pucch_nr.c 86.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The OpenAirInterface Software Alliance licenses this file to You under
 * the OAI Public License, Version 1.1  (the "License"); you may not use this file
 * except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.openairinterface.org/?page_id=698
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *-------------------------------------------------------------------------------
 * For more information about the OpenAirInterface (OAI) Software Alliance:
 *      contact@openairinterface.org
 */

/*! \file PHY/NR_UE_TRANSPORT/pucch_nr.c
* \brief Top-level routines for generating and decoding the PUCCH physical channel
* \author A. Mico Pereperez
* \date 2018
* \version 0.1
* \company Eurecom
* \email: 
* \note
* \warning
*/
//#include "PHY/defs.h"
#include "PHY/impl_defs_nr.h"
#include "PHY/defs_nr_common.h"
35
#include "PHY/defs_nr_UE.h"
36 37
//#include "PHY/extern.h" 
//#include "LAYER2/MAC/extern.h"
38
#include "PHY/NR_UE_TRANSPORT/pucch_nr.h"
39

40 41
#include "common/utils/LOG/log.h"
#include "common/utils/LOG/vcd_signal_dumper.h"
42 43

#include "T.h"
44 45 46 47
#ifndef NR_UNIT_TEST
  #define DEBUG_PUCCH_TX
  #define DEBUG_NR_PUCCH_TX
#endif
48
//#define ONE_OVER_SQRT2 23170 // 32767/sqrt(2) = 23170 (ONE_OVER_SQRT2)
49

50 51 52 53
void nr_group_sequence_hopping (//pucch_GroupHopping_t ue->pucch_config_common_nr.puch_GroupHopping,
                                //uint8_t PUCCH_GroupHopping,
                                PHY_VARS_NR_UE *ue,
                                //uint32_t n_id,
54
                                uint8_t n_hop,
55
                                int nr_tti_tx,
56 57 58 59 60 61 62 63 64 65 66 67 68 69
                                uint8_t *u,
                                uint8_t *v) {
/*
 * Implements TS 38.211 subclause 6.3.2.2.1 Group and sequence hopping
 * The following variables are set by higher layers:
 *    - PUCCH_GroupHopping:
 *    - n_id: higher-layer parameter hoppingId
 *    - n_hop: frequency hopping index
 *             if intra-slot frequency hopping is disabled by the higher-layer parameter PUCCH-frequency-hopping
 *                n_hop=0
 *             if frequency hopping is enabled by the higher-layer parameter PUCCH-frequency-hopping
 *                n_hop=0 for the first hop
 *                n_hop=1 for the second hop
 */
70 71 72 73 74 75 76 77 78
  // depending on the value of the PUCCH_GroupHopping, we will obtain different values for u,v
  pucch_GroupHopping_t PUCCH_GroupHopping = ue->pucch_config_common_nr->pucch_GroupHopping; // from higher layers FIXME!!!
  // n_id defined as per TS 38.211 subclause 6.3.2.2.1 (is given by the higher-layer parameter hoppingId)
  // it is hoppingId from PUCCH-ConfigCommon:
  // Cell-Specific scrambling ID for group hoppping and sequence hopping if enabled
  // Corresponds to L1 parameter 'HoppingID' (see 38.211, section 6.3.2.2) BIT STRING (SIZE (10))
  uint16_t n_id = ue->pucch_config_common_nr->hoppingId; // from higher layers FIXME!!!


79
  #ifdef DEBUG_NR_PUCCH_TX
80 81 82
    // initialization to be removed
    PUCCH_GroupHopping=neither;
    n_id=10;
83 84
    printf("\t\t [nr_group_sequence_hopping] initialization PUCCH_GroupHopping=%d, n_id=%d -> variable initializations TO BE REMOVED\n",PUCCH_GroupHopping,n_id);
  #endif
85 86


87 88 89 90 91 92 93 94 95
  uint8_t f_ss=0,f_gh=0;
  *u=0;
  *v=0;
  uint32_t c_init = (1<<5)*floor(n_id/30)+(n_id%30); // we initialize c_init to calculate u,v
  uint32_t x1,s = lte_gold_generic(&x1, &c_init, 1); // TS 38.211 Subclause 5.2.1
  #ifdef DEBUG_NR_PUCCH_TX
    printf("\t\t [nr_group_sequence_hopping] calculating u,v -> ");
  #endif

96
  if (PUCCH_GroupHopping == neither){ // PUCCH_GroupHopping 'neither'
97 98
    f_ss = n_id%30;
  }
99
  if (PUCCH_GroupHopping == enable){ // PUCCH_GroupHopping 'enabled'
100
    for (int m=0; m<8; m++){
101
      f_gh = f_gh + ((1<<m)*((uint8_t)((s>>(8*(2*nr_tti_tx+n_hop)+m))&1))); // Not sure we have to use nr_tti_tx FIXME!!!
102 103 104 105
    }
    f_gh = f_gh%30;
    f_ss = n_id%30;
  }
106
  if (PUCCH_GroupHopping == disable){ // PUCCH_GroupHopping 'disabled'
107
    f_ss = n_id%30;
108
    *v = (uint8_t)((s>>(2*nr_tti_tx+n_hop))&1); // Not sure we have to use nr_tti_tx FIXME!!!
109 110 111 112 113 114
  }
  *u = (f_gh+f_ss)%30;
  #ifdef DEBUG_NR_PUCCH_TX
    printf("%d,%d\n",*u,*v);
  #endif
}
115

116
double nr_cyclic_shift_hopping(PHY_VARS_NR_UE *ue,
117 118 119 120
                               uint8_t m0,
                               uint8_t mcs,
                               uint8_t lnormal,
                               uint8_t lprime,
121
                               int nr_tti_tx) {
122 123 124 125 126 127 128 129 130 131
/*
 * Implements TS 38.211 subclause 6.3.2.2.2 Cyclic shift hopping
 *     - n_id: higher-layer parameter hoppingId
 *     - m0: provided by higher layer parameter PUCCH-F0-F1-initial-cyclic-shift of PUCCH-F0-resource-config
 *     - mcs: mcs=0 except for PUCCH format 0 when it depends on information to be transmitted according to TS 38.213 subclause 9.2
 *     - lnormal: lnormal is the OFDM symbol number in the PUCCH transmission where l=0 corresponds to the first OFDM symbol of the PUCCH transmission
 *     - lprime: lprime is the index of the OFDM symbol in the slot that corresponds to the first OFDM symbol of the PUCCH transmission in the slot given by [5, TS 38.213]
 */
  // alpha_init initialized to 2*PI/12=0.5235987756
  double alpha = 0.5235987756;
132 133
  uint16_t c_init = ue->pucch_config_common_nr->hoppingId; // we initialize c_init again to calculate n_cs

134 135
  #ifdef DEBUG_NR_PUCCH_TX
    // initialization to be removed
136
    c_init=10;
137 138
    printf("\t\t [nr_cyclic_shift_hopping] initialization c_init=%d -> variable initialization TO BE REMOVED\n",c_init);
  #endif
139

140 141 142
  uint32_t x1,s = lte_gold_generic(&x1, &c_init, 1); // TS 38.211 Subclause 5.2.1
  uint8_t n_cs=0;
  #ifdef DEBUG_NR_PUCCH_TX
143
    printf("\t\t [nr_cyclic_shift_hopping] calculating alpha (cyclic shift) using c_init=%d -> ",c_init);
144 145
  #endif
  for (int m=0; m<8; m++){
146 147
    // calculating n_cs (Not sure we have to use nr_tti_tx FIXME!!!)
    n_cs = n_cs+((1<<m)*((uint8_t)((s>>((14*8*nr_tti_tx) + 8*(lnormal+lprime) + m))&1)));
148 149 150
  }
  alpha = (alpha * (double)((m0+mcs+n_cs)%12));
  #ifdef DEBUG_NR_PUCCH_TX
151
    printf("n_cs=%d -> %lf\n",n_cs,alpha);
152 153 154
  #endif
  return(alpha);
}
155 156
void nr_generate_pucch0(PHY_VARS_NR_UE *ue,
                        int32_t **txdataF,
157 158 159
                        NR_DL_FRAME_PARMS *frame_parms,
                        PUCCH_CONFIG_DEDICATED *pucch_config_dedicated,
                        int16_t amp,
160
                        int nr_tti_tx,
161
                        uint8_t m0,
162 163 164
                        uint8_t mcs,
                        uint8_t nrofSymbols,
                        uint8_t startingSymbolIndex,
165
                        uint16_t startingPRB) {
166
  #ifdef DEBUG_NR_PUCCH_TX
167
    printf("\t [nr_generate_pucch0] start function at slot(nr_tti_tx)=%d\n",nr_tti_tx);
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
  #endif

  /*
   * Implement TS 38.211 Subclause 6.3.2.3.1 Sequence generation
   *
   */
  #ifdef DEBUG_NR_PUCCH_TX
    printf("\t [nr_generate_pucch0] sequence generation\n");
  #endif

  /*
   * Defining cyclic shift hopping TS 38.211 Subclause 6.3.2.2.2
   */
  // alpha is cyclic shift
  double alpha;
  // lnormal is the OFDM symbol number in the PUCCH transmission where l=0 corresponds to the first OFDM symbol of the PUCCH transmission
  uint8_t lnormal;
  // lprime is the index of the OFDM symbol in the slot that corresponds to the first OFDM symbol of the PUCCH transmission in the slot given by [5, TS 38.213]
  uint8_t lprime;
  // mcs is provided by TC 38.213 subclauses 9.2.3, 9.2.4, 9.2.5 FIXME!
  //uint8_t mcs;

  /*
   * in TS 38.213 Subclause 9.2.1 it is said that:
   * for PUCCH format 0 or PUCCH format 1, the index of the cyclic shift
   * is indicated by higher layer parameter PUCCH-F0-F1-initial-cyclic-shift
   */

  /*
   * Implementing TS 38.211 Subclause 6.3.2.3.1, the sequence x(n) shall be generated according to:
   * x(l*12+n) = r_u_v_alpha_delta(n)
   */
  // the value of u,v (delta always 0 for PUCCH) has to be calculated according to TS 38.211 Subclause 6.3.2.2.1
  uint8_t u=0,v=0,delta=0;
  // if frequency hopping is disabled by the higher-layer parameter PUCCH-frequency-hopping
  //              n_hop = 0
  // if frequency hopping is enabled by the higher-layer parameter PUCCH-frequency-hopping
  //              n_hop = 0 for first hop
  //              n_hop = 1 for second hop
  uint8_t n_hop = 0;
208
  //uint8_t PUCCH_Frequency_Hopping; // from higher layers FIXME!!
209

Jacques's avatar
Jacques committed
210
#ifdef DEBUG_NR_PUCCH_TX
211
    printf("\t [nr_generate_pucch0] sequence generation: variable initialization for test\n");
Jacques's avatar
Jacques committed
212
#endif
213 214 215 216 217 218 219

