nr_initial_sync.c 16.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
/*
 * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The OpenAirInterface Software Alliance licenses this file to You under
 * the OAI Public License, Version 1.0  (the "License"); you may not use this file
 * except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.openairinterface.org/?page_id=698
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *-------------------------------------------------------------------------------
 * For more information about the OpenAirInterface (OAI) Software Alliance:
 *      contact@openairinterface.org
 */

/*! \file PHY/LTE_TRANSPORT/initial_sync.c
* \brief Routines for initial UE synchronization procedure (PSS,SSS,PBCH and frame format detection)
* \author R. Knopp, F. Kaltenberger
* \date 2011
* \version 0.1
* \company Eurecom
* \email: knopp@eurecom.fr,kaltenberger@eurecom.fr
* \note
* \warning
*/
#include "PHY/types.h"
#include "PHY/defs_nr_UE.h"
#include "PHY/phy_extern_nr_ue.h"
#include "PHY/INIT/phy_init.h"
#include "PHY/MODULATION/modulation_UE.h"
#include "nr_transport_proto_ue.h"
#include "PHY/NR_UE_ESTIMATION/nr_estimation.h"
//#include "SCHED/defs.h"
//#include "SCHED/extern.h"
#include "common/utils/LOG/vcd_signal_dumper.h"

#include "common_lib.h"
#include <math.h>

#include "PHY/NR_REFSIG/pss_nr.h"
#include "PHY/NR_REFSIG/sss_nr.h"
#include "PHY/NR_REFSIG/refsig_defs_ue.h"

extern openair0_config_t openair0_cfg[];
//static  nfapi_nr_config_request_t config_t;
//static  nfapi_nr_config_request_t* config =&config_t;
int cnt=0;

#define DEBUG_INITIAL_SYNCH


// create a new node of SSB structure
NR_UE_SSB* create_ssb_node(uint8_t  i, uint8_t  h) {

  NR_UE_SSB *new_node = (NR_UE_SSB*)malloc(sizeof(NR_UE_SSB));
  new_node->i_ssb = i;
  new_node->n_hf = h;
  new_node->c_re = 0;
  new_node->c_im = 0;
  new_node->metric = 0;
  new_node->next_ssb = NULL;

  return new_node;
}


// insertion of the structure in the ordered list (highest metric first)
NR_UE_SSB* insert_into_list(NR_UE_SSB *head, NR_UE_SSB *node) {

  if (node->metric > head->metric) {
    node->next_ssb = head;
    head = node;
    return head;
  }

  NR_UE_SSB *current = head;
  while (current->next_ssb !=NULL) {
    NR_UE_SSB *temp=current->next_ssb;
    if(node->metric > temp->metric) {
      node->next_ssb = temp;
      current->next_ssb = node;
      return head;
    }
    else
      current = temp;
  }
  current->next_ssb = node;

  return head;
}


void free_list(NR_UE_SSB *node) {
  if (node->next_ssb != NULL)
    free_list(node->next_ssb);
  free(node);
}


int nr_pbch_detection(UE_nr_rxtx_proc_t * proc, PHY_VARS_NR_UE *ue, int pbch_initial_symbol, runmode_t mode)
{
  NR_DL_FRAME_PARMS *frame_parms=&ue->frame_parms;
  int ret =-1;

  NR_UE_SSB *best_ssb = NULL;
  NR_UE_SSB *current_ssb;

#ifdef DEBUG_INITIAL_SYNCH
  LOG_I(PHY,"[UE%d] Initial sync: starting PBCH detection (rx_offset %d)\n",ue->Mod_id,
        ue->rx_offset);
#endif

  uint8_t  N_L = (frame_parms->Lmax == 4)? 4:8;
  uint8_t  N_hf = (frame_parms->Lmax == 4)? 2:1;

  // loops over possible pbch dmrs cases to retrive best estimated i_ssb (and n_hf for Lmax=4) for multiple ssb detection
  for (int hf = 0; hf < N_hf; hf++) {
    for (int l = 0; l < N_L ; l++) {

      // initialization of structure
      current_ssb = create_ssb_node(l,hf);

