1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/*! \file gNB_scheduler_srs.c
* \brief MAC procedures related to SRS
* \date 2021
* \version 1.0
*/
#include <softmodem-common.h>
#include "NR_MAC_gNB/nr_mac_gNB.h"
#include "NR_MAC_COMMON/nr_mac_extern.h"
#include "NR_MAC_gNB/mac_proto.h"
#include "common/ran_context.h"
#include "nfapi/oai_integration/vendor_ext.h"
#include "common/utils/nr/nr_common.h"
//#define SRS_DEBUG
extern RAN_CONTEXT_t RC;
const uint16_t m_SRS[64] = { 4, 8, 12, 16, 16, 20, 24, 24, 28, 32, 36, 40, 48, 48, 52, 56, 60, 64, 72, 72, 76, 80, 88,
96, 96, 104, 112, 120, 120, 120, 128, 128, 128, 132, 136, 144, 144, 144, 144, 152, 160,
160, 160, 168, 176, 184, 192, 192, 192, 192, 208, 216, 224, 240, 240, 240, 240, 256, 256,
256, 264, 272, 272, 272 };
static uint32_t max4(uint32_t a, uint32_t b, uint32_t c, uint32_t d)
{
int x = max(a, b);
x = max(x, c);
x = max(x, d);
return x;
}
void nr_srs_ri_computation(const nfapi_nr_srs_normalized_channel_iq_matrix_t *nr_srs_normalized_channel_iq_matrix,
const NR_UE_UL_BWP_t *current_BWP,
uint8_t *ul_ri)
{
/* already mutex protected: held in handle_nr_srs_measurements() */
NR_SCHED_ENSURE_LOCKED(&RC.nrmac[0]->sched_lock);
// If the gNB or UE has 1 antenna, the rank is always 1, i.e., *ul_ri = 0.
// For 2x2 scenario, we compute the rank of channel.
// The computation for 2x4, 4x2, 4x4, ... scenarios are not implemented yet. In these cases, the function sets *ul_ri = 0, which is always a valid value.
if (!(nr_srs_normalized_channel_iq_matrix->num_gnb_antenna_elements == 2 &&
nr_srs_normalized_channel_iq_matrix->num_ue_srs_ports == 2 &&
current_BWP->pusch_Config && *current_BWP->pusch_Config->maxRank == 2)) {
*ul_ri = 0;
return;
}
const c16_t *ch = (c16_t *)nr_srs_normalized_channel_iq_matrix->channel_matrix;
const uint16_t num_gnb_antenna_elements = nr_srs_normalized_channel_iq_matrix->num_gnb_antenna_elements;
const uint16_t num_prgs = nr_srs_normalized_channel_iq_matrix->num_prgs;
const uint16_t base00_idx = 0 * num_gnb_antenna_elements * num_prgs + 0 * num_prgs; // Rx antenna 0, Tx port 0
const uint16_t base01_idx = 1 * num_gnb_antenna_elements * num_prgs + 0 * num_prgs; // Rx antenna 0, Tx port 1
const uint16_t base10_idx = 0 * num_gnb_antenna_elements * num_prgs + 1 * num_prgs; // Rx antenna 1, Tx port 0
const uint16_t base11_idx = 1 * num_gnb_antenna_elements * num_prgs + 1 * num_prgs; // Rx antenna 1, Tx port 1
const uint8_t bshift = 2;
const int16_t cond_dB_threshold = 5;
int count = 0;
for(int pI = 0; pI < num_prgs; pI++) {
/* Hh x H =
* | conjch00 conjch10 | x | ch00 ch01 | = | conjch00*ch00+conjch10*ch10 conjch00*ch01+conjch10*ch11 |
* | conjch01 conjch11 | | ch10 ch11 | | conjch01*ch00+conjch11*ch10 conjch01*ch01+conjch11*ch11 |
*/
const c32_t ch00 = {ch[base00_idx + pI].r, ch[base00_idx + pI].i};
const c32_t ch01 = {ch[base01_idx + pI].r, ch[base01_idx + pI].i};
const c32_t ch10 = {ch[base10_idx + pI].r, ch[base10_idx + pI].i};
const c32_t ch11 = {ch[base11_idx + pI].r, ch[base11_idx + pI].i};
c16_t HhxH00 = {(int16_t)((ch00.r * ch00.r + ch00.i * ch00.i + ch10.r * ch10.r + ch10.i * ch10.i) >> bshift),
