/******************************************************************************* OpenAirInterface Copyright(c) 1999 - 2014 Eurecom OpenAirInterface is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenAirInterface is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenAirInterface.The full GNU General Public License is included in this distribution in the file called "COPYING". If not, see <http://www.gnu.org/licenses/>. Contact Information OpenAirInterface Admin: openair_admin@eurecom.fr OpenAirInterface Tech : openair_tech@eurecom.fr OpenAirInterface Dev : openair4g-devel@lists.eurecom.fr Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE *******************************************************************************/ #include <string.h> #include <math.h> #include <unistd.h> #include <stdint.h> #include <stdio.h> #include <time.h> #include "SIMULATION/TOOLS/defs.h" #include "SIMULATION/RF/defs.h" #include "PHY/types.h" #include "PHY/defs.h" #include "PHY/extern.h" #include "MAC_INTERFACE/extern.h" #ifdef OPENAIR2 #include "LAYER2/MAC/defs.h" #include "LAYER2/MAC/extern.h" #include "UTIL/LOG/log_if.h" #include "UTIL/LOG/log_extern.h" #include "RRC/LITE/extern.h" #include "PHY_INTERFACE/extern.h" #include "UTIL/OCG/OCG.h" #include "UTIL/OPT/opt.h" // to test OPT #endif #include "UTIL/FIFO/types.h" #ifdef IFFT_FPGA #include "PHY/LTE_REFSIG/mod_table.h" #endif #include "SCHED/defs.h" #include "SCHED/extern.h" #ifdef XFORMS #include "forms.h" #include "phy_procedures_sim_form.h" #endif #include "oaisim.h" #define RF #define DEBUG_SIM int number_rb_ul; int first_rbUL ; extern Signal_buffers_t *signal_buffers_g; void do_DL_sig(double **r_re0,double **r_im0, double **r_re,double **r_im, double **s_re,double **s_im, channel_desc_t *eNB2UE[NUMBER_OF_eNB_MAX][NUMBER_OF_UE_MAX][MAX_NUM_CCs], node_desc_t *enb_data[NUMBER_OF_eNB_MAX], node_desc_t *ue_data[NUMBER_OF_UE_MAX], uint16_t next_slot,uint8_t abstraction_flag,LTE_DL_FRAME_PARMS *frame_parms, uint8_t UE_id, int CC_id) { int32_t att_eNB_id=-1; int32_t **txdata,**rxdata; uint8_t eNB_id=0; double tx_pwr; double rx_pwr; int32_t rx_pwr2; uint32_t i,aa; uint32_t slot_offset,slot_offset_meas; double min_path_loss=-200; uint8_t hold_channel=0; // uint8_t aatx,aarx; uint8_t nb_antennas_rx = eNB2UE[0][0][CC_id]->nb_rx; // number of rx antennas at UE uint8_t nb_antennas_tx = eNB2UE[0][0][CC_id]->nb_tx; // number of tx antennas at eNB LTE_DL_FRAME_PARMS *fp; // int subframe_sched = ((next_slot>>1) == 0) ? 