/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/*! \file gNB_scheduler_ulsch.c
* \brief gNB procedures for the ULSCH transport channel
* \author Navid Nikaein and Raymond Knopp, Guido Casati
* \date 2019
* \email: guido.casati@iis.fraunhofer.de
* \version 1.0
* @ingroup _mac
*/
#include "LAYER2/NR_MAC_gNB/mac_proto.h"
#include "executables/softmodem-common.h"
#include "common/utils/nr/nr_common.h"
//38.321 Table 6.1.3.1-1
const uint32_t NR_SHORT_BSR_TABLE[32] = {
0, 10, 14, 20, 28, 38, 53, 74,
102, 142, 198, 276, 384, 535, 745, 1038,
1446, 2014, 2806, 3909, 5446, 7587, 10570, 14726,
20516, 28581, 39818, 55474, 77284, 107669, 150000, 300000
};
//38.321 Table 6.1.3.1-2
const uint32_t NR_LONG_BSR_TABLE[256] ={
0, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26,
28, 30, 32, 34, 36, 38, 40, 43, 46, 49, 52, 55, 59, 62, 66, 71,
75, 80, 85, 91, 97, 103, 110, 117, 124, 132, 141, 150, 160, 170, 181, 193,
205, 218, 233, 248, 264, 281, 299, 318, 339, 361, 384, 409, 436, 464, 494, 526,
560, 597, 635, 677, 720, 767, 817, 870, 926, 987, 1051, 1119, 1191, 1269, 1351, 1439,
1532, 1631, 1737, 1850, 1970, 2098, 2234, 2379, 2533, 2698, 2873, 3059, 3258, 3469, 3694, 3934,
4189, 4461, 4751, 5059, 5387, 5737, 6109, 6506, 6928, 7378, 7857, 8367, 8910, 9488, 10104, 10760,
11458, 12202, 12994, 13838, 14736, 15692, 16711, 17795, 18951, 20181, 21491, 22885, 24371, 25953, 27638, 29431,
31342, 33376, 35543, 37850, 40307, 42923, 45709, 48676, 51836, 55200, 58784, 62599, 66663, 70990, 75598, 80505,
85730, 91295, 97221, 103532, 110252, 117409, 125030, 133146, 141789, 150992, 160793, 171231, 182345, 194182, 206786, 220209,
234503, 249725, 265935, 283197, 301579, 321155, 342002, 364202, 387842, 413018, 439827, 468377, 498780, 531156, 565634, 602350,
641449, 683087, 727427, 774645, 824928, 878475, 935498, 996222, 1060888, 1129752, 1203085, 1281179, 1364342, 1452903, 1547213, 1647644,
1754595, 1868488, 1989774, 2118933, 2256475, 2402946, 2558924, 2725027, 2901912, 3090279, 3290873, 3504487, 3731968, 3974215, 4232186, 4506902,
4799451, 5110989, 5442750, 5796046, 6172275, 6572925, 6999582, 7453933, 7937777, 8453028, 9001725, 9586039, 10208280, 10870913, 11576557, 12328006,
13128233, 13980403, 14887889, 15854280, 16883401, 17979324, 19146385, 20389201, 21712690, 23122088, 24622972, 26221280, 27923336, 29735875, 31666069, 33721553,
35910462, 38241455, 40723756, 43367187, 46182206, 49179951, 52372284, 55771835, 59392055, 63247269, 67352729, 71724679, 76380419, 81338368, 162676736, 4294967295
};
void nr_process_mac_pdu(
module_id_t module_idP,
rnti_t rnti,
uint8_t CC_id,
frame_t frameP,
uint8_t *pduP,
uint16_t mac_pdu_len)
{
// This function is adapting code from the old
// parse_header(...) and ue_send_sdu(...) functions of OAI LTE
uint8_t *pdu_ptr = pduP, rx_lcid, done = 0;
int pdu_len = mac_pdu_len;
uint16_t mac_ce_len, mac_subheader_len, mac_sdu_len;
NR_UE_info_t *UE_info = &RC.nrmac[module_idP]->UE_info;
int UE_id = find_nr_UE_id(module_idP, rnti);
if (UE_id == -1) {
LOG_E(NR_MAC, "%s() UE_id == -1\n",__func__);
return;
}
NR_UE_sched_ctrl_t *sched_ctrl = &UE_info->UE_sched_ctrl[UE_id];
// For both DL/UL-SCH
// Except:
// - UL/DL-SCH: fixed-size MAC CE(known by LCID)
// - UL/DL-SCH: padding
// - UL-SCH: MSG3 48-bits
// |0|1|2|3|4|5|6|7| bit-wise
// |R|F| LCID |
// | L |
// |0|1|2|3|4|5|6|7| bit-wise
// |R|F| LCID |
// | L |
// | L |
// For both DL/UL-SCH
// For:
// - UL/DL-SCH: fixed-size MAC CE(known by LCID)
// - UL/DL-SCH: padding, for single/multiple 1-oct padding CE(s)
// - UL-SCH: MSG3 48-bits
// |0|1|2|3|4|5|6|7| bit-wise
// |R|R| LCID |
// LCID: The Logical Channel ID field identifies the logical channel instance of the corresponding MAC SDU or the type of the corresponding MAC CE or padding as described in Tables 6.2.1-1 and 6.2.1-2 for the DL-SCH and UL-SCH respectively. There is one LCID field per MAC subheader. The LCID field size is 6 bits;
// L: The Length field indicates the length of the corresponding MAC SDU or variable-sized MAC CE in bytes. There is one L field per MAC subheader except for subheaders corresponding to fixed-sized MAC CEs and padding. The size of the L field is indicated by the F field;
// F: lenght of L is 0:8 or 1:16 bits wide
// R: Reserved bit, set to zero.
while (!done && pdu_len > 0){
mac_ce_len = 0;
mac_subheader_len = 1; // default to fixed-length subheader = 1-oct
mac_sdu_len = 0;
rx_lcid = ((NR_MAC_SUBHEADER_FIXED *)pdu_ptr)->LCID;
LOG_I(NR_MAC, "LCID received at gNB side: %d \n", rx_lcid);
unsigned char *ce_ptr;
int n_Lcg = 0;
switch(rx_lcid){
// MAC CE
/*#ifdef DEBUG_HEADER_PARSING
