ulsch_demodulation.c 75.2 KB
Newer Older
1
/*******************************************************************************
2
    OpenAirInterface
ghaddab's avatar
ghaddab committed
3
    Copyright(c) 1999 - 2014 Eurecom
4

ghaddab's avatar
ghaddab committed
5 6 7 8
    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.
9 10


ghaddab's avatar
ghaddab committed
11 12 13 14
    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
15

ghaddab's avatar
ghaddab committed
16
    You should have received a copy of the GNU General Public License
17 18
    along with OpenAirInterface.The full GNU General Public License is
   included in this distribution in the file called "COPYING". If not,
ghaddab's avatar
ghaddab committed
19
   see <http://www.gnu.org/licenses/>.
20 21

  Contact Information
ghaddab's avatar
ghaddab committed
22 23
  OpenAirInterface Admin: openair_admin@eurecom.fr
  OpenAirInterface Tech : openair_tech@eurecom.fr
24
  OpenAirInterface Dev  : openair4g-devel@lists.eurecom.fr
25

ghaddab's avatar
ghaddab committed
26
  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
27

ghaddab's avatar
ghaddab committed
28
 *******************************************************************************/
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

/*! \file PHY/LTE_TRANSPORT/ulsch_demodulation.c
* \brief Top-level routines for demodulating the PUSCH physical channel from 36.211 V8.6 2009-03
* \author R. Knopp
* \date 2011
* \version 0.1
* \company Eurecom
* \email: knopp@eurecom.fr, florian.kaltenberger@eurecom.fr, ankit.bhamri@eurecom.fr
* \note
* \warning
*/

#include "PHY/defs.h"
#include "PHY/extern.h"
#include "defs.h"
#include "extern.h"
//#define DEBUG_ULSCH
46
#include "PHY/sse_intrin.h"
47 48 49 50 51 52 53 54 55 56

//extern char* namepointer_chMag ;
//eren
//extern int **ulchmag_eren;
//eren

static short jitter[8]  __attribute__ ((aligned(16))) = {1,0,0,1,0,1,1,0};
static short jitterc[8] __attribute__ ((aligned(16))) = {0,1,1,0,1,0,0,1};

#ifndef OFDMA_ULSCH
57 58
void lte_idft(LTE_DL_FRAME_PARMS *frame_parms,uint32_t *z, uint16_t Msc_PUSCH)
{
59
#if defined(__x86_64__) || defined(__i386__)
60
  __m128i idft_in128[3][1200],idft_out128[3][1200];
61 62 63 64 65
  __m128i norm128;
#elif defined(__arm__)
  int16x8_t idft_in128[3][1200],idft_out128[3][1200];
  int16x8_t norm128;
#endif
66 67 68 69 70 71 72
  int16_t *idft_in0=(int16_t*)idft_in128[0],*idft_out0=(int16_t*)idft_out128[0];
  int16_t *idft_in1=(int16_t*)idft_in128[1],*idft_out1=(int16_t*)idft_out128[1];
  int16_t *idft_in2=(int16_t*)idft_in128[2],*idft_out2=(int16_t*)idft_out128[2];

  uint32_t *z0,*z1,*z2,*z3,*z4,*z5,*z6,*z7,*z8,*z9,*z10=NULL,*z11=NULL;
  int i,ip;

73

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

  //  printf("Doing lte_idft for Msc_PUSCH %d\n",Msc_PUSCH);

  if (frame_parms->Ncp == 0) { // Normal prefix
    z0 = z;
    z1 = z0+(frame_parms->N_RB_DL*12);
    z2 = z1+(frame_parms->N_RB_DL*12);
    //pilot
    z3 = z2+(2*frame_parms->N_RB_DL*12);
    z4 = z3+(frame_parms->N_RB_DL*12);
    z5 = z4+(frame_parms->N_RB_DL*12);

    z6 = z5+(frame_parms->N_RB_DL*12);
    z7 = z6+(frame_parms->N_RB_DL*12);
    z8 = z7+(frame_parms->N_RB_DL*12);
    //pilot
    z9 = z8+(2*frame_parms->N_RB_DL*12);
    z10 = z9+(frame_parms->N_RB_DL*12);
    // srs
    z11 = z10+(frame_parms->N_RB_DL*12);
94
  } else { // extended prefix
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    z0 = z;
    z1 = z0+(frame_parms->N_RB_DL*12);
    //pilot
    z2 = z1+(2*frame_parms->N_RB_DL*12);
    z3 = z2+(frame_parms->N_RB_DL*12);
    z4 = z3+(frame_parms->N_RB_DL*12);

    z5 = z4+(frame_parms->N_RB_DL*12);
    z6 = z5+(frame_parms->N_RB_DL*12);
    //pilot
    z7 = z6+(2*frame_parms->N_RB_DL*12);
    z8 = z7+(frame_parms->N_RB_DL*12);
    // srs
    z9 = z8+(frame_parms->N_RB_DL*12);
  }
110

111
  // conjugate input
112
  for (i=0; i<(Msc_PUSCH>>2); i++) {
113
#if defined(__x86_64__)||defined(__i386__)
114 115 116 117 118 119 120 121 122 123
    *&(((__m128i*)z0)[i])=_mm_sign_epi16(*&(((__m128i*)z0)[i]),*(__m128i*)&conjugate2[0]);
    *&(((__m128i*)z1)[i])=_mm_sign_epi16(*&(((__m128i*)z1)[i]),*(__m128i*)&conjugate2[0]);
    *&(((__m128i*)z2)[i])=_mm_sign_epi16(*&(((__m128i*)z2)[i]),*(__m128i*)&conjugate2[0]);
    *&(((__m128i*)z3)[i])=_mm_sign_epi16(*&(((__m128i*)z3)[i]),*(__m128i*)&conjugate2[0]);
    *&(((__m128i*)z4)[i])=_mm_sign_epi16(*&(((__m128i*)z4)[i]),*(__m128i*)&conjugate2[0]);
    *&(((__m128i*)z5)[i])=_mm_sign_epi16(*&(((__m128i*)z5)[i]),*(__m128i*)&conjugate2[0]);
    *&(((__m128i*)z6)[i])=_mm_sign_epi16(*&(((__m128i*)z6)[i]),*(__m128i*)&conjugate2[0]);
    *&(((__m128i*)z7)[i])=_mm_sign_epi16(*&(((__m128i*)z7)[i]),*(__m128i*)&conjugate2[0]);
    *&(((__m128i*)z8)[i])=_mm_sign_epi16(*&(((__m128i*)z8)[i]),*(__m128i*)&conjugate2[0]);
    *&(((__m128i*)z9)[i])=_mm_sign_epi16(*&(((__m128i*)z9)[i]),*(__m128i*)&conjugate2[0]);
124

125
    if (frame_parms->Ncp==NORMAL) {
126 127 128
      *&(((__m128i*)z10)[i])=_mm_sign_epi16(*&(((__m128i*)z10)[i]),*(__m128i*)&conjugate2[0]);
      *&(((__m128i*)z11)[i])=_mm_sign_epi16(*&(((__m128i*)z11)[i]),*(__m128i*)&conjugate2[0]);
    }
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
#elif defined(__arm__)
    *&(((int16x8_t*)z0)[i])=vmulq_s16(*&(((int16x8_t*)z0)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z1)[i])=vmulq_s16(*&(((int16x8_t*)z1)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z2)[i])=vmulq_s16(*&(((int16x8_t*)z2)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z3)[i])=vmulq_s16(*&(((int16x8_t*)z3)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z4)[i])=vmulq_s16(*&(((int16x8_t*)z4)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z5)[i])=vmulq_s16(*&(((int16x8_t*)z5)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z6)[i])=vmulq_s16(*&(((int16x8_t*)z6)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z7)[i])=vmulq_s16(*&(((int16x8_t*)z7)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z8)[i])=vmulq_s16(*&(((int16x8_t*)z8)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z9)[i])=vmulq_s16(*&(((int16x8_t*)z9)[i]),*(int16x8_t*)&conjugate2[0]);


    if (frame_parms->Ncp==NORMAL) {
      *&(((int16x8_t*)z10)[i])=vmulq_s16(*&(((int16x8_t*)z10)[i]),*(int16x8_t*)&conjugate2[0]);
      *&(((int16x8_t*)z11)[i])=vmulq_s16(*&(((int16x8_t*)z11)[i]),*(int16x8_t*)&conjugate2[0]);
    }

#endif
148 149 150
  }

  for (i=0,ip=0; i<Msc_PUSCH; i++,ip+=4) {
151 152 153 154 155 156 157 158 159 160
    ((uint32_t*)idft_in0)[ip+0] =  z0[i];
    ((uint32_t*)idft_in0)[ip+1] =  z1[i];
    ((uint32_t*)idft_in0)[ip+2] =  z2[i];
    ((uint32_t*)idft_in0)[ip+3] =  z3[i];
    ((uint32_t*)idft_in1)[ip+0] =  z4[i];
    ((uint32_t*)idft_in1)[ip+1] =  z5[i];
    ((uint32_t*)idft_in1)[ip+2] =  z6[i];
    ((uint32_t*)idft_in1)[ip+3] =  z7[i];
    ((uint32_t*)idft_in2)[ip+0] =  z8[i];
    ((uint32_t*)idft_in2)[ip+1] =  z9[i];
161

162 163 164 165 166
    if (frame_parms->Ncp==0) {
      ((uint32_t*)idft_in2)[ip+2] =  z10[i];
      ((uint32_t*)idft_in2)[ip+3] =  z11[i];
    }
  }
167 168


169 170 171 172 173 174
  switch (Msc_PUSCH) {
  case 12:
    dft12((int16_t *)idft_in0,(int16_t *)idft_out0);
    dft12((int16_t *)idft_in1,(int16_t *)idft_out1);
    dft12((int16_t *)idft_in2,(int16_t *)idft_out2);

175
#if defined(__x86_64__)||defined(__i386__)
176
    norm128 = _mm_set1_epi16(9459);
177 178 179
#elif defined(__arm__)
    norm128 = vdupq_n_s16(9459);
#endif
180
    for (i=0; i<12; i++) {
181
#if defined(__x86_64__)||defined(__i386__)
182 183 184
      ((__m128i*)idft_out0)[i] = _mm_slli_epi16(_mm_mulhi_epi16(((__m128i*)idft_out0)[i],norm128),1);
      ((__m128i*)idft_out1)[i] = _mm_slli_epi16(_mm_mulhi_epi16(((__m128i*)idft_out1)[i],norm128),1);
      ((__m128i*)idft_out2)[i] = _mm_slli_epi16(_mm_mulhi_epi16(((__m128i*)idft_out2)[i],norm128),1);
185 186 187 188 189
#elif defined(__arm__)
      ((int16x8_t*)idft_out0)[i] = vqdmulhq_s16(((int16x8_t*)idft_out0)[i],norm128);
      ((int16x8_t*)idft_out1)[i] = vqdmulhq_s16(((int16x8_t*)idft_out1)[i],norm128);
      ((int16x8_t*)idft_out2)[i] = vqdmulhq_s16(((int16x8_t*)idft_out2)[i],norm128);
#endif
190 191 192
    }

    break;
193

194 195 196 197 198
  case 24:
    dft24(idft_in0,idft_out0,1);
    dft24(idft_in1,idft_out1,1);
    dft24(idft_in2,idft_out2,1);
    break;
199

200 201 202 203 204
  case 36:
    dft36(idft_in0,idft_out0,1);
    dft36(idft_in1,idft_out1,1);
    dft36(idft_in2,idft_out2,1);
    break;
205

206 207 208 209 210
  case 48:
    dft48(idft_in0,idft_out0,1);
    dft48(idft_in1,idft_out1,1);
    dft48(idft_in2,idft_out2,1);
    break;
211

212 213 214 215 216
  case 60:
    dft60(idft_in0,idft_out0,1);
    dft60(idft_in1,idft_out1,1);
    dft60(idft_in2,idft_out2,1);
    break;
217

218 219 220 221 222
  case 72:
    dft72(idft_in0,idft_out0,1);
    dft72(idft_in1,idft_out1,1);
    dft72(idft_in2,idft_out2,1);
    break;
223

224 225 226 227 228
  case 96:
    dft96(idft_in0,idft_out0,1);
    dft96(idft_in1,idft_out1,1);
    dft96(idft_in2,idft_out2,1);
    break;
229

230 231 232 233 234
  case 108:
    dft108(idft_in0,idft_out0,1);
    dft108(idft_in1,idft_out1,1);
    dft108(idft_in2,idft_out2,1);
    break;
235

236 237 238 239 240
  case 120:
    dft120(idft_in0,idft_out0,1);
    dft120(idft_in1,idft_out1,1);
    dft120(idft_in2,idft_out2,1);
    break;
241

242 243 244 245 246
  case 144:
    dft144(idft_in0,idft_out0,1);
    dft144(idft_in1,idft_out1,1);
    dft144(idft_in2,idft_out2,1);
    break;
247

248 249 250 251 252
  case 180:
    dft180(idft_in0,idft_out0,1);
    dft180(idft_in1,idft_out1,1);
    dft180(idft_in2,idft_out2,1);
    break;
253

254 255 256 257 258
  case 192:
    dft192(idft_in0,idft_out0,1);
    dft192(idft_in1,idft_out1,1);
    dft192(idft_in2,idft_out2,1);
    break;
259

260 261 262 263 264
  case 216:
    dft216(idft_in0,idft_out0,1);
    dft216(idft_in1,idft_out1,1);
    dft216(idft_in2,idft_out2,1);
    break;
265

266 267 268 269 270
  case 240:
    dft240(idft_in0,idft_out0,1);
    dft240(idft_in1,idft_out1,1);
    dft240(idft_in2,idft_out2,1);
    break;
271

272 273
  case 288:
    dft288(idft_in0,idft_out0,1);
274
    dft288(idft_in1,idft_out1,1);
275 276
    dft288(idft_in2,idft_out2,1);
    break;
277 278

  case 300:
279 280 281 282
    dft300(idft_in0,idft_out0,1);
    dft300(idft_in1,idft_out1,1);
    dft300(idft_in2,idft_out2,1);
    break;
283

284 285 286 287 288
  case 324:
    dft324((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft324((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft324((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
289

290 291 292 293 294
  case 360:
    dft360((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft360((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft360((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
295

296 297 298 299 300
  case 384:
    dft384((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft384((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft384((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
301

