lte-enb.c 44.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
/*******************************************************************************
    OpenAirInterface
    Copyright(c) 1999 - 2014 Eurecom

    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.


    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with OpenAirInterface.The full GNU General Public License is
    included in this distribution in the file called "COPYING". If not,
    see <http://www.gnu.org/licenses/>.

   Contact Information
   OpenAirInterface Admin: openair_admin@eurecom.fr
   OpenAirInterface Tech : openair_tech@eurecom.fr
   OpenAirInterface Dev  : openair4g-devel@lists.eurecom.fr

   Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE

*******************************************************************************/

/*! \file lte-enb.c
 * \brief Top-level threads for eNodeB
 * \author R. Knopp, F. Kaltenberger, Navid Nikaein
 * \date 2012
 * \version 0.1
 * \company Eurecom
 * \email: knopp@eurecom.fr,florian.kaltenberger@eurecom.fr, navid.nikaein@eurecom.fr
 * \note
 * \warning
 */
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sched.h>
#include <linux/sched.h>
#include <signal.h>
#include <execinfo.h>
#include <getopt.h>
#include <sys/sysinfo.h>
#include "rt_wrapper.h"

#undef MALLOC //there are two conflicting definitions, so we better make sure we don't use it at all

#include "assertions.h"
#include "msc.h"

#include "PHY/types.h"

#include "PHY/defs.h"
#undef MALLOC //there are two conflicting definitions, so we better make sure we don't use it at all
//#undef FRAME_LENGTH_COMPLEX_SAMPLES //there are two conflicting definitions, so we better make sure we don't use it at all

#include "../../ARCH/COMMON/common_lib.h"

//#undef FRAME_LENGTH_COMPLEX_SAMPLES //there are two conflicting definitions, so we better make sure we don't use it at all

#include "PHY/extern.h"
#include "SCHED/extern.h"
#include "LAYER2/MAC/extern.h"

#include "../../SIMU/USER/init_lte.h"

#include "LAYER2/MAC/defs.h"
#include "LAYER2/MAC/extern.h"
#include "LAYER2/MAC/proto.h"
#include "RRC/LITE/extern.h"
#include "PHY_INTERFACE/extern.h"

#ifdef SMBV
#include "PHY/TOOLS/smbv.h"
unsigned short config_frames[4] = {2,9,11,13};
#endif
#include "UTIL/LOG/log_extern.h"
#include "UTIL/OTG/otg_tx.h"
#include "UTIL/OTG/otg_externs.h"
#include "UTIL/MATH/oml.h"
#include "UTIL/LOG/vcd_signal_dumper.h"
#include "UTIL/OPT/opt.h"
#include "enb_config.h"
//#include "PHY/TOOLS/time_meas.h"

#ifndef OPENAIR2
#include "UTIL/OTG/otg_extern.h"
#endif

#if defined(ENABLE_ITTI)
# if defined(ENABLE_USE_MME)
#   include "s1ap_eNB.h"
#ifdef PDCP_USE_NETLINK
#   include "SIMULATION/ETH_TRANSPORT/proto.h"
#endif
# endif
#endif





//#define DEBUG_THREADS 1

//#define USRP_DEBUG 1
struct timing_info_t {
  //unsigned int frame, hw_slot, last_slot, next_slot;
  RTIME time_min, time_max, time_avg, time_last, time_now;
  //unsigned int mbox0, mbox1, mbox2, mbox_target;
  unsigned int n_samples;
} timing_info;


extern openair0_device openair0;

#if defined(ENABLE_ITTI)
extern volatile int             start_eNB;
extern volatile int             start_UE;
#endif
extern volatile int                    oai_exit;

extern openair0_config_t openair0_cfg[MAX_CARDS];

extern pthread_cond_t sync_cond;
extern pthread_mutex_t sync_mutex;
extern int sync_var;

138
//pthread_t                       main_eNB_thread;
139 140 141

time_stats_t softmodem_stats_mt; // main thread
time_stats_t softmodem_stats_hw; //  hw acquisition
142
time_stats_t softmodem_stats_rxtx_sf; // total tx time
143
time_stats_t softmodem_stats_rx_sf; // total rx time
144 145 146 147 148 149 150 151 152 153 154 155 156
int32_t **rxdata;
int32_t **txdata;

static int                      time_offset[4] = {0,0,0,0};

/* mutex, cond and variable to serialize phy proc TX calls
 * (this mechanism may be relaxed in the future for better
 * performances)
 */
static struct {
  pthread_mutex_t  mutex_phy_proc_tx;
  pthread_cond_t   cond_phy_proc_tx;
  volatile uint8_t phy_proc_CC_id;
157
} sync_phy_proc;
158 159 160 161


void exit_fun(const char* s);

162
void init_eNB(eNB_func_t node_function);
163 164 165 166 167 168 169
void stop_eNB(void);

void do_OFDM_mod_rt(int subframe,PHY_VARS_eNB *phy_vars_eNB)
{

  unsigned int aa,slot_offset, slot_offset_F;
  int dummy_tx_b[7680*4] __attribute__((aligned(32)));
Raymond Knopp's avatar
Raymond Knopp committed
170
  int i,j, tx_offset;
171 172
  int slot_sizeF = (phy_vars_eNB->frame_parms.ofdm_symbol_size)*
                   ((phy_vars_eNB->frame_parms.Ncp==1) ? 6 : 7);
Raymond Knopp's avatar
Raymond Knopp committed
173 174
  int len,len2;
  int16_t *txdata;
175 176 177

  slot_offset_F = (subframe<<1)*slot_sizeF;

178
  slot_offset = subframe*phy_vars_eNB->frame_parms.samples_per_tti;
179

180 181
  if ((subframe_select(&phy_vars_eNB->frame_parms,subframe)==SF_DL)||
      ((subframe_select(&phy_vars_eNB->frame_parms,subframe)==SF_S))) {
182 183 184
    //    LOG_D(HW,"Frame %d: Generating slot %d\n",frame,next_slot);


185 186 187
    for (aa=0; aa<phy_vars_eNB->frame_parms.nb_antennas_tx; aa++) {
      if (phy_vars_eNB->frame_parms.Ncp == EXTENDED) {
        PHY_ofdm_mod(&phy_vars_eNB->common_vars.txdataF[0][aa][slot_offset_F],
188
                     dummy_tx_b,
189
                     phy_vars_eNB->frame_parms.ofdm_symbol_size,
190
                     6,
191
                     phy_vars_eNB->frame_parms.nb_prefix_samples,
192
                     CYCLIC_PREFIX);
193 194 195
        PHY_ofdm_mod(&phy_vars_eNB->common_vars.txdataF[0][aa][slot_offset_F+slot_sizeF],
                     dummy_tx_b+(phy_vars_eNB->frame_parms.samples_per_tti>>1),
                     phy_vars_eNB->frame_parms.ofdm_symbol_size,
196
                     6,
197
                     phy_vars_eNB->frame_parms.nb_prefix_samples,
198 199
                     CYCLIC_PREFIX);
      } else {
200
        normal_prefix_mod(&phy_vars_eNB->common_vars.txdataF[0][aa][slot_offset_F],
201 202
                          dummy_tx_b,
                          7,
203
                          &(phy_vars_eNB->frame_parms));
204
	// if S-subframe generate first slot only
205 206 207
	if (subframe_select(&phy_vars_eNB->frame_parms,subframe) == SF_DL)
	  normal_prefix_mod(&phy_vars_eNB->common_vars.txdataF[0][aa][slot_offset_F+slot_sizeF],
			    dummy_tx_b+(phy_vars_eNB->frame_parms.samples_per_tti>>1),
208
			    7,
209
			    &(phy_vars_eNB->frame_parms));
210 211 212
      }