(int16_t)((ch00.r * ch00.i - ch00.i * ch00.r + ch10.r * ch10.i - ch10.i * ch10.r) >> bshift)};
c16_t HhxH01 = {(int16_t)((ch00.r * ch01.r + ch00.i * ch01.i + ch10.r * ch11.r + ch10.i * ch11.i) >> bshift),
(int16_t)((ch00.r * ch01.i - ch00.i * ch01.r + ch10.r * ch11.i - ch10.i * ch11.r) >> bshift)};
c16_t HhxH10 = {(int16_t)((ch01.r * ch00.r + ch01.i * ch00.i + ch11.r * ch10.r + ch11.i * ch10.i) >> bshift),
(int16_t)((ch01.r * ch00.i - ch01.i * ch00.r + ch11.r * ch10.i - ch11.i * ch10.r) >> bshift)};
c16_t HhxH11 = {(int16_t)((ch01.r * ch01.r + ch01.i * ch01.i + ch11.r * ch11.r + ch11.i * ch11.i) >> bshift),
(int16_t)((ch01.r * ch01.i - ch01.i * ch01.r + ch11.r * ch11.i - ch11.i * ch11.r) >> bshift)};
int8_t det_HhxH_dB = dB_fixed(HhxH00.r * HhxH11.r - HhxH00.i * HhxH11.i - HhxH01.r * HhxH10.r + HhxH01.i * HhxH10.i);
int8_t norm_HhxH_2_dB = dB_fixed(max4(HhxH00.r*HhxH00.r + HhxH00.i*HhxH00.i,
HhxH01.r*HhxH01.r + HhxH01.i*HhxH01.i,
HhxH10.r*HhxH10.r + HhxH10.i*HhxH10.i,
HhxH11.r*HhxH11.r + HhxH11.i*HhxH11.i));
int8_t cond_db = norm_HhxH_2_dB - det_HhxH_dB;
if (cond_db < cond_dB_threshold) {
count++;
} else {
count--;
}
#ifdef SRS_DEBUG
LOG_I(NR_MAC, "H00[%i] = %i + j(%i)\n", pI, ch[base00_idx+pI].r, ch[base00_idx+pI].i);
LOG_I(NR_MAC, "H01[%i] = %i + j(%i)\n", pI, ch[base01_idx+pI].r, ch[base01_idx+pI].i);
LOG_I(NR_MAC, "H10[%i] = %i + j(%i)\n", pI, ch[base10_idx+pI].r, ch[base10_idx+pI].i);
LOG_I(NR_MAC, "H11[%i] = %i + j(%i)\n", pI, ch[base11_idx+pI].r, ch[base11_idx+pI].i);
LOG_I(NR_MAC, "HhxH00[%i] = %i + j(%i)\n", pI, HhxH00.r, HhxH00.i);
LOG_I(NR_MAC, "HhxH01[%i] = %i + j(%i)\n", pI, HhxH01.r, HhxH01.i);
LOG_I(NR_MAC, "HhxH10[%i] = %i + j(%i)\n", pI, HhxH10.r, HhxH10.i);
LOG_I(NR_MAC, "HhxH11[%i] = %i + j(%i)\n", pI, HhxH11.r, HhxH11.i);
LOG_I(NR_MAC, "det_HhxH[%i] = %i\n", pI, det_HhxH_dB);
LOG_I(NR_MAC, "norm_HhxH_2_dB[%i] = %i\n", pI, norm_HhxH_2_dB);
#endif
}
if (count > 0) {
*ul_ri = 1;
}
#ifdef SRS_DEBUG
LOG_I(NR_MAC, "ul_ri = %i (count = %i)\n", (*ul_ri)+1, count);
#endif
}
static void nr_configure_srs(nfapi_nr_srs_pdu_t *srs_pdu,
int slot,
int module_id,
int CC_id,
NR_UE_info_t *UE,
NR_SRS_ResourceSet_t *srs_resource_set,
NR_SRS_Resource_t *srs_resource,
int buffer_index)
{
NR_UE_UL_BWP_t *current_BWP = &UE->current_UL_BWP;
srs_pdu->rnti = UE->rnti;
srs_pdu->handle = 0;
srs_pdu->bwp_size = current_BWP->BWPSize;
srs_pdu->bwp_start = current_BWP->BWPStart;
srs_pdu->subcarrier_spacing = current_BWP->scs;
srs_pdu->cyclic_prefix = 0;
srs_pdu->num_ant_ports = srs_resource->nrofSRS_Ports;
srs_pdu->num_symbols = srs_resource->resourceMapping.nrofSymbols;
srs_pdu->num_repetitions = srs_resource->resourceMapping.repetitionFactor;
srs_pdu->time_start_position = srs_resource->resourceMapping.startPosition;
srs_pdu->config_index = srs_resource->freqHopping.c_SRS;
srs_pdu->sequence_id = srs_resource->sequenceId;
srs_pdu->bandwidth_index = srs_resource->freqHopping.b_SRS;
srs_pdu->comb_size = srs_resource->transmissionComb.present - 1;
switch(srs_resource->transmissionComb.present) {
case NR_SRS_Resource__transmissionComb_PR_n2:
srs_pdu->comb_offset = srs_resource->transmissionComb.choice.n2->combOffset_n2;
