proto.h 81.9 KB
Newer Older
1
/*******************************************************************************
2
    OpenAirInterface
ghaddab's avatar
ghaddab committed
3
    Copyright(c) 1999 - 2014 Eurecom
4

ghaddab's avatar
ghaddab committed
5 6 7 8
    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.
9 10


ghaddab's avatar
ghaddab committed
11 12 13 14
    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
15

ghaddab's avatar
ghaddab committed
16
    You should have received a copy of the GNU General Public License
17 18
    along with OpenAirInterface.The full GNU General Public License is
   included in this distribution in the file called "COPYING". If not,
ghaddab's avatar
ghaddab committed
19
   see <http://www.gnu.org/licenses/>.
20 21

  Contact Information
ghaddab's avatar
ghaddab committed
22 23
  OpenAirInterface Admin: openair_admin@eurecom.fr
  OpenAirInterface Tech : openair_tech@eurecom.fr
24
  OpenAirInterface Dev  : openair4g-devel@lists.eurecom.fr
25

ghaddab's avatar
ghaddab committed
26
  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
27

ghaddab's avatar
ghaddab committed
28
 *******************************************************************************/
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

/*! \file PHY/LTE_TRANSPORT/proto.h
 * \brief Function prototypes for PHY physical/transport channel processing and generation V8.6 2009-03
 * \author R. Knopp, F. Kaltenberger
 * \date 2011
 * \version 0.1
 * \company Eurecom
 * \email: knopp@eurecom.fr
 * \note
 * \warning
 */
#ifndef __LTE_TRANSPORT_PROTO__H__
#define __LTE_TRANSPORT_PROTO__H__
#include "PHY/defs.h"
#include <math.h>

// Functions below implement 36-211 and 36-212

/** @addtogroup _PHY_TRANSPORT_
 * @{
 */

51
/** \fn free_eNB_dlsch(LTE_eNB_DLSCH_t *dlsch,unsigned char N_RB_DL)
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    \brief This function frees memory allocated for a particular DLSCH at eNB
    @param dlsch Pointer to DLSCH to be removed
*/
void free_eNB_dlsch(LTE_eNB_DLSCH_t *dlsch);

void clean_eNb_dlsch(LTE_eNB_DLSCH_t *dlsch, uint8_t abstraction_flag);

/** \fn new_eNB_dlsch(uint8_t Kmimo,uint8_t Mdlharq,uint8_t abstraction_flag)
    \brief This function allocates structures for a particular DLSCH at eNB
    @returns Pointer to DLSCH to be removed
    @param Kmimo Kmimo factor from 36-212/36-213
    @param Mdlharq Maximum number of HARQ rounds (36-212/36-213)
    @params N_RB_DL total number of resource blocks (determine the operating BW)
    @param abstraction_flag Flag to indicate abstracted interface
*/
LTE_eNB_DLSCH_t *new_eNB_dlsch(uint8_t Kmimo,uint8_t Mdlharq,uint8_t N_RB_DL, uint8_t abstraction_flag);

/** \fn free_ue_dlsch(LTE_UE_DLSCH_t *dlsch)
    \brief This function frees memory allocated for a particular DLSCH at UE
    @param dlsch Pointer to DLSCH to be removed
*/
void free_ue_dlsch(LTE_UE_DLSCH_t *dlsch);

Florian Kaltenberger's avatar
Florian Kaltenberger committed
75 76
LTE_eNB_ULSCH_t *new_eNB_ulsch(uint8_t Mdlharq,uint8_t max_turbo_iterations,uint8_t N_RB_UL, uint8_t abstraction_flag);

77 78
LTE_UE_DLSCH_t *new_ue_dlsch(uint8_t Kmimo,uint8_t Mdlharq,uint8_t max_turbo_iterations,uint8_t N_RB_DL, uint8_t abstraction_flag);

Florian Kaltenberger's avatar
Florian Kaltenberger committed
79
LTE_UE_ULSCH_t *new_ue_ulsch(unsigned char Mdlharq,unsigned char N_RB_UL, uint8_t abstraction_flag);
80 81 82 83 84 85


void clean_eNb_ulsch(LTE_eNB_ULSCH_t *ulsch, uint8_t abstraction_flag);

void free_ue_ulsch(LTE_UE_ULSCH_t *ulsch);

86
LTE_eNB_ULSCH_t *new_eNB_ulsch(uint8_t Mdlharq,uint8_t max_turbo_iterations,uint8_t N_RB_UL, uint8_t abstraction_flag);
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

LTE_UE_ULSCH_t *new_ue_ulsch(uint8_t Mdlharq, unsigned char N_RB_UL, uint8_t abstraction_flag);

/** \fn dlsch_encoding(uint8_t *input_buffer,
    LTE_DL_FRAME_PARMS *frame_parms,
    uint8_t num_pdcch_symbols,
    LTE_eNB_DLSCH_t *dlsch,
    int frame,
    uint8_t subframe)
    \brief This function performs a subset of the bit-coding functions for LTE as described in 36-212, Release 8.Support is limited to turbo-coded channels (DLSCH/ULSCH). The implemented functions are:
    - CRC computation and addition
    - Code block segmentation and sub-block CRC addition
    - Channel coding (Turbo coding)
    - Rate matching (sub-block interleaving, bit collection, selection and transmission
    - Code block concatenation
    @param input_buffer Pointer to input buffer for sub-frame
    @param frame_parms Pointer to frame descriptor structure
    @param num_pdcch_symbols Number of PDCCH symbols in this subframe
    @param dlsch Pointer to dlsch to be encoded
    @param frame Frame number
    @param subframe Subframe number
    @param rm_stats Time statistics for rate-matching
    @param te_stats Time statistics for turbo-encoding
    @param i_stats Time statistics for interleaving
    @returns status
*/
113
int32_t dlsch_encoding(uint8_t *a,
114 115 116 117 118 119 120 121
                       LTE_DL_FRAME_PARMS *frame_parms,
                       uint8_t num_pdcch_symbols,
                       LTE_eNB_DLSCH_t *dlsch,
                       int frame,
                       uint8_t subframe,
                       time_stats_t *rm_stats,
                       time_stats_t *te_stats,
                       time_stats_t *i_stats);
122 123

void dlsch_encoding_emul(PHY_VARS_eNB *phy_vars_eNB,
124 125
                         uint8_t *DLSCH_pdu,
                         LTE_eNB_DLSCH_t *dlsch);
126 127 128 129 130 131


// Functions below implement 36-211

/** \fn allocate_REs_in_RB(mod_sym_t **txdataF,
    uint32_t *jj,
132
    uint32_t *jj2,
133 134
    uint16_t re_offset,
    uint32_t symbol_offset,
135 136
    LTE_DL_eNB_HARQ_t *dlsch0_harq,
    LTE_DL_eNB_HARQ_t *dlsch1_harq,
137
    uint8_t pilots,
138
    int16_t amp,
139 140 141 142 143 144 145 146 147
    int16_t *qam_table_s,
    uint32_t *re_allocated,
    uint8_t skip_dc,
    uint8_t skip_half,
    uint8_t use2ndpilots,
    LTE_DL_FRAME_PARMS *frame_parms);

    \brief Fills RB with data
    \param txdataF pointer to output data (frequency domain signal)
148
    \param jj index to output (from CW 1)
149
    \param jj2 index to output (from CW 2)
150 151
    \param re_offset index of the first RE of the RB
    \param symbol_offset index to the OFDM symbol
152 153
    \param dlsch0_harq Pointer to Transport block 0 HARQ structure
    \param dlsch0_harq Pointer to Transport block 1 HARQ structure
154 155
    \param pilots =1 if symbol_offset is an OFDM symbol that contains pilots, 0 otherwise
    \param amp Amplitude for symbols
156 157
    \param qam_table_s0 pointer to scaled QAM table for Transport Block 0 (by rho_a or rho_b)
    \param qam_table_s1 pointer to scaled QAM table for Transport Block 1 (by rho_a or rho_b)
158 159 160 161 162 163 164
    \param re_allocated pointer to allocation counter
    \param skip_dc offset for positive RBs
    \param skip_half indicate that first or second half of RB must be skipped for PBCH/PSS/SSS
    \param use2ndpilots Set to use the pilots from antenna port 1 for PDSCH
    \param frame_parms Frame parameter descriptor
*/

165
int32_t allocate_REs_in_RB(LTE_DL_FRAME_PARMS *frame_parms,
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
                           mod_sym_t **txdataF,
                           uint32_t *jj,
                           uint32_t *jj2,
                           uint16_t re_offset,
                           uint32_t symbol_offset,
                           LTE_DL_eNB_HARQ_t *dlsch0_harq,
                           LTE_DL_eNB_HARQ_t *dlsch1_harq,
                           uint8_t pilots,
                           int16_t amp,
                           uint8_t precoder_index,
                           int16_t *qam_table_s0,
                           int16_t *qam_table_s1,
                           uint32_t *re_allocated,
                           uint8_t skip_dc,
                           uint8_t skip_half);
181

182

183 184
/** \fn int32_t dlsch_modulation(mod_sym_t **txdataF,
    int16_t amp,
185 186 187 188 189
    uint32_t sub_frame_offset,
    LTE_DL_FRAME_PARMS *frame_parms,
    uint8_t num_pdcch_symbols,
    LTE_eNB_DLSCH_t *dlsch);

190
    \brief This function is the top-level routine for generation of the sub-frame signal (frequency-domain) for DLSCH.
191 192 193 194 195
    @param txdataF Table of pointers for frequency-domain TX signals
    @param amp Amplitude of signal
    @param sub_frame_offset Offset of this subframe in units of subframes (usually 0)
    @param frame_parms Pointer to frame descriptor
    @param num_pdcch_symbols Number of PDCCH symbols in this subframe
196 197
    @param dlsch0 Pointer to Transport Block 0 DLSCH descriptor for this allocation
    @param dlsch1 Pointer to Transport Block 0 DLSCH descriptor for this allocation
198