      // if S-subframe generate first slot only
213 214
      if (subframe_select(&phy_vars_eNB->frame_parms,subframe) == SF_S)
	len = phy_vars_eNB->frame_parms.samples_per_tti>>1;
215
      else
216
	len = phy_vars_eNB->frame_parms.samples_per_tti;
217 218 219 220 221 222 223
      /*
      for (i=0;i<len;i+=4) {
	dummy_tx_b[i] = 0x100;
	dummy_tx_b[i+1] = 0x01000000;
	dummy_tx_b[i+2] = 0xff00;
	dummy_tx_b[i+3] = 0xff000000;
	}*/
Raymond Knopp's avatar
Raymond Knopp committed
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
      
      if (slot_offset+time_offset[aa]<0) {
	txdata = (int16_t*)&phy_vars_eNB->common_vars.txdata[0][aa][(LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti)+tx_offset];
        len2 = -(slot_offset+time_offset[aa]);
	len2 = (len2>len) ? len : len2;
	for (i=0; i<(len2<<1); i++) {
	  txdata[i] = ((int16_t*)dummy_tx_b)[i]<<openair0_cfg[0].iq_txshift;
	}
	if (len2<len) {
	  txdata = (int16_t*)&phy_vars_eNB->common_vars.txdata[0][aa][0];
	  for (j=0; i<(len<<1); i++,j++) {
	    txdata[j++] = ((int16_t*)dummy_tx_b)[i]<<openair0_cfg[0].iq_txshift;
	  }
	}
      }
      else if ((slot_offset+time_offset[aa]+len)>(LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti)) {
240

Raymond Knopp's avatar
Raymond Knopp committed
241 242 243 244 245 246 247 248 249 250 251 252 253 254
	tx_offset = (int)slot_offset+time_offset[aa];
	txdata = (int16_t*)&phy_vars_eNB->common_vars.txdata[0][aa][tx_offset];
	len2 = -tx_offset+LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti;
	for (i=0; i<(len2<<1); i++) {
	  txdata[i] = ((int16_t*)dummy_tx_b)[i]<<openair0_cfg[0].iq_txshift;
	}
	txdata = (int16_t*)&phy_vars_eNB->common_vars.txdata[0][aa][0];
	for (j=0; i<(len<<1); i++,j++) {
	  txdata[j++] = ((int16_t*)dummy_tx_b)[i]<<openair0_cfg[0].iq_txshift;
	}
      }
      else {
	tx_offset = (int)slot_offset+time_offset[aa];
	txdata = (int16_t*)&phy_vars_eNB->common_vars.txdata[0][aa][tx_offset];
255

Raymond Knopp's avatar
Raymond Knopp committed
256 257 258 259 260
	for (i=0; i<(len<<1); i++) {
	  txdata[i] = ((int16_t*)dummy_tx_b)[i]<<openair0_cfg[0].iq_txshift;
	}
      }
      
261 262

     // if S-subframe switch to RX in second subframe
Raymond Knopp's avatar
Raymond Knopp committed
263
      /*
264
     if (subframe_select(&phy_vars_eNB->frame_parms,subframe) == SF_S) {
265
       for (i=0; i<len; i++) {
266
	 phy_vars_eNB->common_vars.txdata[0][aa][tx_offset++] = 0x00010001;
267 268
       }
     }
Raymond Knopp's avatar
Raymond Knopp committed
269
      */
270 271 272 273
     if ((((phy_vars_eNB->frame_parms.tdd_config==0) ||
	  (phy_vars_eNB->frame_parms.tdd_config==1) ||
	  (phy_vars_eNB->frame_parms.tdd_config==2) ||
	  (phy_vars_eNB->frame_parms.tdd_config==6)) && 
274 275 276 277 278 279
	  (subframe==0)) || (subframe==5)) {
       // turn on tx switch N_TA_offset before
       //LOG_D(HW,"subframe %d, time to switch to tx (N_TA_offset %d, slot_offset %d) \n",subframe,phy_vars_eNB->N_TA_offset,slot_offset);
       for (i=0; i<phy_vars_eNB->N_TA_offset; i++) {
	 tx_offset = (int)slot_offset+time_offset[aa]+i-phy_vars_eNB->N_TA_offset/2;
	 if (tx_offset<0)
280
	   tx_offset += LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti;
281
	 
282 283
	 if (tx_offset>=(LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti))
	   tx_offset -= LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti;
284
	 
285
	 phy_vars_eNB->common_vars.txdata[0][aa][tx_offset] = 0x00000000;
286 287 288 289 290 291 292
       }
     }
    }
  }
}

/*!
293
 * \brief The RX UE-specific and TX thread of eNB.
294 295 296
 * \param param is a \ref eNB_proc_t structure which contains the info what to process.
 * \returns a pointer to an int. The storage is not on the heap and must not be freed.
 */
297
static void* eNB_thread_rxtx( void* param )
298
{
299
  static int eNB_thread_rxtx_status;
300

301
  eNB_rxtx_proc_t *proc = (eNB_rxtx_proc_t*)param;
302 303
  FILE  *tx_time_file = NULL;
  char tx_time_name[101];
304
  void *txp[PHY_vars_eNB_g[0][0]->frame_parms.nb_antennas_tx]; 
305 306

  if (opp_enabled == 1) {
307
    snprintf(tx_time_name, 100,"/tmp/%s_tx_time_thread_sf", "eNB");
308 309 310
    tx_time_file = fopen(tx_time_name,"w");
  }
  // set default return value
311
  eNB_thread_rxtx_status = 0;
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

  MSC_START_USE();

#ifdef LOWLATENCY
  struct sched_attr attr;
  unsigned int flags = 0;
  uint64_t runtime  = 850000 ;  
  uint64_t deadline = 1   *  1000000 ; // each tx thread will finish within 1ms
  uint64_t period   = 1   * 10000000; // each tx thread has a period of 10ms from the starting point

  attr.size = sizeof(attr);
  attr.sched_flags = 0;
  attr.sched_nice = 0;
  attr.sched_priority = 0;

  attr.sched_policy   = SCHED_DEADLINE;
  attr.sched_runtime  = runtime;
  attr.sched_deadline = deadline;
  attr.sched_period   = period; 

  if (sched_setattr(0, &attr, flags) < 0 ) {
    perror("[SCHED] eNB tx thread: sched_setattr failed\n");
334
    return &eNB_thread_rxtx_status;
335 336
  }

337
  LOG_I( HW, "[SCHED] eNB RXn-TXnp4 deadline thread (TID %ld) started on CPU %d\n", gettid(), sched_getcpu() );
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

#else //LOW_LATENCY
  int policy, s, j;
  struct sched_param sparam;
  char cpu_affinity[1024];
  cpu_set_t cpuset;

  /* Set affinity mask to include CPUs 1 to MAX_CPUS */
  /* CPU 0 is reserved for UHD threads */
  /* CPU 1 is reserved for all TX threads */
  /* Enable CPU Affinity only if number of CPUs >2 */
  CPU_ZERO(&cpuset);

#ifdef CPU_AFFINITY
  if (get_nprocs() > 2)
  {
    for (j = 1; j < get_nprocs(); j++)
        CPU_SET(j, &cpuset);
    s = pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset);
    if (s != 0)
    {
      perror( "pthread_setaffinity_np");
      exit_fun("Error setting processor affinity");
    }
  }
#endif //CPU_AFFINITY

  /* Check the actual affinity mask assigned to the thread */

  s = pthread_getaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset);
  if (s != 0)
  {
    perror( "pthread_getaffinity_np");
    exit_fun("Error getting processor affinity ");
  }
  memset(cpu_affinity,0,sizeof(cpu_affinity));
  for (j = 0; j < CPU_SETSIZE; j++)
     if (CPU_ISSET(j, &cpuset))
     {  
        char temp[1024];
        sprintf (temp, " CPU_%d", j);
        strcat(cpu_affinity, temp);
     }

  memset(&sparam, 0 , sizeof (sparam));
  sparam.sched_priority = sched_get_priority_max(SCHED_FIFO)-1;
  policy = SCHED_FIFO ; 
  
  s = pthread_setschedparam(pthread_self(), policy, &sparam);
  if (s != 0)
     {
     perror("pthread_setschedparam : ");
     exit_fun("Error setting thread priority");
     }
  s = pthread_getschedparam(pthread_self(), &policy, &sparam);
  if (s != 0)
   {
     perror("pthread_getschedparam : ");
     exit_fun("Error getting thread priority");