302 303 304 305 306
  case 432:
    dft432((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft432((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft432((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
307

308 309 310 311 312
  case 480:
    dft480((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft480((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft480((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
313

314 315 316 317 318
  case 540:
    dft540((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft540((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft540((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
319

320 321 322 323 324
  case 576:
    dft576((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft576((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft576((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
325

326 327 328 329 330
  case 600:
    dft600((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft600((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft600((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
331

332 333 334 335 336
  case 648:
    dft648((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft648((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft648((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
337

338 339 340 341 342
  case 720:
    dft720((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft720((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft720((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
343

344 345 346 347 348
  case 864:
    dft864((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft864((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft864((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
349

350 351 352 353 354
  case 900:
    dft900((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft900((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft900((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
355

356 357 358 359 360
  case 960:
    dft960((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft960((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft960((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
361

362 363 364 365 366
  case 972:
    dft972((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft972((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft972((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
367

368 369 370 371 372
  case 1080:
    dft1080((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft1080((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft1080((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
373

374 375 376 377 378
  case 1152:
    dft1152((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft1152((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft1152((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
379

380 381 382 383 384
  case 1200:
    dft1200(idft_in0,idft_out0,1);
    dft1200(idft_in1,idft_out1,1);
    dft1200(idft_in2,idft_out2,1);
    break;
385

386 387 388 389
  default:
    // should not be reached
    LOG_E( PHY, "Unsupported Msc_PUSCH value of %"PRIu16"\n", Msc_PUSCH );
    return;
390 391 392
  }


393 394

  for (i=0,ip=0; i<Msc_PUSCH; i++,ip+=4) {
395 396 397 398 399 400 401 402
    z0[i]     = ((uint32_t*)idft_out0)[ip];
    /*
      printf("out0 (%d,%d),(%d,%d),(%d,%d),(%d,%d)\n",
      ((int16_t*)&idft_out0[ip])[0],((int16_t*)&idft_out0[ip])[1],
      ((int16_t*)&idft_out0[ip+1])[0],((int16_t*)&idft_out0[ip+1])[1],
      ((int16_t*)&idft_out0[ip+2])[0],((int16_t*)&idft_out0[ip+2])[1],
      ((int16_t*)&idft_out0[ip+3])[0],((int16_t*)&idft_out0[ip+3])[1]);
    */
403 404 405 406 407 408 409 410 411 412
    z1[i]     = ((uint32_t*)idft_out0)[ip+1];
    z2[i]     = ((uint32_t*)idft_out0)[ip+2];
    z3[i]     = ((uint32_t*)idft_out0)[ip+3];
    z4[i]     = ((uint32_t*)idft_out1)[ip+0];
    z5[i]     = ((uint32_t*)idft_out1)[ip+1];
    z6[i]     = ((uint32_t*)idft_out1)[ip+2];
    z7[i]     = ((uint32_t*)idft_out1)[ip+3];
    z8[i]     = ((uint32_t*)idft_out2)[ip];
    z9[i]     = ((uint32_t*)idft_out2)[ip+1];

413
    if (frame_parms->Ncp==0) {
414
      z10[i]    = ((uint32_t*)idft_out2)[ip+2];
415 416 417
      z11[i]    = ((uint32_t*)idft_out2)[ip+3];
    }
  }
418

419
  // conjugate output
420
  for (i=0; i<(Msc_PUSCH>>2); i++) {
421
#if defined(__x86_64__) || defined(__i386__)
422 423 424 425 426 427 428 429 430 431
    ((__m128i*)z0)[i]=_mm_sign_epi16(((__m128i*)z0)[i],*(__m128i*)&conjugate2[0]);
    ((__m128i*)z1)[i]=_mm_sign_epi16(((__m128i*)z1)[i],*(__m128i*)&conjugate2[0]);
    ((__m128i*)z2)[i]=_mm_sign_epi16(((__m128i*)z2)[i],*(__m128i*)&conjugate2[0]);
    ((__m128i*)z3)[i]=_mm_sign_epi16(((__m128i*)z3)[i],*(__m128i*)&conjugate2[0]);
    ((__m128i*)z4)[i]=_mm_sign_epi16(((__m128i*)z4)[i],*(__m128i*)&conjugate2[0]);
    ((__m128i*)z5)[i]=_mm_sign_epi16(((__m128i*)z5)[i],*(__m128i*)&conjugate2[0]);
    ((__m128i*)z6)[i]=_mm_sign_epi16(((__m128i*)z6)[i],*(__m128i*)&conjugate2[0]);
    ((__m128i*)z7)[i]=_mm_sign_epi16(((__m128i*)z7)[i],*(__m128i*)&conjugate2[0]);
    ((__m128i*)z8)[i]=_mm_sign_epi16(((__m128i*)z8)[i],*(__m128i*)&conjugate2[0]);
    ((__m128i*)z9)[i]=_mm_sign_epi16(((__m128i*)z9)[i],*(__m128i*)&conjugate2[0]);
432

433
    if (frame_parms->Ncp==NORMAL) {
434 435 436
      ((__m128i*)z10)[i]=_mm_sign_epi16(((__m128i*)z10)[i],*(__m128i*)&conjugate2[0]);
      ((__m128i*)z11)[i]=_mm_sign_epi16(((__m128i*)z11)[i],*(__m128i*)&conjugate2[0]);
    }
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
#elif defined(__arm__)
    *&(((int16x8_t*)z0)[i])=vmulq_s16(*&(((int16x8_t*)z0)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z1)[i])=vmulq_s16(*&(((int16x8_t*)z1)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z2)[i])=vmulq_s16(*&(((int16x8_t*)z2)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z3)[i])=vmulq_s16(*&(((int16x8_t*)z3)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z4)[i])=vmulq_s16(*&(((int16x8_t*)z4)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z5)[i])=vmulq_s16(*&(((int16x8_t*)z5)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z6)[i])=vmulq_s16(*&(((int16x8_t*)z6)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z7)[i])=vmulq_s16(*&(((int16x8_t*)z7)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z8)[i])=vmulq_s16(*&(((int16x8_t*)z8)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z9)[i])=vmulq_s16(*&(((int16x8_t*)z9)[i]),*(int16x8_t*)&conjugate2[0]);


    if (frame_parms->Ncp==NORMAL) {
      *&(((int16x8_t*)z10)[i])=vmulq_s16(*&(((int16x8_t*)z10)[i]),*(int16x8_t*)&conjugate2[0]);
      *&(((int16x8_t*)z11)[i])=vmulq_s16(*&(((int16x8_t*)z11)[i]),*(int16x8_t*)&conjugate2[0]);
    }

#endif
456 457
  }

458 459 460 461 462
#if defined(__x86_64__) || defined(__i386__)
  _mm_empty();
  _m_empty();
#endif

463 464 465 466 467 468 469 470
}
#endif





int32_t ulsch_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
471 472 473 474 475 476
                       int32_t **rxdataF_comp,
                       int16_t *ulsch_llr,
                       uint8_t symbol,
                       uint16_t nb_rb,
                       int16_t **llrp)
{
477
#if defined(__x86_64__) || defined(__i386__)
478 479
  __m128i *rxF=(__m128i*)&rxdataF_comp[0][(symbol*frame_parms->N_RB_DL*12)];
  __m128i **llrp128 = (__m128i **)llrp;
480 481 482 483 484 485
#elif defined(__arm__)
  int16x8_t *rxF= (int16x8_t*)&rxdataF_comp[0][(symbol*frame_parms->N_RB_DL*12)];
  int16x8_t **llrp128 = (int16x8_t **)llrp;
#endif

  int i;
486 487 488

  //  printf("qpsk llr for symbol %d (pos %d), llr offset %d\n",symbol,(symbol*frame_parms->N_RB_DL*12),llr128U-(__m128i*)ulsch_llr);

489
  for (i=0; i<(nb_rb*3); i++) {
490 491 492 493 494 495
    //printf("%d,%d,%d,%d,%d,%d,%d,%d\n",((int16_t *)rxF)[0],((int16_t *)rxF)[1],((int16_t *)rxF)[2],((int16_t *)rxF)[3],((int16_t *)rxF)[4],((int16_t *)rxF)[5],((int16_t *)rxF)[6],((int16_t *)rxF)[7]);
    *(*llrp128) = *rxF;
    rxF++;
    (*llrp128)++;
  }

496
#if defined(__x86_64__) || defined(__i386__)
497 498
  _mm_empty();
  _m_empty();
499
#endif
500 501 502 503 504 505

  return(0);

}

void ulsch_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
506 507 508 509 510 511 512
                     int32_t **rxdataF_comp,
                     int16_t *ulsch_llr,
                     int32_t **ul_ch_mag,
                     uint8_t symbol,
                     uint16_t nb_rb,
                     int16_t **llrp)
{
513
int i;
514

515
#if defined(__x86_64__) || defined(__i386__)
516 517 518 519 520
  __m128i *rxF=(__m128i*)&rxdataF_comp[0][(symbol*frame_parms->N_RB_DL*12)];
  __m128i *ch_mag;
  __m128i mmtmpU0;
  __m128i **llrp128=(__m128i **)llrp;
  ch_mag =(__m128i*)&ul_ch_mag[0][(symbol*frame_parms->N_RB_DL*12)];
521 522 523 524 525 526 527
#elif defined(__arm__)
  int16x8_t *rxF=(int16x8_t*)&rxdataF_comp[0][(symbol*frame_parms->N_RB_DL*12)];
  int16x8_t *ch_mag;
  int16x8_t xmm0;
  int16_t **llrp16=llrp;
  ch_mag =(int16x8_t*)&ul_ch_mag[0][(symbol*frame_parms->N_RB_DL*12)];
#endif
528

529
  for (i=0; i<(nb_rb*3); i++) {
530

531
#if defined(__x86_64__) || defined(__i386__)
532 533 534 535 536 537 538 539
    mmtmpU0 = _mm_abs_epi16(rxF[i]);
    //    print_shorts("tmp0",&tmp0);

    mmtmpU0 = _mm_subs_epi16(ch_mag[i],mmtmpU0);

    (*llrp128)[0] = _mm_unpacklo_epi32(rxF[i],mmtmpU0);
    (*llrp128)[1] = _mm_unpackhi_epi32(rxF[i],mmtmpU0);
    (*llrp128)+=2;
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
#elif defined(__arm__)
    xmm0 = vabsq_s16(rxF[i]);
    xmm0 = vqsubq_s16(ch_mag[i],xmm0);
    (*llrp16)[0] = vgetq_lane_s16(rxF[i],0);
    (*llrp16)[1] = vgetq_lane_s16(xmm0,0);
    (*llrp16)[2] = vgetq_lane_s16(rxF[i],1);
    (*llrp16)[3] = vgetq_lane_s16(xmm0,1);
    (*llrp16)[4] = vgetq_lane_s16(rxF[i],2);
    (*llrp16)[5] = vgetq_lane_s16(xmm0,2);
    (*llrp16)[6] = vgetq_lane_s16(rxF[i],2);
    (*llrp16)[7] = vgetq_lane_s16(xmm0,3);
    (*llrp16)[8] = vgetq_lane_s16(rxF[i],4);
    (*llrp16)[9] = vgetq_lane_s16(xmm0,4);
    (*llrp16)[10] = vgetq_lane_s16(rxF[i],5);
    (*llrp16)[11] = vgetq_lane_s16(xmm0,5);
    (*llrp16)[12] = vgetq_lane_s16(rxF[i],6);
    (*llrp16)[13] = vgetq_lane_s16(xmm0,6);
    (*llrp16)[14] = vgetq_lane_s16(rxF[i],7);
    (*llrp16)[15] = vgetq_lane_s16(xmm0,7);
    (*llrp16)+=16;
#endif

562 563 564 565 566

    //    print_bytes("rxF[i]",&rxF[i]);
    //    print_bytes("rxF[i+1]",&rxF[i+1]);
  }

567
#if defined(__x86_64__) || defined(__i386__)
568 569
  _mm_empty();
  _m_empty();
570
#endif
571 572 573 574

}

void ulsch_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
575 576 577 578 579 580 581 582
                     int32_t **rxdataF_comp,
                     int16_t *ulsch_llr,
                     int32_t **ul_ch_mag,
                     int32_t **ul_ch_magb,
                     uint8_t symbol,
                     uint16_t nb_rb,
                     int16_t **llrp)
{
583 584
  int i;
  int32_t **llrp32=(int32_t **)llrp;
585

586
#if defined(__x86_64__) || defined(__i386)
587 588 589 590 591 592
  __m128i *rxF=(__m128i*)&rxdataF_comp[0][(symbol*frame_parms->N_RB_DL*12)];
  __m128i *ch_mag,*ch_magb;
  __m128i mmtmpU1,mmtmpU2;

  ch_mag =(__m128i*)&ul_ch_mag[0][(symbol*frame_parms->N_RB_DL*12)];
  ch_magb =(__m128i*)&ul_ch_magb[0][(symbol*frame_parms->N_RB_DL*12)];
593 594 595 596
#elif defined(__arm__)
  int16x8_t *rxF=(int16x8_t*)&rxdataF_comp[0][(symbol*frame_parms->N_RB_DL*12)];
  int16x8_t *ch_mag,*ch_magb;
  int16x8_t mmtmpU1,mmtmpU2;
597

598 599 600
  ch_mag =(int16x8_t*)&ul_ch_mag[0][(symbol*frame_parms->N_RB_DL*12)];
  ch_magb =(int16x8_t*)&ul_ch_magb[0][(symbol*frame_parms->N_RB_DL*12)];
#endif
601
  //  printf("symbol %d: mag %d, magb %d\n",symbol,_mm_extract_epi16(ch_mag[0],0),_mm_extract_epi16(ch_magb[0],0));
602
  for (i=0; i<(nb_rb*3); i++) {
603 604


605
#if defined(__x86_64__) || defined(__i386__)
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    mmtmpU1 = _mm_abs_epi16(rxF[i]);

    mmtmpU1  = _mm_subs_epi16(ch_mag[i],mmtmpU1);

    mmtmpU2 = _mm_abs_epi16(mmtmpU1);
    mmtmpU2 = _mm_subs_epi16(ch_magb[i],mmtmpU2);

