1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.0 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/*! \file PHY/LTE_TRANSPORT/initial_sync.c
* \brief Routines for initial UE synchronization procedure (PSS,SSS,PBCH and frame format detection)
* \author R. Knopp, F. Kaltenberger
* \date 2011
* \version 0.1
* \company Eurecom
* \email: knopp@eurecom.fr,kaltenberger@eurecom.fr
* \note
* \warning
*/
#include "PHY/types.h"
#include "PHY/defs_nr_UE.h"
#include "PHY/phy_extern_nr_ue.h"
#include "PHY/INIT/phy_init.h"
#include "PHY/MODULATION/modulation_UE.h"
#include "nr_transport_proto_ue.h"
#include "PHY/NR_UE_ESTIMATION/nr_estimation.h"
//#include "SCHED/defs.h"
//#include "SCHED/extern.h"
#include "common/utils/LOG/vcd_signal_dumper.h"
#include "common_lib.h"
#include <math.h>
#include "PHY/NR_REFSIG/pss_nr.h"
#include "PHY/NR_REFSIG/sss_nr.h"
#include "PHY/NR_REFSIG/refsig_defs_ue.h"
extern openair0_config_t openair0_cfg[];
//static nfapi_nr_config_request_t config_t;
//static nfapi_nr_config_request_t* config =&config_t;
int cnt=0;
#define DEBUG_INITIAL_SYNCH
// create a new node of SSB structure
NR_UE_SSB* create_ssb_node(uint8_t i, uint8_t h) {
NR_UE_SSB *new_node = (NR_UE_SSB*)malloc(sizeof(NR_UE_SSB));
new_node->i_ssb = i;
new_node->n_hf = h;
new_node->c_re = 0;
new_node->c_im = 0;
new_node->metric = 0;
new_node->next_ssb = NULL;
return new_node;
}
// insertion of the structure in the ordered list (highest metric first)
NR_UE_SSB* insert_into_list(NR_UE_SSB *head, NR_UE_SSB *node) {
if (node->metric > head->metric) {
node->next_ssb = head;
head = node;
return head;
}
NR_UE_SSB *current = head;
while (current->next_ssb !=NULL) {
NR_UE_SSB *temp=current->next_ssb;
if(node->metric > temp->metric) {
node->next_ssb = temp;
current->next_ssb = node;
return head;
}
else
current = temp;
}
current->next_ssb = node;
return head;
}
void free_list(NR_UE_SSB *node) {
if (node->next_ssb != NULL)
free_list(node->next_ssb);
free(node);
}
int nr_pbch_detection(UE_nr_rxtx_proc_t * proc, PHY_VARS_NR_UE *ue, int pbch_initial_symbol, runmode_t mode)
{
NR_DL_FRAME_PARMS *frame_parms=&ue->frame_parms;
int ret =-1;
NR_UE_SSB *best_ssb = NULL;
NR_UE_SSB *current_ssb;
#ifdef DEBUG_INITIAL_SYNCH
LOG_I(PHY,"[UE%d] Initial sync: starting PBCH detection (rx_offset %d)\n",ue->Mod_id,
ue->rx_offset);
#endif
uint8_t N_L = (frame_parms->Lmax == 4)? 4:8;
uint8_t N_hf = (frame_parms->Lmax == 4)? 2:1;
// loops over possible pbch dmrs cases to retrive best estimated i_ssb (and n_hf for Lmax=4) for multiple ssb detection
for (int hf = 0; hf < N_hf; hf++) {
for (int l = 0; l < N_L ; l++) {
// initialization of structure
current_ssb = create_ssb_node(l,hf);
#if UE_TIMING_TRACE
start_meas(&ue->dlsch_channel_estimation_stats);
#endif
// computing correlation between received DMRS symbols and transmitted sequence for current i_ssb and n_hf
for(int i=pbch_initial_symbol; i<pbch_initial_symbol+3;i++)
nr_pbch_dmrs_correlation(ue,proc,0,0,i,i-pbch_initial_symbol,current_ssb);
#if UE_TIMING_TRACE
stop_meas(&ue->dlsch_channel_estimation_stats);
#endif
current_ssb->metric = current_ssb->c_re*current_ssb->c_re + current_ssb->c_im*current_ssb->c_im;
// generate a list of SSB structures
if (best_ssb == NULL)
best_ssb = current_ssb;
else
best_ssb = insert_into_list(best_ssb,current_ssb);
}
}
NR_UE_SSB *temp_ptr=best_ssb;
while (ret!=0 && temp_ptr != NULL) {
#if UE_TIMING_TRACE
start_meas(&ue->dlsch_channel_estimation_stats);
#endif
// computing channel estimation for selected best ssb