#if UE_TIMING_TRACE
      start_meas(&ue->dlsch_channel_estimation_stats);
#endif
      // computing correlation between received DMRS symbols and transmitted sequence for current i_ssb and n_hf
      for(int i=pbch_initial_symbol; i<pbch_initial_symbol+3;i++)
          nr_pbch_dmrs_correlation(ue,proc,0,0,i,i-pbch_initial_symbol,current_ssb);
#if UE_TIMING_TRACE
      stop_meas(&ue->dlsch_channel_estimation_stats);
#endif
      
      current_ssb->metric = current_ssb->c_re*current_ssb->c_re + current_ssb->c_im*current_ssb->c_im;
      
      // generate a list of SSB structures
      if (best_ssb == NULL)
        best_ssb = current_ssb;
      else
        best_ssb = insert_into_list(best_ssb,current_ssb);

    }
  }

  NR_UE_SSB *temp_ptr=best_ssb;
  while (ret!=0 && temp_ptr != NULL) {

#if UE_TIMING_TRACE
    start_meas(&ue->dlsch_channel_estimation_stats);
#endif
  // computing channel estimation for selected best ssb
    for(int i=pbch_initial_symbol; i<pbch_initial_symbol+3;i++)
      nr_pbch_channel_estimation(ue,proc,0,0,i,i-pbch_initial_symbol,temp_ptr->i_ssb,temp_ptr->n_hf);
#if UE_TIMING_TRACE
    stop_meas(&ue->dlsch_channel_estimation_stats);
#endif

    ret = nr_rx_pbch(ue,
	             proc,
		     ue->pbch_vars[0],
		     frame_parms,
		     0,
		     temp_ptr->i_ssb,
                     SISO,
                     ue->high_speed_flag);

    temp_ptr=temp_ptr->next_ssb;
  }

  free_list(best_ssb);

  
  if (ret==0) {
    
    frame_parms->nb_antenna_ports_gNB = 1; //pbch_tx_ant;
    
    // set initial transmission mode to 1 or 2 depending on number of detected TX antennas
    //frame_parms->mode1_flag = (pbch_tx_ant==1);
    // openair_daq_vars.dlsch_transmission_mode = (pbch_tx_ant>1) ? 2 : 1;


    // flip byte endian on 24-bits for MIB
    //    dummy = ue->pbch_vars[0]->decoded_output[0];
    //    ue->pbch_vars[0]->decoded_output[0] = ue->pbch_vars[0]->decoded_output[2];
    //    ue->pbch_vars[0]->decoded_output[2] = dummy;

#ifdef DEBUG_INITIAL_SYNCH
    LOG_I(PHY,"[UE%d] Initial sync: pbch decoded sucessfully\n",ue->Mod_id);
#endif
    return(0);
  } else {
    return(-1);
  }

}

char duplex_string[2][4] = {"FDD","TDD"};
char prefix_string[2][9] = {"NORMAL","EXTENDED"};

int nr_initial_sync(UE_nr_rxtx_proc_t *proc, PHY_VARS_NR_UE *ue, runmode_t mode, int n_frames)
{

  int32_t sync_pos, sync_pos_frame; // k_ssb, N_ssb_crb, sync_pos2,
  int32_t metric_tdd_ncp=0;
  uint8_t phase_tdd_ncp;
  double im, re;
  int is;

  NR_DL_FRAME_PARMS *fp = &ue->frame_parms;
  int ret=-1;
  int rx_power=0; //aarx,
  
  VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_NR_INITIAL_UE_SYNC, VCD_FUNCTION_IN);


  LOG_D(PHY,"nr_initial sync ue RB_DL %d\n", fp->N_RB_DL);

  /*   Initial synchronisation
   *
  *                                 1 radio frame = 10 ms
  *     <--------------------------------------------------------------------------->
  *     -----------------------------------------------------------------------------
  *     |                                 Received UE data buffer                    |
  *     ----------------------------------------------------------------------------
  *                     --------------------------
  *     <-------------->| pss | pbch | sss | pbch |
  *                     --------------------------
  *          sync_pos            SS/PBCH block
  */

  cnt++;
  if (1){ // (cnt>100)
   cnt =0;