    (*llrp32)[0]  = _mm_extract_epi32(rxF[i],0);
    (*llrp32)[1]  = _mm_extract_epi32(mmtmpU1,0);
    (*llrp32)[2]  = _mm_extract_epi32(mmtmpU2,0);
    (*llrp32)[3]  = _mm_extract_epi32(rxF[i],1);
    (*llrp32)[4]  = _mm_extract_epi32(mmtmpU1,1);
    (*llrp32)[5]  = _mm_extract_epi32(mmtmpU2,1);
    (*llrp32)[6]  = _mm_extract_epi32(rxF[i],2);
    (*llrp32)[7]  = _mm_extract_epi32(mmtmpU1,2);
    (*llrp32)[8]  = _mm_extract_epi32(mmtmpU2,2);
    (*llrp32)[9]  = _mm_extract_epi32(rxF[i],3);
    (*llrp32)[10] = _mm_extract_epi32(mmtmpU1,3);
    (*llrp32)[11] = _mm_extract_epi32(mmtmpU2,3);
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
#elif defined(__arm__)
    mmtmpU1 = vabsq_s16(rxF[i]);

    mmtmpU1 = vqsubq_s16(ch_mag[i],mmtmpU1);

    mmtmpU2 = vabsq_s16(mmtmpU1);
    mmtmpU2 = vqsubq_s16(ch_magb[i],mmtmpU2);

    (*llrp32)[0]  = vgetq_lane_s32((int32x4_t)rxF[i],0);
    (*llrp32)[1]  = vgetq_lane_s32((int32x4_t)mmtmpU1,0);
    (*llrp32)[2]  = vgetq_lane_s32((int32x4_t)mmtmpU2,0);
    (*llrp32)[3]  = vgetq_lane_s32((int32x4_t)rxF[i],1);
    (*llrp32)[4]  = vgetq_lane_s32((int32x4_t)mmtmpU1,1);
    (*llrp32)[5]  = vgetq_lane_s32((int32x4_t)mmtmpU2,1);
    (*llrp32)[6]  = vgetq_lane_s32((int32x4_t)rxF[i],2);
    (*llrp32)[7]  = vgetq_lane_s32((int32x4_t)mmtmpU1,2);
    (*llrp32)[8]  = vgetq_lane_s32((int32x4_t)mmtmpU2,2);
    (*llrp32)[9]  = vgetq_lane_s32((int32x4_t)rxF[i],3);
    (*llrp32)[10] = vgetq_lane_s32((int32x4_t)mmtmpU1,3);
    (*llrp32)[11] = vgetq_lane_s32((int32x4_t)mmtmpU2,3);

#endif
647 648
    (*llrp32)+=12;
  }
649
#if defined(__x86_64__) || defined(__i386__)
650 651
  _mm_empty();
  _m_empty();
652
#endif
653 654 655
}

void ulsch_detection_mrc(LTE_DL_FRAME_PARMS *frame_parms,
656 657 658 659 660 661
                         int32_t **rxdataF_comp,
                         int32_t **ul_ch_mag,
                         int32_t **ul_ch_magb,
                         uint8_t symbol,
                         uint16_t nb_rb)
{
662 663


664
#if defined(__x86_64__) || defined(__i386__)
665 666 667

  __m128i *rxdataF_comp128_0,*ul_ch_mag128_0,*ul_ch_mag128_0b;
  __m128i *rxdataF_comp128_1,*ul_ch_mag128_1,*ul_ch_mag128_1b;
668
#elif defined(__arm__)
669

670 671 672 673
  int16x8_t *rxdataF_comp128_0,*ul_ch_mag128_0,*ul_ch_mag128_0b;
  int16x8_t *rxdataF_comp128_1,*ul_ch_mag128_1,*ul_ch_mag128_1b;

#endif
674 675 676
  int32_t i;

  if (frame_parms->nb_antennas_rx>1) {
677
#if defined(__x86_64__) || defined(__i386__)
678 679 680 681 682 683
    rxdataF_comp128_0   = (__m128i *)&rxdataF_comp[0][symbol*frame_parms->N_RB_DL*12];
    rxdataF_comp128_1   = (__m128i *)&rxdataF_comp[1][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128_0      = (__m128i *)&ul_ch_mag[0][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128_1      = (__m128i *)&ul_ch_mag[1][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128_0b     = (__m128i *)&ul_ch_magb[0][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128_1b     = (__m128i *)&ul_ch_magb[1][symbol*frame_parms->N_RB_DL*12];
684 685

    // MRC on each re of rb, both on MF output and magnitude (for 16QAM/64QAM llr computation)
686
    for (i=0; i<nb_rb*3; i++) {
687 688 689 690
      rxdataF_comp128_0[i] = _mm_adds_epi16(_mm_srai_epi16(rxdataF_comp128_0[i],1),_mm_srai_epi16(rxdataF_comp128_1[i],1));
      ul_ch_mag128_0[i]    = _mm_adds_epi16(_mm_srai_epi16(ul_ch_mag128_0[i],1),_mm_srai_epi16(ul_ch_mag128_1[i],1));
      ul_ch_mag128_0b[i]   = _mm_adds_epi16(_mm_srai_epi16(ul_ch_mag128_0b[i],1),_mm_srai_epi16(ul_ch_mag128_1b[i],1));
      rxdataF_comp128_0[i] = _mm_add_epi16(rxdataF_comp128_0[i],(*(__m128i*)&jitterc[0]));
691

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
#elif defined(__arm__)
    rxdataF_comp128_0   = (int16x8_t *)&rxdataF_comp[0][symbol*frame_parms->N_RB_DL*12];
    rxdataF_comp128_1   = (int16x8_t *)&rxdataF_comp[1][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128_0      = (int16x8_t *)&ul_ch_mag[0][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128_1      = (int16x8_t *)&ul_ch_mag[1][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128_0b     = (int16x8_t *)&ul_ch_magb[0][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128_1b     = (int16x8_t *)&ul_ch_magb[1][symbol*frame_parms->N_RB_DL*12];

    // MRC on each re of rb, both on MF output and magnitude (for 16QAM/64QAM llr computation)
    for (i=0; i<nb_rb*3; i++) {
      rxdataF_comp128_0[i] = vhaddq_s16(rxdataF_comp128_0[i],rxdataF_comp128_1[i]);
      ul_ch_mag128_0[i]    = vhaddq_s16(ul_ch_mag128_0[i],ul_ch_mag128_1[i]);
      ul_ch_mag128_0b[i]   = vhaddq_s16(ul_ch_mag128_0b[i],ul_ch_mag128_1b[i]);
      rxdataF_comp128_0[i] = vqaddq_s16(rxdataF_comp128_0[i],(*(int16x8_t*)&jitterc[0]));


#endif
    }
710 711
  }

712
#if defined(__x86_64__) || defined(__i386__)
713 714
  _mm_empty();
  _m_empty();
715
#endif
716 717 718
}

void ulsch_extract_rbs_single(int32_t **rxdataF,
719 720 721 722 723 724 725
                              int32_t **rxdataF_ext,
                              uint32_t first_rb,
                              uint32_t nb_rb,
                              uint8_t l,
                              uint8_t Ns,
                              LTE_DL_FRAME_PARMS *frame_parms)
{
726 727 728 729 730


  uint16_t nb_rb1,nb_rb2;
  uint8_t aarx;
  int32_t *rxF,*rxF_ext;
731

732 733 734
  //uint8_t symbol = l+Ns*frame_parms->symbols_per_tti/2;
  uint8_t symbol = l+((7-frame_parms->Ncp)*(Ns&1)); ///symbol within sub-frame

735
  for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
736 737 738 739 740 741 742 743 744 745


    nb_rb1 = cmin(cmax((int)(frame_parms->N_RB_UL) - (int)(2*first_rb),(int)0),(int)(2*nb_rb));    // 2 times no. RBs before the DC
    nb_rb2 = 2*nb_rb - nb_rb1;                                   // 2 times no. RBs after the DC

#ifdef DEBUG_ULSCH
    msg("ulsch_extract_rbs_single: 2*nb_rb1 = %d, 2*nb_rb2 = %d\n",nb_rb1,nb_rb2);
#endif

    rxF_ext   = &rxdataF_ext[aarx][(symbol*frame_parms->N_RB_UL*12)];
746

747 748 749 750
    if (nb_rb1) {
      rxF = &rxdataF[aarx][(first_rb*12 + frame_parms->first_carrier_offset + symbol*frame_parms->ofdm_symbol_size)];
      memcpy(rxF_ext, rxF, nb_rb1*6*sizeof(int));
      rxF_ext += nb_rb1*6;
Raymond Knopp's avatar
 
Raymond Knopp committed
751

752
      if (nb_rb2)  {
753 754 755 756 757 758 759 760 761
        //#ifdef OFDMA_ULSCH
        //  rxF = &rxdataF[aarx][(1 + symbol*frame_parms->ofdm_symbol_size)*2];
        //#else
        rxF = &rxdataF[aarx][(symbol*frame_parms->ofdm_symbol_size)];
        //#endif
        memcpy(rxF_ext, rxF, nb_rb2*6*sizeof(int));
        rxF_ext += nb_rb2*6;
      }
    } else { //there is only data in the second half
762 763 764 765 766 767 768 769 770 771 772 773 774
      //#ifdef OFDMA_ULSCH
      //      rxF = &rxdataF[aarx][(1 + 6*(2*first_rb - frame_parms->N_RB_UL) + symbol*frame_parms->ofdm_symbol_size)*2];
      //#else
      rxF = &rxdataF[aarx][(6*(2*first_rb - frame_parms->N_RB_UL) + symbol*frame_parms->ofdm_symbol_size)];
      //#endif
      memcpy(rxF_ext, rxF, nb_rb2*6*sizeof(int));
      rxF_ext += nb_rb2*6;
    }
  }

}

void ulsch_correct_ext(int32_t **rxdataF_ext,
775 776 777 778 779
                       int32_t **rxdataF_ext2,
                       uint16_t symbol,
                       LTE_DL_FRAME_PARMS *frame_parms,
                       uint16_t nb_rb)
{
780 781 782 783

  int32_t i,j,aarx;
  int32_t *rxF_ext2,*rxF_ext;

784
  for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
785 786 787
    rxF_ext2 = &rxdataF_ext2[aarx][symbol*12*frame_parms->N_RB_UL];
    rxF_ext  = &rxdataF_ext[aarx][2*symbol*12*frame_parms->N_RB_UL];

788 789
    for (i=0,j=0; i<12*nb_rb; i++,j+=2) {
      rxF_ext2[i] = rxF_ext[j];
790 791 792 793 794 795 796
    }
  }
}



void ulsch_channel_compensation(int32_t **rxdataF_ext,
797 798 799 800 801 802 803 804 805 806 807
                                int32_t **ul_ch_estimates_ext,
                                int32_t **ul_ch_mag,
                                int32_t **ul_ch_magb,
                                int32_t **rxdataF_comp,
                                LTE_DL_FRAME_PARMS *frame_parms,
                                uint8_t symbol,
                                uint8_t Qm,
                                uint16_t nb_rb,
                                uint8_t output_shift)
{

808
  uint16_t rb;
809 810 811

#if defined(__x86_64__) || defined(__i386__)

812 813 814 815 816 817 818
  __m128i *ul_ch128,*ul_ch_mag128,*ul_ch_mag128b,*rxdataF128,*rxdataF_comp128;
  uint8_t aarx;//,symbol_mod;
  __m128i mmtmpU0,mmtmpU1,mmtmpU2,mmtmpU3;
#ifdef OFDMA_ULSCH
  __m128i QAM_amp128U,QAM_amp128bU;
#endif

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
#elif defined(__arm__)

  int16x4_t *ul_ch128,*rxdataF128;
  int16x8_t *ul_ch_mag128,*ul_ch_mag128b,*rxdataF_comp128;

  uint8_t aarx;//,symbol_mod;
  int32x4_t mmtmpU0,mmtmpU1,mmtmpU0b,mmtmpU1b;
#ifdef OFDMA_ULSCH
  int16x8_t mmtmpU2,mmtmpU3;
  int16x8_t QAM_amp128U,QAM_amp128bU;
#endif
  int16_t conj[4]__attribute__((aligned(16))) = {1,-1,1,-1};
  int32x4_t output_shift128 = vmovq_n_s32(-(int32_t)output_shift);


834

835 836 837
#endif

#ifdef OFDMA_ULSCH
838

839
#if defined(__x86_64__) || defined(__i386__)
840 841 842 843 844 845
  if (Qm == 4)
    QAM_amp128U = _mm_set1_epi16(QAM16_n1);
  else if (Qm == 6) {
    QAM_amp128U  = _mm_set1_epi16(QAM64_n1);
    QAM_amp128bU = _mm_set1_epi16(QAM64_n2);
  }
846 847 848 849 850 851 852
#elif defined(__arm__)
  if (Qm == 4)
    QAM_amp128U = vdupq_n_s16(QAM16_n1);
  else if (Qm == 6) {
    QAM_amp128U  = vdupq_n_s16(QAM64_n1);
    QAM_amp128bU = vdupq_n_s16(QAM64_n2);
  }
853

854
#endif
855
#endif
856 857 858

  for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {

859 860
#if defined(__x86_64__) || defined(__i386__)

861 862 863 864 865 866
    ul_ch128          = (__m128i *)&ul_ch_estimates_ext[aarx][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128      = (__m128i *)&ul_ch_mag[aarx][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128b     = (__m128i *)&ul_ch_magb[aarx][symbol*frame_parms->N_RB_DL*12];
    rxdataF128        = (__m128i *)&rxdataF_ext[aarx][symbol*frame_parms->N_RB_DL*12];
    rxdataF_comp128   = (__m128i *)&rxdataF_comp[aarx][symbol*frame_parms->N_RB_DL*12];

867
#elif defined(__arm__)
868

869 870 871 872 873 874 875 876

    ul_ch128          = (int16x4_t *)&ul_ch_estimates_ext[aarx][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128      = (int16x8_t *)&ul_ch_mag[aarx][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128b     = (int16x8_t *)&ul_ch_magb[aarx][symbol*frame_parms->N_RB_DL*12];
    rxdataF128        = (int16x4_t *)&rxdataF_ext[aarx][symbol*frame_parms->N_RB_DL*12];
    rxdataF_comp128   = (int16x8_t *)&rxdataF_comp[aarx][symbol*frame_parms->N_RB_DL*12];

#endif
877
    for (rb=0; rb<nb_rb; rb++) {
878 879
      //            printf("comp: symbol %d rb %d\n",symbol,rb);
#ifdef OFDMA_ULSCH
880 881 882
      if (Qm>2) {
        // get channel amplitude if not QPSK

