1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.0 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/*! \file PHY/LTE_TRANSPORT/proto.h
* \brief Function prototypes for PHY physical/transport channel processing and generation V8.6 2009-03
* \author R. Knopp, F. Kaltenberger
* \date 2011
* \version 0.1
* \company Eurecom
* \email: knopp@eurecom.fr
* \note
* \warning
*/
#ifndef __LTE_TRANSPORT_PROTO__H__
#define __LTE_TRANSPORT_PROTO__H__
#include "PHY/defs.h"
#include <math.h>
// Functions below implement 36-211 and 36-212
/** @addtogroup _PHY_TRANSPORT_
* @{
*/
/** \fn free_eNB_dlsch(LTE_eNB_DLSCH_t *dlsch,unsigned char N_RB_DL)
\brief This function frees memory allocated for a particular DLSCH at eNB
@param dlsch Pointer to DLSCH to be removed
*/
void free_eNB_dlsch(LTE_eNB_DLSCH_t *dlsch);
void clean_eNb_dlsch(LTE_eNB_DLSCH_t *dlsch);
/** \fn new_eNB_dlsch(uint8_t Kmimo,uint8_t Mdlharq,uint32_t Nsoft,uint8_t abstraction_flag, LTE_DL_FRAME_PARMS* frame_parms)
\brief This function allocates structures for a particular DLSCH at eNB
@returns Pointer to DLSCH to be removed
@param Kmimo Kmimo factor from 36-212/36-213
@param Mdlharq Maximum number of HARQ rounds (36-212/36-213)
@param Nsoft Soft-LLR buffer size from UE-Category
@params N_RB_DL total number of resource blocks (determine the operating BW)
@param abstraction_flag Flag to indicate abstracted interface
@param frame_parms Pointer to frame descriptor structure
*/
LTE_eNB_DLSCH_t *new_eNB_dlsch(uint8_t Kmimo,uint8_t Mdlharq,uint32_t Nsoft,uint8_t N_RB_DL, uint8_t abstraction_flag, LTE_DL_FRAME_PARMS* frame_parms);
/** \fn free_ue_dlsch(LTE_UE_DLSCH_t *dlsch)
\brief This function frees memory allocated for a particular DLSCH at UE
@param dlsch Pointer to DLSCH to be removed
*/
void free_ue_dlsch(LTE_UE_DLSCH_t *dlsch);
/** \fn new_ue_dlsch(uint8_t Kmimo,uint8_t Mdlharq,uint32_t Nsoft,uint8_t abstraction_flag)
\brief This function allocates structures for a particular DLSCH at eNB
@returns Pointer to DLSCH to be removed
@param Kmimo Kmimo factor from 36-212/36-213
@param Mdlharq Maximum number of HARQ rounds (36-212/36-213)
@param Nsoft Soft-LLR buffer size from UE-Category
@params N_RB_DL total number of resource blocks (determine the operating BW)
@param abstraction_flag Flag to indicate abstracted interface
*/
LTE_UE_DLSCH_t *new_ue_dlsch(uint8_t Kmimo,uint8_t Mdlharq,uint32_t Nsoft,uint8_t max_turbo_iterations,uint8_t N_RB_DL, uint8_t abstraction_flag);
void clean_eNb_ulsch(LTE_eNB_ULSCH_t *ulsch);
void free_ue_ulsch(LTE_UE_ULSCH_t *ulsch);
LTE_eNB_ULSCH_t *new_eNB_ulsch(uint8_t max_turbo_iterations,uint8_t N_RB_UL, uint8_t abstraction_flag);
LTE_UE_ULSCH_t *new_ue_ulsch(unsigned char N_RB_UL, uint8_t abstraction_flag);
/** \fn dlsch_encoding(PHY_VARS_eNB *eNB,
uint8_t *input_buffer,
LTE_DL_FRAME_PARMS *frame_parms,
uint8_t num_pdcch_symbols,
LTE_eNB_DLSCH_t *dlsch,
int frame,
uint8_t subframe)
\brief This function performs a subset of the bit-coding functions for LTE as described in 36-212, Release 8.Support is limited to turbo-coded channels (DLSCH/ULSCH). The implemented functions are:
- CRC computation and addition
- Code block segmentation and sub-block CRC addition
- Channel coding (Turbo coding)
- Rate matching (sub-block interleaving, bit collection, selection and transmission