199
*/
200
int32_t dlsch_modulation(mod_sym_t **txdataF,
201 202 203 204 205 206
                         int16_t amp,
                         uint32_t sub_frame_offset,
                         LTE_DL_FRAME_PARMS *frame_parms,
                         uint8_t num_pdcch_symbols,
                         LTE_eNB_DLSCH_t *dlsch0,
                         LTE_eNB_DLSCH_t *dlsch1);
207
/*
208
  \brief This function is the top-level routine for generation of the sub-frame signal (frequency-domain) for MCH.
209 210 211 212 213 214 215
  @param txdataF Table of pointers for frequency-domain TX signals
  @param amp Amplitude of signal
  @param subframe_offset Offset of this subframe in units of subframes (usually 0)
  @param frame_parms Pointer to frame descriptor
  @param dlsch Pointer to DLSCH descriptor for this allocation
*/
int mch_modulation(mod_sym_t **txdataF,
216 217 218 219
                   int16_t amp,
                   uint32_t subframe_offset,
                   LTE_DL_FRAME_PARMS *frame_parms,
                   LTE_eNB_DLSCH_t *dlsch);
220 221 222 223 224

/** \brief Top-level generation function for eNB TX of MBSFN
    @param phy_vars_eNB Pointer to eNB variables
    @param subframe Subframe for PMCH
    @param a Pointer to transport block
225
    @param abstraction_flag
226

227
*/
228
void generate_mch(PHY_VARS_eNB *phy_vars_eNB,int subframe,uint8_t *a,int abstraction_flag);
229 230 231 232

/** \brief This function generates the frequency-domain pilots (cell-specific downlink reference signals)
    @param phy_vars_eNB Pointer to eNB variables
    @param mcs MCS for MBSFN
233 234
    @param ndi new data indicator
    @param rdvix
235
    @param abstraction_flag
236

237
*/
238
void fill_eNB_dlsch_MCH(PHY_VARS_eNB *phy_vars_eNB,int mcs,int ndi,int rvidx,int abstraction_flag);
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

/** \brief This function generates the frequency-domain pilots (cell-specific downlink reference signals)
    @param phy_vars_ue Pointer to UE variables
    @param mcs MCS for MBSFN
    @param eNB_id index of eNB in ue variables
*/
void fill_UE_dlsch_MCH(PHY_VARS_UE *phy_vars_ue,int mcs,int ndi,int rvidx,int eNB_id);

/** \brief Receiver processing for MBSFN, symbols can be done separately for time/CPU-scheduling purposes
    @param phy_vars_ue Pointer to UE variables
    @param eNB_id index of eNB in ue variables
    @param subframe Subframe index of PMCH
    @param symbol Symbol index on which to act
*/
int rx_pmch(PHY_VARS_UE *phy_vars_ue,
254 255 256
            unsigned char eNB_id,
            uint8_t subframe,
            unsigned char symbol);
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

/** \brief Dump OCTAVE/MATLAB files for PMCH debugging
    @param phy_vars_ue Pointer to UE variables
    @param eNB_id index of eNB in ue variables
    @param coded_bits_per_codeword G from 36.211
    @param subframe Index of subframe
    @returns 0 on success
*/
void dump_mch(PHY_VARS_UE *phy_vars_ue,uint8_t eNB_id,uint16_t coded_bits_per_codeword,int subframe);


/** \brief This function generates the frequency-domain pilots (cell-specific downlink reference signals)
    for N subframes.
    @param phy_vars_eNB Pointer to eNB variables
    @param txdataF Table of pointers for frequency-domain TX signals
    @param amp Amplitude of signal
    @param N Number of sub-frames to generate
*/
void generate_pilots(PHY_VARS_eNB *phy_vars_eNB,
276 277 278
                     mod_sym_t **txdataF,
                     int16_t amp,
                     uint16_t N);
279 280 281 282 283 284 285 286 287

/**
   \brief This function generates the frequency-domain pilots (cell-specific downlink reference signals) for one slot only
   @param phy_vars_eNB Pointer to eNB variables
   @param txdataF Table of pointers for frequency-domain TX signals
   @param amp Amplitude of signal
   @param slot index (0..19)
   @param first_pilot_only (0 no)
*/
288
int32_t generate_pilots_slot(PHY_VARS_eNB *phy_vars_eNB,
289 290 291 292 293
                             mod_sym_t **txdataF,
                             int16_t amp,
                             uint16_t slot,
                             int first_pilot_only);

294
int32_t generate_mbsfn_pilot(PHY_VARS_eNB *phy_vars_eNB,
295 296 297
                             mod_sym_t **txdataF,
                             int16_t amp,
                             uint16_t subframe);
298

299
int32_t generate_pss(mod_sym_t **txdataF,
300 301 302 303
                     int16_t amp,
                     LTE_DL_FRAME_PARMS *frame_parms,
                     uint16_t l,
                     uint16_t Ns);
304

305
int32_t generate_pss_emul(PHY_VARS_eNB *phy_vars_eNB,uint8_t sect_id);
306

307
int32_t generate_sss(mod_sym_t **txdataF,
308 309 310 311
                     short amp,
                     LTE_DL_FRAME_PARMS *frame_parms,
                     unsigned short symbol,
                     unsigned short slot_offset);
312

313
int32_t generate_pbch(LTE_eNB_PBCH *eNB_pbch,
314 315 316 317 318
                      mod_sym_t **txdataF,
                      int32_t amp,
                      LTE_DL_FRAME_PARMS *frame_parms,
                      uint8_t *pbch_pdu,
                      uint8_t frame_mod4);
319

320
int32_t generate_pbch_emul(PHY_VARS_eNB *phy_vars_eNB,uint8_t *pbch_pdu);
321 322 323 324 325 326 327

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream QPSK/QPSK reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
328
void qpsk_qpsk(int16_t *stream0_in,
329 330 331 332
               int16_t *stream1_in,
               int16_t *stream0_out,
               int16_t *rho01,
               int32_t length);
333 334 335 336 337 338 339 340 341 342 343 344

/** \brief This function perform LLR computation for dual-stream (QPSK/QPSK) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr128p pointer to pointer to symbol in dlsch_llr*/
345
int32_t dlsch_qpsk_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
346 347 348 349 350 351 352 353 354
                            int32_t **rxdataF_comp,
                            int32_t **rxdataF_comp_i,
                            int32_t **rho_i,
                            int16_t *dlsch_llr,
                            uint8_t symbol,
                            uint8_t first_symbol_flag,
                            uint16_t nb_rb,
                            uint16_t pbch_pss_sss_adj,
                            int16_t **llr128p);
355 356 357 358 359 360 361 362

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream QPSK/16QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
363 364
void qpsk_qam16(int16_t *stream0_in,
                int16_t *stream1_in,
365
                short *ch_mag_i,
366 367 368
                int16_t *stream0_out,
                int16_t *rho01,
                int32_t length);
369 370 371 372 373 374 375 376 377 378 379 380

/** \brief This function perform LLR computation for dual-stream (QPSK/16QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr128p pointer to pointer to symbol in dlsch_llr*/
381
int32_t dlsch_qpsk_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
382 383 384 385 386 387 388 389 390 391
                             int32_t **rxdataF_comp,
                             int32_t **rxdataF_comp_i,
                             int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
                             int32_t **rho_i,
                             int16_t *dlsch_llr,
                             uint8_t symbol,
                             uint8_t first_symbol_flag,
                             uint16_t nb_rb,
                             uint16_t pbch_pss_sss_adj,
                             int16_t **llr128p);
392 393 394 395 396 397 398 399

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream QPSK/64QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
400 401
void qpsk_qam64(int16_t *stream0_in,
                int16_t *stream1_in,
402
                short *ch_mag_i,
403 404 405
                int16_t *stream0_out,
                int16_t *rho01,
                int32_t length);
406 407 408 409 410 411 412 413 414 415 416 417

/** \brief This function perform LLR computation for dual-stream (QPSK/64QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr128p pointer to pointer to symbol in dlsch_llr*/
418
int32_t dlsch_qpsk_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
419 420 421 422 423 424 425 426 427 428
                             int32_t **rxdataF_comp,
                             int32_t **rxdataF_comp_i,
                             int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
                             int32_t **rho_i,
                             int16_t *dlsch_llr,
                             uint8_t symbol,
                             uint8_t first_symbol_flag,
                             uint16_t nb_rb,
                             uint16_t pbch_pss_sss_adj,
                             int16_t **llr128p);
429 430 431 432 433 434 435 436 437 438 439 440 441 442


/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 16QAM/QPSK reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam16_qpsk(short *stream0_in,
                short *stream1_in,
                short *ch_mag,
                short *stream0_out,
                short *rho01,
443
                int length);
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
/** \brief This function perform LLR computation for dual-stream (16QAM/QPSK) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_16qam_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
                         int **rxdataF_comp,
                         int **rxdataF_comp_i,
                         int **dl_ch_mag,   //|h_0|^2*(2/sqrt{10})
                         int **rho_i,
                         short *dlsch_llr,
                         unsigned char symbol,
                         unsigned char first_symbol_flag,
                         unsigned short nb_rb,
                         uint16_t pbch_pss_sss_adjust,
                         short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 16QAM/16QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam16_qam16(short *stream0_in,
                 short *stream1_in,
                 short *ch_mag,
                 short *ch_mag_i,
                 short *stream0_out,
                 short *rho01,
                 int length);

/** \brief This function perform LLR computation for dual-stream (16QAM/16QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_16qam_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
                          int **rxdataF_comp,
                          int **rxdataF_comp_i,
                          int **dl_ch_mag,   //|h_0|^2*(2/sqrt{10})
                          int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
                          int **rho_i,
                          short *dlsch_llr,
                          unsigned char symbol,
                          unsigned char first_symbol_flag,
                          unsigned short nb_rb,
                          uint16_t pbch_pss_sss_adjust,
                          short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 16QAM/64QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam16_qam64(short *stream0_in,
                 short *stream1_in,
                 short *ch_mag,
                 short *ch_mag_i,
                 short *stream0_out,
                 short *rho01,
                 int length);

/** \brief This function perform LLR computation for dual-stream (16QAM/64QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_16qam_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
                          int **rxdataF_comp,
                          int **rxdataF_comp_i,
                          int **dl_ch_mag,   //|h_0|^2*(2/sqrt{10})
                          int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
                          int **rho_i,
                          short *dlsch_llr,
                          unsigned char symbol,
                          unsigned char first_symbol_flag,
                          unsigned short nb_rb,
                          uint16_t pbch_pss_sss_adjust,
                          short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 64QAM/64QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam64_qpsk(short *stream0_in,
                short *stream1_in,
                short *ch_mag,
                short *stream0_out,
                short *rho01,
                int length);