  // x_n contains the sequence r_u_v_alpha_delta(n)
  int16_t x_n_re[24],x_n_im[24];
  // we proceed to calculate alpha according to TS 38.211 Subclause 6.3.2.2.2
  for (int l=0; l<nrofSymbols; l++){
    // if frequency hopping is enabled n_hop = 1 for second hop. Not sure frequency hopping concerns format 0. FIXME!!!
    //if ((PUCCH_Frequency_Hopping == 1)&&(l == (nrofSymbols-1))) n_hop = 1;
220 221
    nr_group_sequence_hopping(ue,n_hop,nr_tti_tx,&u,&v); // calculating u and v value
    alpha = nr_cyclic_shift_hopping(ue,m0,mcs,l,startingSymbolIndex,nr_tti_tx);
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
    #ifdef DEBUG_NR_PUCCH_TX
      printf("\t [nr_generate_pucch0] sequence generation \tu=%d \tv=%d \talpha=%lf \t(for symbol l=%d)\n",u,v,alpha,l);
    #endif
    for (int n=0; n<12; n++){
      x_n_re[(12*l)+n] = (int16_t)(((((int32_t)(round(32767*cos(alpha*n))) * table_5_2_2_2_2_Re[u][n])>>15)
                                  - (((int32_t)(round(32767*sin(alpha*n))) * table_5_2_2_2_2_Im[u][n])>>15))); // Re part of base sequence shifted by alpha
      x_n_im[(12*l)+n] = (int16_t)(((((int32_t)(round(32767*cos(alpha*n))) * table_5_2_2_2_2_Im[u][n])>>15)
                                  + (((int32_t)(round(32767*sin(alpha*n))) * table_5_2_2_2_2_Re[u][n])>>15))); // Im part of base sequence shifted by alpha
      #ifdef DEBUG_NR_PUCCH_TX
        printf("\t [nr_generate_pucch0] sequence generation \tu=%d \tv=%d \talpha=%lf \tx_n(l=%d,n=%d)=(%d,%d)\n",
                u,v,alpha,l,n,x_n_re[(12*l)+n],x_n_im[(12*l)+n]);
      #endif
    }
  }
  /*
   * Implementing TS 38.211 Subclause 6.3.2.3.2 Mapping to physical resources FIXME!
   */
  int32_t *txptr;
  uint32_t re_offset;
  for (int l=0; l<nrofSymbols; l++) {
    if ((startingPRB <  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is lower band
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*startingPRB) + frame_parms->first_carrier_offset;
    }
    if ((startingPRB >= (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is upper band
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(startingPRB-(frame_parms->N_RB_DL>>1)));
    }
    if ((startingPRB <  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB is lower band
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*startingPRB) + frame_parms->first_carrier_offset;
    }
    if ((startingPRB >  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB is upper band
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(startingPRB-(frame_parms->N_RB_DL>>1))) + 6;
    }
    if ((startingPRB == (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB contains DC
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*startingPRB) + frame_parms->first_carrier_offset;
    }
    txptr = &txdataF[0][re_offset];
    for (int n=0; n<12; n++){
      if ((n==6) && (startingPRB == (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) {
        // if number RBs in bandwidth is odd  and current PRB contains DC, we need to recalculate the offset when n=6 (for second half PRB)
        re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size);
      }
      ((int16_t *)&txdataF[0][re_offset])[0] = (int16_t)(((int32_t)(amp) * x_n_re[(12*l)+n])>>15);
      ((int16_t *)&txdataF[0][re_offset])[1] = (int16_t)(((int32_t)(amp) * x_n_im[(12*l)+n])>>15);
      //((int16_t *)txptr[0][re_offset])[0] = (int16_t)((int32_t)amp * x_n_re[(12*l)+n])>>15;
      //((int16_t *)txptr[0][re_offset])[1] = (int16_t)((int32_t)amp * x_n_im[(12*l)+n])>>15;
      //txptr[re_offset] = (x_n_re[(12*l)+n]<<16) + x_n_im[(12*l)+n];
      #ifdef DEBUG_NR_PUCCH_TX
        printf("\t [nr_generate_pucch0] mapping to RE \t amp=%d \tofdm_symbol_size=%d \tN_RB_DL=%d \tfirst_carrier_offset=%d \ttxptr(%d)=(x_n(l=%d,n=%d)=(%d,%d))\n",
                amp,frame_parms->ofdm_symbol_size,frame_parms->N_RB_DL,frame_parms->first_carrier_offset,re_offset,
                l,n,((int16_t *)&txdataF[0][re_offset])[0],((int16_t *)&txdataF[0][re_offset])[1]);
      #endif
      re_offset++;
    }
  }
}
277

278 279
void nr_generate_pucch1(PHY_VARS_NR_UE *ue,
                        int32_t **txdataF,
280 281 282 283
                        NR_DL_FRAME_PARMS *frame_parms,
                        PUCCH_CONFIG_DEDICATED *pucch_config_dedicated,
                        uint64_t payload,
                        int16_t amp,
284
                        int nr_tti_tx,
285
                        uint8_t m0,
286 287
                        uint8_t nrofSymbols,
                        uint8_t startingSymbolIndex,
288 289
                        uint16_t startingPRB,
                        uint16_t startingPRB_intraSlotHopping,
290 291 292
                        uint8_t timeDomainOCC,
                        uint8_t nr_bit) {
#ifdef DEBUG_NR_PUCCH_TX
293 294
  printf("\t [nr_generate_pucch1] start function at slot(nr_tti_tx)=%d payload=%d m0=%d nrofSymbols=%d startingSymbolIndex=%d startingPRB=%d startingPRB_intraSlotHopping=%d timeDomainOCC=%d nr_bit=%d\n",
          nr_tti_tx,payload,m0,nrofSymbols,startingSymbolIndex,startingPRB,startingPRB_intraSlotHopping,timeDomainOCC,nr_bit);
295 296 297
#endif

  /*
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
   * Implement TS 38.211 Subclause 6.3.2.4.1 Sequence modulation
   *
   */
  // complex-valued symbol d_re, d_im containing complex-valued symbol d(0):
  int16_t d_re, d_im;
  if (nr_bit == 1) { // using BPSK if M_bit=1 according to TC 38.211 Subclause 5.1.2
    d_re = (payload&1)==0 ? (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15) : -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
    d_im = (payload&1)==0 ? (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15) : -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
  }
  if (nr_bit == 2) { // using QPSK if M_bit=2 according to TC 38.211 Subclause 5.1.2
    if (((payload&1)==0) && (((payload>>1)&1)==0)) {
      d_re =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15); // 32767/sqrt(2) = 23170 (ONE_OVER_SQRT2)
      d_im =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
    }
    if (((payload&1)==0) && (((payload>>1)&1)==1)) {
      d_re =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      d_im = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
    }
    if (((payload&1)==1) && (((payload>>1)&1)==0)) {
      d_re = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      d_im =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
    }
    if (((payload&1)==1) && (((payload>>1)&1)==1)) {
      d_re = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      d_im = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
    }
  }
  #ifdef DEBUG_NR_PUCCH_TX
    printf("\t [nr_generate_pucch1] sequence modulation: payload=%x \tde_re=%d \tde_im=%d\n",payload,d_re,d_im);
  #endif

  /*
   * Defining cyclic shift hopping TS 38.211 Subclause 6.3.2.2.2
   */
  // alpha is cyclic shift
  double alpha;
  // lnormal is the OFDM symbol number in the PUCCH transmission where l=0 corresponds to the first OFDM symbol of the PUCCH transmission
  uint8_t lnormal = 0 ;
  // lprime is the index of the OFDM symbol in the slot that corresponds to the first OFDM symbol of the PUCCH transmission in the slot given by [5, TS 38.213]
  uint8_t lprime = startingSymbolIndex;
  // mcs = 0 except for PUCCH format 0
  uint8_t mcs=0;
  // r_u_v_alpha_delta_re and r_u_v_alpha_delta_im tables containing the sequence y(n) for the PUCCH, when they are multiplied by d(0)
  // r_u_v_alpha_delta_dmrs_re and r_u_v_alpha_delta_dmrs_im tables containing the sequence for the DM-RS.
  int16_t r_u_v_alpha_delta_re[12],r_u_v_alpha_delta_im[12],r_u_v_alpha_delta_dmrs_re[12],r_u_v_alpha_delta_dmrs_im[12];
343
  /*
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
   * in TS 38.213 Subclause 9.2.1 it is said that:
   * for PUCCH format 0 or PUCCH format 1, the index of the cyclic shift
   * is indicated by higher layer parameter PUCCH-F0-F1-initial-cyclic-shift
   */

  /*
   * the complex-valued symbol d_0 shall be multiplied with a sequence r_u_v_alpha_delta(n): y(n) = d_0 * r_u_v_alpha_delta(n)
   */
  // the value of u,v (delta always 0 for PUCCH) has to be calculated according to TS 38.211 Subclause 6.3.2.2.1
  uint8_t u=0,v=0,delta=0;
  // if frequency hopping is disabled, intraSlotFrequencyHopping is not provided
  //              n_hop = 0
  // if frequency hopping is enabled,  intraSlotFrequencyHopping is     provided
  //              n_hop = 0 for first hop
  //              n_hop = 1 for second hop
  uint8_t n_hop = 0;
  // Intra-slot frequency hopping shall be assumed when the higher-layer parameter intraSlotFrequencyHopping is provided,
  // regardless of whether the frequency-hop distance is zero or not,
  // otherwise no intra-slot frequency hopping shall be assumed
  //uint8_t PUCCH_Frequency_Hopping = 0 ; // from higher layers
  uint8_t intraSlotFrequencyHopping = 0;
  if (startingPRB != startingPRB_intraSlotHopping){
    intraSlotFrequencyHopping=1;
    #ifdef DEBUG_NR_PUCCH_TX
      printf("\t [nr_generate_pucch1] intraSlotFrequencyHopping=%d \n",intraSlotFrequencyHopping);
    #endif
  }
/*
 * Implementing TS 38.211 Subclause 6.3.2.4.2 Mapping to physical resources
373
 */
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
  int32_t *txptr;
  uint32_t re_offset;
  int i=0;
  #define MAX_SIZE_Z 168 // this value has to be calculated from mprime*12*table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_noHop[pucch_symbol_length]+m*12+n
  int16_t z_re[MAX_SIZE_Z],z_im[MAX_SIZE_Z];
  int16_t z_dmrs_re[MAX_SIZE_Z],z_dmrs_im[MAX_SIZE_Z];