- Code block concatenation
@param eNB Pointer to eNB PHY context
@param input_buffer Pointer to input buffer for sub-frame
@param frame_parms Pointer to frame descriptor structure
@param num_pdcch_symbols Number of PDCCH symbols in this subframe
@param dlsch Pointer to dlsch to be encoded
@param frame Frame number
@param subframe Subframe number
@param rm_stats Time statistics for rate-matching
@param te_stats Time statistics for turbo-encoding
@param i_stats Time statistics for interleaving
@returns status
*/
int32_t dlsch_encoding(PHY_VARS_eNB *eNB,
uint8_t *a,
uint8_t num_pdcch_symbols,
LTE_eNB_DLSCH_t *dlsch,
int frame,
uint8_t subframe,
time_stats_t *rm_stats,
time_stats_t *te_stats,
time_stats_t *i_stats);
/** \fn dlsch_encoding_2threads(PHY_VARS_eNB *eNB,
uint8_t *input_buffer,
uint8_t num_pdcch_symbols,
LTE_eNB_DLSCH_t *dlsch,
int frame,
uint8_t subframe)
\brief This function performs a subset of the bit-coding functions for LTE as described in 36-212, Release 8.Support is limited to turbo-coded channels (DLSCH/ULSCH). This version spawns 1 worker thread. The implemented functions are:
- CRC computation and addition
- Code block segmentation and sub-block CRC addition
- Channel coding (Turbo coding)
- Rate matching (sub-block interleaving, bit collection, selection and transmission
- Code block concatenation
@param eNB Pointer to eNB PHY context
@param input_buffer Pointer to input buffer for sub-frame
@param num_pdcch_symbols Number of PDCCH symbols in this subframe
@param dlsch Pointer to dlsch to be encoded
@param frame Frame number
@param subframe Subframe number
@param rm_stats Time statistics for rate-matching
@param te_stats Time statistics for turbo-encoding
@param i_stats Time statistics for interleaving
@returns status
*/
int32_t dlsch_encoding_2threads(PHY_VARS_eNB *eNB,
uint8_t *a,
uint8_t num_pdcch_symbols,
LTE_eNB_DLSCH_t *dlsch,
int frame,
uint8_t subframe,
time_stats_t *rm_stats,
time_stats_t *te_stats,
time_stats_t *i_stats);
void dlsch_encoding_emul(PHY_VARS_eNB *phy_vars_eNB,
uint8_t *DLSCH_pdu,
LTE_eNB_DLSCH_t *dlsch);
// Functions below implement 36-211
/** \fn allocate_REs_in_RB(int32_t **txdataF,
uint32_t *jj,
uint32_t *jj2,
uint16_t re_offset,
uint32_t symbol_offset,
LTE_DL_eNB_HARQ_t *dlsch0_harq,
LTE_DL_eNB_HARQ_t *dlsch1_harq,
uint8_t pilots,
int16_t amp,
int16_t *qam_table_s,
uint32_t *re_allocated,
uint8_t skip_dc,
uint8_t skip_half,
uint8_t use2ndpilots,
LTE_DL_FRAME_PARMS *frame_parms);
\brief Fills RB with data
\param txdataF pointer to output data (frequency domain signal)
\param jj index to output (from CW 1)
\param jj index to output (from CW 2)
\param re_offset index of the first RE of the RB
\param symbol_offset index to the OFDM symbol
\param dlsch0_harq Pointer to Transport block 0 HARQ structure
\param dlsch0_harq Pointer to Transport block 1 HARQ structure
\param pilots =1 if symbol_offset is an OFDM symbol that contains pilots, 0 otherwise
\param amp Amplitude for symbols
\param qam_table_s0 pointer to scaled QAM table for Transport Block 0 (by rho_a or rho_b)
\param qam_table_s1 pointer to scaled QAM table for Transport Block 1 (by rho_a or rho_b)
\param re_allocated pointer to allocation counter
\param skip_dc offset for positive RBs