883
#if defined(__x86_64__) || defined(__i386__)
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
        mmtmpU0 = _mm_madd_epi16(ul_ch128[0],ul_ch128[0]);

        mmtmpU0 = _mm_srai_epi32(mmtmpU0,output_shift);

        mmtmpU1 = _mm_madd_epi16(ul_ch128[1],ul_ch128[1]);
        mmtmpU1 = _mm_srai_epi32(mmtmpU1,output_shift);
        mmtmpU0 = _mm_packs_epi32(mmtmpU0,mmtmpU1);

        ul_ch_mag128[0] = _mm_unpacklo_epi16(mmtmpU0,mmtmpU0);
        ul_ch_mag128b[0] = ul_ch_mag128[0];
        ul_ch_mag128[0] = _mm_mulhi_epi16(ul_ch_mag128[0],QAM_amp128U);
        ul_ch_mag128[0] = _mm_slli_epi16(ul_ch_mag128[0],2);  // 2 to compensate the scale channel estimate
        ul_ch_mag128[1] = _mm_unpackhi_epi16(mmtmpU0,mmtmpU0);
        ul_ch_mag128b[1] = ul_ch_mag128[1];
        ul_ch_mag128[1] = _mm_mulhi_epi16(ul_ch_mag128[1],QAM_amp128U);
        ul_ch_mag128[1] = _mm_slli_epi16(ul_ch_mag128[1],2);  // 2 to compensate the scale channel estimate

        mmtmpU0 = _mm_madd_epi16(ul_ch128[2],ul_ch128[2]);
        mmtmpU0 = _mm_srai_epi32(mmtmpU0,output_shift);
        mmtmpU1 = _mm_packs_epi32(mmtmpU0,mmtmpU0);

        ul_ch_mag128[2] = _mm_unpacklo_epi16(mmtmpU1,mmtmpU1);
        ul_ch_mag128b[2] = ul_ch_mag128[2];

        ul_ch_mag128[2] = _mm_mulhi_epi16(ul_ch_mag128[2],QAM_amp128U);
        ul_ch_mag128[2] = _mm_slli_epi16(ul_ch_mag128[2],2); // 2 to compensate the scale channel estimate


        ul_ch_mag128b[0] = _mm_mulhi_epi16(ul_ch_mag128b[0],QAM_amp128bU);
        ul_ch_mag128b[0] = _mm_slli_epi16(ul_ch_mag128b[0],2); // 2 to compensate the scale channel estimate


        ul_ch_mag128b[1] = _mm_mulhi_epi16(ul_ch_mag128b[1],QAM_amp128bU);
        ul_ch_mag128b[1] = _mm_slli_epi16(ul_ch_mag128b[1],2); // 2 to compensate the scale channel estimate

        ul_ch_mag128b[2] = _mm_mulhi_epi16(ul_ch_mag128b[2],QAM_amp128bU);
        ul_ch_mag128b[2] = _mm_slli_epi16(ul_ch_mag128b[2],2);// 2 to compensate the scale channel estimate

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
#elif defined(__arm__)
          mmtmpU0 = vmull_s16(ul_ch128[0], ul_ch128[0]);
          mmtmpU0 = vqshlq_s32(vqaddq_s32(mmtmpU0,vrev64q_s32(mmtmpU0)),-output_shift128);
          mmtmpU1 = vmull_s16(ul_ch128[1], ul_ch128[1]);
          mmtmpU1 = vqshlq_s32(vqaddq_s32(mmtmpU1,vrev64q_s32(mmtmpU1)),-output_shift128);
          mmtmpU2 = vcombine_s16(vmovn_s32(mmtmpU0),vmovn_s32(mmtmpU1));
          mmtmpU0 = vmull_s16(ul_ch128[2], ul_ch128[2]);
          mmtmpU0 = vqshlq_s32(vqaddq_s32(mmtmpU0,vrev64q_s32(mmtmpU0)),-output_shift128);
          mmtmpU1 = vmull_s16(ul_ch128[3], ul_ch128[3]);
          mmtmpU1 = vqshlq_s32(vqaddq_s32(mmtmpU1,vrev64q_s32(mmtmpU1)),-output_shift128);
          mmtmpU3 = vcombine_s16(vmovn_s32(mmtmpU0),vmovn_s32(mmtmpU1));
          mmtmpU0 = vmull_s16(ul_ch128[4], ul_ch128[4]);
          mmtmpU0 = vqshlq_s32(vqaddq_s32(mmtmpU0,vrev64q_s32(mmtmpU0)),-output_shift128);
          mmtmpU1 = vmull_s16(ul_ch128[5], ul_ch128[5]);
          mmtmpU1 = vqshlq_s32(vqaddq_s32(mmtmpU1,vrev64q_s32(mmtmpU1)),-output_shift128);
          mmtmpU4 = vcombine_s16(vmovn_s32(mmtmpU0),vmovn_s32(mmtmpU1));

          ul_ch_mag128b[0] = vqdmulhq_s16(mmtmpU2,QAM_amp128b);
          ul_ch_mag128b[1] = vqdmulhq_s16(mmtmpU3,QAM_amp128b);
          ul_ch_mag128[0] = vqdmulhq_s16(mmtmpU2,QAM_amp128);
          ul_ch_mag128[1] = vqdmulhq_s16(mmtmpU3,QAM_amp128);
          ul_ch_mag128b[2] = vqdmulhq_s16(mmtmpU4,QAM_amp128b);
          ul_ch_mag128[2]  = vqdmulhq_s16(mmtmpU4,QAM_amp128);
#endif
946
      }
947

948 949
#else // SC-FDMA
// just compute channel magnitude without scaling, this is done after equalization for SC-FDMA
950

951
#if defined(__x86_64__) || defined(__i386__)
952
      mmtmpU0 = _mm_madd_epi16(ul_ch128[0],ul_ch128[0]);
953

954 955 956 957
      mmtmpU0 = _mm_srai_epi32(mmtmpU0,output_shift);
      mmtmpU1 = _mm_madd_epi16(ul_ch128[1],ul_ch128[1]);

      mmtmpU1 = _mm_srai_epi32(mmtmpU1,output_shift);
958

959
      mmtmpU0 = _mm_packs_epi32(mmtmpU0,mmtmpU1);
960

961 962
      ul_ch_mag128[0] = _mm_unpacklo_epi16(mmtmpU0,mmtmpU0);
      ul_ch_mag128[1] = _mm_unpackhi_epi16(mmtmpU0,mmtmpU0);
963

964 965 966 967 968 969 970
      mmtmpU0 = _mm_madd_epi16(ul_ch128[2],ul_ch128[2]);

      mmtmpU0 = _mm_srai_epi32(mmtmpU0,output_shift);
      mmtmpU1 = _mm_packs_epi32(mmtmpU0,mmtmpU0);
      ul_ch_mag128[2] = _mm_unpacklo_epi16(mmtmpU1,mmtmpU1);

      // printf("comp: symbol %d rb %d => %d,%d,%d (output_shift %d)\n",symbol,rb,*((int16_t*)&ul_ch_mag128[0]),*((int16_t*)&ul_ch_mag128[1]),*((int16_t*)&ul_ch_mag128[2]),output_shift);
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990


#elif defined(__arm__)
          mmtmpU0 = vmull_s16(ul_ch128[0], ul_ch128[0]);
          mmtmpU0 = vqshlq_s32(vqaddq_s32(mmtmpU0,vrev64q_s32(mmtmpU0)),-output_shift128);
          mmtmpU1 = vmull_s16(ul_ch128[1], ul_ch128[1]);
          mmtmpU1 = vqshlq_s32(vqaddq_s32(mmtmpU1,vrev64q_s32(mmtmpU1)),-output_shift128);
          ul_ch_mag128[0] = vcombine_s16(vmovn_s32(mmtmpU0),vmovn_s32(mmtmpU1));
          mmtmpU0 = vmull_s16(ul_ch128[2], ul_ch128[2]);
          mmtmpU0 = vqshlq_s32(vqaddq_s32(mmtmpU0,vrev64q_s32(mmtmpU0)),-output_shift128);
          mmtmpU1 = vmull_s16(ul_ch128[3], ul_ch128[3]);
          mmtmpU1 = vqshlq_s32(vqaddq_s32(mmtmpU1,vrev64q_s32(mmtmpU1)),-output_shift128);
          ul_ch_mag128[1] = vcombine_s16(vmovn_s32(mmtmpU0),vmovn_s32(mmtmpU1));
          mmtmpU0 = vmull_s16(ul_ch128[4], ul_ch128[4]);
          mmtmpU0 = vqshlq_s32(vqaddq_s32(mmtmpU0,vrev64q_s32(mmtmpU0)),-output_shift128);
          mmtmpU1 = vmull_s16(ul_ch128[5], ul_ch128[5]);
          mmtmpU1 = vqshlq_s32(vqaddq_s32(mmtmpU1,vrev64q_s32(mmtmpU1)),-output_shift128);
          ul_ch_mag128[2] = vcombine_s16(vmovn_s32(mmtmpU0),vmovn_s32(mmtmpU1));

#endif
991
#endif
992

993
#if defined(__x86_64__) || defined(__i386__)
994 995
      // multiply by conjugated channel
      mmtmpU0 = _mm_madd_epi16(ul_ch128[0],rxdataF128[0]);
996 997
      //        print_ints("re",&mmtmpU0);

998 999 1000 1001 1002 1003 1004 1005 1006
      // mmtmpU0 contains real part of 4 consecutive outputs (32-bit)
      mmtmpU1 = _mm_shufflelo_epi16(ul_ch128[0],_MM_SHUFFLE(2,3,0,1));
      mmtmpU1 = _mm_shufflehi_epi16(mmtmpU1,_MM_SHUFFLE(2,3,0,1));
      mmtmpU1 = _mm_sign_epi16(mmtmpU1,*(__m128i*)&conjugate[0]);

      mmtmpU1 = _mm_madd_epi16(mmtmpU1,rxdataF128[0]);
      //      print_ints("im",&mmtmpU1);
      // mmtmpU1 contains imag part of 4 consecutive outputs (32-bit)
      mmtmpU0 = _mm_srai_epi32(mmtmpU0,output_shift);
1007
      //  print_ints("re(shift)",&mmtmpU0);
1008
      mmtmpU1 = _mm_srai_epi32(mmtmpU1,output_shift);
1009
      //  print_ints("im(shift)",&mmtmpU1);
1010 1011
      mmtmpU2 = _mm_unpacklo_epi32(mmtmpU0,mmtmpU1);
      mmtmpU3 = _mm_unpackhi_epi32(mmtmpU0,mmtmpU1);
1012 1013
      //        print_ints("c0",&mmtmpU2);
      //  print_ints("c1",&mmtmpU3);
1014 1015
      rxdataF_comp128[0] = _mm_packs_epi32(mmtmpU2,mmtmpU3);
      /*
1016 1017 1018
              print_shorts("rx:",&rxdataF128[0]);
              print_shorts("ch:",&ul_ch128[0]);
              print_shorts("pack:",&rxdataF_comp128[0]);
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
      */
      // multiply by conjugated channel
      mmtmpU0 = _mm_madd_epi16(ul_ch128[1],rxdataF128[1]);
      // mmtmpU0 contains real part of 4 consecutive outputs (32-bit)
      mmtmpU1 = _mm_shufflelo_epi16(ul_ch128[1],_MM_SHUFFLE(2,3,0,1));
      mmtmpU1 = _mm_shufflehi_epi16(mmtmpU1,_MM_SHUFFLE(2,3,0,1));
      mmtmpU1 = _mm_sign_epi16(mmtmpU1,*(__m128i*)conjugate);
      mmtmpU1 = _mm_madd_epi16(mmtmpU1,rxdataF128[1]);
      // mmtmpU1 contains imag part of 4 consecutive outputs (32-bit)
      mmtmpU0 = _mm_srai_epi32(mmtmpU0,output_shift);
      mmtmpU1 = _mm_srai_epi32(mmtmpU1,output_shift);
      mmtmpU2 = _mm_unpacklo_epi32(mmtmpU0,mmtmpU1);
      mmtmpU3 = _mm_unpackhi_epi32(mmtmpU0,mmtmpU1);
1032

1033
      rxdataF_comp128[1] = _mm_packs_epi32(mmtmpU2,mmtmpU3);
1034 1035 1036
      //        print_shorts("rx:",rxdataF128[1]);
      //        print_shorts("ch:",ul_ch128[1]);
      //        print_shorts("pack:",rxdataF_comp128[1]);
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
      //       multiply by conjugated channel
      mmtmpU0 = _mm_madd_epi16(ul_ch128[2],rxdataF128[2]);
      // mmtmpU0 contains real part of 4 consecutive outputs (32-bit)
      mmtmpU1 = _mm_shufflelo_epi16(ul_ch128[2],_MM_SHUFFLE(2,3,0,1));
      mmtmpU1 = _mm_shufflehi_epi16(mmtmpU1,_MM_SHUFFLE(2,3,0,1));
      mmtmpU1 = _mm_sign_epi16(mmtmpU1,*(__m128i*)conjugate);
      mmtmpU1 = _mm_madd_epi16(mmtmpU1,rxdataF128[2]);
      // mmtmpU1 contains imag part of 4 consecutive outputs (32-bit)
      mmtmpU0 = _mm_srai_epi32(mmtmpU0,output_shift);
      mmtmpU1 = _mm_srai_epi32(mmtmpU1,output_shift);
      mmtmpU2 = _mm_unpacklo_epi32(mmtmpU0,mmtmpU1);
      mmtmpU3 = _mm_unpackhi_epi32(mmtmpU0,mmtmpU1);
1049

1050
      rxdataF_comp128[2] = _mm_packs_epi32(mmtmpU2,mmtmpU3);
1051 1052
      //        print_shorts("rx:",rxdataF128[2]);
      //        print_shorts("ch:",ul_ch128[2]);
1053
      //        print_shorts("pack:",rxdataF_comp128[2]);
1054