   // initial sync performed on two successive frames, if pbch passes on first frame, no need to process second frame 
   // only one frame is used for symulation tools
   for(is=0; is<n_frames;is++) {

    /* process pss search on received buffer */
    sync_pos = pss_synchro_nr(ue, is, NO_RATE_CHANGE);

    if (sync_pos >= fp->nb_prefix_samples)
      ue->ssb_offset = sync_pos - fp->nb_prefix_samples;
    else
      ue->ssb_offset = sync_pos + (fp->samples_per_subframe * 10) - fp->nb_prefix_samples;

#ifdef DEBUG_INITIAL_SYNCH
    LOG_I(PHY,"[UE%d] Initial sync : Estimated PSS position %d, Nid2 %d\n", ue->Mod_id, sync_pos,ue->common_vars.eNb_id);
    LOG_I(PHY,"sync_pos %d ssb_offset %d \n",sync_pos,ue->ssb_offset);
#endif

    // digital compensation of FFO for SSB symbols
    if (ue->UE_fo_compensation){  
	double s_time = 1/(1.0e3*fp->samples_per_subframe);  // sampling time
	double off_angle = -2*M_PI*s_time*(ue->common_vars.freq_offset);  // offset rotation angle compensation per sample

	int start = is*fp->samples_per_frame+ue->ssb_offset;  // start for offset correction is at ssb_offset (pss time position)
  	int end = start + 4*(fp->ofdm_symbol_size + fp->nb_prefix_samples);  // loop over samples in 4 symbols (ssb size), including prefix  

	for(int n=start; n<end; n++){  	
	  for (int ar=0; ar<fp->nb_antennas_rx; ar++) {
		re = ((double)(((short *)ue->common_vars.rxdata[ar]))[2*n]);
		im = ((double)(((short *)ue->common_vars.rxdata[ar]))[2*n+1]);
		((short *)ue->common_vars.rxdata[ar])[2*n] = (short)(round(re*cos(n*off_angle) - im*sin(n*off_angle))); 
		((short *)ue->common_vars.rxdata[ar])[2*n+1] = (short)(round(re*sin(n*off_angle) + im*cos(n*off_angle)));
	  }
	}
    }

    /* check that SSS/PBCH block is continuous inside the received buffer */
    if (sync_pos < (NR_NUMBER_OF_SUBFRAMES_PER_FRAME*fp->samples_per_subframe - (NB_SYMBOLS_PBCH * fp->ofdm_symbol_size))) {

    /* slop_fep function works for lte and takes into account begining of frame with prefix for subframe 0 */
    /* for NR this is not the case but slot_fep is still used for computing FFT of samples */
    /* in order to achieve correct processing for NR prefix samples is forced to 0 and then restored after function call */
    /* symbol number are from beginning of SS/PBCH blocks as below:  */
    /*    Signal            PSS  PBCH  SSS  PBCH                     */
    /*    symbol number      0     1    2    3                       */
    /* time samples in buffer rxdata are used as input of FFT -> FFT results are stored in the frequency buffer rxdataF */
    /* rxdataF stores SS/PBCH from beginning of buffers in the same symbol order as in time domain */

      for(int i=0; i<4;i++)
        nr_slot_fep_init_sync(ue,
                              proc,
                              i,
                              0,
                              is*fp->samples_per_frame+ue->ssb_offset,
                              0);

#ifdef DEBUG_INITIAL_SYNCH
      LOG_I(PHY,"Calling sss detection (normal CP)\n");
#endif

      rx_sss_nr(ue, proc, &metric_tdd_ncp, &phase_tdd_ncp);

      nr_gold_pbch(ue);
      ret = nr_pbch_detection(proc, ue,1,mode);  // start pbch detection at first symbol after pss