\param skip_half indicate that first or second half of RB must be skipped for PBCH/PSS/SSS
\param ue_spec_rs UE specific RS indicator
\param nb_antennas_tx_phy Physical antenna elements which can be different with antenna port number, especially in beamforming case
\param use2ndpilots Set to use the pilots from antenna port 1 for PDSCH
\param frame_parms Frame parameter descriptor
*/
// Functions below implement 36-211
/** \fn allocate_REs_in_RB(int32_t **txdataF,
uint32_t *jj,
uint32_t *jj2,
uint16_t re_offset,
uint32_t symbol_offset,
LTE_DL_eNB_HARQ_t *dlsch0_harq,
LTE_DL_eNB_HARQ_t *dlsch1_harq,
uint8_t pilots,
int16_t amp,
int16_t *qam_table_s,
uint32_t *re_allocated,
uint8_t skip_dc,
uint8_t skip_half,
uint8_t use2ndpilots,
LTE_DL_FRAME_PARMS *frame_parms);
\brief Fills RB with data
\param txdataF pointer to output data (frequency domain signal)
\param jj index to output (from CW 1)
\param jj index to output (from CW 2)
\param re_offset index of the first RE of the RB
\param symbol_offset index to the OFDM symbol
\param dlsch0_harq Pointer to Transport block 0 HARQ structure
\param dlsch0_harq Pointer to Transport block 1 HARQ structure
\param pilots =1 if symbol_offset is an OFDM symbol that contains pilots, 0 otherwise
\param amp Amplitude for symbols
\param qam_table_s0 pointer to scaled QAM table for Transport Block 0 (by rho_a or rho_b)
\param qam_table_s1 pointer to scaled QAM table for Transport Block 1 (by rho_a or rho_b)
\param re_allocated pointer to allocation counter
\param skip_dc offset for positive RBs
\param skip_half indicate that first or second half of RB must be skipped for PBCH/PSS/SSS
\param use2ndpilots Set to use the pilots from antenna port 1 for PDSCH
\param frame_parms Frame parameter descriptor
*/
int32_t allocate_REs_in_RB(PHY_VARS_eNB* phy_vars_eNB,
int32_t **txdataF,
uint32_t *jj,
uint32_t *jj2,
uint16_t re_offset,
uint32_t symbol_offset,
LTE_DL_eNB_HARQ_t *dlsch0_harq,
LTE_DL_eNB_HARQ_t *dlsch1_harq,
uint8_t pilots,
int16_t amp,
uint8_t precoder_index,
int16_t *qam_table_s0,
int16_t *qam_table_s1,
uint32_t *re_allocated,
uint8_t skip_dc,
uint8_t skip_half,
uint8_t lprime,
uint8_t mprime,
uint8_t Ns,
int *P1_SHIFT,
int *P2_SHIFT);
/** \fn int32_t dlsch_modulation(int32_t **txdataF,
int16_t amp,
uint32_t sub_frame_offset,
LTE_DL_FRAME_PARMS *frame_parms,
uint8_t num_pdcch_symbols,
LTE_eNB_DLSCH_t *dlsch);
\brief This function is the top-level routine for generation of the sub-frame signal (frequency-domain) for DLSCH.
@param txdataF Table of pointers for frequency-domain TX signals
@param amp Amplitude of signal
@param sub_frame_offset Offset of this subframe in units of subframes (usually 0)
@param frame_parms Pointer to frame descriptor
@param num_pdcch_symbols Number of PDCCH symbols in this subframe
@param dlsch0 Pointer to Transport Block 0 DLSCH descriptor for this allocation
@param dlsch1 Pointer to Transport Block 0 DLSCH descriptor for this allocation
*/
int32_t dlsch_modulation(PHY_VARS_eNB* phy_vars_eNB,
int32_t **txdataF,
int16_t amp,
uint32_t sub_frame_offset,
uint8_t num_pdcch_symbols,
LTE_eNB_DLSCH_t *dlsch0,
LTE_eNB_DLSCH_t *dlsch1);
/*
\brief This function is the top-level routine for generation of the sub-frame signal (frequency-domain) for MCH.