   }

400
 LOG_I( HW, "[SCHED][eNB] TX thread started on CPU %d TID %ld, sched_policy = %s , priority = %d, CPU Affinity=%s \n",sched_getcpu(),gettid(),
401 402 403 404 405 406 407 408 409 410 411 412
                   (policy == SCHED_FIFO)  ? "SCHED_FIFO" :
                   (policy == SCHED_RR)    ? "SCHED_RR" :
                   (policy == SCHED_OTHER) ? "SCHED_OTHER" :
                   "???",
                   sparam.sched_priority, cpu_affinity );


#endif //LOW_LATENCY


  mlockall(MCL_CURRENT | MCL_FUTURE);

413

414 415
  while (!oai_exit) {

416
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_RXTX0+(proc->subframe_rx&1), 0 );
417

418 419
    if (pthread_mutex_lock(&proc->mutex_rxtx) != 0) {
      LOG_E( PHY, "[SCHED][eNB] error locking mutex for eNB RXn-TXnp4\n");
420 421 422 423
      exit_fun("nothing to add");
      break;
    }

424
    while (proc->instance_cnt_rxtx < 0) {
425
      // most of the time the thread is waiting here
426 427
      // proc->instance_cnt_rxtx is -1
      pthread_cond_wait( &proc->cond_rxtx, &proc->mutex_rxtx ); // this unlocks mutex_rxtx while waiting and then locks it again
428 429
    }

430
    if (pthread_mutex_unlock(&proc->mutex_rxtx) != 0) {
431
      LOG_E(PHY,"[SCHED][eNB] error unlocking mutex for eNB TX\n");
432 433 434 435
      exit_fun("nothing to add");
      break;
    }

436 437
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_RXTX0+(proc->subframe_rx&1), 1 );
    start_meas( &softmodem_stats_rxtx_sf );
438
  
439 440
    if (oai_exit) break;

441 442 443 444 445 446 447 448 449
    // UE-specific RX processing for subframe n
    if (PHY_vars_eNB_g[0][proc->CC_id]->node_function != NGFI_RRU_IF4) {
      VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_PROCEDURES_ENB_RX_UESPEC, 1 );
      // this is the ue-specific processing for the subframe and can be multi-threaded later
      phy_procedures_eNB_uespec_RX(PHY_vars_eNB_g[0][proc->CC_id], proc, 0, no_relay );
      VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_PROCEDURES_ENB_RX_UESPEC, 0 );
    }

    // TX processing for subframe n+4
450 451 452 453
    if (((PHY_vars_eNB_g[0][proc->CC_id]->frame_parms.frame_type == TDD) &&
         ((subframe_select(&PHY_vars_eNB_g[0][proc->CC_id]->frame_parms,proc->subframe_tx) == SF_DL) ||
          (subframe_select(&PHY_vars_eNB_g[0][proc->CC_id]->frame_parms,proc->subframe_tx) == SF_S))) ||
        (PHY_vars_eNB_g[0][proc->CC_id]->frame_parms.frame_type == FDD)) {
454 455 456
      /* run PHY TX procedures the one after the other for all CCs to avoid race conditions
       * (may be relaxed in the future for performance reasons)
       */
Raymond Knopp's avatar
Raymond Knopp committed
457
      
458 459
      if (pthread_mutex_lock(&sync_phy_proc.mutex_phy_proc_tx) != 0) {
        LOG_E(PHY, "[SCHED][eNB] error locking PHY proc mutex for eNB TX\n");
460 461 462
        exit_fun("nothing to add");
        break;
      }
Raymond Knopp's avatar
Raymond Knopp committed
463
      // wait for our turn or oai_exit
464 465 466
      while (sync_phy_proc.phy_proc_CC_id != proc->CC_id && !oai_exit) {
        pthread_cond_wait(&sync_phy_proc.cond_phy_proc_tx,
                          &sync_phy_proc.mutex_phy_proc_tx);
467 468
      }

469 470
      if (pthread_mutex_unlock(&sync_phy_proc.mutex_phy_proc_tx) != 0) {
        LOG_E(PHY, "[SCHED][eNB] error unlocking PHY proc mutex for eNB TX\n");
471 472 473
        exit_fun("nothing to add");
      }

Raymond Knopp's avatar
Raymond Knopp committed
474
      
475 476 477

      VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_FRAME_NUMBER_TX_ENB, proc->frame_tx );
      VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_SUBFRAME_NUMBER_TX_ENB, proc->subframe_tx );
478 479
      if (oai_exit)
        break;
480
      if (PHY_vars_eNB_g[0][proc->CC_id]->node_function != NGFI_RRU_IF4) { 
481
	phy_procedures_eNB_TX(PHY_vars_eNB_g[0][proc->CC_id], proc, 0, no_relay, NULL );
482 483
	
	/* we're done, let the next one proceed */
484 485
	if (pthread_mutex_lock(&sync_phy_proc.mutex_phy_proc_tx) != 0) {
	  LOG_E(PHY, "[SCHED][eNB] error locking PHY proc mutex for eNB TX proc\n");
486 487 488
	  exit_fun("nothing to add");
	  break;
	}
489 490 491 492 493
	sync_phy_proc.phy_proc_CC_id++;
	sync_phy_proc.phy_proc_CC_id %= MAX_NUM_CCs;
	pthread_cond_broadcast(&sync_phy_proc.cond_phy_proc_tx);
	if (pthread_mutex_unlock(&sync_phy_proc.mutex_phy_proc_tx) != 0) {
	  LOG_E(PHY, "[SCHED][eNB] error unlocking PHY proc mutex for eNB TX proc\n");
494 495 496
	  exit_fun("nothing to add");
	  break;
	}
497 498 499
      }
    }

500
    if (PHY_vars_eNB_g[0][proc->CC_id]->node_function != NGFI_RCC_IF4) {
501
      VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_ENB_SFGEN , 1 );
502
      do_OFDM_mod_rt( proc->subframe_tx, PHY_vars_eNB_g[0][proc->CC_id] );
503
      VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_ENB_SFGEN , 0 );
504
    /*
505 506 507
      short *txdata = (short*)&PHY_vars_eNB_g[0][proc->CC_id]->common_vars.txdata[0][0][proc->subframe_tx*PHY_vars_eNB_g[0][proc->CC_id]->frame_parms.samples_per_tti];
      int i;
      for (i=0;i<PHY_vars_eNB_g[0][proc->CC_id]->frame_parms.samples_per_tti*2;i+=8) {
508 509 510 511 512 513 514
      txdata[i] = 2047;
      txdata[i+1] = 0;
      txdata[i+2] = 0;
      txdata[i+3] = 2047;
      txdata[i+4] = -2047;
      txdata[i+5] = 0;
      txdata[i+6] = 0;
515
      txdata[i+7] = -2047;      }
516
    */
517 518 519 520 521 522 523 524 525 526


      // Transmit TX buffer based on timestamp from RX
    
      VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_WRITE, 1 );
      // prepare tx buffer pointers
      int i;
      for (i=0; i<PHY_vars_eNB_g[0][0]->frame_parms.nb_antennas_tx; i++)
	txp[i] = (void*)&PHY_vars_eNB_g[0][0]->common_vars.txdata[0][i][proc->subframe_tx*PHY_vars_eNB_g[0][0]->frame_parms.samples_per_tti];
      // if symb_written < spp ==> error 
Raymond Knopp's avatar
Raymond Knopp committed
527
      openair0.trx_write_func(&openair0,
528
			      (proc->timestamp_tx-openair0_cfg[0].tx_sample_advance),
Raymond Knopp's avatar
Raymond Knopp committed
529 530 531 532 533 534 535
			      txp,
			      PHY_vars_eNB_g[0][0]->frame_parms.samples_per_tti,
			      PHY_vars_eNB_g[0][0]->frame_parms.nb_antennas_tx,
			      1);
      