/** \brief This function perform LLR computation for dual-stream (64QAM/64QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_64qam_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
                         int **rxdataF_comp,
                         int **rxdataF_comp_i,
                         int **dl_ch_mag,
                         int **rho_i,
                         short *dlsch_llr,
                         unsigned char symbol,
                         unsigned char first_symbol_flag,
                         unsigned short nb_rb,
                         uint16_t pbch_pss_sss_adjust,
                         short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 64QAM/16QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam64_qam16(short *stream0_in,
                 short *stream1_in,
                 short *ch_mag,
                 short *ch_mag_i,
                 short *stream0_out,
                 short *rho01,
                 int length);

/** \brief This function perform LLR computation for dual-stream (64QAM/16QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_64qam_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
                          int **rxdataF_comp,
                          int **rxdataF_comp_i,
                          int **dl_ch_mag,
                          int **dl_ch_mag_i,
                          int **rho_i,
                          short *dlsch_llr,
                          unsigned char symbol,
                          unsigned char first_symbol_flag,
                          unsigned short nb_rb,
                          uint16_t pbch_pss_sss_adjust,
                          short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 64QAM/64QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam64_qam64(short *stream0_in,
                 short *stream1_in,
                 short *ch_mag,
                 short *ch_mag_i,
                 short *stream0_out,
                 short *rho01,
                 int length);

/** \brief This function perform LLR computation for dual-stream (64QAM/64QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_64qam_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
                          int **rxdataF_comp,
                          int **rxdataF_comp_i,
                          int **dl_ch_mag,
                          int **dl_ch_mag_i,
                          int **rho_i,
                          short *dlsch_llr,
                          unsigned char symbol,
                          unsigned char first_symbol_flag,
                          unsigned short nb_rb,
                          uint16_t pbch_pss_sss_adjust,
                          short **llr16p);


/** \brief This function generates log-likelihood ratios (decoder input) for single-stream QPSK received waveforms.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
680
    @param first_symbol_flag
681 682 683 684
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr128p pointer to pointer to symbol in dlsch_llr
*/
685
int32_t dlsch_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
686 687 688 689 690 691 692
                       int32_t **rxdataF_comp,
                       int16_t *dlsch_llr,
                       uint8_t symbol,
                       uint8_t first_symbol_flag,
                       uint16_t nb_rb,
                       uint16_t pbch_pss_sss_adj,
                       int16_t **llr128p);
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707

/**
   \brief This function generates log-likelihood ratios (decoder input) for single-stream 16QAM received waveforms
   @param frame_parms Frame descriptor structure
   @param rxdataF_comp Compensated channel output
   @param dlsch_llr llr output
   @param dl_ch_mag Squared-magnitude of channel in each resource element position corresponding to allocation and weighted for mid-point in 16QAM constellation
   @param symbol OFDM symbol index in sub-frame
   @param first_symbol_flag
   @param nb_rb number of RBs for this allocation
   @param pbch_pss_sss_adjust  Adjustment factor in RE for PBCH/PSS/SSS allocations
   @param llr128p pointer to pointer to symbol in dlsch_llr
*/

void dlsch_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
708 709 710 711 712 713 714 715
                     int32_t **rxdataF_comp,
                     int16_t *dlsch_llr,
                     int32_t **dl_ch_mag,
                     uint8_t symbol,
                     uint8_t first_symbol_flag,
                     uint16_t nb_rb,
                     uint16_t pbch_pss_sss_adjust,
                     int16_t **llr128p);
716 717 718 719 720 721 722 723 724 725 726 727 728 729

/**
   \brief This function generates log-likelihood ratios (decoder input) for single-stream 16QAM received waveforms
   @param frame_parms Frame descriptor structure
   @param rxdataF_comp Compensated channel output
   @param dlsch_llr llr output
   @param dl_ch_mag Squared-magnitude of channel in each resource element position corresponding to allocation, weighted by first mid-point of 64-QAM constellation
   @param dl_ch_magb Squared-magnitude of channel in each resource element position corresponding to allocation, weighted by second mid-point of 64-QAM constellation
   @param symbol OFDM symbol index in sub-frame
   @param first_symbol_flag
   @param nb_rb number of RBs for this allocation
   @param pbch_pss_sss_adjust PBCH/PSS/SSS RE adjustment (in REs)
*/
void dlsch_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
730 731 732 733 734 735 736 737 738
                     int32_t **rxdataF_comp,
                     int16_t *dlsch_llr,
                     int32_t **dl_ch_mag,
                     int32_t **dl_ch_magb,
                     uint8_t symbol,
                     uint8_t first_symbol_flag,
                     uint16_t nb_rb,
                     uint16_t pbch_pss_sss_adjust,
                     short **llr_save);
739 740

/** \fn dlsch_siso(LTE_DL_FRAME_PARMS *frame_parms,
741 742
    int32_t **rxdataF_comp,
    int32_t **rxdataF_comp_i,
743 744 745 746 747 748 749 750 751 752 753
    uint8_t l,
    uint16_t nb_rb)
    \brief This function does the first stage of llr computation for SISO, by just extracting the pilots, PBCH and primary/secondary synchronization sequences.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param l symbol in sub-frame
    @param nb_rb Number of RBs in this allocation
*/

void dlsch_siso(LTE_DL_FRAME_PARMS *frame_parms,
754 755 756 757
                int32_t **rxdataF_comp,
                int32_t **rxdataF_comp_i,
                uint8_t l,
                uint16_t nb_rb);
758 759

/** \fn dlsch_alamouti(LTE_DL_FRAME_PARMS *frame_parms,
760 761 762
    int32_t **rxdataF_comp,
    int32_t **dl_ch_mag,
    int32_t **dl_ch_magb,
763 764 765 766 767 768 769 770 771 772 773
    uint8_t symbol,
    uint16_t nb_rb)
    \brief This function does Alamouti combining on RX and prepares LLR inputs by skipping pilots, PBCH and primary/secondary synchronization signals.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param dl_ch_mag First squared-magnitude of channel (16QAM and 64QAM) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param dl_ch_magb Second squared-magnitude of channel (64QAM only) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param symbol Symbol in sub-frame
    @param nb_rb Number of RBs in this allocation
*/
void dlsch_alamouti(LTE_DL_FRAME_PARMS *frame_parms,
774 775 776 777 778
                    int32_t **rxdataF_comp,
                    int32_t **dl_ch_mag,
                    int32_t **dl_ch_magb,
                    uint8_t symbol,
                    uint16_t nb_rb);
779 780

/** \fn dlsch_antcyc(LTE_DL_FRAME_PARMS *frame_parms,
781 782 783
    int32_t **rxdataF_comp,
    int32_t **dl_ch_mag,
    int32_t **dl_ch_magb,
784 785 786 787 788 789 790 791 792 793 794
    uint8_t symbol,
    uint16_t nb_rb)
    \brief This function does antenna selection (based on antenna cycling pattern) on RX and prepares LLR inputs by skipping pilots, PBCH and primary/secondary synchronization signals.  Note that this is not LTE, it is just included for comparison purposes.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param dl_ch_mag First squared-magnitude of channel (16QAM and 64QAM) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param dl_ch_magb Second squared-magnitude of channel (64QAM only) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param symbol Symbol in sub-frame
    @param nb_rb Number of RBs in this allocation
*/
void dlsch_antcyc(LTE_DL_FRAME_PARMS *frame_parms,
795 796 797 798 799
                  int32_t **rxdataF_comp,
                  int32_t **dl_ch_mag,
                  int32_t **dl_ch_magb,
                  uint8_t symbol,
                  uint16_t nb_rb);
800 801

/** \fn dlsch_detection_mrc(LTE_DL_FRAME_PARMS *frame_parms,
802 803 804 805 806 807
    int32_t **rxdataF_comp,
    int32_t **rxdataF_comp_i,
    int32_t **rho,
    int32_t **rho_i,
    int32_t **dl_ch_mag,
    int32_t **dl_ch_magb,
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
    uint8_t symbol,
    uint16_t nb_rb,
    uint8_t dual_stream_UE)

    \brief This function does maximal-ratio combining for dual-antenna receivers.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param rho Cross correlation between spatial channels
    @param rho_i Cross correlation between signal and inteference channels
    @param dl_ch_mag First squared-magnitude of channel (16QAM and 64QAM) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param dl_ch_magb Second squared-magnitude of channel (64QAM only) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param symbol Symbol in sub-frame
    @param nb_rb Number of RBs in this allocation
    @param dual_stream_UE Flag to indicate dual-stream detection
*/
void dlsch_detection_mrc(LTE_DL_FRAME_PARMS *frame_parms,
825 826 827 828 829 830 831 832 833 834 835
                         int32_t **rxdataF_comp,
                         int32_t **rxdataF_comp_i,
                         int32_t **rho,
                         int32_t **rho_i,
                         int32_t **dl_ch_mag,
                         int32_t **dl_ch_magb,
                         int32_t **dl_ch_mag_i,
                         int32_t **dl_ch_magb_i,
                         uint8_t symbol,
                         uint16_t nb_rb,
                         uint8_t dual_stream_UE);
836

837 838 839 840 841 842 843 844
void dlsch_detection_mrc_TM34(LTE_DL_FRAME_PARMS *frame_parms,
			      LTE_UE_PDSCH *lte_ue_pdsch_vars, 
			      int harq_pid,
			      int round,
			      unsigned char symbol,
			      unsigned short nb_rb,
			      unsigned char dual_stream_UE);

845 846 847 848
/** \fn dlsch_extract_rbs_single(int32_t **rxdataF,
    int32_t **dl_ch_estimates,
    int32_t **rxdataF_ext,
    int32_t **dl_ch_estimates_ext,
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
    uint16_t pmi,
    uint8_t *pmi_ext,
    uint32_t *rb_alloc,
    uint8_t symbol,
    uint8_t subframe,
    LTE_DL_FRAME_PARMS *frame_parms)
    \brief This function extracts the received resource blocks, both channel estimates and data symbols,
    for the current allocation and for single antenna eNB transmission.
    @param rxdataF Raw FFT output of received signal
    @param dl_ch_estimates Channel estimates of current slot
    @param rxdataF_ext FFT output for RBs in this allocation
    @param dl_ch_estimates_ext Channel estimates for RBs in this allocation
    @param pmi subband Precoding matrix indicator
    @param pmi_ext Extracted PMI for chosen RBs
    @param rb_alloc RB allocation vector
    @param symbol Symbol to extract
    @param subframe Subframe number
866
    @param vrb_type Flag to indicate distributed VRB type
867
    @param high_speed_flag
868 869
    @param frame_parms Pointer to frame descriptor
*/
870
uint16_t dlsch_extract_rbs_single(int32_t **rxdataF,
871 872 873 874 875 876 877 878 879 880
                                  int32_t **dl_ch_estimates,
                                  int32_t **rxdataF_ext,
                                  int32_t **dl_ch_estimates_ext,
                                  uint16_t pmi,
                                  uint8_t *pmi_ext,
                                  uint32_t *rb_alloc,
                                  uint8_t symbol,
                                  uint8_t subframe,
                                  uint32_t high_speed_flag,
                                  LTE_DL_FRAME_PARMS *frame_parms);
881