@param txdataF Table of pointers for frequency-domain TX signals
@param amp Amplitude of signal
@param subframe_offset Offset of this subframe in units of subframes (usually 0)
@param frame_parms Pointer to frame descriptor
@param dlsch Pointer to DLSCH descriptor for this allocation
*/
int mch_modulation(int32_t **txdataF,
int16_t amp,
uint32_t subframe_offset,
LTE_DL_FRAME_PARMS *frame_parms,
LTE_eNB_DLSCH_t *dlsch);
/** \brief Top-level generation function for eNB TX of MBSFN
@param phy_vars_eNB Pointer to eNB variables
@param a Pointer to transport block
@param abstraction_flag
*/
void generate_mch(PHY_VARS_eNB *phy_vars_eNB,eNB_rxtx_proc_t *proc,uint8_t *a);
/** \brief This function generates the frequency-domain pilots (cell-specific downlink reference signals)
@param phy_vars_eNB Pointer to eNB variables
@param proc Pointer to RXn-TXnp4 proc information
@param mcs MCS for MBSFN
@param ndi new data indicator
@param rdvix
*/
void fill_eNB_dlsch_MCH(PHY_VARS_eNB *phy_vars_eNB,int mcs,int ndi,int rvidx);
/** \brief This function generates the frequency-domain pilots (cell-specific downlink reference signals)
@param phy_vars_ue Pointer to UE variables
@param mcs MCS for MBSFN
@param eNB_id index of eNB in ue variables
*/
void fill_UE_dlsch_MCH(PHY_VARS_UE *phy_vars_ue,int mcs,int ndi,int rvidx,int eNB_id);
/** \brief Receiver processing for MBSFN, symbols can be done separately for time/CPU-scheduling purposes
@param phy_vars_ue Pointer to UE variables
@param eNB_id index of eNB in ue variables
@param subframe Subframe index of PMCH
@param symbol Symbol index on which to act
*/
int rx_pmch(PHY_VARS_UE *phy_vars_ue,
unsigned char eNB_id,
uint8_t subframe,
unsigned char symbol);
/** \brief Dump OCTAVE/MATLAB files for PMCH debugging
@param phy_vars_ue Pointer to UE variables
@param eNB_id index of eNB in ue variables
@param coded_bits_per_codeword G from 36.211
@param subframe Index of subframe
@returns 0 on success
*/
void dump_mch(PHY_VARS_UE *phy_vars_ue,uint8_t eNB_id,uint16_t coded_bits_per_codeword,int subframe);
/** \brief This function generates the frequency-domain pilots (cell-specific downlink reference signals)
for N subframes.
@param phy_vars_eNB Pointer to eNB variables
@param txdataF Table of pointers for frequency-domain TX signals
@param amp Amplitude of signal
@param N Number of sub-frames to generate
*/
void generate_pilots(PHY_VARS_eNB *phy_vars_eNB,
int32_t **txdataF,
int16_t amp,
uint16_t N);
/**
\brief This function generates the frequency-domain pilots (cell-specific downlink reference signals) for one slot only
@param phy_vars_eNB Pointer to eNB variables
@param txdataF Table of pointers for frequency-domain TX signals
@param amp Amplitude of signal
@param slot index (0..19)
@param first_pilot_only (0 no)
*/
int32_t generate_pilots_slot(PHY_VARS_eNB *phy_vars_eNB,
int32_t **txdataF,
int16_t amp,
uint16_t slot,
int first_pilot_only);
int32_t generate_mbsfn_pilot(PHY_VARS_eNB *phy_vars_eNB,
eNB_rxtx_proc_t *proc,
int32_t **txdataF,
int16_t amp);
void generate_ue_spec_pilots(PHY_VARS_eNB *phy_vars_eNB,
uint8_t UE_id,
int32_t **txdataF,
int16_t amp,
uint16_t Ntti,
uint8_t beamforming_mode);
int32_t generate_pss(int32_t **txdataF,
int16_t amp,
LTE_DL_FRAME_PARMS *frame_parms,
uint16_t l,
uint16_t Ns);
int32_t generate_pss_emul(PHY_VARS_eNB *phy_vars_eNB,uint8_t sect_id);
int32_t generate_sss(int32_t **txdataF,
short amp,
LTE_DL_FRAME_PARMS *frame_parms,
unsigned short symbol,
unsigned short slot_offset);
int32_t generate_pbch(LTE_eNB_PBCH *eNB_pbch,
int32_t **txdataF,
int32_t amp,
LTE_DL_FRAME_PARMS *frame_parms,
uint8_t *pbch_pdu,
uint8_t frame_mod4);
int32_t generate_pbch_emul(PHY_VARS_eNB *phy_vars_eNB,uint8_t *pbch_pdu);
/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream QPSK/QPSK reception.