      if (ret == 0) {
        // sync at symbol ue->symbol_offset
        // computing the offset wrt the beginning of the frame
        int mu = fp->numerology_index;
        // number of symbols with different prefix length
        // every 7*(1<<mu) symbols there is a different prefix length (38.211 5.3.1)
        int n_symb_prefix0 = (ue->symbol_offset/(7*(1<<mu)))+1;
        sync_pos_frame = n_symb_prefix0*(fp->ofdm_symbol_size + fp->nb_prefix_samples0)+(ue->symbol_offset-n_symb_prefix0)*(fp->ofdm_symbol_size + fp->nb_prefix_samples);
        if (ue->ssb_offset < sync_pos_frame)
          ue->rx_offset = fp->samples_per_frame - sync_pos_frame + ue->ssb_offset;
        else
          ue->rx_offset = ue->ssb_offset - sync_pos_frame;

        ue->init_sync_frame = is;
      }   

      nr_gold_pdcch(ue,0, 2);
    /*
    int nb_prefix_samples0 = fp->nb_prefix_samples0;
    fp->nb_prefix_samples0 = fp->nb_prefix_samples;
	  
    nr_slot_fep(ue, proc, 0, 0, ue->ssb_offset, 0, NR_PDCCH_EST);
    nr_slot_fep(ue, proc, 1, 0, ue->ssb_offset, 0, NR_PDCCH_EST);
    fp->nb_prefix_samples0 = nb_prefix_samples0;	

    LOG_I(PHY,"[UE  %d] AUTOTEST Cell Sync : frame = %d, rx_offset %d, freq_offset %d \n",
              ue->Mod_id,
              ue->proc.proc_rxtx[0].frame_rx,
              ue->rx_offset,
              ue->common_vars.freq_offset );
    */


#ifdef DEBUG_INITIAL_SYNCH
      LOG_I(PHY,"TDD Normal prefix: CellId %d metric %d, phase %d, pbch %d\n",
            fp->Nid_cell,metric_tdd_ncp,phase_tdd_ncp,ret);
#endif

      }
      else {
#ifdef DEBUG_INITIAL_SYNCH
       LOG_I(PHY,"TDD Normal prefix: SSS error condition: sync_pos %d\n", sync_pos);
#endif
      }
      if (ret == 0) break;
    }
  }
  else {
	  ret = -1;
  }

  /* Consider this is a false detection if the offset is > 1000 Hz 
     Not to be used now that offest estimation is in place
  if( (abs(ue->common_vars.freq_offset) > 150) && (ret == 0) )
  {
	  ret=-1;
#if DISABLE_LOG_X
	  printf("Ignore MIB with high freq offset [%d Hz] estimation \n",ue->common_vars.freq_offset);
#else
	  LOG_E(HW, "Ignore MIB with high freq offset [%d Hz] estimation \n",ue->common_vars.freq_offset);
#endif
  }*/

  if (ret==0) {  // PBCH found so indicate sync to higher layers and configure frame parameters

    //#ifdef DEBUG_INITIAL_SYNCH
#if DISABLE_LOG_X
    printf("[UE%d] In synch, rx_offset %d samples\n",ue->Mod_id, ue->rx_offset);
#else
    LOG_I(PHY, "[UE%d] In synch, rx_offset %d samples\n",ue->Mod_id, ue->rx_offset);
#endif
    //#endif

    ue->is_synchronized_on_frame = is; // to notify on which of the two frames sync was successful

    if (ue->UE_scan_carrier == 0) {

    #if UE_AUTOTEST_TRACE
      LOG_I(PHY,"[UE  %d] AUTOTEST Cell Sync : rx_offset %d, freq_offset %d \n",
              ue->Mod_id,
              ue->rx_offset,
              ue->common_vars.freq_offset );
    #endif

// send sync status to higher layers later when timing offset converge to target timing

      ue->pbch_vars[0]->pdu_errors_conseq=0;

    }

    LOG_I(PHY, "[UE %d] RRC Measurements => rssi %3.1f dBm (dig %3.1f dB, gain %d), N0 %d dBm,  rsrp %3.1f dBm/RE, rsrq %3.1f dB\n",ue->Mod_id,
	  10*log10(ue->measurements.rssi)-ue->rx_total_gain_dB,
	  10*log10(ue->measurements.rssi),
	  ue->rx_total_gain_dB,
	  ue->measurements.n0_power_tot_dBm,
	  10*log10(ue->measurements.rsrp[0])-ue->rx_total_gain_dB,
	  (10*log10(ue->measurements.rsrq[0])));