	
536 537 538 539
      VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_WRITE, 0 );

      VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TST, (proc->timestamp_tx-openair0_cfg[0].tx_sample_advance)&0xffffffff );

540 541
    }

542
    if (pthread_mutex_lock(&proc->mutex_rxtx) != 0) {
543
      LOG_E( PHY, "[SCHED][eNB] error locking mutex for eNB TX proc\n");
544 545 546 547
      exit_fun("nothing to add");
      break;
    }

548
    proc->instance_cnt_rxtx--;
549

550
    if (pthread_mutex_unlock(&proc->mutex_rxtx) != 0) {
551
      LOG_E( PHY, "[SCHED][eNB] error unlocking mutex for eNB TX proc\n");
552 553 554 555
      exit_fun("nothing to add");
      break;
    }

556
    stop_meas( &softmodem_stats_rxtx_sf );
557 558
#ifdef LOWLATENCY
    if (opp_enabled){
559 560
      if(softmodem_stats_rxtx_sf.diff_now/(cpuf) > attr.sched_runtime){
	VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_RUNTIME_TX_ENB, (softmodem_stats_rxtx_sf.diff_now/cpuf - attr.sched_runtime)/1000000.0);
561 562 563
      }
    }
#endif 
564
    print_meas_now(&softmodem_stats_rxtx_sf,"eNB_TX_SF",tx_time_file);
565 566 567 568 569

  }



570
  VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_RXTX0+(proc->subframe_rx&1), 0 );
571 572

#ifdef DEBUG_THREADS
573
  printf( "Exiting eNB thread TX\n");
574 575
#endif

576 577
  eNB_thread_rxtx_status = 0;
  return &eNB_thread_rxtx_status;
578 579
}

580 581 582
#if defined(ENABLE_ITTI)
static void wait_system_ready (char *message, volatile int *start_flag)

583 584 585 586 587 588 589 590 591 592 593 594
  /* Wait for eNB application initialization to be complete (eNB registration to MME) */
{
  static char *indicator[] = {".    ", "..   ", "...  ", ".... ", ".....",
			      " ....", "  ...", "   ..", "    .", "     "
  };
  int i = 0;
  
  while ((!oai_exit) && (*start_flag == 0)) {
    LOG_N(EMU, message, indicator[i]);
    fflush(stdout);
    i = (i + 1) % (sizeof(indicator) / sizeof(indicator[0]));
    usleep(200000);
595
  }
596 597
  
  LOG_D(EMU,"\n");
598
}
599

600
#endif
601 602

/*!
603
 * \brief The RX common thread of eNB.
604 605 606
 * \param param is a \ref eNB_proc_t structure which contains the info what to process.
 * \returns a pointer to an int. The storage is not on the heap and must not be freed.
 */
607
static void* eNB_thread_rx_common( void* param )
608
{
609
  static int eNB_thread_rx_status;
610 611

  eNB_proc_t *proc = (eNB_proc_t*)param;
612 613
  PHY_VARS_eNB *eNB = PHY_vars_eNB_g[0][proc->CC_id];
  LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
614 615 616 617 618 619

  FILE  *rx_time_file = NULL;
  char rx_time_name[101];
  //int i;

  if (opp_enabled == 1){
620
    snprintf(rx_time_name, 100,"/tmp/%s_rx_time_thread_sf", "eNB");
621 622 623
    rx_time_file = fopen(rx_time_name,"w");
  }
  // set default return value
624
  eNB_thread_rx_status = 0;
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646

  MSC_START_USE();

#ifdef LOWLATENCY
  struct sched_attr attr;
  unsigned int flags = 0;
  uint64_t runtime  = 870000 ;
  uint64_t deadline = 1   *  1000000;
  uint64_t period   = 1   * 10000000; // each rx thread has a period of 10ms from the starting point
 
  attr.size = sizeof(attr);
  attr.sched_flags = 0;
  attr.sched_nice = 0;
  attr.sched_priority = 0;

  attr.sched_policy = SCHED_DEADLINE;
  attr.sched_runtime  = runtime;
  attr.sched_deadline = deadline;
  attr.sched_period   = period; 

  if (sched_setattr(0, &attr, flags) < 0 ) {
    perror("[SCHED] eNB RX sched_setattr failed\n");
647
    return &eNB_thread_rx_status;
648 649
  }

650
  LOG_I( HW, "[SCHED] eNB RX deadline thread (TID %ld) started on CPU %d\n", gettid(), sched_getcpu() );
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
#else // LOW_LATENCY
  int policy, s, j;
  struct sched_param sparam;
  char cpu_affinity[1024];
  cpu_set_t cpuset;

  /* Set affinity mask to include CPUs 1 to MAX_CPUS */
  /* CPU 0 is reserved for UHD */
  /* CPU 1 is reserved for all TX threads */
  /* CPU 2..MAX_CPUS is reserved for all RX threads */
  /* Set CPU Affinity only if number of CPUs >2 */
  CPU_ZERO(&cpuset);
#ifdef CPU_AFFINITY
  if (get_nprocs() >2)
  {
    for (j = 1; j < get_nprocs(); j++)
       CPU_SET(j, &cpuset);
  
    s = pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset);
    if (s != 0)
    {
      perror( "pthread_setaffinity_np");  
      exit_fun (" Error setting processor affinity :");
    }
  }
#endif //CPU_AFFINITY
  /* Check the actual affinity mask assigned to the thread */

  s = pthread_getaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset);
  if (s != 0)
  {
     perror ("pthread_getaffinity_np");
     exit_fun (" Error getting processor affinity :");
  }
  memset(cpu_affinity,0, sizeof(cpu_affinity));

  for (j = 0; j < CPU_SETSIZE; j++)
     if (CPU_ISSET(j, &cpuset))
     {  
        char temp[1024];
        sprintf (temp, " CPU_%d", j);
        strcat(cpu_affinity, temp);
     }


  memset(&sparam, 0 , sizeof (sparam)); 
Raymond Knopp's avatar
Raymond Knopp committed
697
  sparam.sched_priority = sched_get_priority_max(SCHED_FIFO);
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716

  policy = SCHED_FIFO ; 
  s = pthread_setschedparam(pthread_self(), policy, &sparam);
  if (s != 0)
     {
     perror("pthread_setschedparam : ");
     exit_fun("Error setting thread priority");
     }

  memset(&sparam, 0 , sizeof (sparam));

  s = pthread_getschedparam(pthread_self(), &policy, &sparam);
  if (s != 0)
   {
     perror("pthread_getschedparam");
     exit_fun("Error getting thread priority");
   }


717
  LOG_I( HW, "[SCHED][eNB] RX thread started on CPU %d TID %ld, sched_policy = %s, priority = %d, CPU Affinity = %s\n", sched_getcpu(),gettid(),
718 719 720 721 722 723 724 725 726 727 728 729
	 (policy == SCHED_FIFO)  ? "SCHED_FIFO" :
	 (policy == SCHED_RR)    ? "SCHED_RR" :
	 (policy == SCHED_OTHER) ? "SCHED_OTHER" :
	 "???",
	 sparam.sched_priority, cpu_affinity);
  
  
#endif // LOWLATENCY

 mlockall(MCL_CURRENT | MCL_FUTURE);