LOG_D(NR_MAC, "[UE] LCID %d, PDU length %d\n", ((NR_MAC_SUBHEADER_FIXED *)pdu_ptr)->LCID, pdu_len);
#endif*/
case UL_SCH_LCID_RECOMMENDED_BITRATE_QUERY:
// 38.321 Ch6.1.3.20
mac_ce_len = 2;
break;
case UL_SCH_LCID_CONFIGURED_GRANT_CONFIRMATION:
// 38.321 Ch6.1.3.7
break;
case UL_SCH_LCID_S_BSR:
case UL_SCH_LCID_S_TRUNCATED_BSR:
//38.321 section 6.1.3.1
//fixed length
mac_ce_len =1;
/* Extract short BSR value */
ce_ptr = &pdu_ptr[mac_subheader_len];
NR_BSR_SHORT *bsr_s = (NR_BSR_SHORT *) ce_ptr;
sched_ctrl->estimated_ul_buffer = 0;
sched_ctrl->estimated_ul_buffer = NR_SHORT_BSR_TABLE[bsr_s->Buffer_size];
LOG_D(NR_MAC, "SHORT BSR, LCG ID %d, BS Index %d, BS value < %d, est buf %d\n",
bsr_s->LcgID,
bsr_s->Buffer_size,
NR_SHORT_BSR_TABLE[bsr_s->Buffer_size],
sched_ctrl->estimated_ul_buffer);
break;
case UL_SCH_LCID_L_BSR:
case UL_SCH_LCID_L_TRUNCATED_BSR:
//38.321 section 6.1.3.1
//variable length
mac_ce_len |= (uint16_t)((NR_MAC_SUBHEADER_SHORT *)pdu_ptr)->L;
mac_subheader_len = 2;
if(((NR_MAC_SUBHEADER_SHORT *)pdu_ptr)->F){
mac_ce_len |= (uint16_t)(((NR_MAC_SUBHEADER_LONG *)pdu_ptr)->L2)<<8;
mac_subheader_len = 3;
}
/* Extract long BSR value */
ce_ptr = &pdu_ptr[mac_subheader_len];
NR_BSR_LONG *bsr_l = (NR_BSR_LONG *) ce_ptr;
sched_ctrl->estimated_ul_buffer = 0;
n_Lcg = bsr_l->LcgID7 + bsr_l->LcgID6 + bsr_l->LcgID5 + bsr_l->LcgID4 +
bsr_l->LcgID3 + bsr_l->LcgID2 + bsr_l->LcgID1 + bsr_l->LcgID0;
LOG_D(NR_MAC, "LONG BSR, LCG ID(7-0) %d/%d/%d/%d/%d/%d/%d/%d\n",
bsr_l->LcgID7, bsr_l->LcgID6, bsr_l->LcgID5, bsr_l->LcgID4,
bsr_l->LcgID3, bsr_l->LcgID2, bsr_l->LcgID1, bsr_l->LcgID0);
for (int n = 0; n < n_Lcg; n++){
LOG_D(NR_MAC, "LONG BSR, %d/%d (n/n_Lcg), BS Index %d, BS value < %d",
n, n_Lcg, pdu_ptr[mac_subheader_len + 1 + n],
NR_LONG_BSR_TABLE[pdu_ptr[mac_subheader_len + 1 + n]]);
sched_ctrl->estimated_ul_buffer +=
NR_LONG_BSR_TABLE[pdu_ptr[mac_subheader_len + 1 + n]];
}
break;
case UL_SCH_LCID_C_RNTI:
//38.321 section 6.1.3.2
//fixed length
mac_ce_len = 2;
/* Extract CRNTI value */
break;
case UL_SCH_LCID_SINGLE_ENTRY_PHR:
//38.321 section 6.1.3.8
//fixed length
mac_ce_len = 2;
/* Extract SINGLE ENTRY PHR elements for PHR calculation */
break;
case UL_SCH_LCID_MULTI_ENTRY_PHR_1_OCT:
//38.321 section 6.1.3.9
// varialbe length
mac_ce_len |= (uint16_t)((NR_MAC_SUBHEADER_SHORT *)pdu_ptr)->L;
mac_subheader_len = 2;
if(((NR_MAC_SUBHEADER_SHORT *)pdu_ptr)->F){
mac_ce_len |= (uint16_t)(((NR_MAC_SUBHEADER_LONG *)pdu_ptr)->L2)<<8;
mac_subheader_len = 3;
}
/* Extract MULTI ENTRY PHR elements from single octet bitmap for PHR calculation */
break;
case UL_SCH_LCID_MULTI_ENTRY_PHR_4_OCT:
//38.321 section 6.1.3.9
// varialbe length
mac_ce_len |= (uint16_t)((NR_MAC_SUBHEADER_SHORT *)pdu_ptr)->L;
mac_subheader_len = 2;
if(((NR_MAC_SUBHEADER_SHORT *)pdu_ptr)->F){
mac_ce_len |= (uint16_t)(((NR_MAC_SUBHEADER_LONG *)pdu_ptr)->L2)<<8;
mac_subheader_len = 3;
}
/* Extract MULTI ENTRY PHR elements from four octets bitmap for PHR calculation */
break;
case UL_SCH_LCID_PADDING:
done = 1;
// end of MAC PDU, can ignore the rest.
break;
case UL_SCH_LCID_SRB1:
if(((NR_MAC_SUBHEADER_SHORT *)pdu_ptr)->F){
//mac_sdu_len |= (uint16_t)(((NR_MAC_SUBHEADER_LONG *)pdu_ptr)->L2)<<8;
mac_subheader_len = 3;
mac_sdu_len = ((uint16_t)(((NR_MAC_SUBHEADER_LONG *) pdu_ptr)->L1 & 0x7f) << 8)
| ((uint16_t)((NR_MAC_SUBHEADER_LONG *) pdu_ptr)->L2 & 0xff);
} else {
mac_sdu_len = (uint16_t)((NR_MAC_SUBHEADER_SHORT *)pdu_ptr)->L;
mac_subheader_len = 2;
}
LOG_I(NR_MAC, "[UE %d] Frame %d : ULSCH -> UL-DCCH %d (gNB %d, %d bytes), rnti: %d \n", module_idP, frameP, rx_lcid, module_idP, mac_sdu_len, rnti);
mac_rlc_data_ind(module_idP,
rnti,
module_idP,
frameP,
ENB_FLAG_YES,
MBMS_FLAG_NO,
rx_lcid,
(char *) (pdu_ptr + mac_subheader_len),
mac_sdu_len,
1,
NULL);
break;
case UL_SCH_LCID_SRB2:
// todo
break;
case UL_SCH_LCID_SRB3:
// todo
break;
case UL_SCH_LCID_CCCH:
case UL_SCH_LCID_CCCH1:
// fixed length
mac_subheader_len = 1;
if ( rx_lcid == UL_SCH_LCID_CCCH1 ) {
// RRCResumeRequest1 message includes the full I-RNTI and has a size of 8 bytes
mac_sdu_len = 8;
// Check if it is a valid CCCH1 message, we get all 00's messages very often
int i = 0;
for(i=0; i<(mac_subheader_len+mac_sdu_len); i++) {
if(pdu_ptr[i] != 0) {
break;
}
}
if (i == (mac_subheader_len+mac_sdu_len)) {
LOG_D(NR_MAC, "%s() Invalid CCCH1 message!, pdu_len: %d\n", __func__, pdu_len);
done = 1;
break;
}
} else {
// fixed length of 6 bytes
mac_sdu_len = 6;
}
nr_mac_rrc_data_ind(module_idP,
CC_id,
frameP,
0,
0,
rnti,
CCCH,
pdu_ptr+mac_subheader_len,
mac_sdu_len,
0);
break;
case UL_SCH_LCID_DTCH:
// check if LCID is valid at current time.