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
      // Add a jitter to compensate for the saturation in "packs" resulting in a bias on the DC after IDFT
      rxdataF_comp128[0] = _mm_add_epi16(rxdataF_comp128[0],(*(__m128i*)&jitter[0]));
      rxdataF_comp128[1] = _mm_add_epi16(rxdataF_comp128[1],(*(__m128i*)&jitter[0]));
      rxdataF_comp128[2] = _mm_add_epi16(rxdataF_comp128[2],(*(__m128i*)&jitter[0]));

      ul_ch128+=3;
      ul_ch_mag128+=3;
      ul_ch_mag128b+=3;
      rxdataF128+=3;
      rxdataF_comp128+=3;
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
#elif defined(__arm__)
        mmtmpU0 = vmull_s16(ul_ch128[0], rxdataF128[0]);
        //mmtmpU0 = [Re(ch[0])Re(rx[0]) Im(ch[0])Im(ch[0]) Re(ch[1])Re(rx[1]) Im(ch[1])Im(ch[1])] 
        mmtmpU1 = vmull_s16(ul_ch128[1], rxdataF128[1]);
        //mmtmpU1 = [Re(ch[2])Re(rx[2]) Im(ch[2])Im(ch[2]) Re(ch[3])Re(rx[3]) Im(ch[3])Im(ch[3])] 
        mmtmpU0 = vcombine_s32(vpadd_s32(vget_low_s32(mmtmpU0),vget_high_s32(mmtmpU0)),
                               vpadd_s32(vget_low_s32(mmtmpU1),vget_high_s32(mmtmpU1)));
        //mmtmpU0 = [Re(ch[0])Re(rx[0])+Im(ch[0])Im(ch[0]) Re(ch[1])Re(rx[1])+Im(ch[1])Im(ch[1]) Re(ch[2])Re(rx[2])+Im(ch[2])Im(ch[2]) Re(ch[3])Re(rx[3])+Im(ch[3])Im(ch[3])] 

        mmtmpU0b = vmull_s16(vrev32_s16(vmul_s16(ul_ch128[0],*(int16x4_t*)conj)), rxdataF128[0]);
        //mmtmpU0 = [-Im(ch[0])Re(rx[0]) Re(ch[0])Im(rx[0]) -Im(ch[1])Re(rx[1]) Re(ch[1])Im(rx[1])]
        mmtmpU1b = vmull_s16(vrev32_s16(vmul_s16(ul_ch128[1],*(int16x4_t*)conj)), rxdataF128[1]);
        //mmtmpU0 = [-Im(ch[2])Re(rx[2]) Re(ch[2])Im(rx[2]) -Im(ch[3])Re(rx[3]) Re(ch[3])Im(rx[3])]
        mmtmpU1 = vcombine_s32(vpadd_s32(vget_low_s32(mmtmpU0b),vget_high_s32(mmtmpU0b)),
                               vpadd_s32(vget_low_s32(mmtmpU1b),vget_high_s32(mmtmpU1b)));
        //mmtmpU1 = [-Im(ch[0])Re(rx[0])+Re(ch[0])Im(rx[0]) -Im(ch[1])Re(rx[1])+Re(ch[1])Im(rx[1]) -Im(ch[2])Re(rx[2])+Re(ch[2])Im(rx[2]) -Im(ch[3])Re(rx[3])+Re(ch[3])Im(rx[3])]

        mmtmpU0 = vqshlq_s32(mmtmpU0,-output_shift128);
        mmtmpU1 = vqshlq_s32(mmtmpU1,-output_shift128);
        rxdataF_comp128[0] = vcombine_s16(vmovn_s32(mmtmpU0),vmovn_s32(mmtmpU1));
        mmtmpU0 = vmull_s16(ul_ch128[2], rxdataF128[2]);
        mmtmpU1 = vmull_s16(ul_ch128[3], rxdataF128[3]);
        mmtmpU0 = vcombine_s32(vpadd_s32(vget_low_s32(mmtmpU0),vget_high_s32(mmtmpU0)),
                               vpadd_s32(vget_low_s32(mmtmpU1),vget_high_s32(mmtmpU1)));
        mmtmpU0b = vmull_s16(vrev32_s16(vmul_s16(ul_ch128[2],*(int16x4_t*)conj)), rxdataF128[2]);
        mmtmpU1b = vmull_s16(vrev32_s16(vmul_s16(ul_ch128[3],*(int16x4_t*)conj)), rxdataF128[3]);
        mmtmpU1 = vcombine_s32(vpadd_s32(vget_low_s32(mmtmpU0b),vget_high_s32(mmtmpU0b)),
                               vpadd_s32(vget_low_s32(mmtmpU1b),vget_high_s32(mmtmpU1b)));
        mmtmpU0 = vqshlq_s32(mmtmpU0,-output_shift128);
        mmtmpU1 = vqshlq_s32(mmtmpU1,-output_shift128);
        rxdataF_comp128[1] = vcombine_s16(vmovn_s32(mmtmpU0),vmovn_s32(mmtmpU1));

        mmtmpU0 = vmull_s16(ul_ch128[4], rxdataF128[4]);
        mmtmpU1 = vmull_s16(ul_ch128[5], rxdataF128[5]);
        mmtmpU0 = vcombine_s32(vpadd_s32(vget_low_s32(mmtmpU0),vget_high_s32(mmtmpU0)),
                               vpadd_s32(vget_low_s32(mmtmpU1),vget_high_s32(mmtmpU1)));

        mmtmpU0b = vmull_s16(vrev32_s16(vmul_s16(ul_ch128[4],*(int16x4_t*)conj)), rxdataF128[4]);
        mmtmpU1b = vmull_s16(vrev32_s16(vmul_s16(ul_ch128[5],*(int16x4_t*)conj)), rxdataF128[5]);
        mmtmpU1 = vcombine_s32(vpadd_s32(vget_low_s32(mmtmpU0b),vget_high_s32(mmtmpU0b)),
                               vpadd_s32(vget_low_s32(mmtmpU1b),vget_high_s32(mmtmpU1b)));

              
        mmtmpU0 = vqshlq_s32(mmtmpU0,-output_shift128);
        mmtmpU1 = vqshlq_s32(mmtmpU1,-output_shift128);
        rxdataF_comp128[2] = vcombine_s16(vmovn_s32(mmtmpU0),vmovn_s32(mmtmpU1));
              
              // Add a jitter to compensate for the saturation in "packs" resulting in a bias on the DC after IDFT
        rxdataF_comp128[0] = vqaddq_s16(rxdataF_comp128[0],(*(int16x8_t*)&jitter[0]));
        rxdataF_comp128[1] = vqaddq_s16(rxdataF_comp128[1],(*(int16x8_t*)&jitter[0]));
        rxdataF_comp128[2] = vqaddq_s16(rxdataF_comp128[2],(*(int16x8_t*)&jitter[0]));

      
        ul_ch128+=6;
        ul_ch_mag128+=3;
        ul_ch_mag128b+=3;
        rxdataF128+=6;
        rxdataF_comp128+=3;
              
#endif
1125 1126 1127
    }
  }

1128
#if defined(__x86_64__) || defined(__i386__)
1129 1130
  _mm_empty();
  _m_empty();
1131
#endif
1132
}
1133 1134 1135 1136




1137
#if defined(__x86_64__) || defined(__i386__)
1138
__m128i QAM_amp128U_0,QAM_amp128bU_0,QAM_amp128U_1,QAM_amp128bU_1;
1139
#endif
1140 1141

void ulsch_channel_compensation_alamouti(int32_t **rxdataF_ext,                 // For Distributed Alamouti Combining
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
    int32_t **ul_ch_estimates_ext_0,
    int32_t **ul_ch_estimates_ext_1,
    int32_t **ul_ch_mag_0,
    int32_t **ul_ch_magb_0,
    int32_t **ul_ch_mag_1,
    int32_t **ul_ch_magb_1,
    int32_t **rxdataF_comp_0,
    int32_t **rxdataF_comp_1,
    LTE_DL_FRAME_PARMS *frame_parms,
    uint8_t symbol,
    uint8_t Qm,
    uint16_t nb_rb,
    uint8_t output_shift)
{
1156
#if defined(__x86_64__) || defined(__i386__)
1157 1158 1159 1160 1161 1162 1163 1164 1165
  uint16_t rb;
  __m128i *ul_ch128_0,*ul_ch128_1,*ul_ch_mag128_0,*ul_ch_mag128_1,*ul_ch_mag128b_0,*ul_ch_mag128b_1,*rxdataF128,*rxdataF_comp128_0,*rxdataF_comp128_1;
  uint8_t aarx;//,symbol_mod;
  __m128i mmtmpU0,mmtmpU1,mmtmpU2,mmtmpU3;

  //  symbol_mod = (symbol>=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol;

  //    printf("comp: symbol %d\n",symbol);

1166 1167

  if (Qm == 4) {
1168 1169
    QAM_amp128U_0 = _mm_set1_epi16(QAM16_n1);
    QAM_amp128U_1 = _mm_set1_epi16(QAM16_n1);
1170
  } else if (Qm == 6) {
1171 1172 1173 1174 1175 1176
    QAM_amp128U_0  = _mm_set1_epi16(QAM64_n1);
    QAM_amp128bU_0 = _mm_set1_epi16(QAM64_n2);

    QAM_amp128U_1  = _mm_set1_epi16(QAM64_n1);
    QAM_amp128bU_1 = _mm_set1_epi16(QAM64_n2);
  }
1177 1178 1179

  for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
    ul_ch128_0          = (__m128i *)&ul_ch_estimates_ext_0[aarx][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128_0      = (__m128i *)&ul_ch_mag_0[aarx][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128b_0     = (__m128i *)&ul_ch_magb_0[aarx][symbol*frame_parms->N_RB_DL*12];
    ul_ch128_1          = (__m128i *)&ul_ch_estimates_ext_1[aarx][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128_1      = (__m128i *)&ul_ch_mag_1[aarx][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128b_1     = (__m128i *)&ul_ch_magb_1[aarx][symbol*frame_parms->N_RB_DL*12];
    rxdataF128        = (__m128i *)&rxdataF_ext[aarx][symbol*frame_parms->N_RB_DL*12];
    rxdataF_comp128_0   = (__m128i *)&rxdataF_comp_0[aarx][symbol*frame_parms->N_RB_DL*12];
    rxdataF_comp128_1   = (__m128i *)&rxdataF_comp_1[aarx][symbol*frame_parms->N_RB_DL*12];


1191
    for (rb=0; rb<nb_rb; rb++) {
1192
      //      printf("comp: symbol %d rb %d\n",symbol,rb);
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
      if (Qm>2) {
        // get channel amplitude if not QPSK

        mmtmpU0 = _mm_madd_epi16(ul_ch128_0[0],ul_ch128_0[0]);

        mmtmpU0 = _mm_srai_epi32(mmtmpU0,output_shift);

        mmtmpU1 = _mm_madd_epi16(ul_ch128_0[1],ul_ch128_0[1]);
        mmtmpU1 = _mm_srai_epi32(mmtmpU1,output_shift);
        mmtmpU0 = _mm_packs_epi32(mmtmpU0,mmtmpU1);

        ul_ch_mag128_0[0] = _mm_unpacklo_epi16(mmtmpU0,mmtmpU0);
        ul_ch_mag128b_0[0] = ul_ch_mag128_0[0];
        ul_ch_mag128_0[0] = _mm_mulhi_epi16(ul_ch_mag128_0[0],QAM_amp128U_0);
        ul_ch_mag128_0[0] = _mm_slli_epi16(ul_ch_mag128_0[0],2); // 2 to compensate the scale channel estimate

        ul_ch_mag128_0[1] = _mm_unpackhi_epi16(mmtmpU0,mmtmpU0);
        ul_ch_mag128b_0[1] = ul_ch_mag128_0[1];
        ul_ch_mag128_0[1] = _mm_mulhi_epi16(ul_ch_mag128_0[1],QAM_amp128U_0);
        ul_ch_mag128_0[1] = _mm_slli_epi16(ul_ch_mag128_0[1],2); // 2 to scale compensate the scale channel estimate

        mmtmpU0 = _mm_madd_epi16(ul_ch128_0[2],ul_ch128_0[2]);
        mmtmpU0 = _mm_srai_epi32(mmtmpU0,output_shift);
        mmtmpU1 = _mm_packs_epi32(mmtmpU0,mmtmpU0);

        ul_ch_mag128_0[2] = _mm_unpacklo_epi16(mmtmpU1,mmtmpU1);
        ul_ch_mag128b_0[2] = ul_ch_mag128_0[2];

        ul_ch_mag128_0[2] = _mm_mulhi_epi16(ul_ch_mag128_0[2],QAM_amp128U_0);
        ul_ch_mag128_0[2] = _mm_slli_epi16(ul_ch_mag128_0[2],2);  //  2 to scale compensate the scale channel estimat


        ul_ch_mag128b_0[0] = _mm_mulhi_epi16(ul_ch_mag128b_0[0],QAM_amp128bU_0);
        ul_ch_mag128b_0[0] = _mm_slli_epi16(ul_ch_mag128b_0[0],2);  //  2 to scale compensate the scale channel estima


        ul_ch_mag128b_0[1] = _mm_mulhi_epi16(ul_ch_mag128b_0[1],QAM_amp128bU_0);
        ul_ch_mag128b_0[1] = _mm_slli_epi16(ul_ch_mag128b_0[1],2);   //  2 to scale compensate the scale channel estima

        ul_ch_mag128b_0[2] = _mm_mulhi_epi16(ul_ch_mag128b_0[2],QAM_amp128bU_0);
        ul_ch_mag128b_0[2] = _mm_slli_epi16(ul_ch_mag128b_0[2],2);   //  2 to scale compensate the scale channel estima




        mmtmpU0 = _mm_madd_epi16(ul_ch128_1[0],ul_ch128_1[0]);

        mmtmpU0 = _mm_srai_epi32(mmtmpU0,output_shift);

        mmtmpU1 = _mm_madd_epi16(ul_ch128_1[1],ul_ch128_1[1]);
        mmtmpU1 = _mm_srai_epi32(mmtmpU1,output_shift);
        mmtmpU0 = _mm_packs_epi32(mmtmpU0,mmtmpU1);

        ul_ch_mag128_1[0] = _mm_unpacklo_epi16(mmtmpU0,mmtmpU0);
        ul_ch_mag128b_1[0] = ul_ch_mag128_1[0];
        ul_ch_mag128_1[0] = _mm_mulhi_epi16(ul_ch_mag128_1[0],QAM_amp128U_1);
        ul_ch_mag128_1[0] = _mm_slli_epi16(ul_ch_mag128_1[0],2); // 2 to compensate the scale channel estimate

        ul_ch_mag128_1[1] = _mm_unpackhi_epi16(mmtmpU0,mmtmpU0);
        ul_ch_mag128b_1[1] = ul_ch_mag128_1[1];
        ul_ch_mag128_1[1] = _mm_mulhi_epi16(ul_ch_mag128_1[1],QAM_amp128U_1);
        ul_ch_mag128_1[1] = _mm_slli_epi16(ul_ch_mag128_1[1],2); // 2 to scale compensate the scale channel estimate

        mmtmpU0 = _mm_madd_epi16(ul_ch128_1[2],ul_ch128_1[2]);
        mmtmpU0 = _mm_srai_epi32(mmtmpU0,output_shift);
        mmtmpU1 = _mm_packs_epi32(mmtmpU0,mmtmpU0);

        ul_ch_mag128_1[2] = _mm_unpacklo_epi16(mmtmpU1,mmtmpU1);
        ul_ch_mag128b_1[2] = ul_ch_mag128_1[2];

        ul_ch_mag128_1[2] = _mm_mulhi_epi16(ul_ch_mag128_1[2],QAM_amp128U_0);
        ul_ch_mag128_1[2] = _mm_slli_epi16(ul_ch_mag128_1[2],2);  //  2 to scale compensate the scale channel estimat


        ul_ch_mag128b_1[0] = _mm_mulhi_epi16(ul_ch_mag128b_1[0],QAM_amp128bU_1);
        ul_ch_mag128b_1[0] = _mm_slli_epi16(ul_ch_mag128b_1[0],2);  //  2 to scale compensate the scale channel estima


        ul_ch_mag128b_1[1] = _mm_mulhi_epi16(ul_ch_mag128b_1[1],QAM_amp128bU_1);
        ul_ch_mag128b_1[1] = _mm_slli_epi16(ul_ch_mag128b_1[1],2);   //  2 to scale compensate the scale channel estima

        ul_ch_mag128b_1[2] = _mm_mulhi_epi16(ul_ch_mag128b_1[2],QAM_amp128bU_1);
        ul_ch_mag128b_1[2] = _mm_slli_epi16(ul_ch_mag128b_1[2],2);   //  2 to scale compensate the scale channel estima
1276
      }
1277