  for (int l=0; l<nrofSymbols; l++) {
    #ifdef DEBUG_NR_PUCCH_TX
      printf("\t [nr_generate_pucch1] for symbol l=%d, lprime=%d\n",
              l,lprime);
    #endif
    // y_n contains the complex value d multiplied by the sequence r_u_v
    int16_t y_n_re[12],y_n_im[12];
    if ((intraSlotFrequencyHopping == 1) && (l >= (int)floor(nrofSymbols/2))) n_hop = 1; // n_hop = 1 for second hop
    #ifdef DEBUG_NR_PUCCH_TX
      printf("\t [nr_generate_pucch1] entering function nr_group_sequence_hopping with n_hop=%d, nr_tti_tx=%d\n",
              n_hop,nr_tti_tx);
    #endif
    nr_group_sequence_hopping(ue,n_hop,nr_tti_tx,&u,&v); // calculating u and v value
    alpha = nr_cyclic_shift_hopping(ue,m0,mcs,l,lprime,nr_tti_tx);
    for (int n=0; n<12; n++){
      r_u_v_alpha_delta_re[n] = (int16_t)(((((int32_t)(round(32767*cos(alpha*n))) * table_5_2_2_2_2_Re[u][n])>>15)
                                         - (((int32_t)(round(32767*sin(alpha*n))) * table_5_2_2_2_2_Im[u][n])>>15))); // Re part of base sequence shifted by alpha
      r_u_v_alpha_delta_im[n] = (int16_t)(((((int32_t)(round(32767*cos(alpha*n))) * table_5_2_2_2_2_Im[u][n])>>15)
                                         + (((int32_t)(round(32767*sin(alpha*n))) * table_5_2_2_2_2_Re[u][n])>>15))); // Im part of base sequence shifted by alpha
      r_u_v_alpha_delta_dmrs_re[n] = (int16_t)(((((int32_t)(round(32767*cos(alpha*n))) * table_5_2_2_2_2_Re[u][n])>>15)
                                              - (((int32_t)(round(32767*sin(alpha*n))) * table_5_2_2_2_2_Im[u][n])>>15))); // Re part of DMRS base sequence shifted by alpha
      r_u_v_alpha_delta_dmrs_im[n] = (int16_t)(((((int32_t)(round(32767*cos(alpha*n))) * table_5_2_2_2_2_Im[u][n])>>15)
                                              + (((int32_t)(round(32767*sin(alpha*n))) * table_5_2_2_2_2_Re[u][n])>>15))); // Im part of DMRS base sequence shifted by alpha
      // PUCCH sequence = DM-RS sequence multiplied by d(0)
      y_n_re[n]               = (int16_t)(((((int32_t)(r_u_v_alpha_delta_re[n])*d_re)>>15)
                                         - (((int32_t)(r_u_v_alpha_delta_im[n])*d_im)>>15))); // Re part of y(n)
      y_n_im[n]               = (int16_t)(((((int32_t)(r_u_v_alpha_delta_re[n])*d_im)>>15)
                                         + (((int32_t)(r_u_v_alpha_delta_im[n])*d_re)>>15))); // Im part of y(n)
      #ifdef DEBUG_NR_PUCCH_TX
        printf("\t [nr_generate_pucch1] sequence generation \tu=%d \tv=%d \talpha=%lf \tr_u_v_alpha_delta[n=%d]=(%d,%d) \ty_n[n=%d]=(%d,%d)\n",
            u,v,alpha,n,r_u_v_alpha_delta_re[n],r_u_v_alpha_delta_im[n],n,y_n_re[n],y_n_im[n]);
      #endif
    }
    /*
     * The block of complex-valued symbols y(n) shall be block-wise spread with the orthogonal sequence wi(m)
     * (defined in table_6_3_2_4_1_2_Wi_Re and table_6_3_2_4_1_2_Wi_Im)
     * z(mprime*12*table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_noHop[pucch_symbol_length]+m*12+n)=wi(m)*y(n)
     *
     * The block of complex-valued symbols r_u_v_alpha_dmrs_delta(n) for DM-RS shall be block-wise spread with the orthogonal sequence wi(m)
     * (defined in table_6_3_2_4_1_2_Wi_Re and table_6_3_2_4_1_2_Wi_Im)
     * z(mprime*12*table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_noHop[pucch_symbol_length]+m*12+n)=wi(m)*y(n)
     *
     */
    // the orthogonal sequence index for wi(m) defined in TS 38.213 Subclause 9.2.1
    // the index of the orthogonal cover code is from a set determined as described in [4, TS 38.211]
    // and is indicated by higher layer parameter PUCCH-F1-time-domain-OCC
    // In the PUCCH_Config IE, the PUCCH-format1, timeDomainOCC field
    uint8_t w_index = timeDomainOCC;
    // N_SF_mprime_PUCCH_1 contains N_SF_mprime from table 6.3.2.4.1-1   (depending on number of PUCCH symbols nrofSymbols, mprime and intra-slot hopping enabled/disabled)
    uint8_t N_SF_mprime_PUCCH_1;
    // N_SF_mprime_PUCCH_1 contains N_SF_mprime from table 6.4.1.3.1.1-1 (depending on number of PUCCH symbols nrofSymbols, mprime and intra-slot hopping enabled/disabled)
    uint8_t N_SF_mprime_PUCCH_DMRS_1;
    // N_SF_mprime_PUCCH_1 contains N_SF_mprime from table 6.3.2.4.1-1   (depending on number of PUCCH symbols nrofSymbols, mprime=0 and intra-slot hopping enabled/disabled)
    uint8_t N_SF_mprime0_PUCCH_1;
    // N_SF_mprime_PUCCH_1 contains N_SF_mprime from table 6.4.1.3.1.1-1 (depending on number of PUCCH symbols nrofSymbols, mprime=0 and intra-slot hopping enabled/disabled)
    uint8_t N_SF_mprime0_PUCCH_DMRS_1;
    // mprime is 0 if no intra-slot hopping / mprime is {0,1} if intra-slot hopping
    uint8_t mprime = 0;
    if (intraSlotFrequencyHopping == 0) { // intra-slot hopping disabled
      #ifdef DEBUG_NR_PUCCH_TX
        printf("\t [nr_generate_pucch1] block-wise spread with the orthogonal sequence wi(m) if intraSlotFrequencyHopping = %d\n",
                intraSlotFrequencyHopping);
      #endif
      N_SF_mprime_PUCCH_1       =   table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_noHop[nrofSymbols-1]; // only if intra-slot hopping not enabled (PUCCH)
      N_SF_mprime_PUCCH_DMRS_1  = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_noHop[nrofSymbols-1]; // only if intra-slot hopping not enabled (DM-RS)
      N_SF_mprime0_PUCCH_1      =   table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_noHop[nrofSymbols-1]; // only if intra-slot hopping not enabled mprime = 0 (PUCCH)
      N_SF_mprime0_PUCCH_DMRS_1 = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_noHop[nrofSymbols-1]; // only if intra-slot hopping not enabled mprime = 0 (DM-RS)
      for (int m=0; m < N_SF_mprime_PUCCH_1; m++){
        for (int n=0; n<12 ; n++){
          z_re[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]           = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*y_n_re[n])>>15)
                                                                              - (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*y_n_im[n])>>15));
          z_im[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]           = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*y_n_im[n])>>15)
                                                                              + (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*y_n_re[n])>>15));
          #ifdef DEBUG_NR_PUCCH_TX
            printf("\t\t z_pucch[%d] \t= ((%d \t* %d \t-%d \t* %d),   (%d \t* %d \t+%d \t*%d))    = (%d,%d)\n",
                    (mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n,
                    table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m],y_n_re[n],table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m],y_n_im[n],
                    table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m],y_n_im[n],table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m],y_n_re[n],
                    z_re[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n],z_im[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]);
          #endif
        }
      }
      for (int m=0; m < N_SF_mprime_PUCCH_DMRS_1; m++){
        for (int n=0; n<12 ; n++){
          z_dmrs_re[(mprime*12*N_SF_mprime0_PUCCH_DMRS_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_re[n])>>15)
                                                                              - (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_im[n])>>15));
          z_dmrs_im[(mprime*12*N_SF_mprime0_PUCCH_DMRS_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_im[n])>>15)
                                                                              + (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_re[n])>>15));
          #ifdef DEBUG_NR_PUCCH_TX
            printf("\t\t z_dm-rs[%d] = ((),()) =(%d,%d)\n",
                    (mprime*12*N_SF_mprime0_PUCCH_DMRS_1)+(m*12)+n,z_dmrs_re[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n],z_dmrs_im[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]);
          #endif
        }
      }
    }
    if (intraSlotFrequencyHopping == 1) { // intra-slot hopping enabled
      #ifdef DEBUG_NR_PUCCH_TX
        printf("\t [nr_generate_pucch1] block-wise spread with the orthogonal sequence wi(m) if intraSlotFrequencyHopping = %d\n",
                intraSlotFrequencyHopping);
      #endif
      N_SF_mprime_PUCCH_1       =   table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_m0Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 0 (PUCCH)
      N_SF_mprime_PUCCH_DMRS_1  = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_m0Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 0 (DM-RS)
      N_SF_mprime0_PUCCH_1      =   table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_m0Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 0 (PUCCH)
      N_SF_mprime0_PUCCH_DMRS_1 = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_m0Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 0 (DM-RS)
      for (mprime = 0; mprime<2; mprime++){ // mprime can get values {0,1}
        for (int m=0; m < N_SF_mprime_PUCCH_1; m++){
          for (int n=0; n<12 ; n++){
            z_re[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]           = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*y_n_re[n])>>15)
                                                                                - (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*y_n_im[n])>>15));
            z_im[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]           = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*y_n_im[n])>>15)
                                                                                + (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*y_n_re[n])>>15));
          }
        }
        for (int m=0; m < N_SF_mprime_PUCCH_DMRS_1; m++){
          for (int n=0; n<12 ; n++){
            z_dmrs_re[(mprime*12*N_SF_mprime0_PUCCH_DMRS_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_re[n])>>15)
                                                                                - (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_im[n])>>15));
            z_dmrs_im[(mprime*12*N_SF_mprime0_PUCCH_DMRS_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_im[n])>>15)
                                                                                + (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_re[n])>>15));
          }
        }
        N_SF_mprime_PUCCH_1       =   table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_m1Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 1 (PUCCH)
        N_SF_mprime_PUCCH_DMRS_1  = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_m1Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 1 (DM-RS)
      }
    }
    if ((intraSlotFrequencyHopping == 1) && (l<floor(nrofSymbols/2))) { // intra-slot hopping enabled, we need to calculate new offset PRB
      startingPRB = startingPRB + startingPRB_intraSlotHopping;
    }
    if ((startingPRB <  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is lower band
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*startingPRB) + frame_parms->first_carrier_offset;
    }
    if ((startingPRB >= (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is upper band
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(startingPRB-(frame_parms->N_RB_DL>>1)));
    }
    if ((startingPRB <  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB is lower band
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*startingPRB) + frame_parms->first_carrier_offset;
    }
    if ((startingPRB >  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB is upper band
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(startingPRB-(frame_parms->N_RB_DL>>1))) + 6;
    }
    if ((startingPRB == (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB contains DC
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*startingPRB) + frame_parms->first_carrier_offset;
    }


    txptr = &txdataF[0][re_offset];
    for (int n=0; n<12; n++){
      if ((n==6) && (startingPRB == (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) {
        // if number RBs in bandwidth is odd  and current PRB contains DC, we need to recalculate the offset when n=6 (for second half PRB)
        re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size);
      }
      if (l%2 == 1) { // mapping PUCCH according to TS38.211 subclause 6.4.1.3.1
        ((int16_t *)&txdataF[0][re_offset])[0] = z_re[i+n];
        ((int16_t *)&txdataF[0][re_offset])[1] = z_im[i+n];
        #ifdef DEBUG_NR_PUCCH_TX
          printf("\t [nr_generate_pucch1] mapping PUCCH to RE \t amp=%d \tofdm_symbol_size=%d \tN_RB_DL=%d \tfirst_carrier_offset=%d \tz_pucch[%d]=txptr(%d)=(x_n(l=%d,n=%d)=(%d,%d))\n",
                  amp,frame_parms->ofdm_symbol_size,frame_parms->N_RB_DL,frame_parms->first_carrier_offset,i+n,re_offset,
                  l,n,((int16_t *)&txdataF[0][re_offset])[0],((int16_t *)&txdataF[0][re_offset])[1]);
        #endif
      }
      if (l%2 == 0) { // mapping DM-RS signal according to TS38.211 subclause 6.4.1.3.1
        ((int16_t *)&txdataF[0][re_offset])[0] = z_dmrs_re[i+n];
        ((int16_t *)&txdataF[0][re_offset])[1] = z_dmrs_im[i+n];
        #ifdef DEBUG_NR_PUCCH_TX
          printf("\t [nr_generate_pucch1] mapping DM-RS to RE \t amp=%d \tofdm_symbol_size=%d \tN_RB_DL=%d \tfirst_carrier_offset=%d \tz_dm-rs[%d]=txptr(%d)=(x_n(l=%d,n=%d)=(%d,%d))\n",
                  amp,frame_parms->ofdm_symbol_size,frame_parms->N_RB_DL,frame_parms->first_carrier_offset,i+n,re_offset,
                  l,n,((int16_t *)&txdataF[0][re_offset])[0],((int16_t *)&txdataF[0][re_offset])[1]);
        #endif
      }
      re_offset++;
    }
    if (l%2 == 1) i+=12;
  }
}

#if 0
void nr_generate_pucch1_old(PHY_VARS_NR_UE *ue,
                        int32_t **txdataF,
                        NR_DL_FRAME_PARMS *frame_parms,
                        PUCCH_CONFIG_DEDICATED *pucch_config_dedicated,
                        uint64_t payload,
                        int16_t amp,
                        int nr_tti_tx,
                        uint8_t m0,
                        uint8_t nrofSymbols,
                        uint8_t startingSymbolIndex,
                        uint16_t startingPRB,
                        uint16_t startingPRB_intraSlotHopping,
                        uint8_t timeDomainOCC,
                        uint8_t nr_bit) {
#ifdef DEBUG_NR_PUCCH_TX
  printf("\t [nr_generate_pucch1] start function at slot(nr_tti_tx)=%d payload=%d m0=%d nrofSymbols=%d startingSymbolIndex=%d startingPRB=%d startingPRB_intraSlotHopping=%d timeDomainOCC=%d nr_bit=%d\n",
          nr_tti_tx,payload,m0,nrofSymbols,startingSymbolIndex,startingPRB,startingPRB_intraSlotHopping,timeDomainOCC,nr_bit);
#endif
575 576 577 578 579 580 581

  /*
   * Implement TS 38.211 Subclause 6.3.2.4.1 Sequence modulation
   *
   */
  // complex-valued symbol d_re, d_im containing complex-valued symbol d(0):
  int16_t d_re, d_im;
582
  if (nr_bit == 1) { // using BPSK if M_bit=1 according to TC 38.211 Subclause 5.1.2
583 584 585
    d_re = (payload&1)==0 ? (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15) : -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
    d_im = (payload&1)==0 ? (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15) : -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
  }
586
  if (nr_bit == 2) { // using QPSK if M_bit=2 according to TC 38.211 Subclause 5.1.2
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
    if (((payload&1)==0) && (((payload>>1)&1)==0)) {
      d_re =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15); // 32767/sqrt(2) = 23170 (ONE_OVER_SQRT2)
      d_im =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
    }
    if (((payload&1)==0) && (((payload>>1)&1)==1)) {
      d_re =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      d_im = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
    }
    if (((payload&1)==1) && (((payload>>1)&1)==0)) {
      d_re = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      d_im =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
    }
    if (((payload&1)==1) && (((payload>>1)&1)==1)) {
      d_re = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      d_im = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
    }
  }
  #ifdef DEBUG_NR_PUCCH_TX
    printf("\t [nr_generate_pucch1] sequence modulation: payload=%x \tde_re=%d \tde_im=%d\n",payload,d_re,d_im);
  #endif