if(((NR_MAC_SUBHEADER_SHORT *)pdu_ptr)->F){
//mac_sdu_len |= (uint16_t)(((NR_MAC_SUBHEADER_LONG *)pdu_ptr)->L2)<<8;
mac_subheader_len = 3;
mac_sdu_len = ((uint16_t)(((NR_MAC_SUBHEADER_LONG *) pdu_ptr)->L1 & 0x7f) << 8)
| ((uint16_t)((NR_MAC_SUBHEADER_LONG *) pdu_ptr)->L2 & 0xff);
} else {
mac_sdu_len = (uint16_t)((NR_MAC_SUBHEADER_SHORT *)pdu_ptr)->L;
mac_subheader_len = 2;
}
LOG_D(NR_MAC, "[UE %d] Frame %d : ULSCH -> UL-DTCH %d (gNB %d, %d bytes)\n", module_idP, frameP, rx_lcid, module_idP, mac_sdu_len);
int UE_id = find_nr_UE_id(module_idP, rnti);
RC.nrmac[module_idP]->UE_info.mac_stats[UE_id].lc_bytes_rx[rx_lcid] += mac_sdu_len;
#if defined(ENABLE_MAC_PAYLOAD_DEBUG)
log_dump(NR_MAC, pdu_ptr + mac_subheader_len, 32, LOG_DUMP_CHAR, "\n");
#endif
mac_rlc_data_ind(module_idP,
rnti,
module_idP,
frameP,
ENB_FLAG_YES,
MBMS_FLAG_NO,
rx_lcid,
(char *) (pdu_ptr + mac_subheader_len),
mac_sdu_len,
1,
NULL);
/* Updated estimated buffer when receiving data */
if (sched_ctrl->estimated_ul_buffer >= mac_sdu_len)
sched_ctrl->estimated_ul_buffer -= mac_sdu_len;
else
sched_ctrl->estimated_ul_buffer = 0;
break;
default:
LOG_D(NR_MAC, "Received unknown MAC header (LCID = 0x%02x)\n", rx_lcid);
return;
break;
}
pdu_ptr += ( mac_subheader_len + mac_ce_len + mac_sdu_len );
pdu_len -= ( mac_subheader_len + mac_ce_len + mac_sdu_len );
if (pdu_len < 0) {
LOG_E(NR_MAC, "%s() residual mac pdu length < 0!, pdu_len: %d\n", __func__, pdu_len);
LOG_E(NR_MAC, "MAC PDU ");
for (int i = 0; i < 20; i++) // Only printf 1st - 20nd bytes
printf("%02x ", pdu_ptr[i]);
printf("\n");
return;
}
}
}
void handle_nr_ul_harq(module_id_t mod_id,
frame_t frame,
sub_frame_t slot,
const nfapi_nr_crc_t *crc_pdu)
{
int UE_id = find_nr_UE_id(mod_id, crc_pdu->rnti);
if (UE_id < 0) {
LOG_E(NR_MAC, "%s(): unknown RNTI %04x in PUSCH\n", __func__, crc_pdu->rnti);
return;
}
NR_UE_info_t *UE_info = &RC.nrmac[mod_id]->UE_info;
NR_UE_sched_ctrl_t *sched_ctrl = &UE_info->UE_sched_ctrl[UE_id];
int8_t harq_pid = sched_ctrl->feedback_ul_harq.head;
while (crc_pdu->harq_id != harq_pid || harq_pid < 0) {
LOG_W(NR_MAC,
"Unexpected ULSCH HARQ PID %d (have %d) for RNTI %04x (ignore this warning for RA)\n",
crc_pdu->harq_id,
harq_pid,
crc_pdu->rnti);
if (harq_pid < 0)
return;
remove_front_nr_list(&sched_ctrl->feedback_ul_harq);
sched_ctrl->ul_harq_processes[harq_pid].is_waiting = false;
if(sched_ctrl->ul_harq_processes[harq_pid].round == MAX_HARQ_ROUNDS) {
sched_ctrl->ul_harq_processes[harq_pid].ndi ^= 1;
sched_ctrl->ul_harq_processes[harq_pid].round = 0;
UE_info->mac_stats[UE_id].ulsch_errors++;
add_tail_nr_list(&sched_ctrl->available_ul_harq, harq_pid);
} else {
sched_ctrl->ul_harq_processes[harq_pid].round++;
add_tail_nr_list(&sched_ctrl->retrans_ul_harq, harq_pid);
}
harq_pid = sched_ctrl->feedback_ul_harq.head;
}
remove_front_nr_list(&sched_ctrl->feedback_ul_harq);
NR_UE_ul_harq_t *harq = &sched_ctrl->ul_harq_processes[harq_pid];
DevAssert(harq->is_waiting);
harq->feedback_slot = -1;
harq->is_waiting = false;
if (!crc_pdu->tb_crc_status) {
harq->ndi ^= 1;
harq->round = 0;
LOG_D(NR_MAC,
"Ulharq id %d crc passed for RNTI %04x\n",
harq_pid,
crc_pdu->rnti);
add_tail_nr_list(&sched_ctrl->available_ul_harq, harq_pid);
} else if (harq->round == MAX_HARQ_ROUNDS) {
harq->ndi ^= 1;
harq->round = 0;
LOG_D(NR_MAC,
"RNTI %04x: Ulharq id %d crc failed in all rounds\n",
crc_pdu->rnti,
harq_pid);
UE_info->mac_stats[UE_id].ulsch_errors++;
add_tail_nr_list(&sched_ctrl->available_ul_harq, harq_pid);
} else {
harq->round++;
LOG_D(NR_MAC,
"Ulharq id %d crc failed for RNTI %04x\n",
harq_pid,
crc_pdu->rnti);
add_tail_nr_list(&sched_ctrl->retrans_ul_harq, harq_pid);
}
}
/*
* When data are received on PHY and transmitted to MAC
*/
void nr_rx_sdu(const module_id_t gnb_mod_idP,
const int CC_idP,
const frame_t frameP,
const sub_frame_t slotP,
const rnti_t rntiP,
uint8_t *sduP,
const uint16_t sdu_lenP,
const uint16_t timing_advance,
const uint8_t ul_cqi,
const uint16_t rssi){
gNB_MAC_INST *gNB_mac = RC.nrmac[gnb_mod_idP];
NR_UE_info_t *UE_info = &gNB_mac->UE_info;
const int current_rnti = rntiP;
const int UE_id = find_nr_UE_id(gnb_mod_idP, current_rnti);
const int target_snrx10 = gNB_mac->pusch_target_snrx10;
if (UE_id != -1) {
NR_UE_sched_ctrl_t *UE_scheduling_control = &UE_info->UE_sched_ctrl[UE_id];
const int8_t harq_pid = UE_scheduling_control->feedback_ul_harq.head;
if (sduP)
T(T_GNB_MAC_UL_PDU_WITH_DATA, T_INT(gnb_mod_idP), T_INT(CC_idP),
T_INT(rntiP), T_INT(frameP), T_INT(slotP), T_INT(harq_pid),
T_BUFFER(sduP, sdu_lenP));
UE_info->mac_stats[UE_id].ulsch_total_bytes_rx += sdu_lenP;
LOG_I(NR_MAC, "[gNB %d][PUSCH %d] CC_id %d %d.%d Received ULSCH sdu from PHY (rnti %x, UE_id %d) ul_cqi %d sduP %p\n",
gnb_mod_idP,
harq_pid,
CC_idP,
frameP,
slotP,
current_rnti,
UE_id,
ul_cqi,
sduP);
// if not missed detection (10dB threshold for now)
if (UE_scheduling_control->ul_rssi < (100+rssi)) {
UE_scheduling_control->tpc0 = nr_get_tpc(target_snrx10,ul_cqi,30);
if (timing_advance != 0xffff)
UE_scheduling_control->ta_update = timing_advance;
UE_scheduling_control->ul_rssi = rssi;
LOG_D(NR_MAC, "[UE %d] PUSCH TPC %d and TA %d\n",UE_id,UE_scheduling_control->tpc0,UE_scheduling_control->ta_update);
}
else{
UE_scheduling_control->tpc0 = 1;
}
#if defined(ENABLE_MAC_PAYLOAD_DEBUG)
LOG_I(NR_MAC, "Printing received UL MAC payload at gNB side: %d \n");
for (int i = 0; i < sdu_lenP ; i++) {
//harq_process_ul_ue->a[i] = (unsigned char) rand();
//printf("a[%d]=0x%02x\n",i,harq_process_ul_ue->a[i]);
printf("%02x ",(unsigned char)sduP[i]);
}
printf("\n");
#endif
if (sduP != NULL){
LOG_D(NR_MAC, "Received PDU at MAC gNB \n");
const uint32_t tb_size = UE_scheduling_control->ul_harq_processes[harq_pid].sched_pusch.tb_size;
UE_scheduling_control->sched_ul_bytes -= tb_size;
if (UE_scheduling_control->sched_ul_bytes < 0)
UE_scheduling_control->sched_ul_bytes = 0;
nr_process_mac_pdu(gnb_mod_idP, current_rnti, CC_idP, frameP, sduP, sdu_lenP);
}
else {
NR_UE_ul_harq_t *cur_harq = &UE_scheduling_control->ul_harq_processes[harq_pid];
/* reduce sched_ul_bytes when cur_harq->round == 3 */
if (cur_harq->round == 3){
