

      // find out which eNB the UE is attached to
      for (eNB_id=0; eNB_id<NB_eNB_INST; eNB_id++) {
        if (find_ue(PHY_vars_UE_g[UE_id][CC_id]->lte_ue_pdcch_vars[0]->crnti,PHY_vars_eNB_g[eNB_id][CC_id])>=0) {
          // UE with UE_id is connected to eNb with eNB_id
          att_eNB_id=eNB_id;
          LOG_D(OCM,"A: UE attached to eNB (UE%d->eNB%d)\n",UE_id,eNB_id);
        }
      }

      // if UE is not attached yet, find assume its the eNB with the smallest pathloss
      if (att_eNB_id<0) {
        for (eNB_id=0; eNB_id<NB_eNB_INST; eNB_id++) {
          if (min_path_loss<eNB2UE[eNB_id][UE_id][CC_id]->path_loss_dB) {
            min_path_loss = eNB2UE[eNB_id][UE_id][CC_id]->path_loss_dB;
            att_eNB_id=eNB_id;
            LOG_D(OCM,"B: UE attached to eNB (UE%d->eNB%d)\n",UE_id,eNB_id);
          }
        }
      }

      if (att_eNB_id<0) {
        LOG_E(OCM,"Cannot find eNB for UE %d, return\n",UE_id);
        return; //exit(-1);
      }

#ifdef DEBUG_SIM
      rx_pwr = signal_energy_fp2(eNB2UE[att_eNB_id][UE_id][CC_id]->ch[0],
                                 eNB2UE[att_eNB_id][UE_id][CC_id]->channel_length)*eNB2UE[att_eNB_id][UE_id][CC_id]->channel_length;
      LOG_D(OCM,"Channel (CCid %d) eNB %d => UE %d : tx_power %d dBm, path_loss %f dB\n",
            CC_id,att_eNB_id,UE_id,
            frame_parms->pdsch_config_common.referenceSignalPower,
            eNB2UE[att_eNB_id][UE_id][CC_id]->path_loss_dB);
#endif

      //dlsch_abstraction(PHY_vars_UE_g[UE_id]->sinr_dB, rb_alloc, 8);
      // fill in perfect channel estimates
      channel_desc_t *desc1 = eNB2UE[att_eNB_id][UE_id][CC_id];
      int32_t **dl_channel_est = PHY_vars_UE_g[UE_id][CC_id]->lte_ue_common_vars.dl_ch_estimates[0];
      //      double scale = pow(10.0,(enb_data[att_eNB_id]->tx_power_dBm + eNB2UE[att_eNB_id][UE_id]->path_loss_dB + (double) PHY_vars_UE_g[UE_id]->rx_total_gain_dB)/20.0);
      double scale = pow(10.0,(frame_parms->pdsch_config_common.referenceSignalPower+eNB2UE[att_eNB_id][UE_id][CC_id]->path_loss_dB + (double) PHY_vars_UE_g[UE_id][CC_id]->rx_total_gain_dB)/20.0);
      LOG_D(OCM,"scale =%lf (%d dB)\n",scale,(int) (20*log10(scale)));
      // freq_channel(desc1,frame_parms->N_RB_DL,nb_samples);
      //write_output("channel.m","ch",desc1->ch[0],desc1->channel_length,1,8);
      //write_output("channelF.m","chF",desc1->chF[0],nb_samples,1,8);
      int count,count1,a_rx,a_tx;

      for(a_tx=0; a_tx<nb_antennas_tx; a_tx++) {
        for (a_rx=0; a_rx<nb_antennas_rx; a_rx++) {
          //for (count=0;count<frame_parms->symbols_per_tti/2;count++)
          for (count=0; count<1; count++) {
            for (count1=0; count1<frame_parms->N_RB_DL*12; count1++) {
              ((int16_t *) dl_channel_est[(a_tx<<1)+a_rx])[2*count1+(count*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(desc1->chF[a_rx+(a_tx*nb_antennas_rx)][count1].x*scale);
              ((int16_t *) dl_channel_est[(a_tx<<1)+a_rx])[2*count1+1+(count*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(desc1->chF[a_rx+(a_tx*nb_antennas_rx)][count1].y*scale) ;
            }
          }
        }
      }