1278 1279 1280 1281 1282

      /************************For Computing (y)*(h0*)********************************************/

      // multiply by conjugated channel
      mmtmpU0 = _mm_madd_epi16(ul_ch128_0[0],rxdataF128[0]);
1283 1284
      //  print_ints("re",&mmtmpU0);

1285 1286 1287 1288
      // mmtmpU0 contains real part of 4 consecutive outputs (32-bit)
      mmtmpU1 = _mm_shufflelo_epi16(ul_ch128_0[0],_MM_SHUFFLE(2,3,0,1));
      mmtmpU1 = _mm_shufflehi_epi16(mmtmpU1,_MM_SHUFFLE(2,3,0,1));
      mmtmpU1 = _mm_sign_epi16(mmtmpU1,*(__m128i*)&conjugate[0]);
1289
      //  print_ints("im",&mmtmpU1);
1290 1291 1292
      mmtmpU1 = _mm_madd_epi16(mmtmpU1,rxdataF128[0]);
      // mmtmpU1 contains imag part of 4 consecutive outputs (32-bit)
      mmtmpU0 = _mm_srai_epi32(mmtmpU0,output_shift);
1293
      //  print_ints("re(shift)",&mmtmpU0);
1294
      mmtmpU1 = _mm_srai_epi32(mmtmpU1,output_shift);
1295
      //  print_ints("im(shift)",&mmtmpU1);
1296 1297
      mmtmpU2 = _mm_unpacklo_epi32(mmtmpU0,mmtmpU1);
      mmtmpU3 = _mm_unpackhi_epi32(mmtmpU0,mmtmpU1);
1298 1299
      //        print_ints("c0",&mmtmpU2);
      //  print_ints("c1",&mmtmpU3);
1300
      rxdataF_comp128_0[0] = _mm_packs_epi32(mmtmpU2,mmtmpU3);
1301 1302 1303 1304
      //        print_shorts("rx:",rxdataF128[0]);
      //        print_shorts("ch:",ul_ch128_0[0]);
      //        print_shorts("pack:",rxdataF_comp128_0[0]);

1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
      // multiply by conjugated channel
      mmtmpU0 = _mm_madd_epi16(ul_ch128_0[1],rxdataF128[1]);
      // mmtmpU0 contains real part of 4 consecutive outputs (32-bit)
      mmtmpU1 = _mm_shufflelo_epi16(ul_ch128_0[1],_MM_SHUFFLE(2,3,0,1));
      mmtmpU1 = _mm_shufflehi_epi16(mmtmpU1,_MM_SHUFFLE(2,3,0,1));
      mmtmpU1 = _mm_sign_epi16(mmtmpU1,*(__m128i*)conjugate);
      mmtmpU1 = _mm_madd_epi16(mmtmpU1,rxdataF128[1]);
      // mmtmpU1 contains imag part of 4 consecutive outputs (32-bit)
      mmtmpU0 = _mm_srai_epi32(mmtmpU0,output_shift);
      mmtmpU1 = _mm_srai_epi32(mmtmpU1,output_shift);
      mmtmpU2 = _mm_unpacklo_epi32(mmtmpU0,mmtmpU1);
      mmtmpU3 = _mm_unpackhi_epi32(mmtmpU0,mmtmpU1);
1317

1318
      rxdataF_comp128_0[1] = _mm_packs_epi32(mmtmpU2,mmtmpU3);
1319 1320 1321
      //        print_shorts("rx:",rxdataF128[1]);
      //        print_shorts("ch:",ul_ch128_0[1]);
      //        print_shorts("pack:",rxdataF_comp128_0[1]);
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
      //       multiply by conjugated channel
      mmtmpU0 = _mm_madd_epi16(ul_ch128_0[2],rxdataF128[2]);
      // mmtmpU0 contains real part of 4 consecutive outputs (32-bit)
      mmtmpU1 = _mm_shufflelo_epi16(ul_ch128_0[2],_MM_SHUFFLE(2,3,0,1));
      mmtmpU1 = _mm_shufflehi_epi16(mmtmpU1,_MM_SHUFFLE(2,3,0,1));
      mmtmpU1 = _mm_sign_epi16(mmtmpU1,*(__m128i*)conjugate);
      mmtmpU1 = _mm_madd_epi16(mmtmpU1,rxdataF128[2]);
      // mmtmpU1 contains imag part of 4 consecutive outputs (32-bit)
      mmtmpU0 = _mm_srai_epi32(mmtmpU0,output_shift);
      mmtmpU1 = _mm_srai_epi32(mmtmpU1,output_shift);
      mmtmpU2 = _mm_unpacklo_epi32(mmtmpU0,mmtmpU1);
      mmtmpU3 = _mm_unpackhi_epi32(mmtmpU0,mmtmpU1);
1334

1335
      rxdataF_comp128_0[2] = _mm_packs_epi32(mmtmpU2,mmtmpU3);
1336 1337
      //        print_shorts("rx:",rxdataF128[2]);
      //        print_shorts("ch:",ul_ch128_0[2]);
1338
      //        print_shorts("pack:",rxdataF_comp128_0[2]);
1339

1340 1341 1342 1343 1344 1345



      /*************************For Computing (y*)*(h1)************************************/
      // multiply by conjugated signal
      mmtmpU0 = _mm_madd_epi16(ul_ch128_1[0],rxdataF128[0]);
1346 1347
      //  print_ints("re",&mmtmpU0);

1348 1349 1350 1351
      // mmtmpU0 contains real part of 4 consecutive outputs (32-bit)
      mmtmpU1 = _mm_shufflelo_epi16(rxdataF128[0],_MM_SHUFFLE(2,3,0,1));
      mmtmpU1 = _mm_shufflehi_epi16(mmtmpU1,_MM_SHUFFLE(2,3,0,1));
      mmtmpU1 = _mm_sign_epi16(mmtmpU1,*(__m128i*)&conjugate[0]);
1352
      //  print_ints("im",&mmtmpU1);
1353 1354 1355
      mmtmpU1 = _mm_madd_epi16(mmtmpU1,ul_ch128_1[0]);
      // mmtmpU1 contains imag part of 4 consecutive outputs (32-bit)
      mmtmpU0 = _mm_srai_epi32(mmtmpU0,output_shift);
1356
      //  print_ints("re(shift)",&mmtmpU0);
1357
      mmtmpU1 = _mm_srai_epi32(mmtmpU1,output_shift);
1358
      //  print_ints("im(shift)",&mmtmpU1);
1359 1360
      mmtmpU2 = _mm_unpacklo_epi32(mmtmpU0,mmtmpU1);
      mmtmpU3 = _mm_unpackhi_epi32(mmtmpU0,mmtmpU1);
1361 1362
      //        print_ints("c0",&mmtmpU2);
      //  print_ints("c1",&mmtmpU3);
1363
      rxdataF_comp128_1[0] = _mm_packs_epi32(mmtmpU2,mmtmpU3);
1364 1365 1366
      //        print_shorts("rx:",rxdataF128[0]);
      //        print_shorts("ch_conjugate:",ul_ch128_1[0]);
      //        print_shorts("pack:",rxdataF_comp128_1[0]);
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380


      // multiply by conjugated signal
      mmtmpU0 = _mm_madd_epi16(ul_ch128_1[1],rxdataF128[1]);
      // mmtmpU0 contains real part of 4 consecutive outputs (32-bit)
      mmtmpU1 = _mm_shufflelo_epi16(rxdataF128[1],_MM_SHUFFLE(2,3,0,1));
      mmtmpU1 = _mm_shufflehi_epi16(mmtmpU1,_MM_SHUFFLE(2,3,0,1));
      mmtmpU1 = _mm_sign_epi16(mmtmpU1,*(__m128i*)conjugate);
      mmtmpU1 = _mm_madd_epi16(mmtmpU1,ul_ch128_1[1]);
      // mmtmpU1 contains imag part of 4 consecutive outputs (32-bit)
      mmtmpU0 = _mm_srai_epi32(mmtmpU0,output_shift);
      mmtmpU1 = _mm_srai_epi32(mmtmpU1,output_shift);
      mmtmpU2 = _mm_unpacklo_epi32(mmtmpU0,mmtmpU1);
      mmtmpU3 = _mm_unpackhi_epi32(mmtmpU0,mmtmpU1);
1381

1382
      rxdataF_comp128_1[1] = _mm_packs_epi32(mmtmpU2,mmtmpU3);
1383 1384 1385
      //        print_shorts("rx:",rxdataF128[1]);
      //        print_shorts("ch_conjugate:",ul_ch128_1[1]);
      //        print_shorts("pack:",rxdataF_comp128_1[1]);
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399


      //       multiply by conjugated signal
      mmtmpU0 = _mm_madd_epi16(ul_ch128_1[2],rxdataF128[2]);
      // mmtmpU0 contains real part of 4 consecutive outputs (32-bit)
      mmtmpU1 = _mm_shufflelo_epi16(rxdataF128[2],_MM_SHUFFLE(2,3,0,1));
      mmtmpU1 = _mm_shufflehi_epi16(mmtmpU1,_MM_SHUFFLE(2,3,0,1));
      mmtmpU1 = _mm_sign_epi16(mmtmpU1,*(__m128i*)conjugate);
      mmtmpU1 = _mm_madd_epi16(mmtmpU1,ul_ch128_1[2]);
      // mmtmpU1 contains imag part of 4 consecutive outputs (32-bit)
      mmtmpU0 = _mm_srai_epi32(mmtmpU0,output_shift);
      mmtmpU1 = _mm_srai_epi32(mmtmpU1,output_shift);
      mmtmpU2 = _mm_unpacklo_epi32(mmtmpU0,mmtmpU1);
      mmtmpU3 = _mm_unpackhi_epi32(mmtmpU0,mmtmpU1);
1400

1401
      rxdataF_comp128_1[2] = _mm_packs_epi32(mmtmpU2,mmtmpU3);
1402 1403
      //        print_shorts("rx:",rxdataF128[2]);
      //        print_shorts("ch_conjugate:",ul_ch128_0[2]);
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
      //        print_shorts("pack:",rxdataF_comp128_1[2]);



      ul_ch128_0+=3;
      ul_ch_mag128_0+=3;
      ul_ch_mag128b_0+=3;
      ul_ch128_1+=3;
      ul_ch_mag128_1+=3;
      ul_ch_mag128b_1+=3;
      rxdataF128+=3;
      rxdataF_comp128_0+=3;
      rxdataF_comp128_1+=3;
1417

1418 1419 1420 1421 1422 1423
    }
  }


  _mm_empty();
  _m_empty();
1424
#endif
1425
}
1426 1427 1428 1429 1430




void ulsch_alamouti(LTE_DL_FRAME_PARMS *frame_parms,// For Distributed Alamouti Receiver Combining
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
                    int32_t **rxdataF_comp,
                    int32_t **rxdataF_comp_0,
                    int32_t **rxdataF_comp_1,
                    int32_t **ul_ch_mag,
                    int32_t **ul_ch_magb,
                    int32_t **ul_ch_mag_0,
                    int32_t **ul_ch_magb_0,
                    int32_t **ul_ch_mag_1,
                    int32_t **ul_ch_magb_1,
                    uint8_t symbol,
                    uint16_t nb_rb)
{
1443

1444
#if defined(__x86_64__) || defined(__i386__)
1445 1446 1447 1448 1449 1450
  int16_t *rxF,*rxF0,*rxF1;
  __m128i *ch_mag,*ch_magb,*ch_mag0,*ch_mag1,*ch_mag0b,*ch_mag1b;
  uint8_t rb,re,aarx;
  int32_t jj=(symbol*frame_parms->N_RB_DL*12);


1451
  for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462

    rxF      = (int16_t*)&rxdataF_comp[aarx][jj];
    rxF0     = (int16_t*)&rxdataF_comp_0[aarx][jj];   // Contains (y)*(h0*)
    rxF1     = (int16_t*)&rxdataF_comp_1[aarx][jj];   // Contains (y*)*(h1)
    ch_mag   = (__m128i *)&ul_ch_mag[aarx][jj];
    ch_mag0 = (__m128i *)&ul_ch_mag_0[aarx][jj];
    ch_mag1 = (__m128i *)&ul_ch_mag_1[aarx][jj];
    ch_magb = (__m128i *)&ul_ch_magb[aarx][jj];
    ch_mag0b = (__m128i *)&ul_ch_magb_0[aarx][jj];
    ch_mag1b = (__m128i *)&ul_ch_magb_1[aarx][jj];