const uint32_t tb_size = UE_scheduling_control->ul_harq_processes[harq_pid].sched_pusch.tb_size;
UE_scheduling_control->sched_ul_bytes -= tb_size;
if (UE_scheduling_control->sched_ul_bytes < 0)
UE_scheduling_control->sched_ul_bytes = 0;
}
}
} else if(sduP) {
bool no_sig = true;
for (int k = 0; k < sdu_lenP; k++) {
if(sduP[k]!=0) {
no_sig = false;
break;
}
}
if(no_sig) {
LOG_W(NR_MAC, "No signal\n");
}
T(T_GNB_MAC_UL_PDU_WITH_DATA, T_INT(gnb_mod_idP), T_INT(CC_idP),
T_INT(rntiP), T_INT(frameP), T_INT(slotP), T_INT(-1) /* harq_pid */,
T_BUFFER(sduP, sdu_lenP));
/* we don't know this UE (yet). Check whether there is a ongoing RA (Msg 3)
* and check the corresponding UE's RNTI match, in which case we activate
* it. */
for (int i = 0; i < NR_NB_RA_PROC_MAX; ++i) {
NR_RA_t *ra = &gNB_mac->common_channels[CC_idP].ra[i];
if (ra->state != WAIT_Msg3)
continue;
if(no_sig) {
LOG_W(NR_MAC, "Random Access %i failed at state %i\n", i, ra->state);
nr_mac_remove_ra_rnti(gnb_mod_idP, ra->rnti);
nr_clear_ra_proc(gnb_mod_idP, CC_idP, frameP, ra);
} else {
// random access pusch with TC-RNTI
if (ra->rnti != current_rnti) {
LOG_W(NR_MAC,
"expected TC_RNTI %04x to match current RNTI %04x\n",
ra->rnti,
current_rnti);
if( (frameP==ra->Msg3_frame) && (slotP==ra->Msg3_slot) ) {
LOG_W(NR_MAC, "Random Access %i failed at state %i\n", i, ra->state);
nr_mac_remove_ra_rnti(gnb_mod_idP, ra->rnti);
nr_clear_ra_proc(gnb_mod_idP, CC_idP, frameP, ra);
}
continue;
}
int UE_id=-1;
UE_id = add_new_nr_ue(gnb_mod_idP, ra->rnti, ra->CellGroup);
UE_info->UE_beam_index[UE_id] = ra->beam_id;
// re-initialize ta update variables after RA procedure completion
UE_info->UE_sched_ctrl[UE_id].ta_frame = frameP;
LOG_I(NR_MAC,
"reset RA state information for RA-RNTI %04x/index %d\n",
ra->rnti,
i);
LOG_I(NR_MAC,
"[gNB %d][RAPROC] PUSCH with TC_RNTI %x received correctly, "
"adding UE MAC Context UE_id %d/RNTI %04x\n",
gnb_mod_idP,
current_rnti,
UE_id,
ra->rnti);
if(ra->cfra) {
LOG_I(NR_MAC, "(ue %i, rnti 0x%04x) CFRA procedure succeeded!\n", UE_id, ra->rnti);
nr_mac_remove_ra_rnti(gnb_mod_idP, ra->rnti);
nr_clear_ra_proc(gnb_mod_idP, CC_idP, frameP, ra);
UE_info->active[UE_id] = true;
} else {
LOG_I(NR_MAC,"[RAPROC] RA-Msg3 received (sdu_lenP %d)\n",sdu_lenP);
LOG_D(NR_MAC,"[RAPROC] Received Msg3:\n");
for (int k = 0; k < sdu_lenP; k++) {
LOG_D(NR_MAC,"(%i): 0x%x\n",k,sduP[k]);
}
// UE Contention Resolution Identity
// Store the first 48 bits belonging to the uplink CCCH SDU within Msg3 to fill in Msg4
// First byte corresponds to R/LCID MAC sub-header
memcpy(ra->cont_res_id, &sduP[1], sizeof(uint8_t) * 6);
nr_process_mac_pdu(gnb_mod_idP, current_rnti, CC_idP, frameP, sduP, sdu_lenP);
ra->state = Msg4;
ra->Msg4_frame = ( frameP +2 ) % 1024;
ra->Msg4_slot = 1;
LOG_I(NR_MAC, "Scheduling RA-Msg4 for TC_RNTI %04x (state %d, frame %d, slot %d)\n", ra->rnti, ra->state, ra->Msg4_frame, ra->Msg4_slot);
}
return;
}
}
} else {
for (int i = 0; i < NR_NB_RA_PROC_MAX; ++i) {
NR_RA_t *ra = &gNB_mac->common_channels[CC_idP].ra[i];
if (ra->state != WAIT_Msg3)
continue;
LOG_W(NR_MAC, "Random Access %i failed at state %i\n", i, ra->state);
nr_mac_remove_ra_rnti(gnb_mod_idP, ra->rnti);
nr_clear_ra_proc(gnb_mod_idP, CC_idP, frameP, ra);
}
}
}
long get_K2(NR_ServingCellConfigCommon_t *scc,NR_BWP_Uplink_t *ubwp, int time_domain_assignment, int mu) {
DevAssert(scc);
const NR_PUSCH_TimeDomainResourceAllocation_t *tda_list = ubwp ?
ubwp->bwp_Common->pusch_ConfigCommon->choice.setup->pusch_TimeDomainAllocationList->list.array[time_domain_assignment]:
scc->uplinkConfigCommon->initialUplinkBWP->pusch_ConfigCommon->choice.setup->pusch_TimeDomainAllocationList->list.array[time_domain_assignment];
if (tda_list->k2)
return *tda_list->k2;
else if (mu < 2)
return 1;
else if (mu == 2)
return 2;
else
return 3;
}
int next_list_entry_looped(NR_list_t *list, int UE_id)
{
if (UE_id < 0)
return list->head;
return list->next[UE_id] < 0 ? list->head : list->next[UE_id];
}
float ul_thr_ue[MAX_MOBILES_PER_GNB];
int bsr0ue = -1;
void pf_ul(module_id_t module_id,
frame_t frame,
sub_frame_t slot,
int num_slots_per_tdd,
NR_list_t *UE_list,
int n_rb_sched,
uint8_t *rballoc_mask,
int max_num_ue) {
const int CC_id = 0;
const int tda = 1;
NR_ServingCellConfigCommon_t *scc = RC.nrmac[module_id]->common_channels[CC_id].ServingCellConfigCommon;
NR_UE_info_t *UE_info = &RC.nrmac[module_id]->UE_info;
const int min_rb = 5;
float coeff_ue[MAX_MOBILES_PER_GNB];
// UEs that could be scheduled
int ue_array[MAX_MOBILES_PER_GNB];
NR_list_t UE_sched = { .head = -1, .next = ue_array, .tail = -1, .len = MAX_MOBILES_PER_GNB };
/* Hack: currently, we do not have SR, and need to schedule UEs continuously.
* To keep the wasted resources low, we switch UEs to be scheduled in a
* round-robin fashion below, and only schedule a UE with BSR=0 if it is the
* selected one */
bsr0ue = next_list_entry_looped(UE_list, bsr0ue);
/* Loop UE_list to calculate throughput and coeff */
for (int UE_id = UE_list->head; UE_id >= 0; UE_id = UE_list->next[UE_id]) {
if (UE_info->Msg4_ACKed[UE_id] != true) continue;
NR_UE_sched_ctrl_t *sched_ctrl = &UE_info->UE_sched_ctrl[UE_id];
int rbStart = 0; /*NRRIV2PRBOFFSET(sched_ctrl->active_bwp ?
sched_ctrl->active_bwp->bwp_Common->genericParameters.locationAndBandwidth:
scc->uplinkConfigCommon->initialUplinkBWP->genericParameters.locationAndBandwidth,
MAX_BWP_SIZE);*/
const uint16_t bwpSize = NRRIV2BW(sched_ctrl->active_ubwp?
sched_ctrl->active_ubwp->bwp_Common->genericParameters.locationAndBandwidth:
scc->uplinkConfigCommon->initialUplinkBWP->genericParameters.locationAndBandwidth,
MAX_BWP_SIZE);
/* Calculate throughput */
const float a = 0.0005f; // corresponds to 200ms window
const uint32_t b = UE_info->mac_stats[UE_id].ulsch_current_bytes;
ul_thr_ue[UE_id] = (1 - a) * ul_thr_ue[UE_id] + a * b;
/* Save PUSCH field */
/* we want to avoid a lengthy deduction of DMRS and other parameters in
* every TTI if we can save it, so check whether dci_format, TDA, or
* num_dmrs_cdm_grps_no_data has changed and only then recompute */
sched_ctrl->sched_pusch.time_domain_allocation = tda;
sched_ctrl->search_space = get_searchspace(scc,sched_ctrl->active_bwp,
sched_ctrl->active_bwp ?