  /*
   * Defining cyclic shift hopping TS 38.211 Subclause 6.3.2.2.2
   */
  // alpha is cyclic shift
  double alpha;
  // lnormal is the OFDM symbol number in the PUCCH transmission where l=0 corresponds to the first OFDM symbol of the PUCCH transmission
  uint8_t lnormal = 0 ;
  // lprime is the index of the OFDM symbol in the slot that corresponds to the first OFDM symbol of the PUCCH transmission in the slot given by [5, TS 38.213]
  uint8_t lprime = startingSymbolIndex;
  // mcs = 0 except for PUCCH format 0
  uint8_t mcs=0;
  // r_u_v_alpha_delta_re and r_u_v_alpha_delta_im tables containing the sequence for the DM-RS.
  // When they are multiplied by d(0), they become the sequence y(n) for the PUCCH
  int16_t r_u_v_alpha_delta_re[12],r_u_v_alpha_delta_im[12];
  /*
   * in TS 38.213 Subclause 9.2.1 it is said that:
   * for PUCCH format 0 or PUCCH format 1, the index of the cyclic shift
   * is indicated by higher layer parameter PUCCH-F0-F1-initial-cyclic-shift
   */

  /*
   * the complex-valued symbol d_0 shall be multiplied with a sequence r_u_v_alpha_delta(n): y(n) = d_0 * r_u_v_alpha_delta(n)
   */
  // the value of u,v (delta always 0 for PUCCH) has to be calculated according to TS 38.211 Subclause 6.3.2.2.1
  uint8_t u=0,v=0,delta=0;
  // if frequency hopping is disabled, intraSlotFrequencyHopping is not provided
  //              n_hop = 0
  // if frequency hopping is enabled,  intraSlotFrequencyHopping is     provided
  //              n_hop = 0 for first hop
  //              n_hop = 1 for second hop
  uint8_t n_hop = 0;
  // Intra-slot frequency hopping shall be assumed when the higher-layer parameter intraSlotFrequencyHopping is provided,
  // regardless of whether the frequency-hop distance is zero or not,
  // otherwise no intra-slot frequency hopping shall be assumed
642
  //uint8_t PUCCH_Frequency_Hopping = 0 ; // from higher layers
643
  uint8_t intraSlotFrequencyHopping = 0;
644 645 646
  if (startingPRB != startingPRB_intraSlotHopping){
    intraSlotFrequencyHopping=1;
    #ifdef DEBUG_NR_PUCCH_TX
647
      printf("\t [nr_generate_pucch1] intraSlotFrequencyHopping=%d \n",intraSlotFrequencyHopping);
648 649 650 651 652 653
    #endif
    // n_hop = 1 for second hop;
    // FIXME
    // When hopping will be activated we have to implement this function differently as PUCH signal generation depends on n_hop value for u,v calculation
  }

654 655
  // y_n contains the complex value d multiplied by the sequence r_u_v
  int16_t y_n_re[12],y_n_im[12];
656
  #ifdef DEBUG_NR_PUCCH_TX
657 658
    printf("\t [nr_generate_pucch1] entering function nr_group_sequence_hopping with n_hop=%d, nr_tti_tx=%d\n",
            n_hop,nr_tti_tx);
659
  #endif
660 661
  nr_group_sequence_hopping(ue,n_hop,nr_tti_tx,&u,&v); // calculating u and v value
  alpha = nr_cyclic_shift_hopping(ue,m0,mcs,lnormal,lprime,nr_tti_tx);
662
  for (int n=0; n<12; n++){
663 664 665 666
    r_u_v_alpha_delta_re[n] = (int16_t)(((((int32_t)(round(32767*cos(alpha*n))) * table_5_2_2_2_2_Re[u][n])>>15)
                                       - (((int32_t)(round(32767*sin(alpha*n))) * table_5_2_2_2_2_Im[u][n])>>15))); // Re part of base sequence shifted by alpha
    r_u_v_alpha_delta_im[n] = (int16_t)(((((int32_t)(round(32767*cos(alpha*n))) * table_5_2_2_2_2_Im[u][n])>>15)
                                       + (((int32_t)(round(32767*sin(alpha*n))) * table_5_2_2_2_2_Re[u][n])>>15))); // Im part of base sequence shifted by alpha
667
    // PUCCH sequence = DM-RS sequence multiplied by d(0)
668 669 670 671
    y_n_re[n]               = (int16_t)(((((int32_t)(r_u_v_alpha_delta_re[n])*d_re)>>15)
                                       - (((int32_t)(r_u_v_alpha_delta_im[n])*d_im)>>15))); // Re part of y(n)
    y_n_im[n]               = (int16_t)(((((int32_t)(r_u_v_alpha_delta_re[n])*d_im)>>15)
                                       + (((int32_t)(r_u_v_alpha_delta_im[n])*d_re)>>15))); // Im part of y(n)
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
    // DM-RS sequence
    r_u_v_alpha_delta_re[n] = (int16_t)(((int32_t)amp*r_u_v_alpha_delta_re[n])>>15);
    r_u_v_alpha_delta_im[n] = (int16_t)(((int32_t)amp*r_u_v_alpha_delta_im[n])>>15);
    #ifdef DEBUG_NR_PUCCH_TX
      printf("\t [nr_generate_pucch1] sequence generation \tu=%d \tv=%d \talpha=%lf \tr_u_v_alpha_delta[n=%d]=(%d,%d) \ty_n[n=%d]=(%d,%d)\n",
          u,v,alpha,n,r_u_v_alpha_delta_re[n],r_u_v_alpha_delta_im[n],n,y_n_re[n],y_n_im[n]);
    #endif
  }
  /*
   * The block of complex-valued symbols y(n) shall be block-wise spread with the orthogonal sequence wi(m)
   * (defined in table_6_3_2_4_1_2_Wi_Re and table_6_3_2_4_1_2_Wi_Im)
   * z(mprime*12*table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_noHop[pucch_symbol_length]+m*12+n)=wi(m)*y(n)
   *
   * The block of complex-valued symbols r_u_v_alpha_delta(n) for DM-RS shall be block-wise spread with the orthogonal sequence wi(m)
   * (defined in table_6_3_2_4_1_2_Wi_Re and table_6_3_2_4_1_2_Wi_Im)
   * z(mprime*12*table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_noHop[pucch_symbol_length]+m*12+n)=wi(m)*y(n)
   *
   * We are not implementing intra-slot hopping at the moment (so mprime=0)FIXME!
   */
#define MAX_SIZE_Z 168 // this value has to be calculated from mprime*12*table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_noHop[pucch_symbol_length]+m*12+n
  int16_t z_re[MAX_SIZE_Z],z_im[MAX_SIZE_Z];
  int16_t z_dmrs_re[MAX_SIZE_Z],z_dmrs_im[MAX_SIZE_Z];
  // the orthogonal sequence index for wi(m) defined in TS 38.213 Subclause 9.2.1
  // the index of the orthogonal cover code is from a set determined as described in [4, TS 38.211]
  // and is indicated by higher layer parameter PUCCH-F1-time-domain-OCC
  // In the PUCCH_Config IE, the PUCCH-format1, timeDomainOCC field FIXME!
  uint8_t w_index = timeDomainOCC; // to be filled with the value of timeDomainOCC, higher layers parameters FIXME !!!
  // N_SF_mprime_PUCCH_1 contains N_SF_mprime from table 6.3.2.4.1-1   (depending on number of PUCCH symbols nrofSymbols, mprime and intra-slot hopping enabled/disabled)
  uint8_t N_SF_mprime_PUCCH_1;
  // N_SF_mprime_PUCCH_1 contains N_SF_mprime from table 6.4.1.3.1.1-1 (depending on number of PUCCH symbols nrofSymbols, mprime and intra-slot hopping enabled/disabled)
  uint8_t N_SF_mprime_PUCCH_DMRS_1;
  // N_SF_mprime_PUCCH_1 contains N_SF_mprime from table 6.3.2.4.1-1   (depending on number of PUCCH symbols nrofSymbols, mprime=0 and intra-slot hopping enabled/disabled)
  uint8_t N_SF_mprime0_PUCCH_1;
  // N_SF_mprime_PUCCH_1 contains N_SF_mprime from table 6.4.1.3.1.1-1 (depending on number of PUCCH symbols nrofSymbols, mprime=0 and intra-slot hopping enabled/disabled)
  uint8_t N_SF_mprime0_PUCCH_DMRS_1;
  // mprime is 0 if no intra-slot hopping / mprime is {0,1} if intra-slot hopping
  uint8_t mprime = 0;
  if (intraSlotFrequencyHopping == 0) { // intra-slot hopping disabled
    #ifdef DEBUG_NR_PUCCH_TX
      printf("\t [nr_generate_pucch1] block-wise spread with the orthogonal sequence wi(m) if intraSlotFrequencyHopping = %d\n",
              intraSlotFrequencyHopping);
    #endif
    N_SF_mprime_PUCCH_1       =   table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_noHop[nrofSymbols-1]; // only if intra-slot hopping not enabled (PUCCH)
    N_SF_mprime_PUCCH_DMRS_1  = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_noHop[nrofSymbols-1]; // only if intra-slot hopping not enabled (DM-RS)
    N_SF_mprime0_PUCCH_1      =   table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_noHop[nrofSymbols-1]; // only if intra-slot hopping not enabled mprime = 0 (PUCCH)
    N_SF_mprime0_PUCCH_DMRS_1 = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_noHop[nrofSymbols-1]; // only if intra-slot hopping not enabled mprime = 0 (DM-RS)
    for (int m=0; m < N_SF_mprime_PUCCH_1; m++){
      for (int n=0; n<12 ; n++){
        z_re[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]           = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*y_n_re[n])>>15)
                                                                            - (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*y_n_im[n])>>15));
        z_im[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]           = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*y_n_im[n])>>15)
                                                                            + (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*y_n_re[n])>>15));
        #ifdef DEBUG_NR_PUCCH_TX
          printf("\t\t z_pucch[%d] \t= ((%d \t* %d \t-%d \t* %d),   (%d \t* %d \t+%d \t*%d))    = (%d,%d)\n",
                  (mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n,
                  table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m],y_n_re[n],table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m],y_n_im[n],
                  table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m],y_n_im[n],table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m],y_n_re[n],
                  z_re[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n],z_im[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]);
        #endif
      }
    }
    for (int m=0; m < N_SF_mprime_PUCCH_DMRS_1; m++){
      for (int n=0; n<12 ; n++){
        z_dmrs_re[(mprime*12*N_SF_mprime0_PUCCH_DMRS_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_re[n])>>15)
                                                                            - (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_im[n])>>15));
        z_dmrs_im[(mprime*12*N_SF_mprime0_PUCCH_DMRS_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_im[n])>>15)
                                                                            + (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_re[n])>>15));
        #ifdef DEBUG_NR_PUCCH_TX
          printf("\t\t z_dm-rs[%d] = ((),()) =(%d,%d)\n",
                  (mprime*12*N_SF_mprime0_PUCCH_DMRS_1)+(m*12)+n,z_dmrs_re[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n],z_dmrs_im[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]);
        #endif
      }
    }
  }
  if (intraSlotFrequencyHopping == 1) { // intra-slot hopping enabled
    #ifdef DEBUG_NR_PUCCH_TX
      printf("\t [nr_generate_pucch1] block-wise spread with the orthogonal sequence wi(m) if intraSlotFrequencyHopping = %d\n",
              intraSlotFrequencyHopping);
    #endif
    N_SF_mprime_PUCCH_1       =   table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_m0Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 0 (PUCCH)
    N_SF_mprime_PUCCH_DMRS_1  = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_m0Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 0 (DM-RS)
    N_SF_mprime0_PUCCH_1      =   table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_m0Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 0 (PUCCH)
    N_SF_mprime0_PUCCH_DMRS_1 = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_m0Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 0 (DM-RS)
    for (mprime = 0; mprime<2; mprime++){ // mprime can get values {0,1}
      for (int m=0; m < N_SF_mprime_PUCCH_1; m++){
        for (int n=0; n<12 ; n++){
          z_re[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]           = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*y_n_re[n])>>15)
                                                                              - (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*y_n_im[n])>>15));
          z_im[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]           = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*y_n_im[n])>>15)
                                                                              + (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*y_n_re[n])>>15));
        }
      }
      for (int m=0; m < N_SF_mprime_PUCCH_DMRS_1; m++){
        for (int n=0; n<12 ; n++){
          z_dmrs_re[(mprime*12*N_SF_mprime0_PUCCH_DMRS_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_re[n])>>15)
                                                                              - (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_im[n])>>15));
          z_dmrs_im[(mprime*12*N_SF_mprime0_PUCCH_DMRS_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_im[n])>>15)
                                                                              + (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_re[n])>>15));
        }
      }
      N_SF_mprime_PUCCH_1       =   table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_m1Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 1 (PUCCH)
      N_SF_mprime_PUCCH_DMRS_1  = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_m1Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 1 (DM-RS)
    }
  }
/*
 * Implementing TS 38.211 Subclause 6.3.2.4.2 Mapping to physical resources
 */
  int32_t *txptr;
  uint32_t re_offset;
  int i=0;
  for (int l=0; l<nrofSymbols; l++) {
    if ((intraSlotFrequencyHopping == 1) && (l<floor(nrofSymbols/2))) { // intra-slot hopping enabled, we need to calculate new PRB, FIXME!!!
      startingPRB = startingPRB + startingPRB_intraSlotHopping;
    }
    if ((startingPRB <  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is lower band
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*startingPRB) + frame_parms->first_carrier_offset;
    }
    if ((startingPRB >= (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is upper band
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(startingPRB-(frame_parms->N_RB_DL>>1)));
    }
    if ((startingPRB <  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB is lower band
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*startingPRB) + frame_parms->first_carrier_offset;
    }
    if ((startingPRB >  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB is upper band
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(startingPRB-(frame_parms->N_RB_DL>>1))) + 6;
    }
    if ((startingPRB == (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB contains DC
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*startingPRB) + frame_parms->first_carrier_offset;
    }
    txptr = &txdataF[0][re_offset];
    for (int n=0; n<12; n++){
      if ((n==6) && (startingPRB == (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) {
        // if number RBs in bandwidth is odd  and current PRB contains DC, we need to recalculate the offset when n=6 (for second half PRB)
        re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size);
      }
      if (l%2 == 1) { // mapping PUCCH according to TS38.211 subclause 6.4.1.3.1
        ((int16_t *)&txdataF[0][re_offset])[0] = z_re[i+n];
        ((int16_t *)&txdataF[0][re_offset])[1] = z_im[i+n];
        #ifdef DEBUG_NR_PUCCH_TX
          printf("\t [nr_generate_pucch1] mapping PUCCH to RE \t amp=%d \tofdm_symbol_size=%d \tN_RB_DL=%d \tfirst_carrier_offset=%d \tz_pucch[%d]=txptr(%d)=(x_n(l=%d,n=%d)=(%d,%d))\n",
                  amp,frame_parms->ofdm_symbol_size,frame_parms->N_RB_DL,frame_parms->first_carrier_offset,i+n,re_offset,
                  l,n,((int16_t *)&txdataF[0][re_offset])[0],((int16_t *)&txdataF[0][re_offset])[1]);
        #endif
      }
      if (l%2 == 0) { // mapping DM-RS signal according to TS38.211 subclause 6.4.1.3.1
        ((int16_t *)&txdataF[0][re_offset])[0] = z_dmrs_re[i+n];
        ((int16_t *)&txdataF[0][re_offset])[1] = z_dmrs_im[i+n];
        #ifdef DEBUG_NR_PUCCH_TX
          printf("\t [nr_generate_pucch1] mapping DM-RS to RE \t amp=%d \tofdm_symbol_size=%d \tN_RB_DL=%d \tfirst_carrier_offset=%d \tz_dm-rs[%d]=txptr(%d)=(x_n(l=%d,n=%d)=(%d,%d))\n",
                  amp,frame_parms->ofdm_symbol_size,frame_parms->N_RB_DL,frame_parms->first_carrier_offset,i+n,re_offset,
                  l,n,((int16_t *)&txdataF[0][re_offset])[0],((int16_t *)&txdataF[0][re_offset])[1]);
        #endif
      }
      re_offset++;
    }
    if (l%2 == 1) i+=12;
  }
}
830
#endif //0
831 832 833 834 835 836 837 838