1463 1464 1465 1466 1467
    for (rb=0; rb<nb_rb; rb++) {

      for (re=0; re<12; re+=2) {

        // Alamouti RX combining
1468

1469 1470
        rxF[0] = rxF0[0] + rxF1[2];                   // re((y0)*(h0*))+ re((y1*)*(h1)) = re(x0)
        rxF[1] = rxF0[1] + rxF1[3];                   // im((y0)*(h0*))+ im((y1*)*(h1)) = im(x0)
1471

1472 1473
        rxF[2] = rxF0[2] - rxF1[0];                   // re((y1)*(h0*))- re((y0*)*(h1)) = re(x1)
        rxF[3] = rxF0[3] - rxF1[1];                   // im((y1)*(h0*))- im((y0*)*(h1)) = im(x1)
1474

1475 1476 1477
        rxF+=4;
        rxF0+=4;
        rxF1+=4;
1478
      }
1479

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
      // compute levels for 16QAM or 64 QAM llr unit
      ch_mag[0] = _mm_adds_epi16(ch_mag0[0],ch_mag1[0]);
      ch_mag[1] = _mm_adds_epi16(ch_mag0[1],ch_mag1[1]);
      ch_mag[2] = _mm_adds_epi16(ch_mag0[2],ch_mag1[2]);
      ch_magb[0] = _mm_adds_epi16(ch_mag0b[0],ch_mag1b[0]);
      ch_magb[1] = _mm_adds_epi16(ch_mag0b[1],ch_mag1b[1]);
      ch_magb[2] = _mm_adds_epi16(ch_mag0b[2],ch_mag1b[2]);

      ch_mag+=3;
      ch_mag0+=3;
      ch_mag1+=3;
      ch_magb+=3;
      ch_mag0b+=3;
      ch_mag1b+=3;
    }
  }

  _mm_empty();
  _m_empty();
1499

1500
#endif
1501 1502 1503 1504 1505 1506
}





1507
#if defined(__x86_64__) || defined(__i386__)
1508
__m128i avg128U;
1509 1510 1511
#elif defined(__arm__)
int32x4_t avg128U;
#endif
1512 1513

void ulsch_channel_level(int32_t **drs_ch_estimates_ext,
1514 1515 1516 1517
                         LTE_DL_FRAME_PARMS *frame_parms,
                         int32_t *avg,
                         uint16_t nb_rb)
{
1518 1519 1520

  int16_t rb;
  uint8_t aarx;
1521
#if defined(__x86_64__) || defined(__i386__)
1522
  __m128i *ul_ch128;
1523 1524 1525
#elif defined(__arm__)
  int16x4_t *ul_ch128;
#endif
1526
  for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
1527
    //clear average level
1528
#if defined(__x86_64__) || defined(__i386__)
1529
    avg128U = _mm_setzero_si128();
1530 1531
    ul_ch128=(__m128i *)drs_ch_estimates_ext[aarx];

1532 1533
    for (rb=0; rb<nb_rb; rb++) {

1534 1535 1536
      avg128U = _mm_add_epi32(avg128U,_mm_madd_epi16(ul_ch128[0],ul_ch128[0]));
      avg128U = _mm_add_epi32(avg128U,_mm_madd_epi16(ul_ch128[1],ul_ch128[1]));
      avg128U = _mm_add_epi32(avg128U,_mm_madd_epi16(ul_ch128[2],ul_ch128[2]));
1537 1538 1539 1540

      ul_ch128+=3;


1541
    }
1542

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
#elif defined(__arm__)
    avg128U = vdupq_n_s32(0);
    ul_ch128=(int16x4_t *)drs_ch_estimates_ext[aarx];

    for (rb=0; rb<nb_rb; rb++) {

       avg128U = vqaddq_s32(avg128U,vmull_s16(ul_ch128[0],ul_ch128[0]));
       avg128U = vqaddq_s32(avg128U,vmull_s16(ul_ch128[1],ul_ch128[1]));
       avg128U = vqaddq_s32(avg128U,vmull_s16(ul_ch128[2],ul_ch128[2]));
       avg128U = vqaddq_s32(avg128U,vmull_s16(ul_ch128[3],ul_ch128[3]));
       avg128U = vqaddq_s32(avg128U,vmull_s16(ul_ch128[4],ul_ch128[4]));
       avg128U = vqaddq_s32(avg128U,vmull_s16(ul_ch128[5],ul_ch128[5]));
       ul_ch128+=6;


    }

#endif

1562
    DevAssert( nb_rb );
1563 1564 1565 1566 1567
    avg[aarx] = (((int*)&avg128U)[0] +
                 ((int*)&avg128U)[1] +
                 ((int*)&avg128U)[2] +
                 ((int*)&avg128U)[3])/(nb_rb*12);

1568
  }
1569

1570
#if defined(__x86_64__) || defined(__i386__)
1571 1572
  _mm_empty();
  _m_empty();
1573
#endif
1574 1575 1576 1577 1578 1579
}

int32_t avgU[2];
int32_t avgU_0[2],avgU_1[2]; // For the Distributed Alamouti Scheme

void rx_ulsch(PHY_VARS_eNB *phy_vars_eNB,
1580 1581 1582 1583 1584 1585 1586 1587 1588
              uint32_t sched_subframe,
              uint8_t eNB_id,  // this is the effective sector id
              uint8_t UE_id,
              LTE_eNB_ULSCH_t **ulsch,
              uint8_t cooperation_flag)
{

  // flagMag = 0;
  LTE_eNB_COMMON *eNB_common_vars = &phy_vars_eNB->lte_eNB_common_vars;
1589 1590 1591 1592 1593 1594
  LTE_eNB_PUSCH *eNB_pusch_vars = phy_vars_eNB->lte_eNB_pusch_vars[UE_id];
  LTE_DL_FRAME_PARMS *frame_parms = &phy_vars_eNB->lte_frame_parms;

  uint32_t l,i;
  int32_t avgs;
  uint8_t log2_maxh=0,aarx;
1595 1596


1597 1598
  int32_t avgs_0,avgs_1;
  uint32_t log2_maxh_0=0,log2_maxh_1=0;
1599

1600 1601

  //  uint8_t harq_pid = ( ulsch->RRCConnRequest_flag== 0) ? subframe2harq_pid_tdd(frame_parms->tdd_config,subframe) : 0;
1602
  uint8_t harq_pid;
Raymond Knopp's avatar
 
Raymond Knopp committed
1603
  uint8_t Qm;
1604 1605
  uint16_t rx_power_correction;
  int16_t *llrp;
Raymond Knopp's avatar
 
Raymond Knopp committed
1606
  int subframe = phy_vars_eNB->proc[sched_subframe].subframe_rx;
Raymond Knopp's avatar
 
Raymond Knopp committed
1607

Raymond Knopp's avatar
 
Raymond Knopp committed
1608
  harq_pid = subframe2harq_pid(frame_parms,phy_vars_eNB->proc[sched_subframe].frame_rx,subframe);
Raymond Knopp's avatar
 
Raymond Knopp committed
1609
  Qm = get_Qm_ul(ulsch[UE_id]->harq_processes[harq_pid]->mcs);
1610
#ifdef DEBUG_ULSCH
1611 1612
  msg("rx_ulsch: eNB_id %d, harq_pid %d, nb_rb %d first_rb %d, cooperation %d\n",eNB_id,harq_pid,ulsch[UE_id]->harq_processes[harq_pid]->nb_rb,ulsch[UE_id]->harq_processes[harq_pid]->first_rb,
      cooperation_flag);
1613 1614
#endif //DEBUG_ULSCH

Raymond Knopp's avatar
 
Raymond Knopp committed
1615
  rx_power_correction = 1;
1616

1617 1618 1619 1620 1621
  if (ulsch[UE_id]->harq_processes[harq_pid]->nb_rb == 0) {
    LOG_E(PHY,"PUSCH (%d/%x) nb_rb=0!\n", harq_pid,ulsch[UE_id]->rnti,harq_pid);
    return;
  }

1622 1623
  for (l=0; l<(frame_parms->symbols_per_tti-ulsch[UE_id]->harq_processes[harq_pid]->srs_active); l++) {

1624 1625
#ifdef DEBUG_ULSCH
    msg("rx_ulsch : symbol %d (first_rb %d,nb_rb %d), rxdataF %p, rxdataF_ext %p\n",l,
1626 1627 1628 1629
        ulsch[UE_id]->harq_processes[harq_pid]->first_rb,
        ulsch[UE_id]->harq_processes[harq_pid]->nb_rb,
        eNB_common_vars->rxdataF[eNB_id],
        eNB_pusch_vars->rxdataF_ext[eNB_id]);
1630 1631 1632
#endif //DEBUG_ULSCH

    ulsch_extract_rbs_single(eNB_common_vars->rxdataF[eNB_id],
1633 1634 1635 1636 1637 1638
                             eNB_pusch_vars->rxdataF_ext[eNB_id],
                             ulsch[UE_id]->harq_processes[harq_pid]->first_rb,
                             ulsch[UE_id]->harq_processes[harq_pid]->nb_rb,
                             l%(frame_parms->symbols_per_tti/2),
                             l/(frame_parms->symbols_per_tti/2),
                             frame_parms);
1639 1640

    lte_ul_channel_estimation(phy_vars_eNB,
1641 1642 1643 1644 1645 1646
                              eNB_id,
                              UE_id,
                              sched_subframe,
                              l%(frame_parms->symbols_per_tti/2),
                              l/(frame_parms->symbols_per_tti/2),
                              cooperation_flag);
1647
  }
1648

1649 1650 1651 1652 1653 1654 1655 1656 1657
  if(cooperation_flag == 2) {
    for (i=0; i<frame_parms->nb_antennas_rx; i++) {
      eNB_pusch_vars->ulsch_power_0[i] = signal_energy(eNB_pusch_vars->drs_ch_estimates_0[eNB_id][i],
                                         ulsch[UE_id]->harq_processes[harq_pid]->nb_rb*12)*rx_power_correction;
      eNB_pusch_vars->ulsch_power_1[i] = signal_energy(eNB_pusch_vars->drs_ch_estimates_1[eNB_id][i],
                                         ulsch[UE_id]->harq_processes[harq_pid]->nb_rb*12)*rx_power_correction;
    }
  } else {
    for (i=0; i<frame_parms->nb_antennas_rx; i++) {
1658
      /*
1659 1660
      eNB_pusch_vars->ulsch_power[i] = signal_energy_nodc(eNB_pusch_vars->drs_ch_estimates[eNB_id][i],
                                       ulsch[UE_id]->harq_processes[harq_pid]->nb_rb*12)*rx_power_correction;
1661 1662 1663 1664 1665 1666

      */
      
      eNB_pusch_vars->ulsch_power[i] = signal_energy_nodc(eNB_pusch_vars->drs_ch_estimates[eNB_id][i],
							  ulsch[UE_id]->harq_processes[harq_pid]->nb_rb*12);
      
1667
#ifdef LOCALIZATION
1668 1669 1670
      eNB_pusch_vars->subcarrier_power = (int32_t *)malloc(ulsch[UE_id]->harq_processes[harq_pid]->nb_rb*12*sizeof(int32_t));
      eNB_pusch_vars->active_subcarrier = subcarrier_energy(eNB_pusch_vars->drs_ch_estimates[eNB_id][i],
                                          ulsch[UE_id]->harq_processes[harq_pid]->nb_rb*12, eNB_pusch_vars->subcarrier_power, rx_power_correction);
1671
#endif
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
    }
  }

  //write_output("rxdataF_ext.m","rxF_ext",eNB_pusch_vars->rxdataF_ext[eNB_id][0],300*(frame_parms->symbols_per_tti-ulsch[UE_id]->srs_active),1,1);
  //write_output("ulsch_chest.m","drs_est",eNB_pusch_vars->drs_ch_estimates[eNB_id][0],300*(frame_parms->symbols_per_tti-ulsch[UE_id]->srs_active),1,1);


  if(cooperation_flag == 2) {
    ulsch_channel_level(eNB_pusch_vars->drs_ch_estimates_0[eNB_id],
                        frame_parms,
                        avgU_0,
                        ulsch[UE_id]->harq_processes[harq_pid]->nb_rb);

    //  msg("[ULSCH] avg_0[0] %d\n",avgU_0[0]);


    avgs_0 = 0;

    for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++)
      avgs_0 = cmax(avgs_0,avgU_0[(aarx<<1)]);

    log2_maxh_0 = (log2_approx(avgs_0)/2)+ log2_approx(frame_parms->nb_antennas_rx-1)+3;
1694
#ifdef DEBUG_ULSCH
1695
    msg("[ULSCH] log2_maxh_0 = %d (%d,%d)\n",log2_maxh_0,avgU_0[0],avgs_0);
1696 1697
#endif

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
    ulsch_channel_level(eNB_pusch_vars->drs_ch_estimates_1[eNB_id],
                        frame_parms,
                        avgU_1,
                        ulsch[UE_id]->harq_processes[harq_pid]->nb_rb);

    //  msg("[ULSCH] avg_1[0] %d\n",avgU_1[0]);


    avgs_1 = 0;

    for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++)
      avgs_1 = cmax(avgs_1,avgU_1[(aarx<<1)]);

    log2_maxh_1 = (log2_approx(avgs_1)/2) + log2_approx(frame_parms->nb_antennas_rx-1)+3;
1712
#ifdef DEBUG_ULSCH
1713
    msg("[ULSCH] log2_maxh_1 = %d (%d,%d)\n",log2_maxh_1,avgU_1[0],avgs_1);
1714
#endif
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
    log2_maxh = max(log2_maxh_0,log2_maxh_1);
  } else {
    ulsch_channel_level(eNB_pusch_vars->drs_ch_estimates[eNB_id],
                        frame_parms,
                        avgU,
                        ulsch[UE_id]->harq_processes[harq_pid]->nb_rb);

    //  msg("[ULSCH] avg[0] %d\n",avgU[0]);


    avgs = 0;

    for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++)
      avgs = cmax(avgs,avgU[(aarx<<1)]);

    //      log2_maxh = 4+(log2_approx(avgs)/2);

    log2_maxh = (log2_approx(avgs)/2)+ log2_approx(frame_parms->nb_antennas_rx-1)+4;
Raymond Knopp's avatar
 