NR_SearchSpace__searchSpaceType_PR_ue_Specific:
NR_SearchSpace__searchSpaceType_PR_common);
sched_ctrl->coreset = get_coreset(scc,sched_ctrl->active_bwp, sched_ctrl->search_space, 1 /* dedicated */);
if (sched_ctrl->coreset == NULL) sched_ctrl->coreset = RC.nrmac[module_id]->sched_ctrlCommon->coreset;
const long f = sched_ctrl->search_space->searchSpaceType->choice.ue_Specific->dci_Formats;
const int dci_format = sched_ctrl->active_bwp ? (f ? NR_UL_DCI_FORMAT_0_1 : NR_UL_DCI_FORMAT_0_0) : NR_UL_DCI_FORMAT_0_0;
const uint8_t num_dmrs_cdm_grps_no_data = sched_ctrl->active_bwp ? 1 : 2;
NR_sched_pusch_save_t *ps = &sched_ctrl->pusch_save;
if (ps->time_domain_allocation != tda
|| ps->dci_format != dci_format
|| ps->num_dmrs_cdm_grps_no_data != num_dmrs_cdm_grps_no_data)
nr_save_pusch_fields(scc, sched_ctrl->active_ubwp, dci_format, tda, num_dmrs_cdm_grps_no_data, ps);
/* Check if retransmission is necessary */
sched_ctrl->sched_pusch.ul_harq_pid = sched_ctrl->retrans_ul_harq.head;
if (sched_ctrl->sched_pusch.ul_harq_pid >= 0) {
/* RETRANSMISSION: Allocate retransmission*/
/* Find free CCE */
bool freeCCE = find_free_CCE(module_id, slot, UE_id);
if (!freeCCE) {
LOG_D(NR_MAC, "%4d.%2d no free CCE for retransmission UL DCI UE %04x\n", frame, slot, UE_info->rnti[UE_id]);
continue;
}
/* reduce max_num_ue once we are sure UE can be allocated, i.e., has CCE */
max_num_ue--;
if (max_num_ue < 0)
return;
/* Save shced_frame and sched_slot before overwrite by previous PUSCH filed */
NR_UE_ul_harq_t *cur_harq = &sched_ctrl->ul_harq_processes[sched_ctrl->sched_pusch.ul_harq_pid];
cur_harq->sched_pusch.frame = sched_ctrl->sched_pusch.frame;
cur_harq->sched_pusch.slot = sched_ctrl->sched_pusch.slot;
/* Get previous PSUCH filed info */
sched_ctrl->sched_pusch = cur_harq->sched_pusch;
NR_sched_pusch_t *sched_pusch = &sched_ctrl->sched_pusch;
LOG_I(NR_MAC, "%4d.%2d Allocate UL retransmission UE %d/RNTI %04x sched %4d.%2d (%d RBs)\n",
frame, slot, UE_id, UE_info->rnti[UE_id],
sched_pusch->frame, sched_pusch->slot,
sched_pusch->rbSize);
while (rbStart < bwpSize && !rballoc_mask[rbStart]) rbStart++;
if (rbStart + sched_pusch->rbSize >= bwpSize) {
LOG_W(NR_MAC, "cannot allocate UL data for UE %d/RNTI %04x: no resources (rbStart %d, sched_pusch->rbSize %d, bwpSize %d)\n",
UE_id, UE_info->rnti[UE_id],rbStart,sched_pusch->rbSize,bwpSize);
return;
}
sched_pusch->rbStart = rbStart;
/* no need to recompute the TBS, it will be the same */
/* Mark the corresponding RBs as used */
n_rb_sched -= sched_pusch->rbSize;
for (int rb = 0; rb < sched_ctrl->sched_pusch.rbSize; rb++)
rballoc_mask[rb + sched_ctrl->sched_pusch.rbStart] = 0;
continue;
}
/* Calculate TBS from MCS */
NR_sched_pusch_t *sched_pusch = &sched_ctrl->sched_pusch;
const int mcs = 9;
sched_pusch->mcs = mcs;
sched_pusch->R = nr_get_code_rate_ul(mcs, ps->mcs_table);
sched_pusch->Qm = nr_get_Qm_ul(mcs, ps->mcs_table);
if (ps->pusch_Config->tp_pi2BPSK
&& ((ps->mcs_table == 3 && mcs < 2) || (ps->mcs_table == 4 && mcs < 6))) {
sched_pusch->R >>= 1;
sched_pusch->Qm <<= 1;
}
/* Check BSR and schedule UE if it is zero to avoid starvation, since we do
* not have SR (yet) */
if (sched_ctrl->estimated_ul_buffer - sched_ctrl->sched_ul_bytes <= 0) {
if (UE_id != bsr0ue)
continue;
/* if no data, pre-allocate 5RB */
bool freeCCE = find_free_CCE(module_id, slot, UE_id);
if (!freeCCE) {
LOG_I(NR_MAC, "%4d.%2d no free CCE for UL DCI UE %04x (BSR 0)\n", frame, slot, UE_info->rnti[UE_id]);
continue;
}
/* reduce max_num_ue once we are sure UE can be allocated, i.e., has CCE */
max_num_ue--;
if (max_num_ue < 0)
return;
LOG_I(NR_MAC,"Looking for min_rb %d RBs, starting at %d\n", min_rb,rbStart);
while (rbStart < bwpSize && !rballoc_mask[rbStart]) rbStart++;
if (rbStart + min_rb >= bwpSize) {
LOG_W(NR_MAC, "cannot allocate UL data for UE %d/RNTI %04x: no resources (rbStart %d, min_rb %d, bwpSize %d\n",
UE_id, UE_info->rnti[UE_id],rbStart,min_rb,bwpSize);
return;
}
sched_pusch->rbStart = rbStart;
sched_pusch->rbSize = min_rb;
sched_pusch->tb_size = nr_compute_tbs(sched_pusch->Qm,
sched_pusch->R,
sched_pusch->rbSize,
ps->nrOfSymbols,
ps->N_PRB_DMRS * ps->num_dmrs_symb,
0, // nb_rb_oh
0,
1 /* NrOfLayers */)
>> 3;
/* Mark the corresponding RBs as used */
n_rb_sched -= sched_pusch->rbSize;
for (int rb = 0; rb < sched_ctrl->sched_pusch.rbSize; rb++)
rballoc_mask[rb + sched_ctrl->sched_pusch.rbStart] = 0;
continue;
}
/* Create UE_sched for UEs eligibale for new data transmission*/
add_tail_nr_list(&UE_sched, UE_id);
/* Calculate coefficient*/
const uint32_t tbs = nr_compute_tbs(sched_pusch->Qm,
sched_pusch->R,
1, // rbSize
ps->nrOfSymbols,
ps->N_PRB_DMRS * ps->num_dmrs_symb,
0, // nb_rb_oh
0,
1 /* NrOfLayers */)
>> 3;
coeff_ue[UE_id] = (float) tbs / ul_thr_ue[UE_id];
LOG_D(NR_MAC,"b %d, ul_thr_ue[%d] %f, tbs %d, coeff_ue[%d] %f\n",
b, UE_id, ul_thr_ue[UE_id], tbs, UE_id, coeff_ue[UE_id]);
}
/* Loop UE_sched to find max coeff and allocate transmission */
while (UE_sched.head >= 0 && max_num_ue> 0 && n_rb_sched > 0) {
/* Find max coeff */
int *max = &UE_sched.head; /* Find max coeff: assume head is max */
int *p = &UE_sched.next[*max];
while (*p >= 0) {
/* Find max coeff: if the current one has larger coeff, save for later */
if (coeff_ue[*p] > coeff_ue[*max])
max = p;
p = &UE_sched.next[*p];
}
/* Find max coeff: remove the max one: do not use remove_nr_list() since it
* goes through the whole list every time. Note that UE_sched.tail might
* not be set correctly anymore */
const int UE_id = *max;
p = &UE_sched.next[*max];
*max = UE_sched.next[*max];
*p = -1;
bool freeCCE = find_free_CCE(module_id, slot, UE_id);
if (!freeCCE) {
LOG_D(NR_MAC, "%4d.%2d no free CCE for UL DCI UE %04x\n", frame, slot, UE_info->rnti[UE_id]);