      /*
      if(PHY_vars_UE_g[UE_id]->transmission_mode[att_eNB_id]>=5)
      {
      lte_ue_measurements(PHY_vars_UE_g[UE_id],
            ((next_slot-1)>>1)*frame_parms->samples_per_tti,
            1,
            abstraction_flag);

      PHY_vars_eNB_g[att_eNB_id]->dlsch_eNB[0][0]->pmi_alloc = quantize_subband_pmi(&PHY_vars_UE_g[UE_id]->PHY_measurements,0);
      //  printf("pmi_alloc in channel sim: %d",PHY_vars_eNB_g[att_eNB_id]->dlsch_eNB[0][0]->pmi_alloc);
        }
      */

      // calculate the SNR for the attached eNB (this assumes eNB always uses PMI stored in eNB_UE_stats; to be improved)
      init_snr(eNB2UE[att_eNB_id][UE_id][CC_id], enb_data[att_eNB_id], ue_data[UE_id], PHY_vars_UE_g[UE_id][CC_id]->sinr_dB, &PHY_vars_UE_g[UE_id][CC_id]->N0,
               PHY_vars_UE_g[UE_id][CC_id]->transmission_mode[att_eNB_id], PHY_vars_eNB_g[att_eNB_id][CC_id]->eNB_UE_stats[UE_id].DL_pmi_single,
	       PHY_vars_eNB_g[att_eNB_id][CC_id]->mu_mimo_mode[UE_id].dl_pow_off,PHY_vars_eNB_g[att_eNB_id][CC_id]->lte_frame_parms.N_RB_DL);

      // calculate sinr here
      for (eNB_id = 0; eNB_id < NB_eNB_INST; eNB_id++) {
        if (att_eNB_id != eNB_id) {
          calculate_sinr(eNB2UE[eNB_id][UE_id][CC_id], enb_data[eNB_id], ue_data[UE_id], PHY_vars_UE_g[UE_id][CC_id]->sinr_dB,PHY_vars_eNB_g[att_eNB_id][CC_id]->lte_frame_parms.N_RB_DL);
        }
      }
    } // hold channel
  }

  else { //abstraction_flag
    /*
       Call do_OFDM_mod from phy_procedures_eNB_TX function
    */

    //      printf("r_re[0] %p\n",r_re[0]);
    for (aa=0; aa<nb_antennas_rx; aa++) {
      memset((void*)r_re[aa],0,(frame_parms->samples_per_tti>>1)*sizeof(double));
      memset((void*)r_im[aa],0,(frame_parms->samples_per_tti>>1)*sizeof(double));
    }

    /*
    for (i=0;i<16;i++)
    printf("%f, %X\n",r_re[aa][i],(unsigned long long)r_re[aa][i]);
    */
    for (eNB_id=0; eNB_id<NB_eNB_INST; eNB_id++) {
      //  if (((double)PHY_vars_UE_g[UE_id]->tx_power_dBm +
      //       eNB2UE[eNB_id][UE_id]->path_loss_dB) <= -107.0)
      //    break;

      txdata = PHY_vars_eNB_g[eNB_id][CC_id]->lte_eNB_common_vars.txdata[0];
      slot_offset = (next_slot)*(frame_parms->samples_per_tti>>1);
      slot_offset_meas = ((next_slot&1)==0) ? slot_offset : (slot_offset-(frame_parms->samples_per_tti>>1));
      tx_pwr = dac_fixed_gain(s_re,
                              s_im,
                              txdata,
                              slot_offset,
                              nb_antennas_tx,
                              frame_parms->samples_per_tti>>1,
                              slot_offset_meas,
                              frame_parms->ofdm_symbol_size,
                              14,
                              //        enb_data[eNB_id]->tx_power_dBm);
                              frame_parms->pdsch_config_common.referenceSignalPower, // dBm/RE
                              frame_parms->N_RB_DL*12);