srs_pdu->cyclic_shift = srs_resource->transmissionComb.choice.n2->cyclicShift_n2;
break;
case NR_SRS_Resource__transmissionComb_PR_n4:
srs_pdu->comb_offset = srs_resource->transmissionComb.choice.n4->combOffset_n4;
srs_pdu->cyclic_shift = srs_resource->transmissionComb.choice.n4->cyclicShift_n4;
break;
default:
LOG_W(NR_MAC, "Invalid or not implemented comb_size!\n");
}
srs_pdu->frequency_position = srs_resource->freqDomainPosition;
srs_pdu->frequency_shift = srs_resource->freqDomainShift;
srs_pdu->frequency_hopping = srs_resource->freqHopping.b_hop;
srs_pdu->group_or_sequence_hopping = srs_resource->groupOrSequenceHopping;
srs_pdu->resource_type = srs_resource->resourceType.present - 1;
srs_pdu->t_srs = srs_period[srs_resource->resourceType.choice.periodic->periodicityAndOffset_p.present];
srs_pdu->t_offset = get_nr_srs_offset(srs_resource->resourceType.choice.periodic->periodicityAndOffset_p);
// TODO: This should be completed
srs_pdu->srs_parameters_v4.srs_bandwidth_size = m_SRS[srs_pdu->config_index];
srs_pdu->srs_parameters_v4.usage = 1<<srs_resource_set->usage;
srs_pdu->srs_parameters_v4.report_type[0] = 1;
srs_pdu->srs_parameters_v4.iq_representation = 1;
srs_pdu->srs_parameters_v4.prg_size = 1;
srs_pdu->srs_parameters_v4.num_total_ue_antennas = 1<<srs_pdu->num_ant_ports;
if (srs_resource_set->usage == NR_SRS_ResourceSet__usage_beamManagement) {
srs_pdu->beamforming.trp_scheme = 0;
srs_pdu->beamforming.num_prgs = m_SRS[srs_pdu->config_index];
srs_pdu->beamforming.prg_size = 1;
}
uint16_t *vrb_map_UL = &RC.nrmac[module_id]->common_channels[CC_id].vrb_map_UL[buffer_index * MAX_BWP_SIZE];
uint64_t mask = SL_to_bitmap(13 - srs_pdu->time_start_position, srs_pdu->num_symbols);
for (int i = 0; i < srs_pdu->bwp_size; ++i)
vrb_map_UL[i + srs_pdu->bwp_start] |= mask;
}
static void nr_fill_nfapi_srs(int module_id,
int CC_id,
NR_UE_info_t *UE,
int frame,
int slot,
NR_SRS_ResourceSet_t *srs_resource_set,
NR_SRS_Resource_t *srs_resource)
{
int index = ul_buffer_index(frame, slot, UE->current_UL_BWP.scs, RC.nrmac[module_id]->UL_tti_req_ahead_size);
nfapi_nr_ul_tti_request_t *future_ul_tti_req = &RC.nrmac[module_id]->UL_tti_req_ahead[0][index];
AssertFatal(future_ul_tti_req->n_pdus <
sizeof(future_ul_tti_req->pdus_list) / sizeof(future_ul_tti_req->pdus_list[0]),
"Invalid future_ul_tti_req->n_pdus %d\n", future_ul_tti_req->n_pdus);
future_ul_tti_req->pdus_list[future_ul_tti_req->n_pdus].pdu_type = NFAPI_NR_UL_CONFIG_SRS_PDU_TYPE;
future_ul_tti_req->pdus_list[future_ul_tti_req->n_pdus].pdu_size = sizeof(nfapi_nr_srs_pdu_t);
nfapi_nr_srs_pdu_t *srs_pdu = &future_ul_tti_req->pdus_list[future_ul_tti_req->n_pdus].srs_pdu;
memset(srs_pdu, 0, sizeof(nfapi_nr_srs_pdu_t));
future_ul_tti_req->n_pdus += 1;
index = ul_buffer_index(frame, slot, UE->current_UL_BWP.scs, RC.nrmac[module_id]->vrb_map_UL_size);
nr_configure_srs(srs_pdu, slot, module_id, CC_id, UE, srs_resource_set, srs_resource, index);
}
/*******************************************************************
*
* NAME : nr_schedule_srs
*
* PARAMETERS : module id
* frame number for possible SRS reception
*
* DESCRIPTION : It informs the PHY layer that has an SRS to receive.