continue;
}
/* reduce max_num_ue once we are sure UE can be allocated, i.e., has CCE */
max_num_ue--;
if (max_num_ue < 0)
return;
NR_UE_sched_ctrl_t *sched_ctrl = &UE_info->UE_sched_ctrl[UE_id];
NR_BWP_t *genericParameters = sched_ctrl->active_ubwp ? &sched_ctrl->active_ubwp->bwp_Common->genericParameters:&scc->uplinkConfigCommon->initialUplinkBWP->genericParameters;
int rbStart = 0; /*NRRIV2PRBOFFSET(genericParameters->locationAndBandwidth, MAX_BWP_SIZE);*/
const uint16_t bwpSize = NRRIV2BW(genericParameters->locationAndBandwidth, MAX_BWP_SIZE);
NR_sched_pusch_t *sched_pusch = &sched_ctrl->sched_pusch;
while (rbStart < bwpSize && !rballoc_mask[rbStart]) rbStart++;
sched_pusch->rbStart = rbStart;
if (rbStart + min_rb >= bwpSize) {
LOG_W(NR_MAC, "cannot allocate UL data for UE %d/RNTI %04x: no resources (rbStart %d, min_rb %d, bwpSize %d\n",
UE_id, UE_info->rnti[UE_id],rbStart,min_rb,bwpSize);
return;
}
/* Calculate the current scheduling bytes */
const int B = cmax(sched_ctrl->estimated_ul_buffer - sched_ctrl->sched_ul_bytes, 0);
uint16_t rbSize = min_rb - 1;
do {
rbSize++;
sched_pusch->rbSize = rbSize;
sched_pusch->tb_size = nr_compute_tbs(sched_pusch->Qm,
sched_pusch->R,
sched_pusch->rbSize,
sched_ctrl->pusch_save.nrOfSymbols,
sched_ctrl->pusch_save.N_PRB_DMRS * sched_ctrl->pusch_save.num_dmrs_symb,
0, // nb_rb_oh
0,
1 /* NrOfLayers */)
>> 3;
} while (rbStart + rbSize < bwpSize && rballoc_mask[rbStart+rbSize] &&
sched_pusch->tb_size < B);
LOG_D(NR_MAC,"rbSize %d, TBS %d, est buf %d, sched_ul %d, B %d\n",
rbSize, sched_pusch->tb_size, sched_ctrl->estimated_ul_buffer, sched_ctrl->sched_ul_bytes, B);
/* Mark the corresponding RBs as used */
n_rb_sched -= sched_pusch->rbSize;
for (int rb = 0; rb < sched_ctrl->sched_pusch.rbSize; rb++)
rballoc_mask[rb + sched_ctrl->sched_pusch.rbStart] = 0;
}
}
bool nr_simple_ulsch_preprocessor(module_id_t module_id,
frame_t frame,
sub_frame_t slot,
int num_slots_per_tdd,
uint64_t ulsch_in_slot_bitmap) {
gNB_MAC_INST *nr_mac = RC.nrmac[module_id];
NR_COMMON_channels_t *cc = nr_mac->common_channels;
NR_ServingCellConfigCommon_t *scc = cc->ServingCellConfigCommon;
const int mu = scc->uplinkConfigCommon->initialUplinkBWP->genericParameters.subcarrierSpacing;
NR_UE_info_t *UE_info = &nr_mac->UE_info;
if (UE_info->num_UEs == 0)
return false;
const int CC_id = 0;
/* NOT support different K2 in here, Get the K2 for first UE */
int UE_id = UE_info->list.head;
NR_UE_sched_ctrl_t *sched_ctrl = &UE_info->UE_sched_ctrl[UE_id];
const int tda = 1;
const struct NR_PUSCH_TimeDomainResourceAllocationList *tdaList =
sched_ctrl->active_ubwp ?
sched_ctrl->active_ubwp->bwp_Common->pusch_ConfigCommon->choice.setup->pusch_TimeDomainAllocationList:
scc->uplinkConfigCommon->initialUplinkBWP->pusch_ConfigCommon->choice.setup->pusch_TimeDomainAllocationList;
AssertFatal(tda < tdaList->list.count,
"time domain assignment %d >= %d\n",
tda,
tdaList->list.count);
int K2 = get_K2(scc,sched_ctrl->active_ubwp, tda, mu);
const int sched_frame = frame + (slot + K2 >= nr_slots_per_frame[mu]);
const int sched_slot = (slot + K2) % nr_slots_per_frame[mu];
if (!is_xlsch_in_slot(ulsch_in_slot_bitmap, sched_slot))
return false;
sched_ctrl->sched_pusch.slot = sched_slot;
sched_ctrl->sched_pusch.frame = sched_frame;
/* Confirm all the UE have same K2 as the first UE */
for (UE_id = UE_info->list.next[UE_id]; UE_id >= 0; UE_id = UE_info->list.next[UE_id]) {
NR_UE_sched_ctrl_t *sched_ctrl = &UE_info->UE_sched_ctrl[UE_id];
AssertFatal(K2 == get_K2(scc,sched_ctrl->active_ubwp, tda, mu),
"Different K2, %d(UE%d) != %ld(UE%d)\n", K2, 0, get_K2(scc,sched_ctrl->active_ubwp, tda, mu), UE_id);
sched_ctrl->sched_pusch.slot = sched_slot;
sched_ctrl->sched_pusch.frame = sched_frame;
}
/* Change vrb_map_UL to rballoc_mask */
uint16_t *vrb_map_UL =
&RC.nrmac[module_id]->common_channels[CC_id].vrb_map_UL[sched_slot * MAX_BWP_SIZE];
const uint16_t bwpSize = NRRIV2BW(sched_ctrl->active_ubwp ?
sched_ctrl->active_ubwp->bwp_Common->genericParameters.locationAndBandwidth:
scc->uplinkConfigCommon->initialUplinkBWP->genericParameters.locationAndBandwidth,
MAX_BWP_SIZE);
int st = 0, e = 0, len = 0;
for (int i = 0; i < bwpSize; i++) {
while (vrb_map_UL[i] == 1 && i<bwpSize)
i++;
st = i;
while (vrb_map_UL[i] == 0 && i<bwpSize)
i++;
if (i - st > len) {
len = i - st;
e = i - 1;
}
}
st = e - len + 1;
uint8_t rballoc_mask[bwpSize];
/* Calculate mask: if any RB in vrb_map_UL is blocked (1), the current RB will be 0 */
for (int i = 0; i < bwpSize; i++)
rballoc_mask[i] = i >= st && i <= e;
/* proportional fair scheduling algorithm */
pf_ul(module_id,
frame,
slot,
num_slots_per_tdd,
&UE_info->list,
len,
rballoc_mask,
2);
return true;
}
void nr_schedule_ulsch(module_id_t module_id,
frame_t frame,
sub_frame_t slot,
int num_slots_per_tdd,
int ul_slots,
uint64_t ulsch_in_slot_bitmap) {
/* Uplink data ONLY can be scheduled when the current slot is downlink slot,
* because we have to schedule the DCI0 first before schedule uplink data */
if (is_xlsch_in_slot(ulsch_in_slot_bitmap, slot)) {
LOG_D(NR_MAC, "Current slot %d is NOT DL slot, cannot schedule DCI0 for UL data\n", slot);
return;
}
bool do_sched = RC.nrmac[module_id]->pre_processor_ul(
module_id, frame, slot, num_slots_per_tdd, ulsch_in_slot_bitmap);
if (!do_sched)
return;
const int CC_id = 0;
nfapi_nr_ul_dci_request_t *ul_dci_req = &RC.nrmac[module_id]->UL_dci_req[CC_id];
ul_dci_req->SFN = frame;
ul_dci_req->Slot = slot;
/* a PDCCH PDU groups DCIs per BWP and CORESET. Save a pointer to each
* allocated PDCCH so we can easily allocate UE's DCIs independent of any
* CORESET order */
nfapi_nr_dl_tti_pdcch_pdu_rel15_t *pdcch_pdu_bwp_coreset[MAX_NUM_BWP][MAX_NUM_CORESET] = {{0}};