for(int i=pbch_initial_symbol; i<pbch_initial_symbol+3;i++)
nr_pbch_channel_estimation(ue,proc,0,0,i,i-pbch_initial_symbol,temp_ptr->i_ssb,temp_ptr->n_hf);
#if UE_TIMING_TRACE
stop_meas(&ue->dlsch_channel_estimation_stats);
#endif
ret = nr_rx_pbch(ue,
proc,
ue->pbch_vars[0],
frame_parms,
0,
temp_ptr->i_ssb,
SISO,
ue->high_speed_flag);
temp_ptr=temp_ptr->next_ssb;
}
free_list(best_ssb);
if (ret==0) {
frame_parms->nb_antenna_ports_gNB = 1; //pbch_tx_ant;
// set initial transmission mode to 1 or 2 depending on number of detected TX antennas
//frame_parms->mode1_flag = (pbch_tx_ant==1);
// openair_daq_vars.dlsch_transmission_mode = (pbch_tx_ant>1) ? 2 : 1;
// flip byte endian on 24-bits for MIB
// dummy = ue->pbch_vars[0]->decoded_output[0];
// ue->pbch_vars[0]->decoded_output[0] = ue->pbch_vars[0]->decoded_output[2];
// ue->pbch_vars[0]->decoded_output[2] = dummy;
#ifdef DEBUG_INITIAL_SYNCH
LOG_I(PHY,"[UE%d] Initial sync: pbch decoded sucessfully\n",ue->Mod_id);
#endif
return(0);
} else {
return(-1);
}
}
char duplex_string[2][4] = {"FDD","TDD"};
char prefix_string[2][9] = {"NORMAL","EXTENDED"};
int nr_initial_sync(UE_nr_rxtx_proc_t *proc, PHY_VARS_NR_UE *ue, runmode_t mode, int n_frames)
{
int32_t sync_pos, sync_pos_frame; // k_ssb, N_ssb_crb, sync_pos2,
int32_t metric_tdd_ncp=0;
uint8_t phase_tdd_ncp;
double im, re;
int is;
NR_DL_FRAME_PARMS *fp = &ue->frame_parms;
int ret=-1;
int rx_power=0; //aarx,
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_NR_INITIAL_UE_SYNC, VCD_FUNCTION_IN);
LOG_D(PHY,"nr_initial sync ue RB_DL %d\n", fp->N_RB_DL);
/* Initial synchronisation
*
* 1 radio frame = 10 ms
* <--------------------------------------------------------------------------->
* -----------------------------------------------------------------------------
* | Received UE data buffer |
* ----------------------------------------------------------------------------
* --------------------------
* <-------------->| pss | pbch | sss | pbch |
* --------------------------
* sync_pos SS/PBCH block
*/
cnt++;
if (1){ // (cnt>100)
cnt =0;
// initial sync performed on two successive frames, if pbch passes on first frame, no need to process second frame
// only one frame is used for symulation tools
for(is=0; is<n_frames;is++) {
/* process pss search on received buffer */
sync_pos = pss_synchro_nr(ue, is, NO_RATE_CHANGE);
if (sync_pos >= fp->nb_prefix_samples)
ue->ssb_offset = sync_pos - fp->nb_prefix_samples;
else
ue->ssb_offset = sync_pos + (fp->samples_per_subframe * 10) - fp->nb_prefix_samples;
#ifdef DEBUG_INITIAL_SYNCH
LOG_I(PHY,"[UE%d] Initial sync : Estimated PSS position %d, Nid2 %d\n", ue->Mod_id, sync_pos,ue->common_vars.eNb_id);
LOG_I(PHY,"sync_pos %d ssb_offset %d \n",sync_pos,ue->ssb_offset);
#endif
// digital compensation of FFO for SSB symbols
if (ue->UE_fo_compensation){
double s_time = 1/(1.0e3*fp->samples_per_subframe); // sampling time
double off_angle = -2*M_PI*s_time*(ue->common_vars.freq_offset); // offset rotation angle compensation per sample
int start = is*fp->samples_per_frame+ue->ssb_offset; // start for offset correction is at ssb_offset (pss time position)
int end = start + 4*(fp->ofdm_symbol_size + fp->nb_prefix_samples); // loop over samples in 4 symbols (ssb size), including prefix
for(int n=start; n<end; n++){
for (int ar=0; ar<fp->nb_antennas_rx; ar++) {
re = ((double)(((short *)ue->common_vars.rxdata[ar]))[2*n]);
im = ((double)(((short *)ue->common_vars.rxdata[ar]))[2*n+1]);