882 883 884 885
/** \fn dlsch_extract_rbs_dual(int32_t **rxdataF,
    int32_t **dl_ch_estimates,
    int32_t **rxdataF_ext,
    int32_t **dl_ch_estimates_ext,
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
    uint16_t pmi,
    uint8_t *pmi_ext,
    uint32_t *rb_alloc,
    uint8_t symbol,
    LTE_DL_FRAME_PARMS *frame_parms)
    \brief This function extracts the received resource blocks, both channel estimates and data symbols,
    for the current allocation and for dual antenna eNB transmission.
    @param rxdataF Raw FFT output of received signal
    @param dl_ch_estimates Channel estimates of current slot
    @param rxdataF_ext FFT output for RBs in this allocation
    @param dl_ch_estimates_ext Channel estimates for RBs in this allocation
    @param pmi subband Precoding matrix indicator
    @param pmi_ext Extracted PMI for chosen RBs
    @param rb_alloc RB allocation vector
    @param symbol Symbol to extract
    @param subframe Subframe index
902
    @param high_speed_flag
903 904
    @param frame_parms Pointer to frame descriptor
*/
905
uint16_t dlsch_extract_rbs_dual(int32_t **rxdataF,
906 907 908 909 910 911 912 913 914
                                int32_t **dl_ch_estimates,
                                int32_t **rxdataF_ext,
                                int32_t **dl_ch_estimates_ext,
                                uint16_t pmi,
                                uint8_t *pmi_ext,
                                uint32_t *rb_alloc,
                                uint8_t symbol,
                                uint8_t subframe,
                                uint32_t high_speed_flag,
lukashov's avatar
lukashov committed
915 916
                                LTE_DL_FRAME_PARMS *frame_parms, 
				MIMO_mode_t mimo_mode);
917 918 919 920 921 922

/** \brief This function performs channel compensation (matched filtering) on the received RBs for this allocation.  In addition, it computes the squared-magnitude of the channel with weightings for 16QAM/64QAM detection as well as dual-stream detection (cross-correlation)
    @param rxdataF_ext Frequency-domain received signal in RBs to be demodulated
    @param dl_ch_estimates_ext Frequency-domain channel estimates in RBs to be demodulated
    @param dl_ch_mag First Channel magnitudes (16QAM/64QAM)
    @param dl_ch_magb Second weighted Channel magnitudes (64QAM)
923
    @param rxdataF_comp Compensated received waveform
924 925 926 927 928 929 930 931 932
    @param rho Cross-correlation between two spatial channels on each RX antenna
    @param frame_parms Pointer to frame descriptor
    @param symbol Symbol on which to operate
    @param first_symbol_flag set to 1 on first DLSCH symbol
    @param mod_order Modulation order of allocation
    @param nb_rb Number of RBs in allocation
    @param output_shift Rescaling for compensated output (should be energy-normalizing)
    @param phy_measurements Pointer to UE PHY measurements
*/
933
void dlsch_channel_compensation(int32_t **rxdataF_ext,
934 935 936 937 938 939 940 941 942 943 944 945
                                int32_t **dl_ch_estimates_ext,
                                int32_t **dl_ch_mag,
                                int32_t **dl_ch_magb,
                                int32_t **rxdataF_comp,
                                int32_t **rho,
                                LTE_DL_FRAME_PARMS *frame_parms,
                                uint8_t symbol,
                                uint8_t first_symbol_flag,
                                uint8_t mod_order,
                                uint16_t nb_rb,
                                uint8_t output_shift,
                                PHY_MEASUREMENTS *phy_measurements);
946 947 948 949 950 951 952 953 954

void dlsch_dual_stream_correlation(LTE_DL_FRAME_PARMS *frame_parms,
                                   unsigned char symbol,
                                   unsigned short nb_rb,
                                   int **dl_ch_estimates_ext,
                                   int **dl_ch_estimates_ext_i,
                                   int **dl_ch_rho_ext,
                                   unsigned char output_shift);

955
void dlsch_channel_compensation_TM56(int **rxdataF_ext,
956 957 958 959 960 961 962 963 964 965 966 967 968
                                     int **dl_ch_estimates_ext,
                                     int **dl_ch_mag,
                                     int **dl_ch_magb,
                                     int **rxdataF_comp,
                                     unsigned char *pmi_ext,
                                     LTE_DL_FRAME_PARMS *frame_parms,
                                     PHY_MEASUREMENTS *phy_measurements,
                                     int eNB_id,
                                     unsigned char symbol,
                                     unsigned char mod_order,
                                     unsigned short nb_rb,
                                     unsigned char output_shift,
                                     unsigned char dl_power_off);
969 970


971
void dlsch_channel_compensation_TM34(LTE_DL_FRAME_PARMS *frame_parms,
972 973 974 975 976 977
				    LTE_UE_PDSCH *lte_ue_pdsch_vars,
				    PHY_MEASUREMENTS *phy_measurements,
				    int eNB_id,
				    unsigned char symbol,
				    unsigned char mod_order0,
				    unsigned char mod_order1,
978
				    int harq_pid,
Raymond Knopp's avatar
Raymond Knopp committed
979
				    int round,
980
				    MIMO_mode_t mimo_mode,
981
				    unsigned short nb_rb,
982 983
				    unsigned char output_shift0,
				    unsigned char output_shift1);
984 985


986 987 988 989 990 991 992
/** \brief This function computes the average channel level over all allocated RBs and antennas (TX/RX) in order to compute output shift for compensated signal
    @param dl_ch_estimates_ext Channel estimates in allocated RBs
    @param frame_parms Pointer to frame descriptor
    @param avg Pointer to average signal strength
    @param pilots_flag Flag to indicate pilots in symbol
    @param nb_rb Number of allocated RBs
*/
993
void dlsch_channel_level(int32_t **dl_ch_estimates_ext,
994 995 996 997
                         LTE_DL_FRAME_PARMS *frame_parms,
                         int32_t *avg,
                         uint8_t pilots_flag,
                         uint16_t nb_rb);
998 999


1000 1001
void dlsch_channel_level_TM34(int **dl_ch_estimates_ext,
			      LTE_DL_FRAME_PARMS *frame_parms,
lukashov's avatar
lukashov committed
1002
			      unsigned char *pmi_ext,
1003 1004 1005 1006
			      int *avg,
			      uint8_t symbol,
			      unsigned short nb_rb,
			      MIMO_mode_t mimo_mode);
1007 1008 1009


void dlsch_channel_level_TM56(int32_t **dl_ch_estimates_ext,
1010 1011
                              LTE_DL_FRAME_PARMS *frame_parms,
                              unsigned char *pmi_ext,
1012
                              int32_t *avg,
1013 1014 1015
                              uint8_t symbol_mod,
                              uint16_t nb_rb);

1016
void dlsch_scale_channel(int32_t **dl_ch_estimates_ext,
1017 1018 1019 1020 1021 1022
                         LTE_DL_FRAME_PARMS *frame_parms,
                         LTE_UE_DLSCH_t **dlsch_ue,
                         uint8_t symbol_mod,
                         uint16_t nb_rb);

/** \brief This is the top-level entry point for DLSCH decoding in UE.  It should be replicated on several
1023
    threads (on multi-core machines) corresponding to different HARQ processes. The routine first
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
    computes the segmentation information, followed by rate dematching and sub-block deinterleaving the of the
    received LLRs computed by dlsch_demodulation for each transport block segment. It then calls the
    turbo-decoding algorithm for each segment and stops after either after unsuccesful decoding of at least
    one segment or correct decoding of all segments.  Only the segment CRCs are check for the moment, the
    overall CRC is ignored.  Finally transport block reassembly is performed.
    @param phy_vars_ue Pointer to ue variables
    @param dlsch_llr Pointer to LLR values computed by dlsch_demodulation
    @param lte_frame_parms Pointer to frame descriptor
    @param dlsch Pointer to DLSCH descriptor
    @param subframe Subframe number
    @param num_pdcch_symbols Number of PDCCH symbols
    @param is_crnti indicates if PDSCH belongs to a CRNTI (necessary for parallelizing decoding threads)
    @param llr8_flag If 1, indicate that the 8-bit turbo decoder should be used
    @returns 0 on success, 1 on unsuccessful decoding
*/
uint32_t dlsch_decoding(PHY_VARS_UE *phy_vars_ue,
1040 1041 1042 1043 1044 1045 1046 1047
                        int16_t *dlsch_llr,
                        LTE_DL_FRAME_PARMS *lte_frame_parms,
                        LTE_UE_DLSCH_t *dlsch,
                        LTE_DL_UE_HARQ_t *harq_process,
                        uint8_t subframe,
                        uint8_t harq_pid,
                        uint8_t is_crnti,
                        uint8_t llr8_flag);
1048 1049

uint32_t dlsch_decoding_emul(PHY_VARS_UE *phy_vars_ue,
1050 1051 1052
                             uint8_t subframe,
                             uint8_t dlsch_id,
                             uint8_t eNB_id);
1053 1054 1055 1056 1057 1058 1059