#ifdef DEBUG_SIM
      LOG_D(OCM,"[SIM][DL] eNB %d (CCid %d): tx_pwr %.1f dBm/RE (target %d dBm/RE), for slot %d (subframe %d)\n",
            eNB_id,CC_id,
            10*log10(tx_pwr),
            frame_parms->pdsch_config_common.referenceSignalPower,
            next_slot,
            next_slot>>1);
#endif
      //eNB2UE[eNB_id][UE_id]->path_loss_dB = 0;
      multipath_channel(eNB2UE[eNB_id][UE_id][CC_id],s_re,s_im,r_re0,r_im0,
                        frame_parms->samples_per_tti>>1,hold_channel);
#ifdef DEBUG_SIM
      rx_pwr = signal_energy_fp2(eNB2UE[eNB_id][UE_id][CC_id]->ch[0],
                                 eNB2UE[eNB_id][UE_id][CC_id]->channel_length)*eNB2UE[eNB_id][UE_id][CC_id]->channel_length;
      LOG_D(OCM,"[SIM][DL] Channel eNB %d => UE %d (CCid %d): Channel gain %f dB (%f)\n",eNB_id,UE_id,CC_id,10*log10(rx_pwr),rx_pwr);
#endif


#ifdef DEBUG_SIM

      for (i=0; i<eNB2UE[eNB_id][UE_id][CC_id]->channel_length; i++)
        LOG_D(OCM,"channel(%d,%d)[%d] : (%f,%f)\n",eNB_id,UE_id,i,eNB2UE[eNB_id][UE_id][CC_id]->ch[0][i].x,eNB2UE[eNB_id][UE_id][CC_id]->ch[0][i].y);

#endif

      LOG_D(OCM,"[SIM][DL] Channel eNB %d => UE %d (CCid %d): tx_power %.1f dBm/RE, path_loss %1.f dB\n",
            eNB_id,UE_id,CC_id,
            (double)frame_parms->pdsch_config_common.referenceSignalPower,
            //         enb_data[eNB_id]->tx_power_dBm,
            eNB2UE[eNB_id][UE_id][CC_id]->path_loss_dB);

#ifdef DEBUG_SIM
      rx_pwr = signal_energy_fp(r_re0,r_im0,nb_antennas_rx,
                                frame_parms->ofdm_symbol_size,
                                slot_offset_meas)/(12.0*frame_parms->N_RB_DL);
      LOG_D(OCM,"[SIM][DL] UE %d : rx_pwr %f dBm/RE (%f dBm RSSI)for slot %d (subframe %d)\n",UE_id,
            10*log10(rx_pwr),
            10*log10(rx_pwr*(double)frame_parms->N_RB_DL*12),next_slot,next_slot>>1);
      LOG_D(OCM,"[SIM][DL] UE %d : rx_pwr (noise) -132 dBm/RE (N0fs = %.1f dBm, N0B = %.1f dBm) for slot %d (subframe %d)\n",
            UE_id,
            10*log10(eNB2UE[eNB_id][UE_id][CC_id]->sampling_rate*1e6)-174,
            10*log10(eNB2UE[eNB_id][UE_id][CC_id]->sampling_rate*1e6*12*frame_parms->N_RB_DL/(double)frame_parms->ofdm_symbol_size)-174,
            next_slot,next_slot>>1);
#endif

      if (eNB2UE[eNB_id][UE_id][CC_id]->first_run == 1)
        eNB2UE[eNB_id][UE_id][CC_id]->first_run = 0;


      // RF model
#ifdef DEBUG_SIM
      LOG_D(OCM,"[SIM][DL] UE %d (CCid %d): rx_gain %d dB (-ADC %f) for slot %d (subframe %d)\n",UE_id,CC_id,PHY_vars_UE_g[UE_id][CC_id]->rx_total_gain_dB,
            PHY_vars_UE_g[UE_id][CC_id]->rx_total_gain_dB-66.227,next_slot,next_slot>>1);
#endif
      /*
      rf_rx(r_re0,
      r_im0,
      NULL,
      NULL,
      0,
      nb_antennas_rx,
      frame_parms->samples_per_tti>>1,
      1e3/eNB2UE[eNB_id][UE_id]->BW,  // sampling time (ns)
      0.0,               // freq offset (Hz) (-20kHz..20kHz)
      0.0,               // drift (Hz) NOT YET IMPLEMENTED
      ue_data[UE_id]->rx_noise_level,                // noise_figure NOT YET IMPLEMENTED
      (double)PHY_vars_UE_g[UE_id]->rx_total_gain_dB - 66.227,   // rx_gain (dB) (66.227 = 20*log10(pow2(11)) = gain from the adc that will be applied later)
      200.0,               // IP3_dBm (dBm)
      &eNB2UE[eNB_id][UE_id]->ip,               // initial phase
      30.0e3,            // pn_cutoff (kHz)
      -500.0,            // pn_amp (dBc) default: 50
      0.0,               // IQ imbalance (dB),
      0.0);              // IQ phase imbalance (rad)
      */