NR_ServingCellConfigCommon_t *scc = RC.nrmac[module_id]->common_channels[0].ServingCellConfigCommon;
NR_UE_info_t *UE_info = &RC.nrmac[module_id]->UE_info;
const NR_list_t *UE_list = &UE_info->list;
for (int UE_id = UE_list->head; UE_id >= 0; UE_id = UE_list->next[UE_id]) {
NR_UE_sched_ctrl_t *sched_ctrl = &UE_info->UE_sched_ctrl[UE_id];
UE_info->mac_stats[UE_id].ulsch_current_bytes = 0;
/* dynamic PUSCH values (RB alloc, MCS, hence R, Qm, TBS) that change in
* every TTI are pre-populated by the preprocessor and used below */
NR_sched_pusch_t *sched_pusch = &sched_ctrl->sched_pusch;
LOG_I(NR_MAC,"UE %x : sched_pusch->rbSize %d\n",UE_info->rnti[UE_id],sched_pusch->rbSize);
if (sched_pusch->rbSize <= 0)
continue;
uint16_t rnti = UE_info->rnti[UE_id];
int8_t harq_id = sched_pusch->ul_harq_pid;
if (harq_id < 0) {
/* PP has not selected a specific HARQ Process, get a new one */
harq_id = sched_ctrl->available_ul_harq.head;
AssertFatal(harq_id >= 0,
"no free HARQ process available for UE %d\n",
UE_id);
remove_front_nr_list(&sched_ctrl->available_ul_harq);
sched_pusch->ul_harq_pid = harq_id;
} else {
/* PP selected a specific HARQ process. Check whether it will be a new
* transmission or a retransmission, and remove from the corresponding
* list */
if (sched_ctrl->ul_harq_processes[harq_id].round == 0)
remove_nr_list(&sched_ctrl->available_ul_harq, harq_id);
else
remove_nr_list(&sched_ctrl->retrans_ul_harq, harq_id);
}
NR_UE_ul_harq_t *cur_harq = &sched_ctrl->ul_harq_processes[harq_id];
DevAssert(!cur_harq->is_waiting);
add_tail_nr_list(&sched_ctrl->feedback_ul_harq, harq_id);
cur_harq->feedback_slot = sched_pusch->slot;
cur_harq->is_waiting = true;
int rnti_types[2] = { NR_RNTI_C, 0 };
/* pre-computed PUSCH values that only change if time domain allocation,
* DCI format, or DMRS parameters change. Updated in the preprocessor
* through nr_save_pusch_fields() */
NR_sched_pusch_save_t *ps = &sched_ctrl->pusch_save;
/* Statistics */
UE_info->mac_stats[UE_id].ulsch_rounds[cur_harq->round]++;
if (cur_harq->round == 0) {
UE_info->mac_stats[UE_id].ulsch_total_bytes_scheduled += sched_pusch->tb_size;
/* Save information on MCS, TBS etc for the current initial transmission
* so we have access to it when retransmitting */
cur_harq->sched_pusch = *sched_pusch;
sched_ctrl->sched_ul_bytes += sched_pusch->tb_size;
} else {
LOG_I(NR_MAC,
"%d.%2d UL retransmission RNTI %04x sched %d.%2d HARQ PID %d round %d NDI %d\n",
frame,
slot,
rnti,
sched_pusch->frame,
sched_pusch->slot,
harq_id,
cur_harq->round,
cur_harq->ndi);
}
UE_info->mac_stats[UE_id].ulsch_current_bytes = sched_pusch->tb_size;
LOG_I(NR_MAC,
"%4d.%2d RNTI %04x UL sched %4d.%2d start %d RBS %d MCS %d TBS %d HARQ PID %d round %d NDI %d\n",
frame,
slot,
rnti,
sched_pusch->frame,
sched_pusch->slot,
sched_pusch->rbStart,
sched_pusch->rbSize,
sched_pusch->mcs,
sched_pusch->tb_size,
harq_id,
cur_harq->round,
cur_harq->ndi);
/* PUSCH in a later slot, but corresponding DCI now! */
nfapi_nr_ul_tti_request_t *future_ul_tti_req = &RC.nrmac[module_id]->UL_tti_req_ahead[0][sched_pusch->slot];
AssertFatal(future_ul_tti_req->SFN == sched_pusch->frame
&& future_ul_tti_req->Slot == sched_pusch->slot,
"%d.%d future UL_tti_req's frame.slot %d.%d does not match PUSCH %d.%d\n",
frame, slot,
future_ul_tti_req->SFN,
future_ul_tti_req->Slot,
sched_pusch->frame,
sched_pusch->slot);
future_ul_tti_req->pdus_list[future_ul_tti_req->n_pdus].pdu_type = NFAPI_NR_UL_CONFIG_PUSCH_PDU_TYPE;
future_ul_tti_req->pdus_list[future_ul_tti_req->n_pdus].pdu_size = sizeof(nfapi_nr_pusch_pdu_t);
nfapi_nr_pusch_pdu_t *pusch_pdu = &future_ul_tti_req->pdus_list[future_ul_tti_req->n_pdus].pusch_pdu;
memset(pusch_pdu, 0, sizeof(nfapi_nr_pusch_pdu_t));
future_ul_tti_req->n_pdus += 1;
LOG_I(NR_MAC, "%4d.%2d Scheduling UE specific PUSCH for sched %d.%d, ul_tto_req %d.%d\n", frame, slot,
sched_pusch->frame,sched_pusch->slot,future_ul_tti_req->SFN,future_ul_tti_req->Slot);
pusch_pdu->pdu_bit_map = PUSCH_PDU_BITMAP_PUSCH_DATA;
pusch_pdu->rnti = rnti;
pusch_pdu->handle = 0; //not yet used
/* FAPI: BWP */
NR_BWP_t *genericParameters = sched_ctrl->active_ubwp ? &sched_ctrl->active_ubwp->bwp_Common->genericParameters:&scc->uplinkConfigCommon->initialUplinkBWP->genericParameters;
pusch_pdu->bwp_size = NRRIV2BW(genericParameters->locationAndBandwidth, MAX_BWP_SIZE);
pusch_pdu->bwp_start = NRRIV2PRBOFFSET(genericParameters->locationAndBandwidth, MAX_BWP_SIZE);
pusch_pdu->subcarrier_spacing = genericParameters->subcarrierSpacing;
pusch_pdu->cyclic_prefix = 0;
/* FAPI: PUSCH information always included */
pusch_pdu->target_code_rate = sched_pusch->R;
pusch_pdu->qam_mod_order = sched_pusch->Qm;
pusch_pdu->mcs_index = sched_pusch->mcs;
pusch_pdu->mcs_table = ps->mcs_table;
pusch_pdu->transform_precoding = ps->transform_precoding;
if (ps->pusch_Config &&
ps->pusch_Config->dataScramblingIdentityPUSCH)
pusch_pdu->data_scrambling_id = *ps->pusch_Config->dataScramblingIdentityPUSCH;
else
pusch_pdu->data_scrambling_id = *scc->physCellId;
pusch_pdu->nrOfLayers = 1;
/* FAPI: DMRS */
pusch_pdu->ul_dmrs_symb_pos = ps->ul_dmrs_symb_pos;
pusch_pdu->dmrs_config_type = ps->dmrs_config_type;
if (pusch_pdu->transform_precoding) { // transform precoding disabled
long *scramblingid=NULL;
if (ps->NR_DMRS_UplinkConfig && pusch_pdu->scid == 0)
scramblingid = ps->NR_DMRS_UplinkConfig->transformPrecodingDisabled->scramblingID0;
else if (ps->NR_DMRS_UplinkConfig)
scramblingid = ps->NR_DMRS_UplinkConfig->transformPrecodingDisabled->scramblingID1;
if (scramblingid == NULL)
pusch_pdu->ul_dmrs_scrambling_id = *scc->physCellId;
else
pusch_pdu->ul_dmrs_scrambling_id = *scramblingid;
}
else {
pusch_pdu->ul_dmrs_scrambling_id = *scc->physCellId;
if (ps->NR_DMRS_UplinkConfig && ps->NR_DMRS_UplinkConfig->transformPrecodingEnabled->nPUSCH_Identity != NULL)