((short *)ue->common_vars.rxdata[ar])[2*n] = (short)(round(re*cos(n*off_angle) - im*sin(n*off_angle)));
((short *)ue->common_vars.rxdata[ar])[2*n+1] = (short)(round(re*sin(n*off_angle) + im*cos(n*off_angle)));
}
}
}
/* check that SSS/PBCH block is continuous inside the received buffer */
if (sync_pos < (NR_NUMBER_OF_SUBFRAMES_PER_FRAME*fp->samples_per_subframe - (NB_SYMBOLS_PBCH * fp->ofdm_symbol_size))) {
/* slop_fep function works for lte and takes into account begining of frame with prefix for subframe 0 */
/* for NR this is not the case but slot_fep is still used for computing FFT of samples */
/* in order to achieve correct processing for NR prefix samples is forced to 0 and then restored after function call */
/* symbol number are from beginning of SS/PBCH blocks as below: */
/* Signal PSS PBCH SSS PBCH */
/* symbol number 0 1 2 3 */
/* time samples in buffer rxdata are used as input of FFT -> FFT results are stored in the frequency buffer rxdataF */
/* rxdataF stores SS/PBCH from beginning of buffers in the same symbol order as in time domain */
for(int i=0; i<4;i++)
nr_slot_fep_init_sync(ue,
proc,
i,
0,
is*fp->samples_per_frame+ue->ssb_offset,
0);
#ifdef DEBUG_INITIAL_SYNCH
LOG_I(PHY,"Calling sss detection (normal CP)\n");
#endif
rx_sss_nr(ue, proc, &metric_tdd_ncp, &phase_tdd_ncp);
nr_gold_pbch(ue);
ret = nr_pbch_detection(proc, ue,1,mode); // start pbch detection at first symbol after pss
if (ret == 0) {
// sync at symbol ue->symbol_offset
// computing the offset wrt the beginning of the frame
int mu = fp->numerology_index;
// number of symbols with different prefix length
// every 7*(1<<mu) symbols there is a different prefix length (38.211 5.3.1)
int n_symb_prefix0 = (ue->symbol_offset/(7*(1<<mu)))+1;
sync_pos_frame = n_symb_prefix0*(fp->ofdm_symbol_size + fp->nb_prefix_samples0)+(ue->symbol_offset-n_symb_prefix0)*(fp->ofdm_symbol_size + fp->nb_prefix_samples);
if (ue->ssb_offset < sync_pos_frame)
ue->rx_offset = fp->samples_per_frame - sync_pos_frame + ue->ssb_offset;
else
ue->rx_offset = ue->ssb_offset - sync_pos_frame;
ue->init_sync_frame = is;
}
nr_gold_pdcch(ue,0, 2);
/*
int nb_prefix_samples0 = fp->nb_prefix_samples0;
fp->nb_prefix_samples0 = fp->nb_prefix_samples;
nr_slot_fep(ue, proc, 0, 0, ue->ssb_offset, 0, NR_PDCCH_EST);
nr_slot_fep(ue, proc, 1, 0, ue->ssb_offset, 0, NR_PDCCH_EST);
fp->nb_prefix_samples0 = nb_prefix_samples0;
LOG_I(PHY,"[UE %d] AUTOTEST Cell Sync : frame = %d, rx_offset %d, freq_offset %d \n",
ue->Mod_id,
ue->proc.proc_rxtx[0].frame_rx,
ue->rx_offset,
ue->common_vars.freq_offset );
*/
#ifdef DEBUG_INITIAL_SYNCH
LOG_I(PHY,"TDD Normal prefix: CellId %d metric %d, phase %d, pbch %d\n",
fp->Nid_cell,metric_tdd_ncp,phase_tdd_ncp,ret);
#endif
}
else {
#ifdef DEBUG_INITIAL_SYNCH
LOG_I(PHY,"TDD Normal prefix: SSS error condition: sync_pos %d\n", sync_pos);
#endif
}
if (ret == 0) break;
}
}
else {
ret = -1;
}
/* Consider this is a false detection if the offset is > 1000 Hz
Not to be used now that offest estimation is in place
if( (abs(ue->common_vars.freq_offset) > 150) && (ret == 0) )
{
ret=-1;
#if DISABLE_LOG_X
printf("Ignore MIB with high freq offset [%d Hz] estimation \n",ue->common_vars.freq_offset);
#else
LOG_E(HW, "Ignore MIB with high freq offset [%d Hz] estimation \n",ue->common_vars.freq_offset);
#endif
}*/
if (ret==0) { // PBCH found so indicate sync to higher layers and configure frame parameters
//#ifdef DEBUG_INITIAL_SYNCH
#if DISABLE_LOG_X
printf("[UE%d] In synch, rx_offset %d samples\n",ue->Mod_id, ue->rx_offset);
#else