/*    LOG_I(PHY, "[UE %d] Frame %d MIB Information => %s, %s, NidCell %d, N_RB_DL %d, PHICH DURATION %d, PHICH RESOURCE %s, TX_ANT %d\n",
	  ue->Mod_id,
	  ue->proc.proc_rxtx[0].frame_rx,
	  duplex_string[fp->frame_type],
	  prefix_string[fp->Ncp],
	  fp->Nid_cell,
	  fp->N_RB_DL,
	  fp->phich_config_common.phich_duration,
	  phich_string[fp->phich_config_common.phich_resource],
	  fp->nb_antenna_ports_gNB);*/

#if defined(OAI_USRP) || defined(EXMIMO) || defined(OAI_BLADERF) || defined(OAI_LMSSDR) || defined(OAI_ADRV9371_ZC706)
    LOG_I(PHY, "[UE %d] Measured Carrier Frequency %.0f Hz (offset %d Hz)\n",
	  ue->Mod_id,
	  openair0_cfg[0].rx_freq[0]+ue->common_vars.freq_offset,
	  ue->common_vars.freq_offset);
#endif
  } else {
#ifdef DEBUG_INITIAL_SYNC
    LOG_I(PHY,"[UE%d] Initial sync : PBCH not ok\n",ue->Mod_id);
    LOG_I(PHY,"[UE%d] Initial sync : Estimated PSS position %d, Nid2 %d\n",ue->Mod_id,sync_pos,ue->common_vars.eNb_id);
    LOG_I(PHY,"[UE%d] Initial sync : Estimated Nid_cell %d, Frame_type %d\n",ue->Mod_id,
          frame_parms->Nid_cell,frame_parms->frame_type);
#endif

    ue->UE_mode[0] = NOT_SYNCHED;
    ue->pbch_vars[0]->pdu_errors_last=ue->pbch_vars[0]->pdu_errors;
    ue->pbch_vars[0]->pdu_errors++;
    ue->pbch_vars[0]->pdu_errors_conseq++;

  }

  // gain control
  if (ret!=0) { //we are not synched, so we cannot use rssi measurement (which is based on channel estimates)
    rx_power = 0;

    // do a measurement on the best guess of the PSS
    //for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++)
    //  rx_power += signal_energy(&ue->common_vars.rxdata[aarx][sync_pos2],
	//			frame_parms->ofdm_symbol_size+frame_parms->nb_prefix_samples);

    /*
    // do a measurement on the full frame
    for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++)
      rx_power += signal_energy(&ue->common_vars.rxdata[aarx][0],
				frame_parms->samples_per_subframe*10);
    */

    // we might add a low-pass filter here later
    ue->measurements.rx_power_avg[0] = rx_power/fp->nb_antennas_rx;

    ue->measurements.rx_power_avg_dB[0] = dB_fixed(ue->measurements.rx_power_avg[0]);

#ifdef DEBUG_INITIAL_SYNCH
  LOG_I(PHY,"[UE%d] Initial sync : Estimated power: %d dB\n",ue->Mod_id,ue->measurements.rx_power_avg_dB[0] );
#endif

#ifndef OAI_USRP
#ifndef OAI_BLADERF
#ifndef OAI_LMSSDR
#ifndef OAI_ADRV9371_ZC706
  //phy_adjust_gain(ue,ue->measurements.rx_power_avg_dB[0],0);
#endif
#endif
#endif
#endif

  }
  else {

#ifndef OAI_USRP
#ifndef OAI_BLADERF
#ifndef OAI_LMSSDR
#ifndef OAI_ADRV9371_ZC706
  //phy_adjust_gain(ue,dB_fixed(ue->measurements.rssi),0);
#endif
#endif
#endif
#endif

  }

  //  exit_fun("debug exit");
  VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_NR_INITIAL_UE_SYNC, VCD_FUNCTION_OUT);
  return ret;
}