730
 // wait for top-level synchronization and do one acquisition to get timestamp for setting frame/subframe of TX and RX threads
731
 printf( "waiting for sync (eNB_thread_rx_common)\n");
732 733 734 735 736 737 738 739 740 741 742 743 744 745
 pthread_mutex_lock( &sync_mutex );

 while (sync_var<0)
   pthread_cond_wait( &sync_cond, &sync_mutex );
 
 pthread_mutex_unlock(&sync_mutex);
 
 printf( "got sync (eNB_thread)\n" );
 
#if defined(ENABLE_ITTI)
  wait_system_ready ("Waiting for eNB application to be ready %s\r", &start_eNB);
#endif 

 // This is a forever while loop, it loops over subframes which are scheduled by incoming samples from HW devices
746 747 748
 while (!oai_exit) {
   
   
749
   VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_RX, 0 );
750
   VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_PROCEDURES_ENB_RX_COMMON, 0 );
751
   start_meas( &softmodem_stats_rx_sf );
752 753 754
   
   if (oai_exit) break;
   
755 756
   if ((((fp->frame_type == TDD )&&(subframe_select(fp,proc->subframe_rx)==SF_UL)) ||
	(fp->frame_type == FDD))) {
757
     VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_PROCEDURES_ENB_RX_COMMON, 1 );
Raymond Knopp's avatar
Raymond Knopp committed
758
     // this spawns the prach inside and updates the frame and subframe counters
759
     phy_procedures_eNB_common_RX(eNB, 0);
Raymond Knopp's avatar
Raymond Knopp committed
760 761

     
762
     VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_PROCEDURES_ENB_RX_COMMON, 0 );
763
   }
Raymond Knopp's avatar
Raymond Knopp committed
764

765 766 767
   // choose even or odd thread for RXn-TXnp4 processing 
   eNB_rxtx_proc_t *proc_rxtx = &proc->proc_rxtx[proc->subframe_rx&1];

Raymond Knopp's avatar
Raymond Knopp committed
768 769
   // wake up TX for subframe n+4
   // lock the TX mutex and make sure the thread is ready
770 771 772
   if (pthread_mutex_lock(&proc_rxtx->mutex_rxtx) != 0) {
     LOG_E( PHY, "[eNB] ERROR pthread_mutex_lock for eNB TX thread %d (IC %d)\n", proc_rxtx->instance_cnt_rxtx );
     exit_fun( "error locking mutex_rxtx" );
Raymond Knopp's avatar
Raymond Knopp committed
773
     break;
774
   }
775
   int cnt_rxtx = ++proc_rxtx->instance_cnt_rxtx;
Raymond Knopp's avatar
Raymond Knopp committed
776 777 778
   // We have just received and processed the common part of a subframe, say n. 
   // TS_rx is the last received timestamp (start of 1st slot), TS_tx is the desired 
   // transmitted timestamp of the next TX slot (first).
779
   // The last (TS_rx mod samples_pexr_frame) was n*samples_per_tti, 
Raymond Knopp's avatar
Raymond Knopp committed
780 781
   // we want to generate subframe (n+3), so TS_tx = TX_rx+3*samples_per_tti,
   // and proc->subframe_tx = proc->subframe_rx+3
782 783 784 785 786
   proc_rxtx->timestamp_tx = proc->timestamp_rx + (4*fp->samples_per_tti);
   proc_rxtx->frame_rx     = proc->frame_rx;
   proc_rxtx->subframe_rx  = proc->subframe_rx;
   proc_rxtx->frame_tx     = (proc_rxtx->subframe_rx > 5) ? (proc_rxtx->frame_rx+1)&1023 : proc_rxtx->frame_rx;
   proc_rxtx->subframe_tx  = (proc_rxtx->subframe_rx + 4)%10;
Raymond Knopp's avatar
Raymond Knopp committed
787
   
788
   pthread_mutex_unlock( &proc_rxtx->mutex_rxtx );
Raymond Knopp's avatar
Raymond Knopp committed
789
   
790
   if (cnt_rxtx == 0){
Raymond Knopp's avatar
Raymond Knopp committed
791
     // the thread was presumably waiting where it should and can now be woken up
792 793
     if (pthread_cond_signal(&proc_rxtx->cond_rxtx) != 0) {
       LOG_E( PHY, "[eNB] ERROR pthread_cond_signal for eNB RXn-TXnp4 thread\n");
Raymond Knopp's avatar
Raymond Knopp committed
794 795 796 797
       exit_fun( "ERROR pthread_cond_signal" );
       break;
     }
   } else {
798
     LOG_W( PHY,"[eNB] Frame %d, eNB RXn-TXnp4 thread busy!! (cnt_rxtx %i)\n", proc_rxtx->frame_tx, cnt_rxtx );
Raymond Knopp's avatar
Raymond Knopp committed
799 800 801
     exit_fun( "TX thread busy" );
     break;
   }       
802
   
803
   stop_meas( &softmodem_stats_rxtx_sf );
804 805
#ifdef LOWLATENCY
   if (opp_enabled){
806 807
     if(softmodem_stats_rxtx_sf.diff_now/(cpuf) > attr.sched_runtime){
       VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_RUNTIME_RXTX_ENB, (softmodem_stats_rxtx_sf.diff_now/cpuf - attr.sched_runtime)/1000000.0);
808 809 810
     }
   }
#endif // LOWLATENCY  
811
   print_meas_now(&softmodem_stats_rx_sf,"eNB_RX_SF", rx_time_file);
812
   VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_RXTX0+(proc->subframe_rx&1), 0 );
813 814 815
   

 }
Raymond Knopp's avatar
Raymond Knopp committed
816 817
 
 
818
#ifdef DEBUG_THREADS
819
 printf( "Exiting eNB thread RXn-TXnp4\n");
820
#endif
Raymond Knopp's avatar
Raymond Knopp committed
821 822 823
 
 eNB_thread_rx_status = 0;
 return &eNB_thread_rx_status;
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
}



/*!
 * \brief The prach receive thread of eNB.
 * \param param is a \ref eNB_proc_t structure which contains the info what to process.
 * \returns a pointer to an int. The storage is not on the heap and must not be freed.
 */
static void* eNB_thread_prach( void* param )
{
  static int eNB_thread_prach_status;

  eNB_proc_t *proc = (eNB_proc_t*)param;
  PHY_VARS_eNB *eNB= PHY_vars_eNB_g[0][proc->CC_id];
  // set default return value
  eNB_thread_prach_status = 0;

  MSC_START_USE();

    
#ifdef LOWLATENCY
  struct sched_attr attr;
  unsigned int flags = 0;
  uint64_t runtime  = 870000 ;
  uint64_t deadline = 1   *  1000000;
  uint64_t period   = 1   * 10000000; // each prach thread has a period of 10ms from the starting point
 
  attr.size = sizeof(attr);
  attr.sched_flags = 0;
  attr.sched_nice = 0;
  attr.sched_priority = 0;

  attr.sched_policy = SCHED_DEADLINE;
  attr.sched_runtime  = runtime;
  attr.sched_deadline = deadline;
  attr.sched_period   = period; 

  if (sched_setattr(0, &attr, flags) < 0 ) {
    perror("[SCHED] eNB PRACH sched_setattr failed\n");
    return &eNB_thread_prach_status;
  }

  LOG_I( HW, "[SCHED] eNB PRACH deadline thread (TID %ld) started on CPU %d\n", 0, gettid(), sched_getcpu() );
#else // LOW_LATENCY
  int policy, s, j;
  struct sched_param sparam;
  char cpu_affinity[1024];
  cpu_set_t cpuset;