* Only for periodic scheduling yet.
*
*********************************************************************/
void nr_schedule_srs(int module_id, frame_t frame, int slot)
{
/* already mutex protected: held in gNB_dlsch_ulsch_scheduler() */
gNB_MAC_INST *nrmac = RC.nrmac[module_id];
NR_SCHED_ENSURE_LOCKED(&nrmac->sched_lock);
NR_UEs_t *UE_info = &nrmac->UE_info;
UE_iterator(UE_info->list, UE) {
const int CC_id = 0;
NR_UE_sched_ctrl_t *sched_ctrl = &UE->UE_sched_ctrl;
NR_UE_UL_BWP_t *current_BWP = &UE->current_UL_BWP;
if(sched_ctrl->sched_srs.srs_scheduled && sched_ctrl->sched_srs.frame == frame && sched_ctrl->sched_srs.slot == slot) {
sched_ctrl->sched_srs.frame = -1;
sched_ctrl->sched_srs.slot = -1;
sched_ctrl->sched_srs.srs_scheduled = false;
}
if ((sched_ctrl->ul_failure && !get_softmodem_params()->phy_test) ||
sched_ctrl->rrc_processing_timer > 0 || sched_ctrl->transmission_stop) {
continue;
}
NR_SRS_Config_t *srs_config = current_BWP->srs_Config;
if (!srs_config)
continue;
for(int rs = 0; rs < srs_config->srs_ResourceSetToAddModList->list.count; rs++) {
// Find periodic resource set
NR_SRS_ResourceSet_t *srs_resource_set = srs_config->srs_ResourceSetToAddModList->list.array[rs];
if (srs_resource_set->resourceType.present != NR_SRS_ResourceSet__resourceType_PR_periodic) {
continue;
}
// Find the corresponding srs resource
NR_SRS_Resource_t *srs_resource = NULL;
for (int r1 = 0; r1 < srs_resource_set->srs_ResourceIdList->list.count; r1++) {
for (int r2 = 0; r2 < srs_config->srs_ResourceToAddModList->list.count; r2++) {
if ((*srs_resource_set->srs_ResourceIdList->list.array[r1] ==
srs_config->srs_ResourceToAddModList->list.array[r2]->srs_ResourceId) &&
(srs_config->srs_ResourceToAddModList->list.array[r2]->resourceType.present ==
NR_SRS_Resource__resourceType_PR_periodic)) {
srs_resource = srs_config->srs_ResourceToAddModList->list.array[r2];
break;
}
}
}
if (srs_resource == NULL) {
continue;
}
NR_PUSCH_TimeDomainResourceAllocationList_t *tdaList = get_ul_tdalist(current_BWP, sched_ctrl->coreset->controlResourceSetId, sched_ctrl->search_space->searchSpaceType->present, NR_RNTI_C);
const int num_tda = tdaList->list.count;
int max_k2 = 0;
// avoid last one in the list (for msg3)
for (int i = 0; i < num_tda - 1; i++) {
int k2 = get_K2(tdaList, i, current_BWP->scs);
max_k2 = k2 > max_k2 ? k2 : max_k2;
}
// we are sheduling SRS max_k2 slot in advance for the presence of SRS to be taken into account when scheduling PUSCH
const int n_slots_frame = nr_slots_per_frame[current_BWP->scs];
const int sched_slot = (slot + max_k2) % n_slots_frame;
const int sched_frame = (frame + ((slot + max_k2) / n_slots_frame)) % 1024;
const uint16_t period = srs_period[srs_resource->resourceType.choice.periodic->periodicityAndOffset_p.present];
const uint16_t offset = get_nr_srs_offset(srs_resource->resourceType.choice.periodic->periodicityAndOffset_p);
// Check if UE will transmit the SRS in this frame
if ((sched_frame * n_slots_frame + sched_slot - offset) % period == 0) {
LOG_D(NR_MAC," %d.%d Scheduling SRS reception for %d.%d\n", frame, slot, sched_frame, sched_slot);
nr_fill_nfapi_srs(module_id, CC_id, UE, sched_frame, sched_slot, srs_resource_set, srs_resource);
sched_ctrl->sched_srs.frame = sched_frame;
sched_ctrl->sched_srs.slot = sched_slot;
sched_ctrl->sched_srs.srs_scheduled = true;
}
}
}
}