/** \brief This function is the top-level entry point to PDSCH demodulation, after frequency-domain transformation and channel estimation.  It performs
    - RB extraction (signal and channel estimates)
    - channel compensation (matched filtering)
    - RE extraction (pilot, PBCH, synch. signals)
    - antenna combining (MRC, Alamouti, cycling)
    - LLR computation
1060
    This function supports TM1, 2, 3, 5, and 6. 
1061 1062 1063 1064 1065 1066 1067
    @param phy_vars_ue Pointer to PHY variables
    @param type Type of PDSCH (SI_PDSCH,RA_PDSCH,PDSCH,PMCH)
    @param eNB_id eNb index (Nid1) 0,1,2
    @param eNB_id_i Interfering eNB index (Nid1) 0,1,2, or 3 in case of MU-MIMO IC receiver
    @param subframe Subframe number
    @param symbol Symbol on which to act (within sub-frame)
    @param first_symbol_flag set to 1 on first DLSCH symbol
1068
    @param rx_type. rx_type=RX_IC_single_stream will enable interference cancellation of a second stream when decoding the first stream. In case of TM1, 2, 5, and this can cancel interference from a neighbouring cell given by eNB_id_i. In case of TM5, eNB_id_i should be set to n_connected_eNB to perform multi-user interference cancellation. In case of TM3, eNB_id_i should be set to eNB_id to perform co-channel interference cancellation; this option should be used together with an interference cancellation step [...]. In case of TM3, if rx_type=RX_IC_dual_stream, both streams will be decoded by applying the IC single stream receiver twice.  
1069 1070
    @param i_mod Modulation order of the interfering stream
*/
1071
int32_t rx_pdsch(PHY_VARS_UE *phy_vars_ue,
1072 1073 1074 1075 1076 1077
	     PDSCH_t type,
	     uint8_t eNB_id,
	     uint8_t eNB_id_i,
	     uint8_t subframe,
	     uint8_t symbol,
	     uint8_t first_symbol_flag,
1078
	     RX_type_t rx_type,
1079 1080 1081
	     uint8_t i_mod,
	     uint8_t harq_pid);

1082
int32_t rx_pdcch(LTE_UE_COMMON *lte_ue_common_vars,
1083 1084 1085 1086 1087 1088 1089
                 LTE_UE_PDCCH **lte_ue_pdcch_vars,
                 LTE_DL_FRAME_PARMS *frame_parms,
                 uint8_t subframe,
                 uint8_t eNB_id,
                 MIMO_mode_t mimo_mode,
                 uint32_t high_speed_flag,
                 uint8_t is_secondary_ue);
1090 1091 1092 1093 1094 1095 1096 1097
/*! \brief Performs detection of SSS to find cell ID and other framing parameters (FDD/TDD, normal/extended prefix)
  @param phy_vars_ue Pointer to UE variables
  @param tot_metric Pointer to variable containing maximum metric under framing hypothesis (to be compared to other hypotheses
  @param flip_max Pointer to variable indicating if start of frame is in second have of RX buffer (i.e. PSS/SSS is flipped)
  @param phase_max Pointer to variable (0 ... 6) containing rought phase offset between PSS and SSS (can be used for carrier
  frequency adjustment. 0 means -pi/3, 6 means pi/3.
  @returns 0 on success
*/
1098
int rx_sss(PHY_VARS_UE *phy_vars_ue,int32_t *tot_metric,uint8_t *flip_max,uint8_t *phase_max);
1099 1100 1101 1102 1103

/*! \brief receiver for the PBCH
  \returns number of tx antennas or -1 if error
*/
uint16_t rx_pbch(LTE_UE_COMMON *lte_ue_common_vars,
1104 1105 1106 1107 1108 1109
                 LTE_UE_PBCH *lte_ue_pbch_vars,
                 LTE_DL_FRAME_PARMS *frame_parms,
                 uint8_t eNB_id,
                 MIMO_mode_t mimo_mode,
                 uint32_t high_speed_flag,
                 uint8_t frame_mod4);
1110 1111

uint16_t rx_pbch_emul(PHY_VARS_UE *phy_vars_ue,
1112 1113
                      uint8_t eNB_id,
                      uint8_t pbch_phase);
1114 1115 1116 1117

/*! \brief PBCH scrambling. Applies 36.211 PBCH scrambling procedure.
  \param frame_parms Pointer to frame descriptor
  \param coded_data Output of the coding and rate matching
1118
  \param length Length of the sequence*/
1119
void pbch_scrambling(LTE_DL_FRAME_PARMS *frame_parms,
1120 1121
                     uint8_t* coded_data,
                     uint32_t length);
1122 1123 1124 1125 1126 1127

/*! \brief PBCH unscrambling
  This is similar to pbch_scrabling with the difference that inputs are signed s16s (llr values) and instead of flipping bits we change signs.
  \param frame_parms Pointer to frame descriptor
  \param llr Output of the demodulator
  \param length Length of the sequence
1128
  \param frame_mod4 Frame number modulo 4*/
1129
void pbch_unscrambling(LTE_DL_FRAME_PARMS *frame_parms,
1130 1131 1132
                       int8_t* llr,
                       uint32_t length,
                       uint8_t frame_mod4);
1133 1134 1135 1136 1137 1138

/*! \brief DCI Encoding. This routine codes an arbitrary DCI PDU after appending the 8-bit 3GPP CRC.  It then applied sub-block interleaving and rate matching.
  \param a Pointer to DCI PDU (coded in bytes)
  \param A Length of DCI PDU in bits
  \param E Length of DCI PDU in coded bits
  \param e Pointer to sequence
1139
  \param rnti RNTI for CRC scrambling*/
1140
void dci_encoding(uint8_t *a,
1141 1142 1143 1144
                  uint8_t A,
                  uint16_t E,
                  uint8_t *e,
                  uint16_t rnti);
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155

/*! \brief Top-level DCI entry point. This routine codes an set of DCI PDUs and performs PDCCH modulation, interleaving and mapping.
  \param num_ue_spec_dci  Number of UE specific DCI pdus to encode
  \param num_common_dci Number of Common DCI pdus to encode
  \param dci_alloc Allocation vectors for each DCI pdu
  \param n_rnti n_RNTI (see )
  \param amp Amplitude of QPSK symbols
  \param frame_parms Pointer to DL Frame parameter structure
  \param txdataF Pointer to tx signal buffers
  \param sub_frame_offset subframe offset in frame
  @returns Number of PDCCH symbols
1156
*/
1157
uint8_t generate_dci_top(uint8_t num_ue_spec_dci,
1158 1159 1160 1161 1162 1163 1164
                         uint8_t num_common_dci,
                         DCI_ALLOC_t *dci_alloc,
                         uint32_t n_rnti,
                         int16_t amp,
                         LTE_DL_FRAME_PARMS *frame_parms,
                         mod_sym_t **txdataF,
                         uint32_t sub_frame_offset);
1165 1166

uint8_t generate_dci_top_emul(PHY_VARS_eNB *phy_vars_eNB,
1167 1168 1169 1170
                              uint8_t num_ue_spec_dci,
                              uint8_t num_common_dci,
                              DCI_ALLOC_t *dci_alloc,
                              uint8_t subframe);
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182


void generate_64qam_table(void);
void generate_16qam_table(void);

uint16_t extract_crc(uint8_t *dci,uint8_t DCI_LENGTH);

/*! \brief LLR from two streams. This function takes two streams (qpsk modulated) and calculates the LLR, considering one stream as interference.
  \param stream0_in pointer to first stream0
  \param stream1_in pointer to first stream1
  \param stream0_out pointer to output stream
  \param rho01 pointer to correlation matrix
1183
  \param length*/
1184
void qpsk_qpsk_TM3456(short *stream0_in,
1185 1186 1187 1188 1189
                      short *stream1_in,
                      short *stream0_out,
                      short *rho01,
                      int length
                     );
1190 1191 1192 1193 1194 1195 1196 1197

/** \brief Attempt decoding of a particular DCI with given length and format.
    @param DCI_LENGTH length of DCI in bits
    @param DCI_FMT Format of DCI
    @param e e-sequence (soft bits)
    @param decoded_output Output of Viterbi decoder
*/
void dci_decoding(uint8_t DCI_LENGTH,
1198 1199 1200
                  uint8_t DCI_FMT,
                  int8_t *e,
                  uint8_t *decoded_output);
1201 1202 1203 1204 1205

/** \brief Do 36.213 DCI decoding procedure by searching different RNTI options and aggregation levels.  Currently does
    not employ the complexity reducing procedure based on RNTI.
    @param phy_vars_ue UE variables
    @param dci_alloc Pointer to DCI_ALLOC_t array to store results for DLSCH/ULSCH programming
1206
    @param do_common If 1 perform search in common search-space else ue-specific search-space
1207 1208 1209 1210 1211
    @param eNB_id eNB Index on which to act
    @param subframe Index of subframe
    @returns bitmap of occupied CCE positions (i.e. those detected)
*/
uint16_t dci_decoding_procedure(PHY_VARS_UE *phy_vars_ue,
1212 1213 1214 1215
                                DCI_ALLOC_t *dci_alloc,
                                int do_common,
                                int16_t eNB_id,
                                uint8_t subframe);
1216 1217 1218


uint16_t dci_decoding_procedure_emul(LTE_UE_PDCCH **lte_ue_pdcch_vars,
1219 1220 1221 1222 1223
                                     uint8_t num_ue_spec_dci,
                                     uint8_t num_common_dci,
                                     DCI_ALLOC_t *dci_alloc_tx,
                                     DCI_ALLOC_t *dci_alloc_rx,
                                     int16_t eNB_id);
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244

/** \brief Compute Q (modulation order) based on I_MCS PDSCH.  Implements table 7.1.7.1-1 from 36.213.
    @param I_MCS */
uint8_t get_Qm(uint8_t I_MCS);

/** \brief Compute Q (modulation order) based on I_MCS for PUSCH.  Implements table 8.6.1-1 from 36.213.
    @param I_MCS */
uint8_t get_Qm_ul(uint8_t I_MCS);

/** \brief Compute I_TBS (transport-block size) based on I_MCS for PDSCH.  Implements table 7.1.7.1-1 from 36.213.
    @param I_MCS */
uint8_t get_I_TBS(uint8_t I_MCS);

/** \brief Compute I_TBS (transport-block size) based on I_MCS for PUSCH.  Implements table 8.6.1-1 from 36.213.
    @param I_MCS */
unsigned char get_I_TBS_UL(unsigned char I_MCS);

/** \brief Compute Q (modulation order) based on downlink I_MCS. Implements table 7.1.7.1-1 from 36.213.
    @param I_MCS
    @param nb_rb
    @return Transport block size */
1245
uint32_t get_TBS_DL(uint8_t mcs, uint16_t nb_rb);
1246 1247 1248 1249 1250