  /* Set affinity mask to include CPUs 1 to MAX_CPUS */
  /* CPU 0 is reserved for UHD */
  /* CPU 1 is reserved for all TX threads */
  /* CPU 2..MAX_CPUS is reserved for all RX threads */
  /* Set CPU Affinity only if number of CPUs >2 */
  CPU_ZERO(&cpuset);
#ifdef CPU_AFFINITY
  if (get_nprocs() >2)
  {
    for (j = 1; j < get_nprocs(); j++)
       CPU_SET(j, &cpuset);
  
    s = pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset);
    if (s != 0)
    {
      perror( "pthread_setaffinity_np");  
      exit_fun (" Error setting processor affinity :");
    }
  }
#endif //CPU_AFFINITY
  /* Check the actual affinity mask assigned to the thread */

  s = pthread_getaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset);
  if (s != 0)
  {
     perror ("pthread_getaffinity_np");
     exit_fun (" Error getting processor affinity :");
  }
  memset(cpu_affinity,0, sizeof(cpu_affinity));

  for (j = 0; j < CPU_SETSIZE; j++)
     if (CPU_ISSET(j, &cpuset))
     {  
        char temp[1024];
        sprintf (temp, " CPU_%d", j);
        strcat(cpu_affinity, temp);
     }


  memset(&sparam, 0 , sizeof (sparam)); 
Raymond Knopp's avatar
Raymond Knopp committed
914
  sparam.sched_priority = sched_get_priority_max(SCHED_FIFO)-2;
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930

  policy = SCHED_FIFO ; 
  s = pthread_setschedparam(pthread_self(), policy, &sparam);
  if (s != 0)
     {
     perror("pthread_setschedparam : ");
     exit_fun("Error setting thread priority");
     }

  memset(&sparam, 0 , sizeof (sparam));

  s = pthread_getschedparam(pthread_self(), &policy, &sparam);
  if (s != 0)
   {
     perror("pthread_getschedparam");
     exit_fun("Error getting thread priority");
931
   }
932 933


Raymond Knopp's avatar
Raymond Knopp committed
934
  LOG_I( HW, "[SCHED][eNB] PRACH thread started on CPU %d TID %ld, sched_policy = %s, priority = %d, CPU Affinity = %s\n", sched_getcpu(),gettid(),
935 936 937 938 939 940 941 942 943 944 945 946 947 948
	 (policy == SCHED_FIFO)  ? "SCHED_FIFO" :
	 (policy == SCHED_RR)    ? "SCHED_RR" :
	 (policy == SCHED_OTHER) ? "SCHED_OTHER" :
	 "???",
	 sparam.sched_priority, cpu_affinity);
  
  
#endif // LOWLATENCY

 mlockall(MCL_CURRENT | MCL_FUTURE);


 while (!oai_exit) {
 
949
   
950 951 952
   if (oai_exit) break;
        
   if (pthread_mutex_lock(&proc->mutex_prach) != 0) {
953
     LOG_E( PHY, "[SCHED][eNB] error locking mutex for eNB PRACH\n");
954 955 956
     exit_fun( "error locking mutex" );
     break;
   }
957 958 959

   while (proc->instance_cnt_prach < 0) {
     // most of the time the thread is waiting here
960 961
     // proc->instance_cnt_prach is -1
     pthread_cond_wait( &proc->cond_prach, &proc->mutex_prach ); // this unlocks mutex_rxtx while waiting and then locks it again
962 963 964
   }

   if (pthread_mutex_unlock(&proc->mutex_prach) != 0) {
965
     LOG_E( PHY, "[SCHED][eNB] error unlocking mutex for eNB PRACH\n");
966 967 968 969
     exit_fun( "error unlocking mutex" );
     break;
   }
   
970
   VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_ENB_PRACH_RX,1);
971
   prach_procedures(eNB,0);
972 973 974
   VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_ENB_PRACH_RX,0);
    
   if (pthread_mutex_lock(&proc->mutex_prach) != 0) {
975
     LOG_E( PHY, "[SCHED][eNB] error locking mutex for eNB PRACH proc %d\n");
976 977 978
     exit_fun( "error locking mutex" );
     break;
   }
979
   
980
   proc->instance_cnt_prach--;
981
   
982
   if (pthread_mutex_unlock(&proc->mutex_prach) != 0) {
983
     LOG_E( PHY, "[SCHED][eNB] error unlocking mutex for eNB RX proc %d\n");
984 985
     exit_fun( "error unlocking mutex" );
     break;
986
   }
987
 }
988 989

#ifdef DEBUG_THREADS
990
  printf( "Exiting eNB thread PRACH\n");
991 992
#endif

993 994
  eNB_thread_prach_status = 0;
  return &eNB_thread_prach_status;
995 996 997 998 999 1000 1001 1002 1003
}




void init_eNB_proc(void)
{
  int i;
  int CC_id;
1004 1005
  PHY_VARS_eNB *eNB;
  eNB_proc_t *proc;
1006
  eNB_rxtx_proc_t *proc_rxtx;
1007 1008

  for (CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
1009 1010
    eNB = PHY_vars_eNB_g[0][CC_id];

1011 1012
    
    proc = &eNB->proc;
1013
    proc_rxtx = proc->proc_rxtx;
1014
#ifndef LOWLATENCY 
1015 1016 1017
    /*  
	pthread_attr_init( &attr_eNB_proc_tx[CC_id][i] );
	if (pthread_attr_setstacksize( &attr_eNB_proc_tx[CC_id][i], 64 *PTHREAD_STACK_MIN ) != 0)
1018
        perror("[ENB_PROC_TX] setting thread stack size failed\n");
1019 1020 1021
	
	pthread_attr_init( &attr_eNB_proc_rx[CC_id][i] );
	if (pthread_attr_setstacksize( &attr_eNB_proc_rx[CC_id][i], 64 * PTHREAD_STACK_MIN ) != 0)
1022
        perror("[ENB_PROC_RX] setting thread stack size failed\n");
1023 1024
    */
    // set the kernel scheduling policy and priority
1025 1026 1027 1028 1029 1030
    proc_rxtx[0].sched_param_rxtx.sched_priority = sched_get_priority_max(SCHED_FIFO)-1; //OPENAIR_THREAD_PRIORITY;
    pthread_attr_setschedparam  (&proc_rxtx[0].attr_rxtx, &proc_rxtx[0].sched_param_rxtx);
    pthread_attr_setschedpolicy (&proc_rxtx[0].attr_rxtx, SCHED_FIFO);
    proc_rxtx[1].sched_param_rxtx.sched_priority = sched_get_priority_max(SCHED_FIFO)-1; //OPENAIR_THREAD_PRIORITY;
    pthread_attr_setschedparam  (&proc_rxtx[1].attr_rxtx, &proc_rxtx[1].sched_param_rxtx);
    pthread_attr_setschedpolicy (&proc_rxtx[1].attr_rxtx, SCHED_FIFO);
1031
    
Raymond Knopp's avatar
Raymond Knopp committed
1032
    proc->sched_param_rx.sched_priority = sched_get_priority_max(SCHED_FIFO); //OPENAIR_THREAD_PRIORITY;
1033 1034 1035 1036 1037 1038 1039 1040
    pthread_attr_setschedparam  (&proc->attr_rx, &proc->sched_param_rx);
    pthread_attr_setschedpolicy (&proc->attr_rx, SCHED_FIFO);
    
    proc->sched_param_prach.sched_priority = sched_get_priority_max(SCHED_FIFO)-1; //OPENAIR_THREAD_PRIORITY;
    pthread_attr_setschedparam  (&proc->attr_prach, &proc->sched_param_prach);
    pthread_attr_setschedpolicy (&proc->attr_prach, SCHED_FIFO);
    
    printf("Setting OS scheduler to SCHED_FIFO for eNB [cc%d][thread%d] \n",CC_id, i);
1041
#endif
1042 1043
    proc_rxtx[0].instance_cnt_rxtx = -1;
    proc_rxtx[1].instance_cnt_rxtx = -1;
1044 1045
    proc->instance_cnt_prach = -1;
    proc->CC_id = CC_id;
1046 1047 1048

    proc->first_rx=1;

