s_run_meas.m 5.74 KB
Newer Older
Xiwen JIANG's avatar
Xiwen JIANG committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
%
% SCRIPT ID : s_run_meas
%
% PROJECT NAME : TDD Recoprocity
%
% PURPOSE : full transmission and receive train for TDD reciprocity calibration
%
%**********************************************************************************************
%                            Eurecom -  All rights reserved
%
% AUTHOR(s) : Xiwen JIANG, Florian Kaltenberger
%
% DEVELOPMENT HISTORY :
%
% Date         Name(s)       Version  Description
% -----------  ------------- -------  ------------------------------------------------------
% Apr-29-2014  X. JIANG       0.1     script creation v0.1
%
%  REFERENCES/NOTES/COMMENTS :
%
% - Based on the script "run_full_duplex" created by Mirsad Cirkic, Florian Kaltenberger.
% 
%**********************************************************************************************

%% ** initialisation **
%% ------------- to change in experiment ------------
%clc
close all
%clear all
% 
%d_M = 4;				% modulation order, e.g. 4 means QPSK
%
%%%** frequency **
%d_N_f = 301; 			% carrier number carrying data
%d_N_FFT = 512;			% total carrier number
%d_N_CP = 128;			% extented cyclic prefix
%%** time **
%d_N_OFDM = 120;			% number of ofdm symbol per frame
%d_N_meas = 10;			% measuement number
%%** antenna **
%d_N_antA = 4;			% antenna number at site a
%d_N_antB = 4; 			% antenna number at site b
%v_active_rfA=[0 0 1 0];		%temp
%v_active_rfB=[1 1 0 0];
%v_indA = find(v_active_rfA);	% active antenna index at site a
%v_indB = find(v_active_rfB);	% active antenna index at site b
%d_amp = 10;
%% ----------------------------------------------------
m_sym_T = zeros(d_N_f,d_N_OFDM,3,d_N_meas);
m_sym_TA = zeros(d_N_f,d_N_OFDM/2,length(v_indA),d_N_meas);
m_sym_TB = zeros(d_N_f,d_N_OFDM/2,length(v_indB),d_N_meas);
m_sym_RA = zeros(d_N_f,d_N_OFDM/2,length(v_indA),d_N_meas);
m_sym_RB = zeros(d_N_f,d_N_OFDM/2,length(v_indB),d_N_meas);

%** simulation**
%m_sig_R = zeros((d_N_FFT+d_N_CP)*d_N_OFDM,4);

for d_n_meas = 1:d_N_meas
    %% -------- tx -------- 
    %** tx of site A **
    [m_sym_T(:,:,:,d_n_meas), m_sig_T] = f_ofdm_tx(d_M, d_N_f, d_N_FFT, d_N_CP, d_N_OFDM, d_N_antA, active_rf, d_amp);
    m_sym_TA(:,:,:,d_n_meas) = m_sym_T(:,1:end/2,1:end-1,d_n_meas);
    m_sym_TB(:,:,:,d_n_meas) = m_sym_T(:,end/2+1:end,end,d_n_meas); 
    %** simulation
    %m_sym_TA(:,d_N_OFDM/4+1:d_N_OFDM/2,1,d_n_meas) = 0;
    %m_sig_T(end/4+1:end/2,v_indA(1)) = 0; 
    %m_sym_TA(:,1:d_N_OFDM/4,2,d_n_meas) = 0;
    %m_sig_T(1:end/4,v_indA(2)) = 0;
 
    %m_sig_T(1:end/2, v_indA) = m_sig_T(1:end/2,v_indA);
    %m_sig_T(end/2+1:end, v_indA) = 0;
    %m_sig_T(end/2+1:end, v_indB) = m_sig_T(end/2+1:end,v_indB);
    %m_sig_T(1:end/2, v_indB) = 0;

    %m_sig_R(end/2+1:end,1) = m_sig_T(end/2+1:end,4);
    %m_sig_R(end/2+1:end,2) = m_sig_T(end/2+1:end,4);
    %m_sig_R(1:end/2,4) = m_sig_T(1:end/2,1)+m_sig_T(1:end/2,2);