9 : ((next_slot>>1)-1); if (next_slot==0) hold_channel = 0; else hold_channel = 1; if (abstraction_flag != 0) { //for (UE_id=0;UE_id<NB_UE_INST;UE_id++) { if (!hold_channel) { // calculate the random channel from each eNB for (eNB_id=0; eNB_id<NB_eNB_INST; eNB_id++) { random_channel(eNB2UE[eNB_id][UE_id][CC_id],abstraction_flag); /* for (i=0;i<eNB2UE[eNB_id][UE_id]->nb_taps;i++) printf("eNB2UE[%d][%d]->a[0][%d] = (%f,%f)\n",eNB_id,UE_id,i,eNB2UE[eNB_id][UE_id]->a[0][i].x,eNB2UE[eNB_id][UE_id]->a[0][i].y); */ freq_channel(eNB2UE[eNB_id][UE_id][CC_id], frame_parms->N_RB_DL,frame_parms->N_RB_DL*12+1); } // find out which eNB the UE is attached to for (eNB_id=0; eNB_id<NB_eNB_INST; eNB_id++) { if (find_ue(PHY_vars_UE_g[UE_id][CC_id]->lte_ue_pdcch_vars[0]->crnti,PHY_vars_eNB_g[eNB_id][CC_id])>=0) { // UE with UE_id is connected to eNb with eNB_id att_eNB_id=eNB_id; LOG_D(OCM,"A: UE attached to eNB (UE%d->eNB%d)\n",UE_id,eNB_id); } } // if UE is not attached yet, find assume its the eNB with the smallest pathloss if (att_eNB_id<0) { for (eNB_id=0; eNB_id<NB_eNB_INST; eNB_id++) { if (min_path_loss<eNB2UE[eNB_id][UE_id][CC_id]->path_loss_dB) { min_path_loss = eNB2UE[eNB_id][UE_id][CC_id]->path_loss_dB; att_eNB_id=eNB_id; LOG_D(OCM,"B: UE attached to eNB (UE%d->eNB%d)\n",UE_id,eNB_id); } } } if (att_eNB_id<0) { LOG_E(OCM,"Cannot find eNB for UE %d, return\n",UE_id); return; //exit(-1); } #ifdef DEBUG_SIM rx_pwr = signal_energy_fp2(eNB2UE[att_eNB_id][UE_id][CC_id]->ch[0], eNB2UE[att_eNB_id][UE_id][CC_id]->channel_length)*eNB2UE[att_eNB_id][UE_id][CC_id]->channel_length; LOG_D(OCM,"Channel (CCid %d) eNB %d => UE %d : tx_power %d dBm, path_loss %f dB\n", CC_id,att_eNB_id,UE_id, frame_parms->pdsch_config_common.referenceSignalPower, eNB2UE[att_eNB_id][UE_id][CC_id]->path_loss_dB); #endif //dlsch_abstraction(PHY_vars_UE_g[UE_id]->sinr_dB, rb_alloc, 8); // fill in perfect channel estimates channel_desc_t *desc1 = eNB2UE[att_eNB_id][UE_id][CC_id]; int32_t **dl_channel_est = PHY_vars_UE_g[UE_id][CC_id]->lte_ue_common_vars.dl_ch_estimates[0]; // double scale = pow(10.0,(enb_data[att_eNB_id]->tx_power_dBm + eNB2UE[att_eNB_id][UE_id]->path_loss_dB + (double) PHY_vars_UE_g[UE_id]->rx_total_gain_dB)/20.0); double scale = pow(10.0,(frame_parms->pdsch_config_common.referenceSignalPower+eNB2UE[att_eNB_id][UE_id][CC_id]->path_loss_dB + (double) PHY_vars_UE_g[UE_id][CC_id]->rx_total_gain_dB)/20.0); LOG_D(OCM,"scale =%lf (%d dB)\n",scale,(int) (20*log10(scale))); // freq_channel(desc1,frame_parms->N_RB_DL,nb_samples); //write_output("channel.m","ch",desc1->ch[0],desc1->channel_length,1,8); //write_output("channelF.m","chF",desc1->chF[0],nb_samples,1,8); int count,count1,a_rx,a_tx; for(a_tx=0; a_tx<nb_antennas_tx; a_tx++) { for (a_rx=0; a_rx<nb_antennas_rx; a_rx++) { //for (count=0;count<frame_parms->symbols_per_tti/2;count++) for (count=0; count<1; count++) { for (count1=0; count1<frame_parms->N_RB_DL*12; count1++) { ((int16_t *) dl_channel_est[(a_tx<<1)+a_rx])[2*count1+(count*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(desc1->chF[a_rx+(a_tx*nb_antennas_rx)][count1].x*scale); ((int16_t *) dl_channel_est[(a_tx<<1)+a_rx])[2*count1+1+(count*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(desc1->chF[a_rx+(a_tx*nb_antennas_rx)][count1].y*scale) ; } } } } /* if(PHY_vars_UE_g[UE_id]->transmission_mode[att_eNB_id]>=5) { lte_ue_measurements(PHY_vars_UE_g[UE_id], ((next_slot-1)>>1)*frame_parms->samples_per_tti, 1, abstraction_flag); PHY_vars_eNB_g[att_eNB_id]->dlsch_eNB[0][0]->pmi_alloc = quantize_subband_pmi(&PHY_vars_UE_g[UE_id]->PHY_measurements,0); // printf("pmi_alloc in channel sim: %d",PHY_vars_eNB_g[att_eNB_id]->dlsch_eNB[0][0]->pmi_alloc); } */ // calculate the SNR for the attached eNB (this assumes eNB always uses PMI stored in eNB_UE_stats; to be improved) init_snr(eNB2UE[att_eNB_id][UE_id][CC_id], enb_data[att_eNB_id], ue_data[UE_id], PHY_vars_UE_g[UE_id][CC_id]->sinr_dB, &PHY_vars_UE_g[UE_id][CC_id]->N0, PHY_vars_UE_g[UE_id][CC_id]->transmission_mode[att_eNB_id], PHY_vars_eNB_g[att_eNB_id][CC_id]->eNB_UE_stats[UE_id].DL_pmi_single, PHY_vars_eNB_g[att_eNB_id][CC_id]->mu_mimo_mode[UE_id].dl_pow_off,PHY_vars_eNB_g[att_eNB_id][CC_id]->lte_frame_parms.N_RB_DL); // calculate sinr here for (eNB_id = 0; eNB_id < NB_eNB_INST; eNB_id++) { if (att_eNB_id != eNB_id) { calculate_sinr(eNB2UE[eNB_id][UE_id][CC_id], enb_data[eNB_id], ue_data[UE_id], PHY_vars_UE_g[UE_id][CC_id]->sinr_dB,PHY_vars_eNB_g[att_eNB_id][CC_id]->lte_frame_parms.N_RB_DL); } } } // hold channel } else { //abstraction_flag /* Call do_OFDM_mod from phy_procedures_eNB_TX function */ // printf("r_re[0] %p\n",r_re[0]); for (aa=0; aa<nb_antennas_rx; aa++) { memset((void*)r_re[aa],0,(frame_parms->samples_per_tti>>1)*sizeof(double)); memset((void*)r_im[aa],0,(frame_parms->samples_per_tti>>1)*sizeof(double)); } /* for (i=0;i<16;i++) printf("%f, %X\n",r_re[aa][i],(unsigned long long)r_re[aa][i]); */ for (eNB_id=0; eNB_id<NB_eNB_INST; eNB_id++) { // if (((double)PHY_vars_UE_g[UE_id]->tx_power_dBm + // eNB2UE[eNB_id][UE_id]->path_loss_dB) <= -107.0) // break; txdata = PHY_vars_eNB_g[eNB_id][CC_id]->lte_eNB_common_vars.txdata[0]; slot_offset = (next_slot)*(frame_parms->samples_per_tti>>1); slot_offset_meas = ((next_slot&1)==0) ? slot_offset : (slot_offset-(frame_parms->samples_per_tti>>1)); tx_pwr = dac_fixed_gain(s_re, s_im, txdata, slot_offset, nb_antennas_tx, frame_parms->samples_per_tti>>1, slot_offset_meas, frame_parms->ofdm_symbol_size, 14, // enb_data[eNB_id]->tx_power_dBm); frame_parms->pdsch_config_common.referenceSignalPower, // dBm/RE frame_parms->N_RB_DL*12); #ifdef DEBUG_SIM LOG_D(OCM,"[SIM][DL] eNB %d (CCid %d): tx_pwr %.1f dBm/RE (target %d dBm/RE), for slot %d (subframe %d)\n", eNB_id,CC_id, 10*log10(tx_pwr), frame_parms->pdsch_config_common.referenceSignalPower, next_slot, next_slot>>1); #endif //eNB2UE[eNB_id][UE_id]->path_loss_dB = 0; multipath_channel(eNB2UE[eNB_id][UE_id][CC_id],s_re,s_im,r_re0,r_im0, frame_parms->samples_per_tti>>1,hold_channel); #ifdef DEBUG_SIM rx_pwr = signal_energy_fp2(eNB2UE[eNB_id][UE_id][CC_id]->ch[0], eNB2UE[eNB_id][UE_id][CC_id]->channel_length)*eNB2UE[eNB_id][UE_id][CC_id]->channel_length; LOG_D(OCM,"[SIM][DL] Channel eNB %d => UE %d (CCid %d): Channel gain %f dB (%f)\n",eNB_id,UE_id,CC_id,10*log10(rx_pwr),rx_pwr); #endif #ifdef DEBUG_SIM for (i=0; i<eNB2UE[eNB_id][UE_id][CC_id]->channel_length; i++) LOG_D(OCM,"channel(%d,%d)[%d] : (%f,%f)\n",eNB_id,UE_id,i,eNB2UE[eNB_id][UE_id][CC_id]->ch[0][i].x,eNB2UE[eNB_id][UE_id][CC_id]->ch[0][i].y); #endif LOG_D(OCM,"[SIM][DL] Channel eNB %d => UE %d (CCid %d): tx_power %.1f dBm/RE, path_loss %1.f dB\n", eNB_id,UE_id,CC_id, (double)frame_parms->pdsch_config_common.referenceSignalPower, // enb_data[eNB_id]->tx_power_dBm, eNB2UE[eNB_id][UE_id][CC_id]->path_loss_dB); #ifdef DEBUG_SIM rx_pwr = signal_energy_fp(r_re0,r_im0,nb_antennas_rx, frame_parms->ofdm_symbol_size, slot_offset_meas)/(12.0*frame_parms->N_RB_DL); LOG_D(OCM,"[SIM][DL] UE %d : rx_pwr %f dBm/RE (%f dBm RSSI)for slot %d (subframe %d)\n",UE_id, 10*log10(rx_pwr), 10*log10(rx_pwr*(double)frame_parms->N_RB_DL*12),next_slot,next_slot>>1); LOG_D(OCM,"[SIM][DL] UE %d : rx_pwr (noise) -132 dBm/RE (N0fs = %.1f dBm, N0B = %.1f dBm) for slot %d (subframe %d)\n", UE_id, 10*log10(eNB2UE[eNB_id][UE_id][CC_id]->sampling_rate*1e6)-174, 10*log10(eNB2UE[eNB_id][UE_id][CC_id]->sampling_rate*1e6*12*frame_parms->N_RB_DL/(double)frame_parms->ofdm_symbol_size)-174, next_slot,next_slot>>1); #endif if (eNB2UE[eNB_id][UE_id][CC_id]->first_run == 1) eNB2UE[eNB_id][UE_id][CC_id]->first_run = 0; // RF model #ifdef DEBUG_SIM LOG_D(OCM,"[SIM][DL] UE %d (CCid %d): rx_gain %d dB (-ADC %f) for slot %d (subframe %d)\n",UE_id,CC_id,PHY_vars_UE_g[UE_id][CC_id]->rx_total_gain_dB, PHY_vars_UE_g[UE_id][CC_id]->rx_total_gain_dB-66.227,next_slot,next_slot>>1); #endif /* rf_rx(r_re0, r_im0, NULL, NULL, 0, nb_antennas_rx, frame_parms->samples_per_tti>>1, 1e3/eNB2UE[eNB_id][UE_id]->BW, // sampling time (ns) 0.0, // freq offset (Hz) (-20kHz..20kHz) 