/** \brief Compute Q (modulation order) based on uplink I_MCS. Implements table 7.1.7.1-1 from 36.213.
    @param I_MCS
    @param nb_rb
    @return Transport block size */
1251
uint32_t get_TBS_UL(uint8_t mcs, uint16_t nb_rb);
1252 1253 1254 1255 1256

/* \brief Return bit-map of resource allocation for a given DCI rballoc (RIV format) and vrb type
   @param vrb_type VRB type (0=localized,1=distributed)
   @param rb_alloc_dci rballoc field from DCI
*/
1257
uint32_t get_rballoc(vrb_t vrb_type,uint16_t rb_alloc_dci);
1258 1259 1260 1261

/* \brief Return bit-map of resource allocation for a given DCI rballoc (RIV format) and vrb type
   @returns Transmission mode (1-7)
*/
1262
uint8_t get_transmission_mode(module_id_t Mod_id, uint8_t CC_id, rnti_t rnti);
1263

1264

1265
/* \brief
1266
   @param ra_header Header of resource allocation (0,1) (See sections 7.1.6.1/7.1.6.2 of 36.213 Rel8.6)
1267
   @param rb_alloc Bitmap allocation from DCI (format 1,2)
1268 1269 1270 1271
   @returns number of physical resource blocks
*/
uint32_t conv_nprb(uint8_t ra_header,uint32_t rb_alloc,int N_RB_DL);

Raymond Knopp's avatar
 
Raymond Knopp committed
1272
int get_G(LTE_DL_FRAME_PARMS *frame_parms,uint16_t nb_rb,uint32_t *rb_alloc,uint8_t mod_order,uint8_t Nl,uint8_t num_pdcch_symbols,int frame,uint8_t subframe);
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298

int adjust_G(LTE_DL_FRAME_PARMS *frame_parms,uint32_t *rb_alloc,uint8_t mod_order,uint8_t subframe);
int adjust_G2(LTE_DL_FRAME_PARMS *frame_parms,uint32_t *rb_alloc,uint8_t mod_order,uint8_t subframe,uint8_t symbol);


#ifndef modOrder
#define modOrder(I_MCS,I_TBS) ((I_MCS-I_TBS)*2+2) // Find modulation order from I_TBS and I_MCS
#endif

/** \fn uint8_t I_TBS2I_MCS(uint8_t I_TBS);
    \brief This function maps I_tbs to I_mcs according to Table 7.1.7.1-1 in 3GPP TS 36.213 V8.6.0. Where there is two supported modulation orders for the same I_TBS then either high or low modulation is chosen by changing the equality of the two first comparisons in the if-else statement.
    \param I_TBS Index of Transport Block Size
    \return I_MCS given I_TBS
*/
uint8_t I_TBS2I_MCS(uint8_t I_TBS);

/** \fn uint8_t SE2I_TBS(float SE,
    uint8_t N_PRB,
    uint8_t symbPerRB);
    \brief This function maps a requested throughput in number of bits to I_tbs. The throughput is calculated as a function of modulation order, RB allocation and number of symbols per RB. The mapping orginates in the "Transport block size table" (Table 7.1.7.2.1-1 in 3GPP TS 36.213 V8.6.0)
    \param SE Spectral Efficiency (before casting to integer, multiply by 1024, remember to divide result by 1024!)
    \param N_PRB Number of PhysicalResourceBlocks allocated \sa lte_frame_parms->N_RB_DL
    \param symbPerRB Number of symbols per resource block allocated to this channel
    \return I_TBS given an SE and an N_PRB
*/
uint8_t SE2I_TBS(float SE,
1299 1300
                 uint8_t N_PRB,
                 uint8_t symbPerRB);
1301 1302 1303 1304 1305 1306
/** \brief This function generates the sounding reference symbol (SRS) for the uplink according to 36.211 v8.6.0. If IFFT_FPGA is defined, the SRS is quantized to a QPSK sequence.
    @param frame_parms LTE DL Frame Parameters
    @param soundingrs_ul_config_dedicated Dynamic configuration from RRC during Connection Establishment
    @param txdataF pointer to the frequency domain TX signal
    @returns 0 on success*/
int generate_srs_rx(LTE_DL_FRAME_PARMS *frame_parms,
1307 1308
                    SOUNDINGRS_UL_CONFIG_DEDICATED *soundingrs_ul_config_dedicated,
                    int *txdataF);
1309

1310
int32_t generate_srs_tx_emul(PHY_VARS_UE *phy_vars_ue,
1311
                             uint8_t subframe);
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321

/*!
  \brief This function is similar to generate_srs_tx but generates a conjugate sequence for channel estimation. If IFFT_FPGA is defined, the SRS is quantized to a QPSK sequence.
  @param phy_vars_ue Pointer to PHY_VARS structure
  @param eNB_id Index of destination eNB for this SRS
  @param amp Linear amplitude of SRS
  @param subframe Index of subframe on which to act
  @returns 0 on success, -1 on error with message
*/

1322
int32_t generate_srs_tx(PHY_VARS_UE *phy_vars_ue,
1323 1324 1325
                        uint8_t eNB_id,
                        int16_t amp,
                        uint32_t subframe);
1326 1327 1328 1329 1330

/*!
  \brief This function generates the downlink reference signal for the PUSCH according to 36.211 v8.6.0. The DRS occuies the RS defined by rb_alloc and the symbols 2 and 8 for extended CP and 3 and 10 for normal CP.
*/

1331
int32_t generate_drs_pusch(PHY_VARS_UE *phy_vars_ue,
1332 1333 1334 1335 1336 1337
                           uint8_t eNB_id,
                           int16_t amp,
                           uint32_t subframe,
                           uint32_t first_rb,
                           uint32_t nb_rb,
                           uint8_t ant);
1338 1339 1340 1341 1342 1343

/*!
  \brief This function initializes the Group Hopping, Sequence Hopping and nPRS sequences for PUCCH/PUSCH according to 36.211 v8.6.0. It should be called after configuration of UE (reception of SIB2/3) and initial configuration of eNB (or after reconfiguration of cell-specific parameters).
  @param frame_parms Pointer to a LTE_DL_FRAME_PARMS structure (eNB or UE)*/
void init_ul_hopping(LTE_DL_FRAME_PARMS *frame_parms);

1344
int32_t compareints (const void * a, const void * b);
1345 1346 1347


void ulsch_modulation(mod_sym_t **txdataF,
1348 1349 1350 1351 1352
                      int16_t amp,
                      frame_t frame,
                      uint32_t subframe,
                      LTE_DL_FRAME_PARMS *frame_parms,
                      LTE_UE_ULSCH_t *ulsch);
1353 1354


1355
void ulsch_extract_rbs_single(int32_t **rxdataF,
1356 1357 1358 1359 1360 1361
                              int32_t **rxdataF_ext,
                              uint32_t first_rb,
                              uint32_t nb_rb,
                              uint8_t l,
                              uint8_t Ns,
                              LTE_DL_FRAME_PARMS *frame_parms);
1362

1363
uint8_t subframe2harq_pid(LTE_DL_FRAME_PARMS *frame_parms,frame_t frame,uint8_t subframe);
1364 1365
uint8_t subframe2harq_pid_eNBrx(LTE_DL_FRAME_PARMS *frame_parms,uint8_t subframe);

1366 1367
int generate_ue_dlsch_params_from_dci(int frame,
				      uint8_t subframe,
1368
                                      void *dci_pdu,
1369
                                      rnti_t rnti,
1370 1371 1372 1373 1374 1375 1376 1377
                                      DCI_format_t dci_format,
                                      LTE_UE_DLSCH_t **dlsch,
                                      LTE_DL_FRAME_PARMS *frame_parms,
                                      PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,
                                      uint16_t si_rnti,
                                      uint16_t ra_rnti,
                                      uint16_t p_rnti);

1378 1379
int32_t generate_eNB_dlsch_params_from_dci(int frame,
    uint8_t subframe,
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
    void *dci_pdu,
    rnti_t rnti,
    DCI_format_t dci_format,
    LTE_eNB_DLSCH_t **dlsch_eNB,
    LTE_DL_FRAME_PARMS *frame_parms,
    PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,
    uint16_t si_rnti,
    uint16_t ra_rnti,
    uint16_t p_rnti,
    uint16_t DL_pmi_single);
1390

1391
int32_t generate_eNB_ulsch_params_from_rar(uint8_t *rar_pdu,
1392 1393 1394 1395
    frame_t frame,
    uint8_t subframe,
    LTE_eNB_ULSCH_t *ulsch,
    LTE_DL_FRAME_PARMS *frame_parms);
1396 1397

int generate_ue_ulsch_params_from_dci(void *dci_pdu,
1398
                                      rnti_t rnti,
1399 1400 1401 1402 1403 1404 1405 1406 1407
                                      uint8_t subframe,
                                      DCI_format_t dci_format,
                                      PHY_VARS_UE *phy_vars_ue,
                                      uint16_t si_rnti,
                                      uint16_t ra_rnti,
                                      uint16_t p_rnti,
                                      uint16_t cba_rnti,
                                      uint8_t eNB_id,
                                      uint8_t use_srs);
1408

1409
int32_t generate_ue_ulsch_params_from_rar(PHY_VARS_UE *phy_vars_ue,
1410
    uint8_t eNB_id);
1411
double sinr_eff_cqi_calc(PHY_VARS_UE *phy_vars_ue,
1412
                         uint8_t eNB_id);
1413
int generate_eNB_ulsch_params_from_dci(void *dci_pdu,
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
                                       rnti_t rnti,
                                       uint8_t subframe,
                                       DCI_format_t dci_format,
                                       uint8_t UE_id,
                                       PHY_VARS_eNB *PHY_vars_eNB,
                                       uint16_t si_rnti,
                                       uint16_t ra_rnti,
                                       uint16_t p_rnti,
                                       uint16_t cba_rnti,
                                       uint8_t use_srs);
1424 1425 1426 1427 1428 1429 1430 1431

#ifdef USER_MODE
void dump_ulsch(PHY_VARS_eNB *phy_vars_eNb,uint8_t subframe, uint8_t UE_id);

void dump_dlsch(PHY_VARS_UE *phy_vars_ue,uint8_t eNB_id,uint8_t subframe,uint8_t harq_pid);
void dump_dlsch_SI(PHY_VARS_UE *phy_vars_ue,uint8_t eNB_id,uint8_t subframe);
void dump_dlsch_ra(PHY_VARS_UE *phy_vars_ue,uint8_t eNB_id,uint8_t subframe);