inline void nr_pucch2_3_4_scrambling(uint16_t M_bit,uint16_t rnti,uint16_t n_id,uint32_t B,uint8_t *btilde) __attribute__((always_inline));
inline void nr_pucch2_3_4_scrambling(uint16_t M_bit,uint16_t rnti,uint16_t n_id,uint32_t B,uint8_t *btilde) {

  uint32_t x1, x2, s=0;
  int i;
  uint8_t c;
  // c_init=nRNTI*2^15+n_id according to TS 38.211 Subclause 6.3.2.6.1
839
  //x2 = (rnti) + ((uint32_t)(1+nr_tti_tx)<<16)*(1+(fp->Nid_cell<<1));
840 841 842 843 844 845 846 847
  x2 = ((rnti)<<15)+n_id;
  s = lte_gold_generic(&x1, &x2, 1);
  #ifdef DEBUG_NR_PUCCH_TX
    printf("\t\t [nr_pucch2_3_4_scrambling] gold sequence s=%lx\n",s);
  #endif
  for (i=0;i<M_bit;i++) {
    c = (uint8_t)((s>>i)&1);
    btilde[i] = (((B>>i)&1) ^ c);
848
    #ifdef DEBUG_NR_PUCCH_TX
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
      printf("\t\t\t btilde[%d]=%lx from scrambled bit %d\n",i,btilde[i],((B>>i)&1));
    #endif
  }
  #ifdef DEBUG_NR_PUCCH_TX
    printf("\t\t [nr_pucch2_3_4_scrambling] scrambling M_bit=%d bits\n", M_bit);
  #endif

}
void nr_uci_encoding(uint64_t payload,
                     uint8_t nr_bit,
                     pucch_format_nr_t fmt,
                     uint8_t is_pi_over_2_bpsk_enabled,
                     uint8_t nrofSymbols,
                     uint8_t nrofPRB,
                     uint8_t n_SF_PUCCH_s,
                     uint8_t intraSlotFrequencyHopping,
                     uint8_t add_dmrs,
                     uint64_t *b,
                     uint16_t *M_bit) {
  /*
   * Implementing TS 38.212 Subclause 6.3.1.2
   *
   */

  // A is the payload size, to be provided in function call
  uint8_t A = nr_bit;
  // L is the CRC size
  uint8_t L;
  // E is the rate matching output sequence length as given in TS 38.212 subclause 6.3.1.4.1
  uint16_t E,E_init;
  if (fmt == pucch_format2_nr) E = 16*nrofSymbols*nrofPRB;
  if (fmt == pucch_format3_nr){
    E_init = (is_pi_over_2_bpsk_enabled == 0) ? 24:12;
    if (nrofSymbols == 4) {
      E = (intraSlotFrequencyHopping == 0)?(E_init*(nrofSymbols-1)*nrofPRB):((E_init*(nrofSymbols-1)*nrofPRB));
884 885 886
      #ifdef DEBUG_NR_PUCCH_TX
        printf("format 3 nrofSymbols =4 and E_init=%d,E=%d\n",E_init,E);
      #endif
887 888 889
    }
    if (nrofSymbols > 4)  {
      E = E_init*(nrofSymbols-2)*nrofPRB;
890 891 892
      #ifdef DEBUG_NR_PUCCH_TX
        printf("format 3 nrofSymbols >4 and E_init=%d,E = %d\n",E_init,E);
      #endif
893 894 895
    }
    if (nrofSymbols > 9)  {
      E = (add_dmrs == 0)?(E_init*(nrofSymbols-2)*nrofPRB):((E_init*(nrofSymbols-4)*nrofPRB));
896 897 898
      #ifdef DEBUG_NR_PUCCH_TX
        printf("format 3 nrofSymbols >9 and E_init=%d,E = %d\n",E_init,E);
      #endif
899 900 901 902 903 904
    }
  }
  if (fmt == pucch_format4_nr){
    E_init = (is_pi_over_2_bpsk_enabled == 0) ? 24:12;
    if (nrofSymbols == 4) {
      E = (intraSlotFrequencyHopping == 0)?(E_init*(nrofSymbols-1)/n_SF_PUCCH_s):((E_init*(nrofSymbols-1)/n_SF_PUCCH_s));
905 906 907
      #ifdef DEBUG_NR_PUCCH_TX
        printf("format 4 nrofSymbols =4 and E_init=%d,E=%d\n",E_init,E);
      #endif
908 909 910
    }
    if (nrofSymbols > 4)  {
      E = E_init*(nrofSymbols-2)/n_SF_PUCCH_s;
911 912 913
      #ifdef DEBUG_NR_PUCCH_TX
        printf("format 4 nrofSymbols >4 and E_init=%d,E = %d\n",E_init,E);
      #endif
914 915 916
    }
    if (nrofSymbols > 9)  {
      E = (add_dmrs == 0)?(E_init*(nrofSymbols-2)/n_SF_PUCCH_s):((E_init*(nrofSymbols-4)/n_SF_PUCCH_s));
917 918 919
      #ifdef DEBUG_NR_PUCCH_TX
        printf("format 4 nrofSymbols >9 and E_init=%d,E = %d\n",E_init,E);
      #endif
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
    }
  }
  *M_bit = E;
  int I_seg;
  #ifdef DEBUG_NR_PUCCH_TX
    printf("\t\t [nr_uci_encoding] start function with fmt=%d, encoding A=%d bits into M_bit=%d (where nrofSymbols=%d,nrofPRB=%d)\n",fmt,A,*M_bit,nrofSymbols,nrofPRB);
  #endif

  if (A<=11){
    // procedure in subclause 6.3.1.2.2 (UCI encoded by channel coding of small block lengths -> subclause 6.3.1.3.2)
    // CRC bits are not attached, and coding small block lengths (subclause 5.3.3)
  } else if (A>=12){
    // procedure in subclause 6.3.1.2.1 (UCI encoded by Polar code -> subclause 6.3.1.3.1)
    if ((A>=360 && E>=1088)||(A>=1013)){
      I_seg = 1;
    } else {
      I_seg = 0;
    }
    if (A>=20){
      // parity bits (subclause 5.2.1) computed by setting L=11 and using generator polynomial gCRC11(D) (subclause 5.1)
      L=11;
    } else if (A<=19){
      // parity bits (subclause 5.2.1) computed by setting L=6  and using generator polynomial gCRC6(D)  (subclause 5.1)
      L=6;
    }
    // code block segmentation and CRC attachment is performed according to subclause 5.2.1
    // polar coding subclause 5.3.1
  }
}
//#if 0
950 951
void nr_generate_pucch2(PHY_VARS_NR_UE *ue,
                        int32_t **txdataF,
952 953 954 955
                        NR_DL_FRAME_PARMS *frame_parms,
                        PUCCH_CONFIG_DEDICATED *pucch_config_dedicated,
                        uint64_t payload,
                        int16_t amp,
956
                        int nr_tti_tx,
957 958 959
                        uint8_t nrofSymbols,
                        uint8_t startingSymbolIndex,
                        uint8_t nrofPRB,
960
                        uint16_t startingPRB,
961 962
                        uint8_t nr_bit) {
  #ifdef DEBUG_NR_PUCCH_TX
963
    printf("\t [nr_generate_pucch2] start function at slot(nr_tti_tx)=%d  with payload=%d and nr_bit=%d\n",nr_tti_tx, payload, nr_bit);
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
  #endif
  // b is the block of bits transmitted on the physical channel after payload coding
  uint64_t b;
  // M_bit is the number of bits of block b (payload after encoding)
  uint16_t M_bit;
  nr_uci_encoding(payload,nr_bit,pucch_format2_nr,0,nrofSymbols,nrofPRB,1,0,0,&b,&M_bit);

  /*
   * Implementing TS 38.211
   * Subclauses 6.3.2.5.1 Scrambling (PUCCH format 2)
   * The block of bits b(0),..., b(M_bit-1 ), where M_bit is the number of bits transmitted on the physical channel,
   * shall be scrambled prior to modulation,
   * resulting in a block of scrambled bits btilde(0),...,btilde(M_bit-1) according to
   *                     btilde(i)=(b(i)+c(i))mod 2
   * where the scrambling sequence c(i) is given by clause 5.2.1.
   * The scrambling sequence generator shall be initialized with c_init=nRNTI*2^15+n_id
   * n_id = {0,1,...,1023}  equals the higher-layer parameter Data-scrambling-Identity if configured
   * n_id = N_ID_cell       if higher layer parameter not configured
   */

  uint8_t *btilde = malloc(sizeof(int8_t)*M_bit);
  uint16_t rnti=0xff, n_id=0;