Raymond Knopp committed
1733

1734
#ifdef DEBUG_ULSCH
1735
    msg("[ULSCH] log2_maxh = %d (%d,%d)\n",log2_maxh,avgU[0],avgs);
1736
#endif
1737
  }
1738

1739
  for (l=0; l<frame_parms->symbols_per_tti-ulsch[UE_id]->harq_processes[harq_pid]->srs_active; l++) {
1740 1741

    if (((frame_parms->Ncp == 0) && ((l==3) || (l==10)))||   // skip pilots
1742
        ((frame_parms->Ncp == 1) && ((l==2) || (l==8)))) {
1743
      l++;
1744
    }
1745

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
    if(cooperation_flag == 2) {

      ulsch_channel_compensation_alamouti(
        eNB_pusch_vars->rxdataF_ext[eNB_id],
        eNB_pusch_vars->drs_ch_estimates_0[eNB_id],
        eNB_pusch_vars->drs_ch_estimates_1[eNB_id],
        eNB_pusch_vars->ul_ch_mag_0[eNB_id],
        eNB_pusch_vars->ul_ch_magb_0[eNB_id],
        eNB_pusch_vars->ul_ch_mag_1[eNB_id],
        eNB_pusch_vars->ul_ch_magb_1[eNB_id],
        eNB_pusch_vars->rxdataF_comp_0[eNB_id],
        eNB_pusch_vars->rxdataF_comp_1[eNB_id],
        frame_parms,
        l,
        Qm,
        ulsch[UE_id]->harq_processes[harq_pid]->nb_rb,
        log2_maxh);

      ulsch_alamouti(frame_parms,
                     eNB_pusch_vars->rxdataF_comp[eNB_id],
                     eNB_pusch_vars->rxdataF_comp_0[eNB_id],
                     eNB_pusch_vars->rxdataF_comp_1[eNB_id],
                     eNB_pusch_vars->ul_ch_mag[eNB_id],
                     eNB_pusch_vars->ul_ch_magb[eNB_id],
                     eNB_pusch_vars->ul_ch_mag_0[eNB_id],
                     eNB_pusch_vars->ul_ch_magb_0[eNB_id],
                     eNB_pusch_vars->ul_ch_mag_1[eNB_id],
                     eNB_pusch_vars->ul_ch_magb_1[eNB_id],
                     l,
                     ulsch[UE_id]->harq_processes[harq_pid]->nb_rb);
    } else {
      ulsch_channel_compensation(
        eNB_pusch_vars->rxdataF_ext[eNB_id],
        eNB_pusch_vars->drs_ch_estimates[eNB_id],
        eNB_pusch_vars->ul_ch_mag[eNB_id],
        eNB_pusch_vars->ul_ch_magb[eNB_id],
        eNB_pusch_vars->rxdataF_comp[eNB_id],
        frame_parms,
        l,
        Qm,
        ulsch[UE_id]->harq_processes[harq_pid]->nb_rb,
        log2_maxh); // log2_maxh+I0_shift

    }


    //eren
1793
    /* if(flagMag == 0){
1794 1795
    //writing for the first time
    write_output(namepointer_log2,"xxx",log2_maxh,1,1,12);
1796 1797

    write_output(namepointer_chMag,"xxx",eNB_pusch_vars->ul_ch_mag[eNB_id][0],300,1,11);
1798 1799

    //namepointer_chMag = NULL;
1800 1801 1802 1803
    flagMag=1;
    }*/

    if (frame_parms->nb_antennas_rx > 1)
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
      ulsch_detection_mrc(frame_parms,
                          eNB_pusch_vars->rxdataF_comp[eNB_id],
                          eNB_pusch_vars->ul_ch_mag[eNB_id],
                          eNB_pusch_vars->ul_ch_magb[eNB_id],
                          l,
                          ulsch[UE_id]->harq_processes[harq_pid]->nb_rb);

#ifndef OFDMA_ULSCH

    if ((phy_vars_eNB->PHY_measurements_eNB->n0_power_dB[0]+3)<eNB_pusch_vars->ulsch_power[0]) {

      freq_equalization(frame_parms,
                        eNB_pusch_vars->rxdataF_comp[eNB_id],
                        eNB_pusch_vars->ul_ch_mag[eNB_id],
                        eNB_pusch_vars->ul_ch_magb[eNB_id],
                        l,
                        ulsch[UE_id]->harq_processes[harq_pid]->nb_rb*12,
                        Qm);
1822
    }
1823

1824 1825 1826 1827
#endif
  }

#ifndef OFDMA_ULSCH
1828

1829 1830 1831 1832
  //#ifdef DEBUG_ULSCH
  // Inverse-Transform equalized outputs
  //  msg("Doing IDFTs\n");
  lte_idft(frame_parms,
1833 1834 1835
           (uint32_t*)eNB_pusch_vars->rxdataF_comp[eNB_id][0],
           ulsch[UE_id]->harq_processes[harq_pid]->nb_rb*12);
  //  msg("Done\n");
1836 1837 1838 1839 1840 1841
  //#endif //DEBUG_ULSCH

#endif


  llrp = (int16_t*)&eNB_pusch_vars->llr[0];
1842 1843 1844

  for (l=0; l<frame_parms->symbols_per_tti-ulsch[UE_id]->harq_processes[harq_pid]->srs_active; l++) {

1845
    if (((frame_parms->Ncp == 0) && ((l==3) || (l==10)))||   // skip pilots
1846
        ((frame_parms->Ncp == 1) && ((l==2) || (l==8)))) {
1847
      l++;
1848
    }
1849 1850

    switch (Qm) {
1851
    case 2 :
1852
      ulsch_qpsk_llr(frame_parms,
1853 1854 1855 1856 1857
                     eNB_pusch_vars->rxdataF_comp[eNB_id],
                     eNB_pusch_vars->llr,
                     l,
                     ulsch[UE_id]->harq_processes[harq_pid]->nb_rb,
                     &llrp);
1858
      break;
1859

1860 1861
    case 4 :
      ulsch_16qam_llr(frame_parms,
1862 1863 1864 1865 1866
                      eNB_pusch_vars->rxdataF_comp[eNB_id],
                      eNB_pusch_vars->llr,
                      eNB_pusch_vars->ul_ch_mag[eNB_id],
                      l,ulsch[UE_id]->harq_processes[harq_pid]->nb_rb,
                      &llrp);
1867
      break;
1868

1869 1870
    case 6 :
      ulsch_64qam_llr(frame_parms,
1871 1872 1873 1874 1875 1876
                      eNB_pusch_vars->rxdataF_comp[eNB_id],
                      eNB_pusch_vars->llr,
                      eNB_pusch_vars->ul_ch_mag[eNB_id],
                      eNB_pusch_vars->ul_ch_magb[eNB_id],
                      l,ulsch[UE_id]->harq_processes[harq_pid]->nb_rb,
                      &llrp);
1877
      break;
1878

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
    default:
#ifdef DEBUG_ULSCH
      msg("ulsch_demodulation.c (rx_ulsch): Unknown Qm!!!!\n");
#endif //DEBUG_ULSCH
      break;
    }
  }

}

void rx_ulsch_emul(PHY_VARS_eNB *phy_vars_eNB,
1890 1891 1892 1893
                   uint8_t subframe,
                   uint8_t sect_id,
                   uint8_t UE_index)
{
1894 1895 1896 1897 1898 1899 1900
  msg("[PHY] EMUL eNB %d rx_ulsch_emul : subframe %d, sect_id %d, UE_index %d\n",phy_vars_eNB->Mod_id,subframe,sect_id,UE_index);
  phy_vars_eNB->lte_eNB_pusch_vars[UE_index]->ulsch_power[0] = 31622; //=45dB;
  phy_vars_eNB->lte_eNB_pusch_vars[UE_index]->ulsch_power[1] = 31622; //=45dB;

}


1901 1902
void dump_ulsch(PHY_VARS_eNB *PHY_vars_eNB,uint8_t sched_subframe, uint8_t UE_id)
{
1903 1904

  uint32_t nsymb = (PHY_vars_eNB->lte_frame_parms.Ncp == 0) ? 14 : 12;
Raymond Knopp's avatar
 
Raymond Knopp committed
1905
  uint8_t harq_pid;
Raymond Knopp's avatar
 
Raymond Knopp committed
1906
  int subframe = PHY_vars_eNB->proc[sched_subframe].subframe_rx;
Raymond Knopp's avatar
 
Raymond Knopp committed
1907

Raymond Knopp's avatar
 
Raymond Knopp committed
1908
  harq_pid = subframe2harq_pid(&PHY_vars_eNB->lte_frame_parms,PHY_vars_eNB->proc[sched_subframe].frame_rx,subframe);
Raymond Knopp's avatar
 
Raymond Knopp committed
1909

1910 1911 1912 1913 1914 1915
  printf("Dumping ULSCH in subframe %d with harq_pid %d, for NB_rb %d, mcs %d, Qm %d, N_symb %d\n", subframe,harq_pid,PHY_vars_eNB->ulsch_eNB[UE_id]->harq_processes[harq_pid]->nb_rb,
         PHY_vars_eNB->ulsch_eNB[UE_id]->harq_processes[harq_pid]->mcs,get_Qm_ul(PHY_vars_eNB->ulsch_eNB[UE_id]->harq_processes[harq_pid]->mcs),
         PHY_vars_eNB->ulsch_eNB[UE_id]->harq_processes[harq_pid]->Nsymb_pusch);
  //#ifndef OAI_EMU
  write_output("/tmp/ulsch_d.m","ulsch_dseq",&PHY_vars_eNB->ulsch_eNB[UE_id]->harq_processes[harq_pid]->d[0][96],
               PHY_vars_eNB->ulsch_eNB[UE_id]->harq_processes[harq_pid]->Kplus*3,1,0);
1916
  write_output("/tmp/rxsig0.m","rxs0", &PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][0][0],PHY_vars_eNB->lte_frame_parms.samples_per_tti*10,1,1);
1917

1918 1919
  if (PHY_vars_eNB->lte_frame_parms.nb_antennas_rx>1)
    write_output("/tmp/rxsig1.m","rxs1", &PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][1][0],PHY_vars_eNB->lte_frame_parms.samples_per_tti*10,1,1);
1920

1921
  write_output("/tmp/rxsigF0.m","rxsF0", &PHY_vars_eNB->lte_eNB_common_vars.rxdataF[0][0][0],PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size*nsymb,1,1);
1922

1923 1924
  if (PHY_vars_eNB->lte_frame_parms.nb_antennas_rx>1)
    write_output("/tmp/rxsigF1.m","rxsF1", &PHY_vars_eNB->lte_eNB_common_vars.rxdataF[0][1][0],PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size*nsymb,1,1);
1925

1926
  write_output("/tmp/rxsigF0_ext.m","rxsF0_ext", &PHY_vars_eNB->lte_eNB_pusch_vars[UE_id]->rxdataF_ext[0][0][0],PHY_vars_eNB->lte_frame_parms.N_RB_UL*12*nsymb,1,1);
1927

1928 1929 1930 1931 1932
  if (PHY_vars_eNB->lte_frame_parms.nb_antennas_rx>1)
    write_output("/tmp/rxsigF1_ext.m","rxsF1_ext", &PHY_vars_eNB->lte_eNB_pusch_vars[UE_id]->rxdataF_ext[1][0][0],PHY_vars_eNB->lte_frame_parms.N_RB_UL*12*nsymb,1,1);


  write_output("/tmp/srs_est0.m","srsest0",PHY_vars_eNB->lte_eNB_srs_vars[UE_id].srs_ch_estimates[0][0],PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size,1,1);
1933

1934 1935
  if (PHY_vars_eNB->lte_frame_parms.nb_antennas_rx>1)
    write_output("/tmp/srs_est1.m","srsest1",PHY_vars_eNB->lte_eNB_srs_vars[UE_id].srs_ch_estimates[0][1],PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size,1,1);
1936

1937
  write_output("/tmp/drs_est0.m","drsest0",PHY_vars_eNB->lte_eNB_pusch_vars[UE_id]->drs_ch_estimates[0][0],PHY_vars_eNB->lte_frame_parms.N_RB_UL*12*nsymb,1,1);
1938

1939 1940
  if (PHY_vars_eNB->lte_frame_parms.nb_antennas_rx>1)
    write_output("/tmp/drs_est1.m","drsest1",PHY_vars_eNB->lte_eNB_pusch_vars[UE_id]->drs_ch_estimates[0][1],PHY_vars_eNB->lte_frame_parms.N_RB_UL*12*nsymb,1,1);
1941

1942 1943
  write_output("/tmp/ulsch_rxF_comp0.m","ulsch0_rxF_comp0",&PHY_vars_eNB->lte_eNB_pusch_vars[UE_id]->rxdataF_comp[0][0][0],PHY_vars_eNB->lte_frame_parms.N_RB_UL*12*nsymb,1,1);
  //  write_output("ulsch_rxF_comp1.m","ulsch0_rxF_comp1",&PHY_vars_eNB->lte_eNB_pusch_vars[UE_id]->rxdataF_comp[0][1][0],PHY_vars_eNB->lte_frame_parms.N_RB_UL*12*nsymb,1,1);
1944 1945 1946 1947 1948 1949
  write_output("/tmp/ulsch_rxF_llr.m","ulsch_llr",PHY_vars_eNB->lte_eNB_pusch_vars[UE_id]->llr,
               PHY_vars_eNB->ulsch_eNB[UE_id]->harq_processes[harq_pid]->nb_rb*12*get_Qm_ul(PHY_vars_eNB->ulsch_eNB[UE_id]->harq_processes[harq_pid]->mcs)
               *PHY_vars_eNB->ulsch_eNB[UE_id]->harq_processes[harq_pid]->Nsymb_pusch,1,0);
  write_output("/tmp/ulsch_ch_mag.m","ulsch_ch_mag",&PHY_vars_eNB->lte_eNB_pusch_vars[UE_id]->ul_ch_mag[0][0][0],PHY_vars_eNB->lte_frame_parms.N_RB_UL*12*nsymb,1,1);
  //  write_output("ulsch_ch_mag1.m","ulsch_ch_mag1",&PHY_vars_eNB->lte_eNB_pusch_vars[UE_id]->ul_ch_mag[0][1][0],PHY_vars_eNB->lte_frame_parms.N_RB_UL*12*nsymb,1,1);
  //#endif
1950 1951
}