1432
void dump_dlsch2(PHY_VARS_UE *phy_vars_ue,uint8_t eNB_id,uint16_t coded_bits_per_codeword,int round,uint8_t harq_pid );
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
#endif

int dump_dci(LTE_DL_FRAME_PARMS *frame_parms, DCI_ALLOC_t *dci);

int dump_ue_stats(PHY_VARS_UE *phy_vars_ue, char* buffer, int length, runmode_t mode, int input_level_dBm);
int dump_eNB_stats(PHY_VARS_eNB *phy_vars_eNB, char* buffer, int length);



void generate_pcfich_reg_mapping(LTE_DL_FRAME_PARMS *frame_parms);

void pcfich_scrambling(LTE_DL_FRAME_PARMS *frame_parms,
1445 1446 1447
                       uint8_t subframe,
                       uint8_t *b,
                       uint8_t *bt);
1448 1449

void pcfich_unscrambling(LTE_DL_FRAME_PARMS *frame_parms,
1450 1451
                         uint8_t subframe,
                         int16_t *d);
1452 1453

void generate_pcfich(uint8_t num_pdcch_symbols,
1454 1455 1456 1457
                     int16_t amp,
                     LTE_DL_FRAME_PARMS *frame_parms,
                     mod_sym_t **txdataF,
                     uint8_t subframe);
1458 1459

uint8_t rx_pcfich(LTE_DL_FRAME_PARMS *frame_parms,
1460 1461 1462
                  uint8_t subframe,
                  LTE_UE_PDCCH *lte_ue_pdcch_vars,
                  MIMO_mode_t mimo_mode);
1463 1464 1465 1466 1467 1468 1469 1470 1471

void generate_phich_reg_mapping(LTE_DL_FRAME_PARMS *frame_parms);


void init_transport_channels(uint8_t);

void generate_RIV_tables(void);

/*!
1472 1473
  \brief This function performs the initial cell search procedure - PSS detection, SSS detection and PBCH detection.  At the
  end, the basic frame parameters are known (Frame configuration - TDD/FDD and cyclic prefix length,
1474 1475 1476 1477 1478 1479 1480
  N_RB_DL, PHICH_CONFIG and Nid_cell) and the UE can begin decoding PDCCH and DLSCH SI to retrieve the rest.  Once these
  parameters are know, the routine calls some basic initialization routines (cell-specific reference signals, etc.)
  @param phy_vars_ue Pointer to UE variables
*/
int initial_sync(PHY_VARS_UE *phy_vars_ue, runmode_t mode);

void rx_ulsch(PHY_VARS_eNB *phy_vars_eNB,
1481 1482 1483 1484 1485
              uint32_t subframe,
              uint8_t eNB_id,  // this is the effective sector id
              uint8_t UE_id,
              LTE_eNB_ULSCH_t **ulsch,
              uint8_t cooperation_flag);
1486 1487

void rx_ulsch_emul(PHY_VARS_eNB *phy_vars_eNB,
1488 1489 1490
                   uint8_t subframe,
                   uint8_t sect_id,
                   uint8_t UE_index);
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502

/*!
  \brief Encoding of PUSCH/ACK/RI/ACK from 36-212.
  @param a Pointer to ulsch SDU
  @param frame_parms Pointer to Frame parameters
  @param ulsch Pointer to ulsch descriptor
  @param harq_pid HARQ process ID
  @param tmode Transmission mode (1-7)
  @param control_only_flag Generate PUSCH with control information only
  @param Nbundled Parameter for ACK/NAK bundling (36.213 Section 7.3)
*/
uint32_t ulsch_encoding(uint8_t *a,
1503 1504 1505 1506 1507 1508
                        PHY_VARS_UE *phy_vars_ue,
                        uint8_t harq_pid,
                        uint8_t eNB_id,
                        uint8_t tmode,
                        uint8_t control_only_flag,
                        uint8_t Nbundled);
1509 1510 1511 1512 1513 1514 1515 1516 1517

/*!
  \brief Encoding of PUSCH/ACK/RI/ACK from 36-212 for emulation
  @param ulsch_buffer Pointer to ulsch SDU
  @param phy_vars_ue Pointer to UE top-level descriptor
  @param eNB_id ID of eNB receiving this PUSCH
  @param harq_pid HARQ process ID
  @param control_only_flag Generate PUSCH with control information only
*/
1518
int32_t ulsch_encoding_emul(uint8_t *ulsch_buffer,
1519 1520 1521 1522
                            PHY_VARS_UE *phy_vars_ue,
                            uint8_t eNB_id,
                            uint8_t harq_pid,
                            uint8_t control_only_flag);
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534

/*!
  \brief Decoding of PUSCH/ACK/RI/ACK from 36-212.
  @param phy_vars_eNB Pointer to eNB top-level descriptor
  @param UE_id ID of UE transmitting this PUSCH
  @param subframe Index of subframe for PUSCH
  @param control_only_flag Receive PUSCH with control information only
  @param Nbundled Nbundled parameter for ACK/NAK scrambling from 36-212/36-213
  @param llr8_flag If 1, indicate that the 8-bit turbo decoder should be used
  @returns 0 on success
*/
unsigned int  ulsch_decoding(PHY_VARS_eNB *phy_vars_eNB,
1535 1536 1537 1538 1539
                             uint8_t UE_id,
                             uint8_t subframe,
                             uint8_t control_only_flag,
                             uint8_t Nbundled,
                             uint8_t llr8_flag);
1540 1541

uint32_t ulsch_decoding_emul(PHY_VARS_eNB *phy_vars_eNB,
1542 1543 1544
                             uint8_t subframe,
                             uint8_t UE_index,
                             uint16_t *crnti);
1545 1546

void generate_phich_top(PHY_VARS_eNB *phy_vars_eNB,
1547 1548 1549 1550
                        uint8_t subframe,
                        int16_t amp,
                        uint8_t sect_id,
                        uint8_t abstraction_flag);
1551 1552 1553 1554 1555 1556 1557 1558

/* \brief  This routine demodulates the PHICH and updates PUSCH/ULSCH parameters.
   @param phy_vars_ue Pointer to UE variables
   @param subframe Subframe of received PDCCH/PHICH
   @param eNB_id Index of eNB
*/

void rx_phich(PHY_VARS_UE *phy_vars_ue,
1559 1560
              uint8_t subframe,
              uint8_t eNB_id);
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575


/** \brief  This routine provides the relationship between a PHICH TXOp and its corresponding PUSCH subframe (Table 8.3.-1 from 36.213).
    @param frame_parms Pointer to DL frame configuration parameters
    @param subframe Subframe of received/transmitted PHICH
    @returns subframe of PUSCH transmission
*/
uint8_t phich_subframe2_pusch_subframe(LTE_DL_FRAME_PARMS *frame_parms,uint8_t subframe);

/** \brief  This routine provides the relationship between a PHICH TXOp and its corresponding PUSCH frame (Table 8.3.-1 from 36.213).
    @param frame_parms Pointer to DL frame configuration parameters
    @param frame Frame of received/transmitted PHICH
    @param subframe Subframe of received/transmitted PHICH
    @returns frame of PUSCH transmission
*/
1576
uint8_t phich_frame2_pusch_frame(LTE_DL_FRAME_PARMS *frame_parms,frame_t frame,uint8_t subframe);;
1577

Raymond Knopp's avatar
 
Raymond Knopp committed
1578
void print_CQI(void *o,UCI_format_t uci_format,uint8_t eNB_id,int N_RB_DL);
1579

1580
void extract_CQI(void *o,UCI_format_t uci_format,LTE_eNB_UE_stats *stats,uint8_t N_RB_DL, uint16_t * crnti, uint8_t * access_mode);
1581

1582
void fill_CQI(LTE_UE_ULSCH_t *ulsch,PHY_MEASUREMENTS *meas,uint8_t eNB_id, uint8_t harq_pid,int N_RB_DL, rnti_t rnti, uint8_t trans_mode,double sinr_eff);
Florian Kaltenberger's avatar
Florian Kaltenberger committed
1583

1584 1585
void reset_cba_uci(void *o);

Florian Kaltenberger's avatar
Florian Kaltenberger committed
1586 1587 1588 1589 1590 1591
/** \brief  This routine computes the subband PMI bitmap based on measurements (0,1,2,3 for rank 0 and 0,1 for rank 1) in the format needed for UCI
    @param meas pointer to measurements
    @param eNB_id eNB_id
    @param nb_subbands number of subbands
    @returns subband PMI bitmap
*/
Raymond Knopp's avatar
 
Raymond Knopp committed
1592
uint16_t quantize_subband_pmi(PHY_MEASUREMENTS *meas,uint8_t eNB_id,int nb_subbands);
Florian Kaltenberger's avatar
Florian Kaltenberger committed
1593 1594

//uint16_t quantize_subband_pmi2(PHY_MEASUREMENTS *meas,uint8_t eNB_id,uint8_t a_id,int nb_subbands);
1595

Raymond Knopp's avatar
 
Raymond Knopp committed
1596
uint64_t pmi2hex_2Ar1(uint32_t pmi);
1597

Raymond Knopp's avatar
 
Raymond Knopp committed
1598
uint64_t pmi2hex_2Ar2(uint32_t pmi);
1599

Raymond Knopp's avatar
 
Raymond Knopp committed
1600
uint64_t cqi2hex(uint32_t cqi);
1601 1602 1603

uint16_t computeRIV(uint16_t N_RB_DL,uint16_t RBstart,uint16_t Lcrbs);

Florian Kaltenberger's avatar
Florian Kaltenberger committed
1604 1605 1606 1607 1608 1609
/** \brief  This routine expands a single (wideband) PMI to subband PMI bitmap similar to the one used in the UCI and in the dlsch_modulation routine
    @param frame_parms Pointer to DL frame configuration parameters
    @param wideband_pmi (0,1,2,3 for rank 0 and 0,1 for rank 1) 
    @param rank (0 or 1)
    @returns subband PMI bitmap
*/
Florian Kaltenberger's avatar
Florian Kaltenberger committed
1610
uint32_t pmi_extend(LTE_DL_FRAME_PARMS *frame_parms,uint8_t wideband_pmi, uint8_t rank);
Florian Kaltenberger's avatar
Florian Kaltenberger committed
1611 1612 1613