LOG_I(PHY, "[UE%d] In synch, rx_offset %d samples\n",ue->Mod_id, ue->rx_offset);
#endif
//#endif
ue->is_synchronized_on_frame = is; // to notify on which of the two frames sync was successful
if (ue->UE_scan_carrier == 0) {
#if UE_AUTOTEST_TRACE
LOG_I(PHY,"[UE %d] AUTOTEST Cell Sync : rx_offset %d, freq_offset %d \n",
ue->Mod_id,
ue->rx_offset,
ue->common_vars.freq_offset );
#endif
// send sync status to higher layers later when timing offset converge to target timing
ue->pbch_vars[0]->pdu_errors_conseq=0;
}
LOG_I(PHY, "[UE %d] RRC Measurements => rssi %3.1f dBm (dig %3.1f dB, gain %d), N0 %d dBm, rsrp %3.1f dBm/RE, rsrq %3.1f dB\n",ue->Mod_id,
10*log10(ue->measurements.rssi)-ue->rx_total_gain_dB,
10*log10(ue->measurements.rssi),
ue->rx_total_gain_dB,
ue->measurements.n0_power_tot_dBm,
10*log10(ue->measurements.rsrp[0])-ue->rx_total_gain_dB,
(10*log10(ue->measurements.rsrq[0])));
/* LOG_I(PHY, "[UE %d] Frame %d MIB Information => %s, %s, NidCell %d, N_RB_DL %d, PHICH DURATION %d, PHICH RESOURCE %s, TX_ANT %d\n",
ue->Mod_id,
ue->proc.proc_rxtx[0].frame_rx,
duplex_string[fp->frame_type],
prefix_string[fp->Ncp],
fp->Nid_cell,
fp->N_RB_DL,
fp->phich_config_common.phich_duration,
phich_string[fp->phich_config_common.phich_resource],
fp->nb_antenna_ports_gNB);*/
#if defined(OAI_USRP) || defined(EXMIMO) || defined(OAI_BLADERF) || defined(OAI_LMSSDR) || defined(OAI_ADRV9371_ZC706)
LOG_I(PHY, "[UE %d] Measured Carrier Frequency %.0f Hz (offset %d Hz)\n",
ue->Mod_id,
openair0_cfg[0].rx_freq[0]+ue->common_vars.freq_offset,
ue->common_vars.freq_offset);
#endif
} else {
#ifdef DEBUG_INITIAL_SYNC
LOG_I(PHY,"[UE%d] Initial sync : PBCH not ok\n",ue->Mod_id);
LOG_I(PHY,"[UE%d] Initial sync : Estimated PSS position %d, Nid2 %d\n",ue->Mod_id,sync_pos,ue->common_vars.eNb_id);
LOG_I(PHY,"[UE%d] Initial sync : Estimated Nid_cell %d, Frame_type %d\n",ue->Mod_id,
frame_parms->Nid_cell,frame_parms->frame_type);
#endif
ue->UE_mode[0] = NOT_SYNCHED;
ue->pbch_vars[0]->pdu_errors_last=ue->pbch_vars[0]->pdu_errors;
ue->pbch_vars[0]->pdu_errors++;
ue->pbch_vars[0]->pdu_errors_conseq++;
}
// gain control
if (ret!=0) { //we are not synched, so we cannot use rssi measurement (which is based on channel estimates)
rx_power = 0;
// do a measurement on the best guess of the PSS
//for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++)
// rx_power += signal_energy(&ue->common_vars.rxdata[aarx][sync_pos2],
// frame_parms->ofdm_symbol_size+frame_parms->nb_prefix_samples);
/*
// do a measurement on the full frame
for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++)
rx_power += signal_energy(&ue->common_vars.rxdata[aarx][0],
frame_parms->samples_per_subframe*10);
*/
// we might add a low-pass filter here later
ue->measurements.rx_power_avg[0] = rx_power/fp->nb_antennas_rx;
ue->measurements.rx_power_avg_dB[0] = dB_fixed(ue->measurements.rx_power_avg[0]);
#ifdef DEBUG_INITIAL_SYNCH
LOG_I(PHY,"[UE%d] Initial sync : Estimated power: %d dB\n",ue->Mod_id,ue->measurements.rx_power_avg_dB[0] );
#endif
#ifndef OAI_USRP
#ifndef OAI_BLADERF
#ifndef OAI_LMSSDR
#ifndef OAI_ADRV9371_ZC706
//phy_adjust_gain(ue,ue->measurements.rx_power_avg_dB[0],0);
#endif
#endif
#endif
#endif
}
else {
#ifndef OAI_USRP
#ifndef OAI_BLADERF
#ifndef OAI_LMSSDR
#ifndef OAI_ADRV9371_ZC706
//phy_adjust_gain(ue,dB_fixed(ue->measurements.rssi),0);
#endif
#endif
#endif
#endif
}
// exit_fun("debug exit");
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_NR_INITIAL_UE_SYNC, VCD_FUNCTION_OUT);
return ret;
}