@param stream0_in Input from channel compensated (MR combined) stream 0
@param stream1_in Input from channel compensated (MR combined) stream 1
@param stream0_out Output from LLR unit for stream0
@param rho01 Cross-correlation between channels (MR combined)
@param length in complex channel outputs*/
void qpsk_qpsk(int16_t *stream0_in,
int16_t *stream1_in,
int16_t *stream0_out,
int16_t *rho01,
int32_t length);
/** \brief This function perform LLR computation for dual-stream (QPSK/QPSK) transmission.
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param rxdataF_comp_i Compensated channel output for interference
@param rho_i Correlation between channel of signal and inteference
@param dlsch_llr llr output
@param symbol OFDM symbol index in sub-frame
@param first_symbol_flag flag to indicate this is the first symbol of the dlsch
@param nb_rb number of RBs for this allocation
@param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
@param llr128p pointer to pointer to symbol in dlsch_llr*/
int32_t dlsch_qpsk_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int32_t **rxdataF_comp_i,
int32_t **rho_i,
int16_t *dlsch_llr,
uint8_t symbol,
uint8_t first_symbol_flag,
uint16_t nb_rb,
uint16_t pbch_pss_sss_adj,
int16_t **llr128p);
/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream QPSK/16QAM reception.
@param stream0_in Input from channel compensated (MR combined) stream 0
@param stream1_in Input from channel compensated (MR combined) stream 1
@param ch_mag_i Input from scaled channel magnitude square of h0'*g1
@param stream0_out Output from LLR unit for stream0
@param rho01 Cross-correlation between channels (MR combined)
@param length in complex channel outputs*/
void qpsk_qam16(int16_t *stream0_in,
int16_t *stream1_in,
short *ch_mag_i,
int16_t *stream0_out,
int16_t *rho01,
int32_t length);
/** \brief This function perform LLR computation for dual-stream (QPSK/16QAM) transmission.
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param rxdataF_comp_i Compensated channel output for interference
@param rho_i Correlation between channel of signal and inteference
@param dlsch_llr llr output
@param symbol OFDM symbol index in sub-frame
@param first_symbol_flag flag to indicate this is the first symbol of the dlsch
@param nb_rb number of RBs for this allocation
@param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
@param llr128p pointer to pointer to symbol in dlsch_llr*/
int32_t dlsch_qpsk_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int32_t **rxdataF_comp_i,
int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
int32_t **rho_i,
int16_t *dlsch_llr,
uint8_t symbol,
uint8_t first_symbol_flag,
uint16_t nb_rb,
uint16_t pbch_pss_sss_adj,
int16_t **llr128p);
/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream QPSK/64QAM reception.
@param stream0_in Input from channel compensated (MR combined) stream 0
@param stream1_in Input from channel compensated (MR combined) stream 1
@param ch_mag_i Input from scaled channel magnitude square of h0'*g1
@param stream0_out Output from LLR unit for stream0
@param rho01 Cross-correlation between channels (MR combined)
@param length in complex channel outputs*/
void qpsk_qam64(int16_t *stream0_in,
int16_t *stream1_in,
short *ch_mag_i,
int16_t *stream0_out,
int16_t *rho01,
int32_t length);
/** \brief This function perform LLR computation for dual-stream (QPSK/64QAM) transmission.
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param rxdataF_comp_i Compensated channel output for interference
@param rho_i Correlation between channel of signal and inteference
@param dlsch_llr llr output
@param symbol OFDM symbol index in sub-frame
@param first_symbol_flag flag to indicate this is the first symbol of the dlsch
@param nb_rb number of RBs for this allocation
@param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
@param llr128p pointer to pointer to symbol in dlsch_llr*/
int32_t dlsch_qpsk_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int32_t **rxdataF_comp_i,
int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
int32_t **rho_i,
int16_t *dlsch_llr,
uint8_t symbol,
uint8_t first_symbol_flag,
uint16_t nb_rb,
uint16_t pbch_pss_sss_adj,
int16_t **llr128p);
/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 16QAM/QPSK reception.
@param stream0_in Input from channel compensated (MR combined) stream 0
@param stream1_in Input from channel compensated (MR combined) stream 1
@param ch_mag Input from scaled channel magnitude square of h0'*g0
@param stream0_out Output from LLR unit for stream0
@param rho01 Cross-correlation between channels (MR combined)
@param length in complex channel outputs*/
void qam16_qpsk(short *stream0_in,
short *stream1_in,
short *ch_mag,
short *stream0_out,
short *rho01,
int length);
/** \brief This function perform LLR computation for dual-stream (16QAM/QPSK) transmission.