  /*
   * Implementing TS 38.211 Subclause 6.3.2.5.1 scrambling format 2
   */
  nr_pucch2_3_4_scrambling(M_bit,rnti,n_id,b,btilde);

  /*
   * Implementing TS 38.211 Subclause 6.3.2.5.2 modulation format 2
   * btilde shall be modulated as described in subclause 5.1 using QPSK
   * resulting in a block of complex-valued modulation symbols d(0),...,d(m_symbol) where m_symbol=M_bit/2
   */

//#define ONE_OVER_SQRT2_S 23171 // 32767/sqrt(2) = 23170 (ONE_OVER_SQRT2)

  // complex-valued symbol d(0)
  int16_t *d_re = malloc(sizeof(int16_t)*M_bit);
  int16_t *d_im = malloc(sizeof(int16_t)*M_bit);
  uint16_t m_symbol = (M_bit%2==0) ? M_bit/2 : floor(M_bit/2)+1;
  for (int i=0; i < m_symbol; i++){ // QPSK modulation subclause 5.1.3
    if (((btilde[2*i]&1)==0) && ((btilde[(2*i)+1]&1)==0)) {
      d_re[i] =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      d_im[i] =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
    }
    if (((btilde[2*i]&1)==0) && ((btilde[(2*i)+1]&1)==1)) {
      d_re[i] =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      d_im[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
    }
    if (((btilde[2*i]&1)==1) && ((btilde[(2*i)+1]&1)==0)) {
      d_re[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      d_im[i] =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
    }
    if (((btilde[2*i]&1)==1) && ((btilde[(2*i)+1]&1)==1)) {
      d_re[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      d_im[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
    }
    #ifdef DEBUG_NR_PUCCH_TX
      printf("\t [nr_generate_pucch2] modulation of bit pair btilde(%d,%d), m_symbol=%d, d(%d)=(%d,%d)\n",(btilde[2*i]&1),(btilde[(2*i)+1]&1),m_symbol,i,d_re[i],d_im[i]);
    #endif
  }


  /*
   * Implementing TS 38.211 Subclause 6.3.2.5.3 Mapping to physical resources
   */
  int32_t *txptr;
  uint32_t re_offset;
  uint32_t x1, x2, s=0;
  int i=0;
  int m=0;
  for (int l=0; l<nrofSymbols; l++) {
1036
    x2 = (((1<<17)*((14*nr_tti_tx) + (l+startingSymbolIndex) + 1)*((2*n_id) + 1)) + (2*n_id))%(1<<31); // c_init calculation according to TS38.211 subclause
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
    s = lte_gold_generic(&x1, &x2, 1);
    for (int rb=0; rb<nrofPRB; rb++){
      //startingPRB = startingPRB + rb;
      if (((rb+startingPRB) <  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is lower band
        re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(rb+startingPRB)) + frame_parms->first_carrier_offset;
      }
      if (((rb+startingPRB) >= (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is upper band
        re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*((rb+startingPRB)-(frame_parms->N_RB_DL>>1)));
      }
      if (((rb+startingPRB) <  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB is lower band
        re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(rb+startingPRB)) + frame_parms->first_carrier_offset;
      }
      if (((rb+startingPRB) >  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB is upper band
        re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*((rb+startingPRB)-(frame_parms->N_RB_DL>>1))) + 6;
      }
      if (((rb+startingPRB) == (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB contains DC
        re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(rb+startingPRB)) + frame_parms->first_carrier_offset;
      }
      txptr = &txdataF[0][re_offset];
      int k=0;
      int kk=0;
      for (int n=0; n<12; n++){
        if ((n==6) && ((rb+startingPRB) == (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) {
          // if number RBs in bandwidth is odd  and current PRB contains DC, we need to recalculate the offset when n=6 (for second half PRB)
          re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size);
        }
        if (n%3 != 1) { // mapping PUCCH according to TS38.211 subclause 6.3.2.5.3
          ((int16_t *)&txdataF[0][re_offset])[0] = d_re[i+k];
          ((int16_t *)&txdataF[0][re_offset])[1] = d_im[i+k];
          #ifdef DEBUG_NR_PUCCH_TX
            printf("\t [nr_generate_pucch1] (n=%d,i=%d) mapping PUCCH to RE \t amp=%d \tofdm_symbol_size=%d \tN_RB_DL=%d \tfirst_carrier_offset=%d \tz_pucch[%d]=txptr(%d)=(x_n(l=%d,n=%d)=(%d,%d))\n",
                    n,i,amp,frame_parms->ofdm_symbol_size,frame_parms->N_RB_DL,frame_parms->first_carrier_offset,i+k,re_offset,
                    l,n,((int16_t *)&txdataF[0][re_offset])[0],((int16_t *)&txdataF[0][re_offset])[1]);
          #endif
          k++;
        }
        if (n%3 == 1) { // mapping DM-RS signal according to TS38.211 subclause 6.4.1.3.2
          ((int16_t *)&txdataF[0][re_offset])[0] = (int16_t)((int32_t)(amp*ONE_OVER_SQRT2*(1-(2*((uint8_t)((s>>(2*m))&1)))))>>15);
          ((int16_t *)&txdataF[0][re_offset])[1] = (int16_t)((int32_t)(amp*ONE_OVER_SQRT2*(1-(2*((uint8_t)((s>>((2*m)+1))&1)))))>>15);
          m++;
          #ifdef DEBUG_NR_PUCCH_TX
            printf("\t [nr_generate_pucch1] (n=%d,i=%d) mapping DM-RS to RE \t amp=%d \tofdm_symbol_size=%d \tN_RB_DL=%d \tfirst_carrier_offset=%d \tz_dm-rs[%d]=txptr(%d)=(x_n(l=%d,n=%d)=(%d,%d))\n",
                    n,i,amp,frame_parms->ofdm_symbol_size,frame_parms->N_RB_DL,frame_parms->first_carrier_offset,i+kk,re_offset,
                    l,n,((int16_t *)&txdataF[0][re_offset])[0],((int16_t *)&txdataF[0][re_offset])[1]);
          #endif
          kk++;
        }
        re_offset++;
      }
      i+=8;
    }
  }
}
//#if 0
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
void nr_generate_pucch3_4(PHY_VARS_NR_UE *ue,
                          int32_t **txdataF,
                          NR_DL_FRAME_PARMS *frame_parms,
                          pucch_format_nr_t fmt,
                          PUCCH_CONFIG_DEDICATED *pucch_config_dedicated,
                          uint64_t payload,
                          int16_t amp,
                          int nr_tti_tx,
                          uint8_t nrofSymbols,
                          uint8_t startingSymbolIndex,
                          uint8_t nrofPRB,
                          uint16_t startingPRB,
                          uint16_t startingPRB_intraSlotHopping,
                          uint8_t nr_bit,
                          uint8_t occ_length_format4,
                          uint8_t occ_index_format4) {
1107 1108

  #ifdef DEBUG_NR_PUCCH_TX
1109
    printf("\t [nr_generate_pucch3_4] start function at slot(nr_tti_tx)=%d with payload=%d and nr_bit=%d\n", nr_tti_tx, payload, nr_bit);
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
  #endif
  // b is the block of bits transmitted on the physical channel after payload coding
  uint64_t b;
  // M_bit is the number of bits of block b (payload after encoding)
  uint16_t M_bit;
  // parameter PUCCH-F4-preDFT-OCC-length set of {2,4} -> to use table -1 or -2
  uint8_t n_SF_PUCCH_s = 2; // in format 4, n_SF_PUCCH_s = {2,4}, provided by higher layer parameter PUCCH-F4-preDFT-OCC-length (in format 3 n_SF_PUCCH_s=1), FIXME!!!
  uint8_t is_pi_over_2_bpsk_enabled = 0; // this value has to be provided by higher layers parameter
  // Intra-slot frequency hopping shall be assumed when the higher-layer parameter intraSlotFrequencyHopping is provided,
  // regardless of whether the frequency-hop distance is zero or not,
  // otherwise no intra-slot frequency hopping shall be assumed
1121
  //uint8_t PUCCH_Frequency_Hopping = 0 ; // from higher layers
1122
  uint8_t intraSlotFrequencyHopping = 0;
1123 1124 1125 1126 1127 1128
  if (startingPRB != startingPRB_intraSlotHopping){
    intraSlotFrequencyHopping=1;
    #ifdef DEBUG_NR_PUCCH_TX
      printf("\t [nr_generate_pucch1] intraSlotFrequencyHopping=%d \n",intraSlotFrequencyHopping);
    #endif
  }
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
  // add_dmrs indicates if we are using or not Additional DM-RS for formats 3 and 4. From higher layers. FIXME!!!
  uint8_t add_dmrs = 0;
  nr_uci_encoding(payload,nr_bit,fmt,is_pi_over_2_bpsk_enabled,nrofSymbols,nrofPRB,n_SF_PUCCH_s,intraSlotFrequencyHopping,add_dmrs,&b,&M_bit);

  /*
   * Implementing TS 38.211
   * Subclauses 6.3.2.6.1 Scrambling (PUCCH formats 3 and 4)
   * The block of bits b(0),..., b(M_bit-1 ), where M_bit is the number of bits transmitted on the physical channel,
   * shall be scrambled prior to modulation,
   * resulting in a block of scrambled bits btilde(0),...,btilde(M_bit-1) according to
   *                     btilde(i)=(b(i)+c(i))mod 2
   * where the scrambling sequence c(i) is given by clause 5.2.1.
   * The scrambling sequence generator shall be initialized with c_init=nRNTI*2^15+n_id
   * n_id = {0,1,...,1023}  equals the higher-layer parameter Data-scrambling-Identity if configured
   * n_id = N_ID_cell       if higher layer parameter not configured
   */

  uint8_t *btilde = malloc(sizeof(int8_t)*M_bit);
  uint16_t rnti=0xff, n_id=0;

  /*
   * Implementing TS 38.211 Subclause 6.3.2.6.1 scrambling formats 3 and 4
   */
  nr_pucch2_3_4_scrambling(M_bit,rnti,n_id,b,btilde);

  /*
   * Implementing TS 38.211 Subclause 6.3.2.6.2 modulation formats 3 and 4
   *
   * Subclause 5.1.1 PI/2-BPSK
   * Subclause 5.1.3 QPSK
   */
  // complex-valued symbol d(0)
  int16_t *d_re = malloc(sizeof(int16_t)*M_bit);
  int16_t *d_im = malloc(sizeof(int16_t)*M_bit);
  uint16_t m_symbol = (M_bit%2==0) ? M_bit/2 : floor(M_bit/2)+1;
  if (is_pi_over_2_bpsk_enabled == 0){
    // using QPSK if PUCCH format 3,4 and pi/2-BPSK is not configured, according to subclause 6.3.2.6.2
    for (int i=0; i < m_symbol; i++){ // QPSK modulation subclause 5.1.3
      if (((btilde[2*i]&1)==0) && ((btilde[(2*i)+1]&1)==0)) {
        d_re[i] =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
        d_im[i] =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      }
      if (((btilde[2*i]&1)==0) && ((btilde[(2*i)+1]&1)==1)) {
        d_re[i] =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
        d_im[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      }
      if (((btilde[2*i]&1)==1) && ((btilde[(2*i)+1]&1)==0)) {
        d_re[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
        d_im[i] =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      }
      if (((btilde[2*i]&1)==1) && ((btilde[(2*i)+1]&1)==1)) {
        d_re[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
        d_im[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      }
    #ifdef DEBUG_NR_PUCCH_TX
      printf("\t [nr_generate_pucch3_4] modulation QPSK of bit pair btilde(%d,%d), m_symbol=%d, d(%d)=(%d,%d)\n",(btilde[2*i]&1),(btilde[(2*i)+1]&1),m_symbol,i,d_re[i],d_im[i]);
    #endif
    }
  }
  if (is_pi_over_2_bpsk_enabled == 1){
    // using PI/2-BPSK if PUCCH format 3,4 and pi/2-BPSK is configured, according to subclause 6.3.2.6.2
    m_symbol = M_bit;
    for (int i=0; i<m_symbol; i++){ // PI/2-BPSK modulation subclause 5.1.1
      if (((btilde[i]&1)==0) && (i%2 == 0)){
        d_re[i] =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
        d_im[i] =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      }
      if (((btilde[i]&1)==0) && (i%2 == 1)){
        d_re[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
        d_im[i] =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      }
      if (((btilde[i]&1)==1) && (i%2 == 0)){
        d_re[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
        d_im[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      }
      if (((btilde[i]&1)==1) && (i%2 == 1)){
        d_re[i] =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
        d_im[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      }
    #ifdef DEBUG_NR_PUCCH_TX
      printf("\t [nr_generate_pucch3_4] modulation PI/2-BPSK of bit btilde(%d), m_symbol=%d, d(%d)=(%d,%d)\n",(btilde[i]&1),m_symbol,i,d_re[i],d_im[i]);
    #endif
    }
  }