    %** prepare the signal ** 
    m_sym_TA(:,d_N_OFDM/4+1:d_N_OFDM/2,v_indA(1),d_n_meas) = 0;
    m_sym_TA(:,1:d_N_OFDM/4,v_indA(2),d_n_meas) = 0;
 
    m_sig_T(1:end/2, v_indA) = m_sig_T(1:end/2,v_indA)*2;
    m_sig_T(end/2+1:end, v_indB) = m_sig_T(end/2+1:end,v_indB)*2;

    m_sig_T(end/2+1:end, v_indA) = 1+1i;
    m_sig_T(1:end/2, v_indB) = 1+1i;
    m_sig_T(end/4+1:end/2,v_indA(1)) = 1+1i; 
    m_sig_T(1:end/4,v_indA(2)) = 1+1i;

    %% -------- channel --------     
    %** Transmission from A to B **
    oarf_send_frame(card,m_sig_T,d_n_bit);
    m_sig_R_ = oarf_get_frame(-2);
    
    d_N_sig_R = d_N_OFDM*(d_N_FFT+d_N_CP); 
    v_P = exp(1i*2*pi*(0:(d_N_sig_R-1))/4).';
    m_sig_R = m_sig_R_(1:d_N_sig_R,:) .* repmat(v_P,1,size(m_sig_R_,2)); 

    m_sig_RA = m_sig_R(end/2+1:end,:);
    m_sig_RB = m_sig_R(1:end/2,:);

    %% -------- rx --------  
    m_sym_RB(:,:,:,d_n_meas) = f_ofdm_rx(m_sig_RB, d_N_FFT, d_N_CP, d_N_OFDM/2, v_active_rfB);
    m_sym_RA(:,:,:,d_n_meas) = f_ofdm_rx(m_sig_RA, d_N_FFT, d_N_CP, d_N_OFDM/2, v_active_rfA);

end

%    keyboard;
%** channel estimation **
m_H_est_A2B = f_ch_est(m_sym_TA, m_sym_RB);           %dimension: d_N_antR x d_N_antT x d_N_f x d_N_meas
m_H_est_B2A = f_ch_est(m_sym_TB, m_sym_RA);

%% -------- plot --------

%** channel estimation in frequency domain **
 m_H_A2B_draw = squeeze(m_H_est_A2B(1,:,:,1)).';
 m_H_B2A_draw = squeeze(m_H_est_B2A(:,1,:,1)).';
 %keyboard 

 figure(1)
 subplot(2,1,1)
 plot(real(m_sig_RA(:,v_indA)),'-');
 title('m_sig_RA')
 subplot(2,1,2)
 plot(real(m_sig_RB(:,v_indB)),'b-');
 hold on
 plot(real(m_sig_RB(end-100:end,v_indB)),'r-')
 title('m_sig_RB')

 figure(2)
 subplot(2,2,1)
 plot(20*log10(abs(m_H_A2B_draw)),'-');
 title('|h| vs. freq (A2B)')
 xlabel('freq')
 ylabel('|h|')
 ylim([0 100])
 
 subplot(2,2,2)
 plot(20*log10(abs(m_H_B2A_draw)),'-');
 title('|h| vs. freq (B2A)')
 xlabel('freq')
 ylabel('|h|')
 ylim([0 100])

 subplot(2,2,3)
 plot(angle(m_H_A2B_draw),'-');
 title('angle(h) vs. freq (A2B)')
 xlabel('freq')
 ylabel('angle(h)')
 
 subplot(2,2,4)
 plot(angle(m_H_B2A_draw),'-');
 title('angle(h) vs. freq (B2A)')
 xlabel('freq')
 ylabel('angle(h)')

 figure(3)
 plot(m_sym_RA(1,:,1,1),'b*')
% hold on     
% plot(m_sym_RA(1,:,1,3),'r*')
% hold on     
% plot(m_sym_RA(1,:,1,5),'g*')
 title('m sym RA 1')

 figure(4)
 plot(m_sym_RA(1,:,2,1),'b*')
% hold on            
% plot(m_sym_RA(1,:,2,3),'r*')
% hold on            
% plot(m_sym_RA(1,:,2,5),'g*')
 title('m sym RA 2')

 figure(5)
 subplot(2,1,1)
 plot(m_sym_RB(1,1:end/2,1,1),'b*')
% hold on
% plot(m_sym_RB(1,1:end/2,1,3),'r*')
% hold on
% plot(m_sym_RB(1,1:end/2,1,5),'g*')
 title('m sym RB ant 2')
 subplot(2,1,2)
 plot(m_sym_RB(1,end/2+1:end,1,1),'b*')
% hold on
% plot(m_sym_RB(1,end/2+1:end,1,3),'r*')
% hold on
% plot(m_sym_RB(1,end/2+1:end,1,5),'g*')
 title('m sym RB ant 2')