      rf_rx_simple(r_re0,
                   r_im0,
                   nb_antennas_rx,
                   frame_parms->samples_per_tti>>1,
                   1e3/eNB2UE[eNB_id][UE_id][CC_id]->sampling_rate,  // sampling time (ns)
                   (double)PHY_vars_UE_g[UE_id][CC_id]->rx_total_gain_dB - 66.227);   // rx_gain (dB) (66.227 = 20*log10(pow2(11)) = gain from the adc that will be applied later)

#ifdef DEBUG_SIM
      rx_pwr = signal_energy_fp(r_re0,r_im0,
                                nb_antennas_rx,
                                frame_parms->ofdm_symbol_size,
                                slot_offset_meas)/(12.0*frame_parms->N_RB_DL);
      LOG_D(OCM,"[SIM][DL] UE %d : ADC in (eNB %d) %f dBm/RE for slot %d (subframe %d)\n",
            UE_id,eNB_id,
            10*log10(rx_pwr),next_slot,next_slot>>1);
#endif

      for (i=0; i<(frame_parms->samples_per_tti>>1); i++) {
        for (aa=0; aa<nb_antennas_rx; aa++) {
          r_re[aa][i]+=r_re0[aa][i];
          r_im[aa][i]+=r_im0[aa][i];
        }
      }

    }

#ifdef DEBUG_SIM
    rx_pwr = signal_energy_fp(r_re,r_im,nb_antennas_rx,frame_parms->ofdm_symbol_size,slot_offset_meas)/(12.0*frame_parms->N_RB_DL);
    LOG_D(OCM,"[SIM][DL] UE %d : ADC in %f dBm for slot %d (subframe %d)\n",UE_id,10*log10(rx_pwr),next_slot,next_slot>>1);
#endif

    rxdata = PHY_vars_UE_g[UE_id][CC_id]->lte_ue_common_vars.rxdata;
    slot_offset = (next_slot)*(frame_parms->samples_per_tti>>1);

    adc(r_re,
        r_im,
        0,
        slot_offset,
        rxdata,
        nb_antennas_rx,
        frame_parms->samples_per_tti>>1,
        12);

#ifdef DEBUG_SIM
    rx_pwr2 = signal_energy(rxdata[0]+slot_offset,frame_parms->ofdm_symbol_size)/(12.0*frame_parms->N_RB_DL);
    LOG_D(OCM,"[SIM][DL] UE %d : rx_pwr (ADC out) %f dB/RE (%d) for slot %d (subframe %d), writing to %p\n",UE_id, 10*log10((double)rx_pwr2),rx_pwr2,next_slot,next_slot>>1,rxdata);
#else
    UNUSED_VARIABLE(rx_pwr2);
    UNUSED_VARIABLE(tx_pwr);
    UNUSED_VARIABLE(rx_pwr);
#endif
    //}// UE_index loop
  }

}


void do_UL_sig(double **r_re0,double **r_im0,double **r_re,double **r_im,double **s_re,double **s_im,channel_desc_t *UE2eNB[NUMBER_OF_UE_MAX][NUMBER_OF_eNB_MAX][MAX_NUM_CCs],
               node_desc_t *enb_data[NUMBER_OF_eNB_MAX],node_desc_t *ue_data[NUMBER_OF_UE_MAX],uint16_t next_slot,uint8_t abstraction_flag,LTE_DL_FRAME_PARMS *frame_parms, uint32_t frame,uint8_t CC_id)
{

  int32_t **txdata,**rxdata;
#ifdef PHY_ABSTRACTION_UL
  int32_t att_eNB_id=-1;
#endif
  uint8_t eNB_id=0,UE_id=0;

  uint8_t nb_antennas_rx = UE2eNB[0][0][CC_id]->nb_rx; // number of rx antennas at eNB
  uint8_t nb_antennas_tx = UE2eNB[0][0][CC_id]->nb_tx; // number of tx antennas at UE

  double tx_pwr, rx_pwr;
  int32_t rx_pwr2;
  uint32_t i,aa;
  uint32_t slot_offset,slot_offset_meas;

  uint8_t hold_channel=0;