pusch_pdu->pusch_identity = *ps->NR_DMRS_UplinkConfig->transformPrecodingEnabled->nPUSCH_Identity;
else if (ps->NR_DMRS_UplinkConfig)
pusch_pdu->pusch_identity = *scc->physCellId;
}
pusch_pdu->scid = 0; // DMRS sequence initialization [TS38.211, sec 6.4.1.1.1]
pusch_pdu->num_dmrs_cdm_grps_no_data = ps->num_dmrs_cdm_grps_no_data;
pusch_pdu->dmrs_ports = 1;
/* FAPI: Pusch Allocation in frequency domain */
pusch_pdu->resource_alloc = 1; //type 1
pusch_pdu->rb_start = sched_pusch->rbStart;
pusch_pdu->rb_size = sched_pusch->rbSize;
pusch_pdu->vrb_to_prb_mapping = 0;
if (ps->pusch_Config==NULL || ps->pusch_Config->frequencyHopping==NULL)
pusch_pdu->frequency_hopping = 0;
else
pusch_pdu->frequency_hopping = 1;
/* FAPI: Resource Allocation in time domain */
pusch_pdu->start_symbol_index = ps->startSymbolIndex;
pusch_pdu->nr_of_symbols = ps->nrOfSymbols;
/* PUSCH PDU */
pusch_pdu->pusch_data.rv_index = nr_rv_round_map[cur_harq->round];
pusch_pdu->pusch_data.harq_process_id = harq_id;
pusch_pdu->pusch_data.new_data_indicator = cur_harq->ndi;
pusch_pdu->pusch_data.tb_size = sched_pusch->tb_size;
pusch_pdu->pusch_data.num_cb = 0; //CBG not supported
/* TRANSFORM PRECODING --------------------------------------------------------*/
if (pusch_pdu->transform_precoding == NR_PUSCH_Config__transformPrecoder_enabled){
// U as specified in section 6.4.1.1.1.2 in 38.211, if sequence hopping and group hopping are disabled
pusch_pdu->dfts_ofdm.low_papr_group_number = pusch_pdu->pusch_identity % 30;
// V as specified in section 6.4.1.1.1.2 in 38.211 V = 0 if sequence hopping and group hopping are disabled
if ((ps->NR_DMRS_UplinkConfig==NULL) || ((ps->NR_DMRS_UplinkConfig->transformPrecodingEnabled->sequenceGroupHopping == NULL) &&
(ps->NR_DMRS_UplinkConfig->transformPrecodingEnabled->sequenceHopping == NULL)))
pusch_pdu->dfts_ofdm.low_papr_sequence_number = 0;
else
AssertFatal(1==0,"SequenceGroupHopping or sequenceHopping are NOT Supported\n");
LOG_D(NR_MAC,"TRANSFORM PRECODING IS ENABLED. CDM groups: %d, U: %d MCS table: %d\n", pusch_pdu->num_dmrs_cdm_grps_no_data, pusch_pdu->dfts_ofdm.low_papr_group_number, ps->mcs_table);
}
/*-----------------------------------------------------------------------------*/
/* PUSCH PTRS */
if (ps->NR_DMRS_UplinkConfig && ps->NR_DMRS_UplinkConfig->phaseTrackingRS != NULL) {
bool valid_ptrs_setup = false;
pusch_pdu->pusch_ptrs.ptrs_ports_list = (nfapi_nr_ptrs_ports_t *) malloc(2*sizeof(nfapi_nr_ptrs_ports_t));
valid_ptrs_setup = set_ul_ptrs_values(ps->NR_DMRS_UplinkConfig->phaseTrackingRS->choice.setup,
pusch_pdu->rb_size, pusch_pdu->mcs_index, pusch_pdu->mcs_table,
&pusch_pdu->pusch_ptrs.ptrs_freq_density,&pusch_pdu->pusch_ptrs.ptrs_time_density,
&pusch_pdu->pusch_ptrs.ptrs_ports_list->ptrs_re_offset,&pusch_pdu->pusch_ptrs.num_ptrs_ports,
&pusch_pdu->pusch_ptrs.ul_ptrs_power, pusch_pdu->nr_of_symbols);
if (valid_ptrs_setup==true) {
pusch_pdu->pdu_bit_map |= PUSCH_PDU_BITMAP_PUSCH_PTRS; // enable PUSCH PTRS
}
}
else{
pusch_pdu->pdu_bit_map &= ~PUSCH_PDU_BITMAP_PUSCH_PTRS; // disable PUSCH PTRS
}
/* look up the PDCCH PDU for this BWP and CORESET. If it does not exist,
* create it */
const int bwpid = sched_ctrl->active_bwp ? sched_ctrl->active_bwp->bwp_Id : 0;
NR_SearchSpace_t *ss = sched_ctrl->active_bwp ? sched_ctrl->search_space: RC.nrmac[module_id]->sched_ctrlCommon->search_space;
NR_ControlResourceSet_t *coreset = sched_ctrl->active_bwp? sched_ctrl->coreset: RC.nrmac[module_id]->sched_ctrlCommon->coreset;
const int coresetid = coreset->controlResourceSetId;
nfapi_nr_dl_tti_pdcch_pdu_rel15_t *pdcch_pdu = pdcch_pdu_bwp_coreset[bwpid][coresetid];
if (!pdcch_pdu) {
nfapi_nr_ul_dci_request_pdus_t *ul_dci_request_pdu = &ul_dci_req->ul_dci_pdu_list[ul_dci_req->numPdus];
memset(ul_dci_request_pdu, 0, sizeof(nfapi_nr_ul_dci_request_pdus_t));
ul_dci_request_pdu->PDUType = NFAPI_NR_DL_TTI_PDCCH_PDU_TYPE;
ul_dci_request_pdu->PDUSize = (uint8_t)(2+sizeof(nfapi_nr_dl_tti_pdcch_pdu));
pdcch_pdu = &ul_dci_request_pdu->pdcch_pdu.pdcch_pdu_rel15;
ul_dci_req->numPdus += 1;
nr_configure_pdcch(pdcch_pdu, ss, coreset, scc, sched_ctrl->active_bwp);
pdcch_pdu_bwp_coreset[bwpid][coresetid] = pdcch_pdu;
}
LOG_D(NR_MAC,"Configuring ULDCI/PDCCH in %d.%d\n", frame,slot);
/* Fill PDCCH DL DCI PDU */
nfapi_nr_dl_dci_pdu_t *dci_pdu = &pdcch_pdu->dci_pdu[pdcch_pdu->numDlDci];
pdcch_pdu->numDlDci++;
dci_pdu->RNTI = rnti;
if (coreset->pdcch_DMRS_ScramblingID &&
ss->searchSpaceType->present == NR_SearchSpace__searchSpaceType_PR_ue_Specific) {
dci_pdu->ScramblingId = *coreset->pdcch_DMRS_ScramblingID;
dci_pdu->ScramblingRNTI = rnti;
} else {
dci_pdu->ScramblingId = *scc->physCellId;
dci_pdu->ScramblingRNTI = 0;
}
dci_pdu->AggregationLevel = sched_ctrl->aggregation_level;
dci_pdu->CceIndex = sched_ctrl->cce_index;
dci_pdu->beta_PDCCH_1_0 = 0;
dci_pdu->powerControlOffsetSS = 1;
dci_pdu_rel15_t uldci_payload;
memset(&uldci_payload, 0, sizeof(uldci_payload));
NR_CellGroupConfig_t *CellGroup = UE_info->CellGroup[UE_id];
int n_ubwp=1;
if (CellGroup && CellGroup->spCellConfig && CellGroup->spCellConfig->spCellConfigDedicated &&
CellGroup->spCellConfig->spCellConfigDedicated->uplinkConfig &&
CellGroup->spCellConfig->spCellConfigDedicated->uplinkConfig->uplinkBWP_ToAddModList)
n_ubwp = CellGroup->spCellConfig->spCellConfigDedicated->uplinkConfig->uplinkBWP_ToAddModList->list.count;
config_uldci(sched_ctrl->active_ubwp,
scc,
pusch_pdu,
&uldci_payload,
ps->dci_format,
ps->time_domain_allocation,
UE_info->UE_sched_ctrl[UE_id].tpc0,
n_ubwp,
bwpid);
fill_dci_pdu_rel15(scc,
CellGroup,
dci_pdu,
&uldci_payload,
ps->dci_format,
rnti_types[0],
pusch_pdu->bwp_size,
bwpid);
memset(sched_pusch, 0, sizeof(*sched_pusch));
}
}