  /*
   * Implementing Block-wise spreading subclause 6.3.2.6.3
   */
  // number of PRBs per PUCCH, provided by higher layers parameters PUCCH-F2-number-of-PRBs or PUCCH-F3-number-of-PRBs (for format 4, it is equal to 1)
  // for PUCCH 3 -> nrofPRBs = (2^alpa2 * 3^alpha3 * 5^alpha5)
  // for PUCCH 4 -> nrofPRBs = 1
  // uint8_t nrofPRBs;
  // number of symbols, provided by higher layers parameters PUCCH-F0-F2-number-of-symbols or PUCCH-F1-F3-F4-number-of-symbols
  // uint8_t nrofSymbols;
  // complex-valued symbol d(0)
  int16_t *y_n_re = malloc(sizeof(int16_t)*4*M_bit); // 4 is the maximum number n_SF_PUCCH_s, so is the maximunm size of y_n
  int16_t *y_n_im = malloc(sizeof(int16_t)*4*M_bit);
  // Re part orthogonal sequences w_n(k) for PUCCH format 4 when N_SF_PUCCH4 = 2 (Table 6.3.2.6.3-1)
  // k={0,..11} n={0,1,2,3}
  // parameter PUCCH-F4-preDFT-OCC-index set of {0,1,2,3} -> n
   uint16_t table_6_3_2_6_3_1_Wi_Re[2][12] = {{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
                                              {1, 1, 1, 1, 1, 1,-1,-1,-1,-1,-1,-1}};
  // Im part orthogonal sequences w_n(k) for PUCCH format 4 when N_SF_PUCCH4 = 2 (Table 6.3.2.6.3-1)
  // k={0,..11} n={0,1}
  uint16_t table_6_3_2_6_3_1_Wi_Im[2][12] = {{0,0,0,0,0,0,0,0,0,0,0,0},
                                             {0,0,0,0,0,0,0,0,0,0,0,0}};
  // Re part orthogonal sequences w_n(k) for PUCCH format 4 when N_SF_PUCCH4 = 4 (Table 6.3.2.6.3-2)
  // k={0,..11} n={0,1,2.3}
  uint16_t table_6_3_2_6_3_2_Wi_Re[4][12] = {{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
                                             {1, 1, 1, 0, 0, 0,-1,-1,-1, 0, 0, 0},
                                             {1, 1, 1,-1,-1,-1, 1, 1, 1,-1,-1,-1},
                                             {1, 1, 1, 0, 0, 0,-1,-1,-1, 0, 0, 0}};
  // Im part orthogonal sequences w_n(k) for PUCCH format 4 when N_SF_PUCCH4 = 4 (Table 6.3.2.6.3-2)
  // k={0,..11} n={0,1,2,3}
  uint16_t table_6_3_2_6_3_2_Wi_Im[4][12] = {{0,0,0, 0, 0, 0,0,0,0, 0, 0, 0},
                                             {0,0,0,-1,-1,-1,0,0,0, 1, 1, 1},
                                             {0,0,0, 0, 0, 0,0,0,0, 0, 0, 0},
                                             {0,0,0, 1, 1, 1,0,0,0,-1,-1,-1}};
  uint8_t occ_Length = occ_length_format4; // higher layer parameter occ-Length
  uint8_t occ_Index  = occ_index_format4;  // higher layer parameter occ-Index

  if (fmt == pucch_format3_nr){ // no block-wise spreading for format 3
    n_SF_PUCCH_s = 1;
    for (int l=0; l < floor(m_symbol/(12*nrofPRB)); l++){
      for (int k=0; k < (12*nrofPRB); k++){
        y_n_re[l*(12*nrofPRB)+k] = d_re[l*(12*nrofPRB)+k];
        y_n_im[l*(12*nrofPRB)+k] = d_im[l*(12*nrofPRB)+k];
        #ifdef DEBUG_NR_PUCCH_TX
          printf("\t [nr_generate_pucch3_4] block-wise spreading for format 3 (no block-wise spreading): (l,k)=(%d,%d)\ty_n(%d)   = \t(d_re=%d, d_im=%d)\n",
                  l,k,l*(12*nrofPRB)+k,d_re[l*(12*nrofPRB)+k],d_im[l*(12*nrofPRB)+k]);
        #endif
      }
    }
  }
  if (fmt == pucch_format4_nr){
    nrofPRB = 1;
    for (int l=0; l < floor((n_SF_PUCCH_s*m_symbol)/(12*nrofPRB)); l++){
      for (int k=0; k < (12*nrofPRB); k++){
        if (n_SF_PUCCH_s == 2){
          y_n_re[l*(12*nrofPRB)+k] = (uint16_t)(((uint32_t)d_re[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] * table_6_3_2_6_3_1_Wi_Re[occ_Index][k])
                                              - ((uint32_t)d_im[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] * table_6_3_2_6_3_1_Wi_Im[occ_Index][k]));
          y_n_im[l*(12*nrofPRB)+k] = (uint16_t)(((uint32_t)d_im[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] * table_6_3_2_6_3_1_Wi_Re[occ_Index][k])
                                              + ((uint32_t)d_re[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] * table_6_3_2_6_3_1_Wi_Im[occ_Index][k]));
          #ifdef DEBUG_NR_PUCCH_TX
            printf("\t [nr_generate_pucch3_4] block-wise spreading for format 4 (n_SF_PUCCH_s 2): (l,k)=(%d,%d)\ty_n(%d)   = \t(d_re=%d, d_im=%d)\n",
                    l,k,l*(12*nrofPRB)+k,y_n_re[l*(12*nrofPRB)+k],y_n_im[l*(12*nrofPRB)+k]);
          #endif
        }
        if (n_SF_PUCCH_s == 4){
          y_n_re[l*(12*nrofPRB)+k] = (uint16_t)(((uint32_t)d_re[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] * table_6_3_2_6_3_2_Wi_Re[occ_Index][k])
                                              - ((uint32_t)d_im[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] * table_6_3_2_6_3_2_Wi_Im[occ_Index][k]));
          y_n_im[l*(12*nrofPRB)+k] = (uint16_t)(((uint32_t)d_im[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] * table_6_3_2_6_3_2_Wi_Re[occ_Index][k])
                                              + ((uint32_t)d_re[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] * table_6_3_2_6_3_2_Wi_Im[occ_Index][k]));
          #ifdef DEBUG_NR_PUCCH_TX
            printf("\t [nr_generate_pucch3_4] block-wise spreading for format 4 (n_SF_PUCCH_s 4): (l,k)=(%d,%d)\ty_n(%d)   = \t(d_re=%d, d_im=%d)\n",
                    l,k,l*(12*nrofPRB)+k,y_n_re[l*(12*nrofPRB)+k],y_n_im[l*(12*nrofPRB)+k]);
          #endif
        }
      }
    }
  }

  /*
   * Implementing Transform pre-coding subclause 6.3.2.6.4
   */
  int16_t *z_re = malloc(sizeof(int16_t)*4*M_bit); // 4 is the maximum number n_SF_PUCCH_s
  int16_t *z_im = malloc(sizeof(int16_t)*4*M_bit);
  # define M_PI 3.14159265358979323846 // pi
  //int16_t inv_sqrt_nrofPRBs = (int16_t)round(32767/sqrt(12*nrofPRB));
  for (int l=0; l<floor((n_SF_PUCCH_s*m_symbol)/(12*nrofPRB)); l++){
    for (int k=0; k<(12*nrofPRB); k++){
      z_re[l*(12*nrofPRB)+k] = 0;
      z_im[l*(12*nrofPRB)+k] = 0;
      for (int m=0; m<(12*nrofPRB); m++){
        //z_re[l*(12*nrofPRB)+k] = y_n_re[l*(12*nrofPRB)+m] * (int16_t)(round(32767*cos((2*M_PI*m*k)/(12*nrofPRB))));
        z_re[l*(12*nrofPRB)+k] = z_re[l*(12*nrofPRB)+k]
                               + (int16_t)(((int32_t)round(32767/sqrt(12*nrofPRB))*(int16_t)((((int32_t)y_n_re[l*(12*nrofPRB)+m] * (int16_t)round(32767 * cos(2*M_PI*m*k/(12*nrofPRB))))>>15)
                                                                                           + (((int32_t)y_n_im[l*(12*nrofPRB)+m] * (int16_t)round(32767 * sin(2*M_PI*m*k/(12*nrofPRB))))>>15)))>>15);
        z_im[l*(12*nrofPRB)+k] = z_im[l*(12*nrofPRB)+k]
                               + (int16_t)(((int32_t)round(32767/sqrt(12*nrofPRB))*(int16_t)((((int32_t)y_n_im[l*(12*nrofPRB)+m] * (int16_t)round(32767 * cos(2*M_PI*m*k/(12*nrofPRB))))>>15)
                                                                                           - (((int32_t)y_n_re[l*(12*nrofPRB)+m] * (int16_t)round(32767 * sin(2*M_PI*m*k/(12*nrofPRB))))>>15)))>>15);
1310
        #ifdef DEBUG_NR_PUCCH_TX
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
          printf("\t [nr_generate_pucch3_4] transform precoding for formats 3 and 4: (l,k,m)=(%d,%d,%d)\tz(%d)   = \t(%d, %d)\n",
                  l,k,m,l*(12*nrofPRB)+k,z_re[l*(12*nrofPRB)+k],z_im[l*(12*nrofPRB)+k]);
        #endif
      }
      #ifdef DEBUG_NR_PUCCH_TX
        printf("\t\t\t [nr_generate_pucch3_4] transform precoding for formats 3 and 4: (l,k)=(%d,%d)\tz(%d)   = \t(%d, %d)\n",
                l,k,l*(12*nrofPRB)+k,z_re[l*(12*nrofPRB)+k],z_im[l*(12*nrofPRB)+k]);
      #endif
    }
  }

  /*
1323
   * Implementing TS 38.211 Subclauses 6.3.2.5.3 and 6.3.2.6.5 Mapping to physical resources
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
   */
  // the value of u,v (delta always 0 for PUCCH) has to be calculated according to TS 38.211 Subclause 6.3.2.2.1
  uint8_t u=0,v=0,delta=0;
  // if frequency hopping is disabled, intraSlotFrequencyHopping is not provided
  //              n_hop = 0
  // if frequency hopping is enabled,  intraSlotFrequencyHopping is     provided
  //              n_hop = 0 for first hop
  //              n_hop = 1 for second hop
  uint8_t n_hop = 0;
  // lnormal is the OFDM symbol number in the PUCCH transmission where l=0 corresponds to the first OFDM symbol of the PUCCH transmission
  uint8_t lnormal = 0 ;
  // lprime is the index of the OFDM symbol in the slot that corresponds to the first OFDM symbol of the PUCCH transmission in the slot given by [5, TS 38.213]
  uint8_t lprime = startingSymbolIndex;
  // m0 is the cyclic shift index calculated depending on the Orthogonal sequence index n, according to table 6.4.1.3.3.1-1 from TS 38.211 subclause 6.4.1.3.3.1
  uint8_t m0;
  uint8_t mcs=0;
  if (fmt == pucch_format3_nr) m0 = 0;
  if (fmt == pucch_format4_nr) {
    if (n_SF_PUCCH_s == 2) {
      m0 = (occ_Index == 0) ? 0 : 6;
    }
    if (n_SF_PUCCH_s == 4) {
      m0 = (occ_Index == 3) ? 9 : ((occ_Index == 2) ? 3 : ((occ_Index == 1) ? 6 : 0));
    }
  }
  double alpha;
  uint8_t N_ZC = 12*nrofPRB;
  int16_t *r_u_v_base_re        = malloc(sizeof(int16_t)*12*nrofPRB);
  int16_t *r_u_v_base_im        = malloc(sizeof(int16_t)*12*nrofPRB);
  int16_t *r_u_v_alpha_delta_re = malloc(sizeof(int16_t)*12*nrofPRB);
  int16_t *r_u_v_alpha_delta_im = malloc(sizeof(int16_t)*12*nrofPRB);
1355