#ifdef PHY_ABSTRACTION_UL
  double min_path_loss=-200;
  uint16_t ul_nb_rb=0 ;
  uint16_t ul_fr_rb=0;
  int ulnbrb2 ;
  int ulfrrb2 ;
  uint8_t harq_pid;
  int subframe = (next_slot>>1);
#endif

  /*
  if (next_slot==4)
    hold_channel = 0;
  else
    hold_channel = 1;
  */

  if (abstraction_flag!=0)  {
#ifdef PHY_ABSTRACTION_UL

    for (eNB_id=0; eNB_id<NB_eNB_INST; eNB_id++) {
      for (UE_id=0; UE_id<NB_UE_INST; UE_id++) {
        if (!hold_channel) {
          random_channel(UE2eNB[UE_id][eNB_id][CC_id],abstraction_flag);
          freq_channel(UE2eNB[UE_id][eNB_id][CC_id], frame_parms->N_RB_UL,frame_parms->N_RB_UL*12+1);

          // REceived power at the eNB
          rx_pwr = signal_energy_fp2(UE2eNB[UE_id][eNB_id][CC_id]->ch[0],
                                     UE2eNB[UE_id][eNB_id][CC_id]->channel_length)*UE2eNB[UE_id][att_eNB_id][CC_id]->channel_length; // calculate the rx power at the eNB
        }

        //  write_output("SINRch.m","SINRch",PHY_vars_eNB_g[att_eNB_id]->sinr_dB_eNB,frame_parms->N_RB_UL*12+1,1,1);
        if(subframe>1 && subframe <5) {
          harq_pid = subframe2harq_pid(frame_parms,frame,subframe);
          ul_nb_rb = PHY_vars_eNB_g[att_eNB_id][CC_id]->ulsch_eNB[(uint8_t)UE_id]->harq_processes[harq_pid]->nb_rb;
          ul_fr_rb = PHY_vars_eNB_g[att_eNB_id][CC_id]->ulsch_eNB[(uint8_t)UE_id]->harq_processes[harq_pid]->first_rb;
        }

        if(ul_nb_rb>1 && (ul_fr_rb < 25 && ul_fr_rb > -1)) {
          number_rb_ul = ul_nb_rb;
          first_rbUL = ul_fr_rb;
          init_snr_up(UE2eNB[UE_id][att_eNB_id][CC_id],enb_data[att_eNB_id], ue_data[UE_id],PHY_vars_eNB_g[att_eNB_id][CC_id]->sinr_dB,&PHY_vars_UE_g[att_eNB_id][CC_id]->N0,ul_nb_rb,ul_fr_rb);

        }
      } //UE_id
    } //eNB_id

#else
    /* the following functions are not needed */
    /*
    if (abstraction_flag!=0) {
        for (eNB_id=0;eNB_id<NB_eNB_INST;eNB_id++) {
          for (UE_id=0;UE_id<NB_UE_INST;UE_id++) {
      random_channel(UE2eNB[UE_id][eNB_id]);
      freq_channel(UE2eNB[UE_id][eNB_id], frame_parms->N_RB_UL,2);
          }
        }
      }
    */
#endif
  } else { //without abstraction

    /*
    for (UE_id=0;UE_id<NB_UE_INST;UE_id++) {
      do_OFDM_mod(PHY_vars_UE_g[UE_id]->lte_ue_common_vars.txdataF,PHY_vars_UE_g[UE_id]->lte_ue_common_vars.txdata,next_slot,&PHY_vars_UE_g[UE_id]->lte_frame_parms);
    }
    */

    for (eNB_id=0; eNB_id<NB_eNB_INST; eNB_id++) {
      // Clear RX signal for eNB = eNB_id
      for (i=0; i<(frame_parms->samples_per_tti>>1); i++) {
        for (aa=0; aa<nb_antennas_rx; aa++) {
          r_re[aa][i]=0.0;
          r_im[aa][i]=0.0;
        }
      }