/** \brief  This routine extracts a single subband PMI from a bitmap coming from UCI or the pmi_extend function
    @param N_RB_DL number of resource blocks
Florian Kaltenberger's avatar
Florian Kaltenberger committed
1614 1615
    @param mimo_mode  
    @param pmi_alloc subband PMI bitmap
Florian Kaltenberger's avatar
Florian Kaltenberger committed
1616 1617 1618
    @param rb resource block for which to extract PMI
    @returns subband PMI
*/
Florian Kaltenberger's avatar
Florian Kaltenberger committed
1619
uint8_t get_pmi(uint8_t N_RB_DL,MIMO_mode_t mode, uint32_t pmi_alloc,uint16_t rb);
1620 1621 1622 1623 1624 1625 1626 1627


uint16_t get_nCCE(uint8_t num_pdcch_symbols,LTE_DL_FRAME_PARMS *frame_parms,uint8_t mi);

uint16_t get_nquad(uint8_t num_pdcch_symbols,LTE_DL_FRAME_PARMS *frame_parms,uint8_t mi);

uint8_t get_mi(LTE_DL_FRAME_PARMS *frame,uint8_t subframe);

Raymond Knopp's avatar
 
Raymond Knopp committed
1628
uint16_t get_nCCE_max(uint8_t Mod_id,uint8_t CC_id);
1629 1630 1631 1632 1633 1634

uint8_t get_num_pdcch_symbols(uint8_t num_dci,DCI_ALLOC_t *dci_alloc,LTE_DL_FRAME_PARMS *frame_parms,uint8_t subframe);

void pdcch_interleaving(LTE_DL_FRAME_PARMS *frame_parms,mod_sym_t **z, mod_sym_t **wbar,uint8_t n_symbols_pdcch,uint8_t mi);

void pdcch_unscrambling(LTE_DL_FRAME_PARMS *frame_parms,
1635 1636 1637
                        uint8_t subframe,
                        int8_t* llr,
                        uint32_t length);
1638 1639

void pdcch_scrambling(LTE_DL_FRAME_PARMS *frame_parms,
1640 1641 1642
                      uint8_t subframe,
                      uint8_t *e,
                      uint32_t length);
1643 1644

void dlsch_scrambling(LTE_DL_FRAME_PARMS *frame_parms,
1645 1646 1647 1648 1649
                      int mbsfn_flag,
                      LTE_eNB_DLSCH_t *dlsch,
                      int G,
                      uint8_t q,
                      uint8_t Ns);
1650 1651

void dlsch_unscrambling(LTE_DL_FRAME_PARMS *frame_parms,
1652 1653 1654 1655 1656 1657
                        int mbsfn_flag,
                        LTE_UE_DLSCH_t *dlsch,
                        int G,
                        int16_t* llr,
                        uint8_t q,
                        uint8_t Ns);
1658 1659 1660 1661

void init_ncs_cell(LTE_DL_FRAME_PARMS *frame_parms,uint8_t ncs_cell[20][7]);

void generate_pucch(mod_sym_t **txdataF,
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
                    LTE_DL_FRAME_PARMS *frame_parms,
                    uint8_t ncs_cell[20][7],
                    PUCCH_FMT_t fmt,
                    PUCCH_CONFIG_DEDICATED *pucch_config_dedicated,
                    uint16_t n1_pucch,
                    uint16_t n2_pucch,
                    uint8_t shortened_format,
                    uint8_t *payload,
                    int16_t amp,
                    uint8_t subframe);
1672 1673

void generate_pucch_emul(PHY_VARS_UE *phy_vars_ue,
1674 1675 1676 1677 1678
                         PUCCH_FMT_t format,
                         uint8_t ncs1,
                         uint8_t *pucch_ack_payload,
                         uint8_t sr,
                         uint8_t subframe);
1679 1680


1681
int32_t rx_pucch(PHY_VARS_eNB *phy_vars_eNB,
1682 1683 1684 1685 1686 1687 1688 1689
                 PUCCH_FMT_t fmt,
                 uint8_t UE_id,
                 uint16_t n1_pucch,
                 uint16_t n2_pucch,
                 uint8_t shortened_format,
                 uint8_t *payload,
                 uint8_t subframe,
                 uint8_t pucch1_thres);
1690

1691
int32_t rx_pucch_emul(PHY_VARS_eNB *phy_vars_eNB,
1692 1693 1694 1695 1696
                      uint8_t UE_index,
                      PUCCH_FMT_t fmt,
                      uint8_t n1_pucch_sel,
                      uint8_t *payload,
                      uint8_t subframe);
1697 1698 1699 1700 1701 1702 1703 1704 1705


/*!
  \brief Check for PRACH TXop in subframe
  @param frame_parms Pointer to LTE_DL_FRAME_PARMS
  @param frame frame index to check
  @param subframe subframe index to check
  @returns 0 on success
*/
1706
int is_prach_subframe(LTE_DL_FRAME_PARMS *frame_parms,frame_t frame, uint8_t subframe);
1707 1708 1709 1710 1711 1712 1713 1714 1715

/*!
  \brief Generate PRACH waveform
  @param phy_vars_ue Pointer to ue top-level descriptor
  @param eNB_id Index of destination eNB
  @param subframe subframe index to operate on
  @param index of preamble (0-63)
  @param Nf System frame number
  @returns 0 on success
1716

1717
*/
1718
int32_t generate_prach(PHY_VARS_UE *phy_vars_ue,uint8_t eNB_id,uint8_t subframe,uint16_t Nf);
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728

/*!
  \brief Process PRACH waveform
  @param phy_vars_eNB Pointer to eNB top-level descriptor
  @param subframe subframe index to operate on
  @param preamble_energy_list List of energies for each candidate preamble
  @param preamble_delay_list List of delays for each candidate preamble
  @param Nf System frame number
  @param tdd_mapindex Index of PRACH resource in Table 5.7.1-4 (TDD)
  @returns 0 on success
1729

1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
*/
void rx_prach(PHY_VARS_eNB *phy_vars_eNB,uint8_t subframe,uint16_t *preamble_energy_list, uint16_t *preamble_delay_list, uint16_t Nf, uint8_t tdd_mapindex);

/*!
  \brief Helper for MAC, returns number of available PRACH in TDD for a particular configuration index
  @param frame_parms Pointer to LTE_DL_FRAME_PARMS structure
  @returns 0-5 depending on number of available prach
*/
uint8_t get_num_prach_tdd(LTE_DL_FRAME_PARMS *frame_parms);

/*!
  \brief Return the PRACH format as a function of the Configuration Index and Frame type.
  @param prach_ConfigIndex PRACH Configuration Index
  @param frame_type 0-FDD, 1-TDD
  @returns 0-1 accordingly
*/
uint8_t get_prach_fmt(uint8_t prach_ConfigIndex,lte_frame_type_t frame_type);

/*!
  \brief Helper for MAC, returns frequency index of PRACH resource in TDD for a particular configuration index
  @param frame_parms Pointer to LTE_DL_FRAME_PARMS structure
  @returns 0-5 depending on number of available prach
*/
uint8_t get_fid_prach_tdd(LTE_DL_FRAME_PARMS *frame_parms,uint8_t tdd_map_index);

/*!
  \brief Comp ute DFT of PRACH ZC sequences.  Used for generation of prach in UE and reception of PRACH in eNB.
  @param prach_config_common Pointer to prachConfigCommon structure
1758
  @param Xu DFT output
1759 1760
*/
void compute_prach_seq(PRACH_CONFIG_COMMON *prach_config_common,
1761 1762
                       lte_frame_type_t frame_type,
                       uint32_t X_u[64][839]);
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772

void init_prach_tables(int N_ZC);

/*!
  \brief Return the status of MBSFN in this frame/subframe
  @param frame Frame index
  @param subframe Subframe index
  @param frame_parms Pointer to frame parameters
  @returns 1 if subframe is for MBSFN
*/
1773
int is_pmch_subframe(frame_t frame, int subframe, LTE_DL_FRAME_PARMS *frame_parms);
1774

1775
uint8_t is_not_pilot(uint8_t pilots, uint8_t re, uint8_t nushift, uint8_t use2ndpilots);
1776 1777

uint32_t dlsch_decoding_abstraction(double *dlsch_MIPB,
1778 1779 1780 1781
                                    LTE_DL_FRAME_PARMS *lte_frame_parms,
                                    LTE_UE_DLSCH_t *dlsch,
                                    uint8_t subframe,
                                    uint8_t num_pdcch_symbols);
1782 1783 1784 1785

// DL power control functions
double get_pa_dB(PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated);

1786
double computeRhoA_eNB(PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,
1787
                       LTE_eNB_DLSCH_t *dlsch_eNB,
1788 1789
		       int dl_power_off, 
		       uint8_t n_antenna_port);
1790 1791 1792 1793

double computeRhoB_eNB(PDSCH_CONFIG_DEDICATED  *pdsch_config_dedicated,
                       PDSCH_CONFIG_COMMON *pdsch_config_common,
                       uint8_t n_antenna_port,
1794
                       LTE_eNB_DLSCH_t *dlsch_eNB,int dl_power_off);
1795

1796
double computeRhoA_UE(PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,
1797
                      LTE_UE_DLSCH_t *dlsch_ue,
1798 1799
                      uint8_t dl_power_off,
		      uint8_t n_antenna_port);
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811

double computeRhoB_UE(PDSCH_CONFIG_DEDICATED  *pdsch_config_dedicated,
                      PDSCH_CONFIG_COMMON *pdsch_config_common,
                      uint8_t n_antenna_port,
                      LTE_UE_DLSCH_t *dlsch_ue,
                      uint8_t dl_power_off);

/*void compute_sqrt_RhoAoRhoB(PDSCH_CONFIG_DEDICATED  *pdsch_config_dedicated,
  PDSCH_CONFIG_COMMON *pdsch_config_common,
  uint8_t n_antenna_port,
  LTE_UE_DLSCH_t *dlsch_ue);
*/
1812

Florian Kaltenberger's avatar
Florian Kaltenberger committed
1813 1814 1815
uint8_t get_prach_prb_offset(LTE_DL_FRAME_PARMS *frame_parms, uint8_t tdd_mapindex, uint16_t Nf); 

uint8_t ul_subframe2pdcch_alloc_subframe(LTE_DL_FRAME_PARMS *frame_parms,uint8_t n);
1816

1817 1818
/**@}*/
#endif