1049 1050 1051 1052 1053
    pthread_mutex_init( &proc_rxtx[0].mutex_rxtx, NULL);
    pthread_mutex_init( &proc_rxtx[1].mutex_rxtx, NULL);
    pthread_mutex_init( &proc->mutex_prach, NULL);
    pthread_cond_init( &proc_rxtx[0].cond_rxtx, NULL);
    pthread_cond_init( &proc_rxtx[1].cond_rxtx, NULL);
1054
    pthread_cond_init( &proc->cond_prach, NULL);
1055
#ifndef LOWLATENCY
1056 1057 1058
    pthread_create( &proc_rxtx[0].pthread_rxtx, &proc_rxtx[0].attr_rxtx, eNB_thread_rxtx, &proc_rxtx[0] );
    pthread_create( &proc_rxtx[1].pthread_rxtx, &proc_rxtx[1].attr_rxtx, eNB_thread_rxtx, &proc_rxtx[1] );
    pthread_create( &proc->pthread_rx, &proc->attr_rx, eNB_thread_rx_common, &eNB->proc );
1059
    pthread_create( &proc->pthread_prach, &proc->attr_prach, eNB_thread_prach, &eNB->proc );
1060
#else 
1061 1062 1063
    pthread_create( &proc_rxtx[0].pthread_rxtx, NULL, eNB_thread_rxtx, &eNB->proc_rxtx[0] );
    pthread_create( &proc_rxtx[1].pthread_rxtx, NULL, eNB_thread_rxtx, &eNB->proc_rxtx[1] );
    pthread_create( &proc->pthread_rx, NULL, eNB_thread_rx_common, &eNB->proc );
1064
    pthread_create( &proc->pthread_prach, NULL, eNB_thread_prach, &eNB->proc );
1065
#endif
1066
    char name[16];
1067 1068 1069 1070
    snprintf( name, sizeof(name), "RXTX0 %d", i );
    pthread_setname_np( proc_rxtx[0].pthread_rxtx, name );
    snprintf( name, sizeof(name), "RXTX1 %d", i );
    pthread_setname_np( proc_rxtx[1].pthread_rxtx, name );
1071 1072
    snprintf( name, sizeof(name), "RX %d", i );
    pthread_setname_np( proc->pthread_rx, name );
1073
  }
1074 1075
  
  
1076
  /* setup PHY proc TX sync mechanism */
1077 1078 1079
  pthread_mutex_init(&sync_phy_proc.mutex_phy_proc_tx, NULL);
  pthread_cond_init(&sync_phy_proc.cond_phy_proc_tx, NULL);
  sync_phy_proc.phy_proc_CC_id = 0;
1080 1081
}

1082

1083 1084 1085 1086 1087 1088
/*!
 * \brief Terminate eNB TX and RX threads.
 */
void kill_eNB_proc(void)
{
  int *status;
1089 1090
  PHY_VARS_eNB *eNB;
  eNB_proc_t *proc;
1091
  eNB_rxtx_proc_t *proc_rxtx;
1092 1093
  for (int CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
    eNB=PHY_vars_eNB_g[0][CC_id];
1094 1095
    
    proc = &eNB->proc;
1096
    proc_rxtx = &proc->proc_rxtx[0];
1097
    
1098
#ifdef DEBUG_THREADS
1099
    printf( "Killing TX CC_id %d thread %d\n", CC_id, i );
1100
#endif
1101
    
1102 1103 1104 1105
    proc_rxtx[0].instance_cnt_rxtx = 0; // FIXME data race!
    proc_rxtx[1].instance_cnt_rxtx = 0; // FIXME data race!
    pthread_cond_signal( &proc_rxtx[0].cond_rxtx );    
    pthread_cond_signal( &proc_rxtx[0].cond_rxtx );
1106 1107
    pthread_cond_broadcast(&sync_phy_proc.cond_phy_proc_tx);
    
1108
#ifdef DEBUG_THREADS
1109
    printf( "Joining eNB TX CC_id %d thread\n", CC_id);
1110
#endif
1111 1112 1113
    int result,i;
    for (i=0;i<1;i++) {
      pthread_join( proc_rxtx[i].pthread_rxtx, (void**)&status );
1114
    
1115
#ifdef DEBUG_THREADS
1116
    
1117 1118
      if (result != 0) {
	printf( "Error joining thread.\n" );
1119
      } else {
1120 1121 1122 1123 1124
	if (status) {
	  printf( "status %d\n", *status );
	} else {
	  printf( "The thread was killed. No status available.\n" );
	}
1125
      }
1126
    
1127
#else
1128
      UNUSED(result);
1129
#endif
1130 1131 1132 1133 1134 1135

      pthread_mutex_destroy( &proc_rxtx[i].mutex_rxtx );
      pthread_cond_destroy( &proc_rxtx[i].cond_rxtx );


    }
1136
#ifdef DEBUG_THREADS
1137
    printf( "Killing RX CC_id %d thread\n", CC_id);
1138
#endif
1139
    
1140
#ifdef DEBUG_THREADS
1141
    printf( "Joining eNB RX CC_id %d thread ...\n", CC_id);
1142
#endif
1143 1144
    result = pthread_join( proc->pthread_rx, (void**)&status );
    
1145
#ifdef DEBUG_THREADS
1146 1147 1148 1149 1150 1151
    
    if (result != 0) {
      printf( "Error joining thread.\n" );
    } else {
      if (status) {
	printf( "status %d\n", *status );
1152
      } else {
1153
	printf( "The thread was killed. No status available.\n" );
1154
      }
1155 1156
    }
    
1157
#else
1158
    UNUSED(result);
1159
#endif
1160 1161 1162
   
    pthread_mutex_destroy( &proc->mutex_prach );
    pthread_cond_destroy( &proc->cond_prach );         
1163
  }
1164 1165
}

1166

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
/* this function maps the phy_vars_eNB tx and rx buffers to the available rf chains.
   Each rf chain is is addressed by the card number and the chain on the card. The
   rf_map specifies for each CC, on which rf chain the mapping should start. Multiple
   antennas are mapped to successive RF chains on the same card. */
int setup_eNB_buffers(PHY_VARS_eNB **phy_vars_eNB, openair0_config_t *openair0_cfg, openair0_rf_map rf_map[MAX_NUM_CCs])
{

  int i, CC_id;
#ifndef EXMIMO
  uint16_t N_TA_offset = 0;
#else
  int j;
#endif
  LTE_DL_FRAME_PARMS *frame_parms;


  for (CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
    if (phy_vars_eNB[CC_id]) {
1185
      frame_parms = &(phy_vars_eNB[CC_id]->frame_parms);
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
      printf("setup_eNB_buffers: frame_parms = %p\n",frame_parms);
    } else {
      printf("phy_vars_eNB[%d] not initialized\n", CC_id);
      return(-1);
    }

#ifndef EXMIMO

    if (frame_parms->frame_type == TDD) {
      if (frame_parms->N_RB_DL == 100)
        N_TA_offset = 624;
      else if (frame_parms->N_RB_DL == 50)
        N_TA_offset = 624/2;
      else if (frame_parms->N_RB_DL == 25)
        N_TA_offset = 624/4;
    }

#endif

    // replace RX signal buffers with mmaped HW versions
#ifdef EXMIMO
    openair0_cfg[CC_id].tx_num_channels = 0;
    openair0_cfg[CC_id].rx_num_channels = 0;

    for (i=0; i<frame_parms->nb_antennas_rx; i++) {
      printf("Mapping eNB CC_id %d, rx_ant %d, freq %u on card %d, chain %d\n",CC_id,i,downlink_frequency[CC_id][i]+uplink_frequency_offset[CC_id][i],rf_map[CC_id].card,rf_map[CC_id].chain+i);
1212 1213
      free(phy_vars_eNB[CC_id]->common_vars.rxdata[0][i]);
      phy_vars_eNB[CC_id]->common_vars.rxdata[0][i] = (int32_t*) openair0_exmimo_pci[rf_map[CC_id].card].adc_head[rf_map[CC_id].chain+i];
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223

      if (openair0_cfg[rf_map[CC_id].card].rx_freq[rf_map[CC_id].chain+i]) {
        printf("Error with rf_map! A channel has already been allocated!\n");
        return(-1);
      } else {
        openair0_cfg[rf_map[CC_id].card].rx_freq[rf_map[CC_id].chain+i] = downlink_frequency[CC_id][i]+uplink_frequency_offset[CC_id][i];
        openair0_cfg[rf_map[CC_id].card].rx_gain[rf_map[CC_id].chain+i] = rx_gain[CC_id][i];
        openair0_cfg[rf_map[CC_id].card].rx_num_channels++;
      }