      // Compute RX signal for eNB = eNB_id
      for (UE_id=0; UE_id<NB_UE_INST; UE_id++) {

        txdata = PHY_vars_UE_g[UE_id][CC_id]->lte_ue_common_vars.txdata;
        slot_offset = (next_slot)*(frame_parms->samples_per_tti>>1);
        slot_offset_meas = ((next_slot&1)==0) ? slot_offset : (slot_offset-(frame_parms->samples_per_tti>>1));

        if (((double)PHY_vars_UE_g[UE_id][CC_id]->tx_power_dBm +
             UE2eNB[UE_id][eNB_id][CC_id]->path_loss_dB) <= -125.0) {

          // don't simulate a UE that is too weak
        } else {

          tx_pwr = dac_fixed_gain(s_re,
                                  s_im,
                                  txdata,
                                  slot_offset,
                                  nb_antennas_tx,
                                  frame_parms->samples_per_tti>>1,
                                  slot_offset_meas,
                                  frame_parms->ofdm_symbol_size,
                                  14,
                                  (double)PHY_vars_UE_g[UE_id][CC_id]->tx_power_dBm-10*log10((double)PHY_vars_UE_g[UE_id][CC_id]->tx_total_RE),
                                  PHY_vars_UE_g[UE_id][CC_id]->tx_total_RE);  // This make the previous argument the total power
          //ue_data[UE_id]->tx_power_dBm);
          //#ifdef DEBUG_SIM
          LOG_D(OCM,"[SIM][UL] UE %d tx_pwr %f dBm (target %d dBm, num_RE %d) for slot %d (subframe %d, slot_offset %d, slot_offset_meas %d)\n",
                UE_id,
                10*log10(tx_pwr),
                PHY_vars_UE_g[UE_id][CC_id]->tx_power_dBm,
                PHY_vars_UE_g[UE_id][CC_id]->tx_total_RE,
                next_slot,next_slot>>1,slot_offset,slot_offset_meas);
          //#endif

          multipath_channel(UE2eNB[UE_id][eNB_id][CC_id],s_re,s_im,r_re0,r_im0,
                            frame_parms->samples_per_tti>>1,hold_channel);

          //#ifdef DEBUG_SIM
          rx_pwr = signal_energy_fp2(UE2eNB[UE_id][eNB_id][CC_id]->ch[0],
                                     UE2eNB[UE_id][eNB_id][CC_id]->channel_length)*UE2eNB[UE_id][eNB_id][CC_id]->channel_length;
          LOG_D(OCM,"[SIM][UL] slot %d Channel UE %d => eNB %d : %f dB (hold %d,length %d, PL %f)\n",next_slot,UE_id,eNB_id,10*log10(rx_pwr),
                hold_channel,UE2eNB[UE_id][eNB_id][CC_id]->channel_length,
                UE2eNB[UE_id][eNB_id][CC_id]->path_loss_dB);
          //#endif

          //#ifdef DEBUG_SIM
          rx_pwr = signal_energy_fp(r_re0,r_im0,nb_antennas_rx,frame_parms->samples_per_tti>>1,0);
          LOG_D(OCM,"[SIM][UL] eNB %d : rx_pwr %f dBm (%f) for slot %d (subframe %d), sptti %d\n",
                eNB_id,10*log10(rx_pwr),rx_pwr,next_slot,next_slot>>1,frame_parms->samples_per_tti);
          //#endif


          if (UE2eNB[UE_id][eNB_id][CC_id]->first_run == 1)
            UE2eNB[UE_id][eNB_id][CC_id]->first_run = 0;



          for (aa=0; aa<nb_antennas_rx; aa++) {
            for (i=0; i<(frame_parms->samples_per_tti>>1); i++) {
              r_re[aa][i]+=r_re0[aa][i];
              r_im[aa][i]+=r_im0[aa][i];
            }
          }
        }
      } //UE_id