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
  // Next we proceed to mapping to physical resources according to TS 38.211, subclause 6.3.2.6.5 dor PUCCH formats 3 and 4 and subclause 6.4.1.3.3.2 for DM-RS
  int32_t *txptr;
  uint32_t re_offset;
  uint32_t x1, x2, s=0;
  // intraSlotFrequencyHopping
  // uint8_t intraSlotFrequencyHopping = 0;
  uint8_t table_6_4_1_3_3_2_1_dmrs_positions[11][14] ={
  {(intraSlotFrequencyHopping==0)?0:1,(intraSlotFrequencyHopping==0)?1:0,(intraSlotFrequencyHopping==0)?0:1,0,0,0,0,0,0,0,0,0,0,0}, // PUCCH length = 4
  {1,0,0,1,0,0,0,0,0,0,0,0,0,0}, // PUCCH length = 5
  {0,1,0,0,1,0,0,0,0,0,0,0,0,0}, // PUCCH length = 6
  {0,1,0,0,1,0,0,0,0,0,0,0,0,0}, // PUCCH length = 7
  {0,1,0,0,0,1,0,0,0,0,0,0,0,0}, // PUCCH length = 8
  {0,1,0,0,0,0,1,0,0,0,0,0,0,0}, // PUCCH length = 9
  {0,(add_dmrs==0?0:1),(add_dmrs==0?1:0),(add_dmrs==0?0:1),0,0,(add_dmrs==0?0:1),(add_dmrs==0?1:0),(add_dmrs==0?0:1),0,0,0,0,0}, // PUCCH length = 10
  {0,(add_dmrs==0?0:1),(add_dmrs==0?1:0),(add_dmrs==0?0:1),0,0,(add_dmrs==0?0:1),(add_dmrs==0?1:0),0,(add_dmrs==0?0:1),0,0,0,0}, // PUCCH length = 11
  {0,(add_dmrs==0?0:1),(add_dmrs==0?1:0),0,(add_dmrs==0?0:1),0,0,(add_dmrs==0?0:1),(add_dmrs==0?1:0),0,(add_dmrs==0?0:1),0,0,0}, // PUCCH length = 12
  {0,(add_dmrs==0?0:1),(add_dmrs==0?1:0),0,(add_dmrs==0?0:1),0,0,(add_dmrs==0?0:1),0,(add_dmrs==0?1:0),0,(add_dmrs==0?0:1),0,0}, // PUCCH length = 13
  {0,(add_dmrs==0?0:1),0,(add_dmrs==0?1:0),0,(add_dmrs==0?0:1),0,0,(add_dmrs==0?0:1),0,(add_dmrs==0?1:0),0,(add_dmrs==0?0:1),0}  // PUCCH length = 14
  };
  uint16_t k=0;
  for (int l=0; l<nrofSymbols; l++) {
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421

    if ((intraSlotFrequencyHopping == 1) && (l >= (int)floor(nrofSymbols/2))) n_hop = 1; // n_hop = 1 for second hop
    nr_group_sequence_hopping(ue,n_hop,nr_tti_tx,&u,&v); // calculating u and v value


    // Next we proceed to calculate base sequence for DM-RS signal, according to TS 38.211 subclause 6.4.1.33
    if (nrofPRB >= 3) { // TS 38.211 subclause 5.2.2.1 (Base sequences of length 36 or larger) applies
      int i = 4;
      while (list_of_prime_numbers[i] < (12*nrofPRB)) i++;
      N_ZC = list_of_prime_numbers[i+1]; // N_ZC is given by the largest prime number such that N_ZC < (12*nrofPRB)
      double q_base = (N_ZC*(u+1))/31;
      int8_t q = (uint8_t)floor(q_base + (1/2));
      q = ((uint8_t)floor(2*q_base)%2 == 0 ? q+v : q-v);
      for (int n=0; n<(12*nrofPRB); n++){
        r_u_v_base_re[n] =  (int16_t)(((int32_t)amp*(int16_t)(32767*cos(M_PI*q*(n%N_ZC)*((n%N_ZC)+1)/N_ZC)))>>15);
        r_u_v_base_im[n] = -(int16_t)(((int32_t)amp*(int16_t)(32767*sin(M_PI*q*(n%N_ZC)*((n%N_ZC)+1)/N_ZC)))>>15);
        #ifdef DEBUG_NR_PUCCH_TX
          printf("\t [nr_generate_pucch3_4] generation DM-RS base sequence when nrofPRB=%d >= 3: r_u_v_base[n=%d]=(%d,%d)\n",
                  nrofPRB,n,r_u_v_base_re[n],r_u_v_base_im[n]);
        #endif
      }
    }
    if (nrofPRB == 2) { // TS 38.211 subclause 5.2.2.2 (Base sequences of length less than 36 using table 5.2.2.2-4) applies
      for (int n=0; n<(12*nrofPRB); n++){
        r_u_v_base_re[n] =  (int16_t)(((int32_t)amp*table_5_2_2_2_4_Re[u][n])>>15);
        r_u_v_base_im[n] =  (int16_t)(((int32_t)amp*table_5_2_2_2_4_Im[u][n])>>15);
        #ifdef DEBUG_NR_PUCCH_TX
          printf("\t [nr_generate_pucch3_4] generation DM-RS base sequence when nrofPRB=%d == 2: r_u_v_base[n=%d]=(%d,%d)\n",
                  nrofPRB,n,r_u_v_base_re[n],r_u_v_base_im[n]);
        #endif
      }
    }
    if (nrofPRB == 1) { // TS 38.211 subclause 5.2.2.2 (Base sequences of length less than 36 using table 5.2.2.2-2) applies
      for (int n=0; n<(12*nrofPRB); n++){
        r_u_v_base_re[n] =  (int16_t)(((int32_t)amp*table_5_2_2_2_2_Re[u][n])>>15);
        r_u_v_base_im[n] =  (int16_t)(((int32_t)amp*table_5_2_2_2_2_Im[u][n])>>15);
        #ifdef DEBUG_NR_PUCCH_TX
          printf("\t [nr_generate_pucch3_4] generation DM-RS base sequence when nrofPRB=%d == 1: r_u_v_base[n=%d]=(%d,%d)\n",
                  nrofPRB,n,r_u_v_base_re[n],r_u_v_base_im[n]);
        #endif
      }
    }



1422
    uint16_t j=0;
1423
    alpha = nr_cyclic_shift_hopping(ue,m0,mcs,l,startingSymbolIndex,nr_tti_tx);
1424
    for (int rb=0; rb<nrofPRB; rb++){
1425 1426 1427
      if ((intraSlotFrequencyHopping == 1) && (l<floor(nrofSymbols/2))) { // intra-slot hopping enabled, we need to calculate new offset PRB
        startingPRB = startingPRB + startingPRB_intraSlotHopping;
      }
1428 1429 1430
      //startingPRB = startingPRB + rb;
      if (((rb+startingPRB) <  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is lower band
        re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(rb+startingPRB)) + frame_parms->first_carrier_offset;
1431 1432 1433
        #ifdef DEBUG_NR_PUCCH_TX
          printf("1   ");
        #endif
1434 1435 1436
      }
      if (((rb+startingPRB) >= (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is upper band
        re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*((rb+startingPRB)-(frame_parms->N_RB_DL>>1)));
1437 1438 1439
        #ifdef DEBUG_NR_PUCCH_TX
          printf("2   ");
        #endif
1440 1441 1442
      }
      if (((rb+startingPRB) <  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB is lower band
        re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(rb+startingPRB)) + frame_parms->first_carrier_offset;
1443 1444 1445
        #ifdef DEBUG_NR_PUCCH_TX
          printf("3   ");
        #endif
1446 1447 1448
      }
      if (((rb+startingPRB) >  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB is upper band
        re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*((rb+startingPRB)-(frame_parms->N_RB_DL>>1))) + 6;
1449 1450 1451
        #ifdef DEBUG_NR_PUCCH_TX
          printf("4   ");
        #endif
1452 1453 1454
      }
      if (((rb+startingPRB) == (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB contains DC
        re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(rb+startingPRB)) + frame_parms->first_carrier_offset;
1455 1456 1457
        #ifdef DEBUG_NR_PUCCH_TX
          printf("5   ");
        #endif
1458
      }
1459 1460 1461
      #ifdef DEBUG_NR_PUCCH_TX
        printf("re_offset=%d,(rb+startingPRB)=%d\n",re_offset,(rb+startingPRB));
      #endif
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
      txptr = &txdataF[0][re_offset];
      for (int n=0; n<12; n++){
        if ((n==6) && ((rb+startingPRB) == (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) {
          // if number RBs in bandwidth is odd  and current PRB contains DC, we need to recalculate the offset when n=6 (for second half PRB)
          re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size);
        }
        if (table_6_4_1_3_3_2_1_dmrs_positions[nrofSymbols-4][l] == 0) { // mapping PUCCH according to TS38.211 subclause 6.3.2.5.3
          ((int16_t *)&txdataF[0][re_offset])[0] = z_re[n+k];
          ((int16_t *)&txdataF[0][re_offset])[1] = z_im[n+k];
          #ifdef DEBUG_NR_PUCCH_TX
            printf("\t [nr_generate_pucch3_4] (l=%d,rb=%d,n=%d,k=%d) mapping PUCCH to RE \t amp=%d \tofdm_symbol_size=%d \tN_RB_DL=%d \tfirst_carrier_offset=%d \tz_pucch[%d]=txptr(%d)=(z(l=%d,n=%d)=(%d,%d))\n",
                    l,rb,n,k,amp,frame_parms->ofdm_symbol_size,frame_parms->N_RB_DL,frame_parms->first_carrier_offset,n+k,re_offset,
                    l,n,((int16_t *)&txdataF[0][re_offset])[0],((int16_t *)&txdataF[0][re_offset])[1]);
          #endif
        }
        if (table_6_4_1_3_3_2_1_dmrs_positions[nrofSymbols-4][l] == 1) { // mapping DM-RS signal according to TS38.211 subclause 6.4.1.3.2
          ((int16_t *)&txdataF[0][re_offset])[0] = (int16_t)((((int32_t)(32767*cos(alpha*((n+j)%N_ZC)))*r_u_v_base_re[n+j])>>15)
                                                           - (((int32_t)(32767*sin(alpha*((n+j)%N_ZC)))*r_u_v_base_im[n+j])>>15));
          ((int16_t *)&txdataF[0][re_offset])[1] = (int16_t)((((int32_t)(32767*cos(alpha*((n+j)%N_ZC)))*r_u_v_base_im[n+j])>>15)
                                                           + (((int32_t)(32767*sin(alpha*((n+j)%N_ZC)))*r_u_v_base_re[n+j])>>15));
          #ifdef DEBUG_NR_PUCCH_TX
            printf("\t [nr_generate_pucch3_4] (l=%d,rb=%d,n=%d,j=%d) mapping DM-RS to RE \t amp=%d \tofdm_symbol_size=%d \tN_RB_DL=%d \tfirst_carrier_offset=%d \tz_dm-rs[%d]=txptr(%d)=(r_u_v(l=%d,n=%d)=(%d,%d)) \t\t debug1=%d,debug2=%d,debug3=%d,debug4=%d\n",
                    l,rb,n,j,amp,frame_parms->ofdm_symbol_size,frame_parms->N_RB_DL,frame_parms->first_carrier_offset,n+j,re_offset,
                    l,n,((int16_t *)&txdataF[0][re_offset])[0],((int16_t *)&txdataF[0][re_offset])[1],
                    (((int32_t)(32767*cos(alpha*((n+j)%N_ZC)))*r_u_v_base_re[n+j])>>15),
                    (((int32_t)(32767*sin(alpha*((n+j)%N_ZC)))*r_u_v_base_im[n+j])>>15),
                    (((int32_t)(32767*cos(alpha*((n+j)%N_ZC)))*r_u_v_base_im[n+j])>>15),
                    (((int32_t)(32767*sin(alpha*((n+j)%N_ZC)))*r_u_v_base_re[n+j])>>15));
          #endif
        }
        re_offset++;
      }
      if (table_6_4_1_3_3_2_1_dmrs_positions[nrofSymbols-4][l] == 0) k+=12;
      if (table_6_4_1_3_3_2_1_dmrs_positions[nrofSymbols-4][l] == 1) j+=12;
    }
  }

}