0.0, // drift (Hz) NOT YET IMPLEMENTED ue_data[UE_id]->rx_noise_level, // noise_figure NOT YET IMPLEMENTED (double)PHY_vars_UE_g[UE_id]->rx_total_gain_dB - 66.227, // rx_gain (dB) (66.227 = 20*log10(pow2(11)) = gain from the adc that will be applied later) 200.0, // IP3_dBm (dBm) &eNB2UE[eNB_id][UE_id]->ip, // initial phase 30.0e3, // pn_cutoff (kHz) -500.0, // pn_amp (dBc) default: 50 0.0, // IQ imbalance (dB), 0.0); // IQ phase imbalance (rad) */ rf_rx_simple(r_re0, r_im0, nb_antennas_rx, frame_parms->samples_per_tti>>1, 1e3/eNB2UE[eNB_id][UE_id][CC_id]->sampling_rate, // sampling time (ns) (double)PHY_vars_UE_g[UE_id][CC_id]->rx_total_gain_dB - 66.227); // rx_gain (dB) (66.227 = 20*log10(pow2(11)) = gain from the adc that will be applied later) #ifdef DEBUG_SIM rx_pwr = signal_energy_fp(r_re0,r_im0, nb_antennas_rx, frame_parms->ofdm_symbol_size, slot_offset_meas)/(12.0*frame_parms->N_RB_DL); LOG_D(OCM,"[SIM][DL] UE %d : ADC in (eNB %d) %f dBm/RE for slot %d (subframe %d)\n", UE_id,eNB_id, 10*log10(rx_pwr),next_slot,next_slot>>1); #endif for (i=0; i<(frame_parms->samples_per_tti>>1); i++) { for (aa=0; aa<nb_antennas_rx; aa++) { r_re[aa][i]+=r_re0[aa][i]; r_im[aa][i]+=r_im0[aa][i]; } } } #ifdef DEBUG_SIM rx_pwr = signal_energy_fp(r_re,r_im,nb_antennas_rx,frame_parms->ofdm_symbol_size,slot_offset_meas)/(12.0*frame_parms->N_RB_DL); LOG_D(OCM,"[SIM][DL] UE %d : ADC in %f dBm for slot %d (subframe %d)\n",UE_id,10*log10(rx_pwr),next_slot,next_slot>>1); #endif rxdata = PHY_vars_UE_g[UE_id][CC_id]->lte_ue_common_vars.rxdata; slot_offset = (next_slot)*(frame_parms->samples_per_tti>>1); adc(r_re, r_im, 0, slot_offset, rxdata, nb_antennas_rx, frame_parms->samples_per_tti>>1, 12); #ifdef DEBUG_SIM rx_pwr2 = signal_energy(rxdata[0]+slot_offset,frame_parms->ofdm_symbol_size)/(12.0*frame_parms->N_RB_DL); LOG_D(OCM,"[SIM][DL] UE %d : rx_pwr (ADC out) %f dB/RE (%d) for slot %d (subframe %d), writing to %p\n",UE_id, 10*log10((double)rx_pwr2),rx_pwr2,next_slot,next_slot>>1,rxdata); #else UNUSED_VARIABLE(rx_pwr2); UNUSED_VARIABLE(tx_pwr); UNUSED_VARIABLE(rx_pwr); #endif //}// UE_index loop } } void do_UL_sig(double **r_re0,double **r_im0,double **r_re,double **r_im,double **s_re,double **s_im,channel_desc_t *UE2eNB[NUMBER_OF_UE_MAX][NUMBER_OF_eNB_MAX][MAX_NUM_CCs], node_desc_t *enb_data[NUMBER_OF_eNB_MAX],node_desc_t *ue_data[NUMBER_OF_UE_MAX],uint16_t next_slot,uint8_t abstraction_flag,LTE_DL_FRAME_PARMS *frame_parms, uint32_t frame,uint8_t CC_id) { int32_t **txdata,**rxdata; #ifdef PHY_ABSTRACTION_UL int32_t att_eNB_id=-1; #endif uint8_t eNB_id=0,UE_id=0; uint8_t nb_antennas_rx = UE2eNB[0][0][CC_id]->nb_rx; // number