      // RF model
      /*
      rf_rx(r_re0,
      r_im0,
      NULL,
      NULL,
      0,
      frame_parms->nb_antennas_rx,
      frame_parms->samples_per_tti>>1,
      1e3/UE2eNB[UE_id][eNB_id]->BW,  // sampling time (ns)
      0.0,               // freq offset (Hz) (-20kHz..20kHz)
      0.0,               // drift (Hz) NOT YET IMPLEMENTED
      enb_data[eNB_id]->rx_noise_level,                // noise_figure NOT YET IMPLEMENTED
      (double)PHY_vars_eNB_g[eNB_id]->rx_total_gain_eNB_dB - 66.227,   // rx_gain (dB) (66.227 = 20*log10(pow2(11)) = gain from the adc that will be applied later)
      200.0,               // IP3_dBm (dBm)
      &UE2eNB[UE_id][eNB_id]->ip,               // initial phase
      30.0e3,            // pn_cutoff (kHz)
      -500.0,            // pn_amp (dBc) default: 50
      0.0,               // IQ imbalance (dB),
      0.0);              // IQ phase imbalance (rad)
      */

      rf_rx_simple(r_re,
                   r_im,
                   nb_antennas_rx,
                   frame_parms->samples_per_tti>>1,
                   1e3/UE2eNB[0][eNB_id][CC_id]->sampling_rate,  // sampling time (ns)
                   (double)PHY_vars_eNB_g[eNB_id][CC_id]->rx_total_gain_eNB_dB - 66.227);   // rx_gain (dB) (66.227 = 20*log10(pow2(11)) = gain from the adc that will be applied later)

#ifdef DEBUG_SIM
      rx_pwr = signal_energy_fp(r_re,r_im,nb_antennas_rx,frame_parms->samples_per_tti>>1,0)*(double)frame_parms->ofdm_symbol_size/(12.0*frame_parms->N_RB_DL);
      LOG_D(OCM,"[SIM][UL] rx_pwr (ADC in) %f dB for slot %d (subframe %d)\n",10*log10(rx_pwr),next_slot,next_slot>>1);
#endif

      rxdata = PHY_vars_eNB_g[eNB_id][CC_id]->lte_eNB_common_vars.rxdata[0];
      slot_offset = (next_slot)*(frame_parms->samples_per_tti>>1);

      adc(r_re,
          r_im,
          0,
          slot_offset,
          rxdata,
          nb_antennas_rx,
          frame_parms->samples_per_tti>>1,
          12);

#ifdef DEBUG_SIM
      rx_pwr2 = signal_energy(rxdata[0]+slot_offset,frame_parms->samples_per_tti>>1)*(double)frame_parms->ofdm_symbol_size/(12.0*frame_parms->N_RB_DL);
      LOG_D(OCM,"[SIM][UL] eNB %d rx_pwr (ADC out) %f dB (%d) for slot %d (subframe %d)\n",eNB_id,10*log10((double)rx_pwr2),rx_pwr2,next_slot,next_slot>>1);
#else
      UNUSED_VARIABLE(tx_pwr);
      UNUSED_VARIABLE(rx_pwr);
      UNUSED_VARIABLE(rx_pwr2);
#endif

    } // eNB_id
  } // abstraction_flag==0

}


void init_channel_vars(LTE_DL_FRAME_PARMS *frame_parms, double ***s_re,double ***s_im,double ***r_re,double ***r_im,double ***r_re0,double ***r_im0)
{

  int i;

  *s_re = malloc(2*sizeof(double*));
  *s_im = malloc(2*sizeof(double*));
  *r_re = malloc(2*sizeof(double*));
  *r_im = malloc(2*sizeof(double*));
  *r_re0 = malloc(2*sizeof(double*));
  *r_im0 = malloc(2*sizeof(double*));


  for (i=0; i<2; i++) {

    (*s_re)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*s_re)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    (*s_im)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*s_im)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    (*r_re)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*r_re)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    (*r_im)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*r_im)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    (*r_re0)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*r_re0)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    (*r_im0)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*r_im0)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
  }
}