1224
      printf("rxdata[%d] @ %p\n",i,phy_vars_eNB[CC_id]->common_vars.rxdata[0][i]);
1225 1226

      for (j=0; j<16; j++) {
1227 1228
        printf("rxbuffer %d: %x\n",j,phy_vars_eNB[CC_id]->common_vars.rxdata[0][i][j]);
        phy_vars_eNB[CC_id]->common_vars.rxdata[0][i][j] = 16-j;
1229 1230 1231 1232 1233
      }
    }

    for (i=0; i<frame_parms->nb_antennas_tx; i++) {
      printf("Mapping eNB CC_id %d, tx_ant %d, freq %u on card %d, chain %d\n",CC_id,i,downlink_frequency[CC_id][i],rf_map[CC_id].card,rf_map[CC_id].chain+i);
1234 1235
      free(phy_vars_eNB[CC_id]->common_vars.txdata[0][i]);
      phy_vars_eNB[CC_id]->common_vars.txdata[0][i] = (int32_t*) openair0_exmimo_pci[rf_map[CC_id].card].dac_head[rf_map[CC_id].chain+i];
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245

      if (openair0_cfg[rf_map[CC_id].card].tx_freq[rf_map[CC_id].chain+i]) {
        printf("Error with rf_map! A channel has already been allocated!\n");
        return(-1);
      } else {
        openair0_cfg[rf_map[CC_id].card].tx_freq[rf_map[CC_id].chain+i] = downlink_frequency[CC_id][i];
        openair0_cfg[rf_map[CC_id].card].tx_gain[rf_map[CC_id].chain+i] = tx_gain[CC_id][i];
        openair0_cfg[rf_map[CC_id].card].tx_num_channels++;
      }

1246
      printf("txdata[%d] @ %p\n",i,phy_vars_eNB[CC_id]->common_vars.txdata[0][i]);
1247 1248

      for (j=0; j<16; j++) {
1249 1250
        printf("txbuffer %d: %x\n",j,phy_vars_eNB[CC_id]->common_vars.txdata[0][i][j]);
        phy_vars_eNB[CC_id]->common_vars.txdata[0][i][j] = 16-j;
1251 1252 1253 1254 1255 1256 1257 1258
      }
    }

#else // not EXMIMO
    rxdata = (int32_t**)malloc16(frame_parms->nb_antennas_rx*sizeof(int32_t*));
    txdata = (int32_t**)malloc16(frame_parms->nb_antennas_tx*sizeof(int32_t*));

    for (i=0; i<frame_parms->nb_antennas_rx; i++) {
1259
      free(phy_vars_eNB[CC_id]->common_vars.rxdata[0][i]);
1260
      rxdata[i] = (int32_t*)(32 + malloc16(32+openair0_cfg[rf_map[CC_id].card].samples_per_frame*sizeof(int32_t))); // FIXME broken memory allocation
1261
      phy_vars_eNB[CC_id]->common_vars.rxdata[0][i] = rxdata[i]-N_TA_offset; // N_TA offset for TDD         FIXME! N_TA_offset > 16 => access of unallocated memory
1262
      memset(rxdata[i], 0, openair0_cfg[rf_map[CC_id].card].samples_per_frame*sizeof(int32_t));
1263
      printf("rxdata[%d] @ %p (%p) (N_TA_OFFSET %d)\n", i, phy_vars_eNB[CC_id]->common_vars.rxdata[0][i],rxdata[i],N_TA_offset);
1264 1265 1266 1267
      
    }

    for (i=0; i<frame_parms->nb_antennas_tx; i++) {
1268
      free(phy_vars_eNB[CC_id]->common_vars.txdata[0][i]);
1269
      txdata[i] = (int32_t*)(32 + malloc16(32 + openair0_cfg[rf_map[CC_id].card].samples_per_frame*sizeof(int32_t))); // FIXME broken memory allocation
1270
      phy_vars_eNB[CC_id]->common_vars.txdata[0][i] = txdata[i];
1271
      memset(txdata[i],0, openair0_cfg[rf_map[CC_id].card].samples_per_frame*sizeof(int32_t));
1272
      printf("txdata[%d] @ %p\n", i, phy_vars_eNB[CC_id]->common_vars.txdata[0][i]);
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290

    }

#endif
  }

  return(0);
}




void reset_opp_meas(void) {
  int sfn;
  reset_meas(&softmodem_stats_mt);
  reset_meas(&softmodem_stats_hw);
  
  for (sfn=0; sfn < 10; sfn++) {
1291
    reset_meas(&softmodem_stats_rxtx_sf);
1292
    reset_meas(&softmodem_stats_rx_sf);
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
  }
}

void print_opp_meas(void) {

  int sfn=0;
  print_meas(&softmodem_stats_mt, "Main ENB Thread", NULL, NULL);
  print_meas(&softmodem_stats_hw, "HW Acquisation", NULL, NULL);
  
  for (sfn=0; sfn < 10; sfn++) {
1303
    print_meas(&softmodem_stats_rxtx_sf,"[eNB][total_phy_proc_rxtx]",NULL, NULL);
1304
    print_meas(&softmodem_stats_rx_sf,"[eNB][total_phy_proc_rx]",NULL,NULL);
1305 1306 1307 1308
  }
}


1309
void init_eNB(eNB_func_t node_function) {
1310 1311


1312
  int CC_id;
1313

1314 1315
  for (CC_id=0;CC_id<MAX_NUM_CCs;CC_id++)
    PHY_vars_eNB_g[0][CC_id]->node_function = node_function;
1316 1317 1318 1319 1320

  init_eNB_proc();
  sleep(1);
  LOG_D(HW,"[lte-softmodem.c] eNB threads created\n");
  
1321
  /*  
1322 1323 1324 1325 1326 1327 1328 1329 1330
  printf("Creating main eNB_thread \n");
  error_code = pthread_create( &main_eNB_thread, &attr_dlsch_threads, eNB_thread, NULL );
  
  if (error_code!= 0) {
    LOG_D(HW,"[lte-softmodem.c] Could not allocate eNB_thread, error %d\n",error_code);
  } else {
    LOG_D( HW, "[lte-softmodem.c] Allocate eNB_thread successful\n" );
    pthread_setname_np( main_eNB_thread, "main eNB" );
  }
1331
  */
1332 1333 1334 1335 1336
}


void stop_eNB() {

1337
  /*
1338 1339 1340
#ifdef DEBUG_THREADS
  printf("Joining eNB_thread ...");
#endif
1341 1342 1343
    int *eNB_thread_status_p;
    int result = pthread_join( main_eNB_thread, (void**)&eNB_thread_status_p );

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
#ifdef DEBUG_THREADS
  
  if (result != 0) {
    printf( "\nError joining main_eNB_thread.\n" );
  } else {
    if (eNB_thread_status_p) {
      printf( "status %d\n", *eNB_thread_status_p );
    } else {
      printf( "The thread was killed. No status available.\n");
    }
  }
  
#else
  UNUSED(result);
#endif // DEBUG_THREADS
1359
  */
1360 1361 1362 1363
  
  printf("Killing eNB processing threads\n");
  kill_eNB_proc();
}