of rx antennas at eNB uint8_t nb_antennas_tx = UE2eNB[0][0][CC_id]->nb_tx; // number of tx antennas at UE double tx_pwr, rx_pwr; int32_t rx_pwr2; uint32_t i,aa; uint32_t slot_offset,slot_offset_meas; uint8_t hold_channel=0; #ifdef PHY_ABSTRACTION_UL double min_path_loss=-200; uint16_t ul_nb_rb=0 ; uint16_t ul_fr_rb=0; int ulnbrb2 ; int ulfrrb2 ; uint8_t harq_pid; int subframe = (next_slot>>1); #endif /* if (next_slot==4) hold_channel = 0; else hold_channel = 1; */ if (abstraction_flag!=0) { #ifdef PHY_ABSTRACTION_UL for (eNB_id=0; eNB_id<NB_eNB_INST; eNB_id++) { for (UE_id=0; UE_id<NB_UE_INST; UE_id++) { if (!hold_channel) { random_channel(UE2eNB[UE_id][eNB_id][CC_id],abstraction_flag); freq_channel(UE2eNB[UE_id][eNB_id][CC_id], frame_parms->N_RB_UL,frame_parms->N_RB_UL*12+1); // REceived power at the eNB rx_pwr = signal_energy_fp2(UE2eNB[UE_id][eNB_id][CC_id]->ch[0], UE2eNB[UE_id][eNB_id][CC_id]->channel_length)*UE2eNB[UE_id][att_eNB_id][CC_id]->channel_length; // calculate the rx power at the eNB } // write_output("SINRch.m","SINRch",PHY_vars_eNB_g[att_eNB_id]->sinr_dB_eNB,frame_parms->N_RB_UL*12+1,1,1); if(subframe>1 && subframe <5) { harq_pid = subframe2harq_pid(frame_parms,frame,subframe); ul_nb_rb = PHY_vars_eNB_g[att_eNB_id][CC_id]->ulsch_eNB[(uint8_t)UE_id]->harq_processes[harq_pid]->nb_rb; ul_fr_rb = PHY_vars_eNB_g[att_eNB_id][CC_id]->ulsch_eNB[(uint8_t)UE_id]->harq_processes[harq_pid]->first_rb; } if(ul_nb_rb>1 && (ul_fr_rb < 25 && ul_fr_rb > -1)) { number_rb_ul = ul_nb_rb; first_rbUL = ul_fr_rb; init_snr_up(UE2eNB[UE_id][att_eNB_id][CC_id],enb_data[att_eNB_id], ue_data[UE_id],PHY_vars_eNB_g[att_eNB_id][CC_id]->sinr_dB,&PHY_vars_UE_g[att_eNB_id][CC_id]->N0,ul_nb_rb,ul_fr_rb); } } //UE_id } //eNB_id #else /* the following functions are not needed */ /* if (abstraction_flag!=0) { for (eNB_id=0;eNB_id<NB_eNB_INST;eNB_id++) { for (UE_id=0;UE_id<NB_UE_INST;UE_id++) { random_channel(UE2eNB[UE_id][eNB_id]); freq_channel(UE2eNB[UE_id][eNB_id], frame_parms->N_RB_UL,2); } } } */ #endif } else { //without abstraction /* for (UE_id=0;UE_id<NB_UE_INST;UE_id++) { do_OFDM_mod(PHY_vars_UE_g[UE_id]->lte_ue_common_vars.txdataF,PHY_vars_UE_g[UE_id]->lte_ue_common_vars.txdata,next_slot,&PHY_vars_UE_g[UE_id]->lte_frame_parms); } */ for (eNB_id=0; eNB_id<NB_eNB_INST; eNB_id++) { // Clear RX signal for eNB = eNB_id for (i=0; i<(frame_parms->samples_per_tti>>1); i++) { for (aa=0; aa<nb_antennas_rx; aa++) { r_re[aa][i]=0.0; r_im[aa][i]=0.0; } } // Compute RX signal for eNB = eNB_id for (UE_id=0; UE_id<NB_UE_INST; UE_id++) { txdata = PHY_vars_UE_g[UE_id][CC_id]->lte_ue_common_vars.txdata; slot_offset = (next_slot)*(frame_parms->samples_per_tti>>1); slot_offset_meas = ((next_slot&1)==0) ? slot_offset : (slot_offset-(frame_parms->samples_per_tti>>1)); if (((double)PHY_vars_UE_g[UE_id][CC_id]->tx_power_dBm + UE2eNB[UE_id][eNB_id][CC_id]->path_loss_dB) <= -125.0) { // don't simulate a UE that is too weak } else { tx_pwr = dac_fixed_gain(s_re, s_im, txdata, slot_offset, nb_antennas_tx, frame_parms->samples_per_tti>>1, slot_offset_meas, frame_parms->ofdm_symbol_size, 14, (double)PHY_vars_UE_g[UE_id][CC_id]->tx_power_dBm-10*log10((double)PHY_vars_UE_g[UE_id][CC_id]->tx_total_RE), PHY_vars_UE_g[UE_id][CC_id]->tx_total_RE); // This make the previous argument the total power //ue_data[UE_id]->tx_power_dBm); //#ifdef DEBUG_SIM LOG_D(OCM,"[SIM][UL] UE %d tx_pwr %f dBm (target %d dBm, num_RE %d) for slot %d (subframe %d, slot_offset %d, slot_offset_meas %d)\n", UE_id, 10*log10(tx_pwr), PHY_vars_UE_g[UE_id][CC_id]->tx_power_dBm, PHY_vars_UE_g[UE_id][CC_id]->tx_total_RE, next_slot,next_slot>>1,slot_offset,slot_offset_meas); //#endif multipath_channel(UE2eNB[UE_id][eNB_id][CC_id],s_re,s_im,r_re0,r_im0, frame_parms->samples_per_tti>>1,hold_channel); //#ifdef DEBUG_SIM rx_pwr = signal_energy_fp2(UE2eNB[UE_id][eNB_id][CC_id]->ch[0], UE2eNB[UE_id][eNB_id][CC_id]->channel_length)*UE2eNB[UE_id][eNB_id][CC_id]->channel_length; LOG_D(OCM,"[SIM][UL] slot %d Channel UE %d => eNB %d : %f dB (hold %d,length %d, PL %f)\n",next_slot,UE_id,eNB_id,10*log10(rx_pwr), hold_channel,UE2eNB[UE_id][eNB_id][CC_id]->channel_length, UE2eNB[UE_id][eNB_id][CC_id]->path_loss_dB); //#endif //#ifdef DEBUG_SIM rx_pwr = signal_energy_fp(r_re0,r_im0,nb_antennas_rx,frame_parms->samples_per_tti>>1,0); LOG_D(OCM,"[SIM][UL] eNB %d : rx_pwr %f dBm (%f) for slot %d (subframe %d), sptti %d\n", eNB_id,10*log10(rx_pwr),rx_pwr,next_slot,next_slot>>1,frame_parms->samples_per_tti); //#endif if (UE2eNB[UE_id][eNB_id][CC_id]->first_run == 1) UE2eNB[UE_id][eNB_id][CC_id]->first_run = 0; for (aa=0; aa<nb_antennas_rx; aa++) { for (i=0; i<(frame_parms->samples_per_tti>>1); i++) { r_re[aa][i]+=r_re0[aa][i]; r_im[aa][i]+=r_im0[aa][i]; } } } } //UE_id // RF model /* rf_rx(r_re0, r_im0, NULL, NULL, 0, frame_parms->nb_antennas_rx, frame_parms->samples_per_tti>>1, 1e3/UE2eNB[UE_id][eNB_id]->BW, // sampling time (ns) 0.0, // freq offset (Hz) (-20kHz..20kHz) 0.0, // drift (Hz) NOT YET IMPLEMENTED enb_data[eNB_id]->rx_noise_level, // noise_figure NOT YET IMPLEMENTED (double)PHY_vars_eNB_g[eNB_id]->rx_total_gain_eNB_dB - 66.227, // rx_gain (dB) (66.227 = 20*log10(pow2(11)) = gain from the adc that will be applied later) 200.0, // IP3_dBm (dBm) &UE2eNB[UE_id][eNB_id]->ip, // initial phase 30.0e3, // pn_cutoff (kHz) -500.0, // pn_amp (dBc) default: 50 0.0, // IQ imbalance (dB), 0.0); // IQ phase imbalance (rad) */ rf_rx_simple(r_re, r_im, nb_antennas_rx, frame_parms->samples_per_tti>>1, 1e3/UE2eNB[0][eNB_id][CC_id]->sampling_rate, // sampling time (ns) (double)PHY_vars_eNB_g[eNB_id][CC_id]->rx_total_gain_eNB_dB - 66.227); // rx_gain (dB) (66.227 = 20*log10(pow2(11)) = gain from the adc that will be applied later) #ifdef DEBUG_SIM rx_pwr = signal_energy_fp(r_re,r_im,nb_antennas_rx,frame_parms->samples_per_tti>>1,0)*(double)frame_parms->ofdm_symbol_size/(12.0*frame_parms->N_RB_DL); LOG_D(OCM,"[SIM][UL] rx_pwr (ADC in) %f dB for slot %d (subframe %d)\n",10*log10(rx_pwr),next_slot,next_slot>>1); #endif rxdata = PHY_vars_eNB_g[eNB_id][CC_id]->lte_eNB_common_vars.rxdata[0]; slot_offset = (next_slot)*(frame_parms->samples_per_tti>>1); adc(r_re, r_im, 0, slot_offset, rxdata, nb_antennas_rx, frame_parms->samples_per_tti>>1, 12); #ifdef DEBUG_SIM rx_pwr2 = signal_energy(rxdata[0]+slot_offset,frame_parms->samples_per_tti>>1)*(double)frame_parms->ofdm_symbol_size/(12.0*frame_parms->N_RB_DL); LOG_D(OCM,"[SIM][UL] eNB %d rx_pwr (ADC out) %f dB (%d) for slot %d (subframe %d)\n",eNB_id,10*log10((double)rx_pwr2),rx_pwr2,next_slot,next_slot>>1); #else UNUSED_VARIABLE(tx_pwr); UNUSED_VARIABLE(rx_pwr); UNUSED_VARIABLE(rx_pwr2); #endif } // eNB_id } // abstraction_flag==0 } void init_channel_vars(LTE_DL_FRAME_PARMS *frame_parms, double ***s_re,double ***s_im,double ***r_re,double ***r_im,double ***r_re0,double ***r_im0) { int i; *s_re = malloc(2*sizeof(double*)); *s_im = malloc(2*sizeof(double*)); *r_re = malloc(2*sizeof(double*)); *r_im = malloc(2*sizeof(double*)); *r_re0 = malloc(2*sizeof(double*)); *r_im0 = malloc(2*sizeof(double*)); for (i=0; i<2; i++) { (*s_re)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); bzero((*s_re)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); (*s_im)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); bzero((*s_im)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); (*r_re)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); bzero((*r_re)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); (*r_im)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); bzero((*r_im)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); (*r_re0)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); bzero((*r_re0)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); (*r_im0)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); bzero((*r_im0)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); } }