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param rxdataF_comp_i Compensated channel output for interference
@param ch_mag Input from scaled channel magnitude square of h0'*g0
@param rho_i Correlation between channel of signal and inteference
@param dlsch_llr llr output
@param symbol OFDM symbol index in sub-frame
@param first_symbol_flag flag to indicate this is the first symbol of the dlsch
@param nb_rb number of RBs for this allocation
@param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
@param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_16qam_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
int **rxdataF_comp,
int **rxdataF_comp_i,
int **dl_ch_mag, //|h_0|^2*(2/sqrt{10})
int **rho_i,
short *dlsch_llr,
unsigned char symbol,
unsigned char first_symbol_flag,
unsigned short nb_rb,
uint16_t pbch_pss_sss_adjust,
short **llr16p);
/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 16QAM/16QAM reception.
@param stream0_in Input from channel compensated (MR combined) stream 0
@param stream1_in Input from channel compensated (MR combined) stream 1
@param ch_mag Input from scaled channel magnitude square of h0'*g0
@param ch_mag_i Input from scaled channel magnitude square of h0'*g1
@param stream0_out Output from LLR unit for stream0
@param rho01 Cross-correlation between channels (MR combined)
@param length in complex channel outputs*/
void qam16_qam16(short *stream0_in,
short *stream1_in,
short *ch_mag,
short *ch_mag_i,
short *stream0_out,
short *rho01,
int length);
/** \brief This function perform LLR computation for dual-stream (16QAM/16QAM) transmission.
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param rxdataF_comp_i Compensated channel output for interference
@param ch_mag Input from scaled channel magnitude square of h0'*g0
@param ch_mag_i Input from scaled channel magnitude square of h0'*g1
@param rho_i Correlation between channel of signal and inteference
@param dlsch_llr llr output
@param symbol OFDM symbol index in sub-frame
@param first_symbol_flag flag to indicate this is the first symbol of the dlsch
@param nb_rb number of RBs for this allocation
@param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
@param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_16qam_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
int **rxdataF_comp,
int **rxdataF_comp_i,
int **dl_ch_mag, //|h_0|^2*(2/sqrt{10})
int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
int **rho_i,
short *dlsch_llr,
unsigned char symbol,
unsigned char first_symbol_flag,
unsigned short nb_rb,
uint16_t pbch_pss_sss_adjust,
short **llr16p);
/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 16QAM/64QAM reception.
@param stream0_in Input from channel compensated (MR combined) stream 0
@param stream1_in Input from channel compensated (MR combined) stream 1
@param ch_mag Input from scaled channel magnitude square of h0'*g0
@param ch_mag_i Input from scaled channel magnitude square of h0'*g1
@param stream0_out Output from LLR unit for stream0
@param rho01 Cross-correlation between channels (MR combined)
@param length in complex channel outputs*/
void qam16_qam64(short *stream0_in,
short *stream1_in,
short *ch_mag,
short *ch_mag_i,
short *stream0_out,
short *rho01,
int length);
/** \brief This function perform LLR computation for dual-stream (16QAM/64QAM) transmission.
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param rxdataF_comp_i Compensated channel output for interference
@param ch_mag Input from scaled channel magnitude square of h0'*g0
@param ch_mag_i Input from scaled channel magnitude square of h0'*g1
@param rho_i Correlation between channel of signal and inteference
@param dlsch_llr llr output
@param symbol OFDM symbol index in sub-frame
@param first_symbol_flag flag to indicate this is the first symbol of the dlsch
@param nb_rb number of RBs for this allocation
@param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
@param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_16qam_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
int **rxdataF_comp,
int **rxdataF_comp_i,
int **dl_ch_mag, //|h_0|^2*(2/sqrt{10})
int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
int **rho_i,
short *dlsch_llr,
unsigned char symbol,
unsigned char first_symbol_flag,
unsigned short nb_rb,
uint16_t pbch_pss_sss_adjust,
short **llr16p);
/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 64QAM/64QAM reception.
@param stream0_in Input from channel compensated (MR combined) stream 0
@param stream1_in Input from channel compensated (MR combined) stream 1
@param ch_mag Input from scaled channel magnitude square of h0'*g0
@param stream0_out Output from LLR unit for stream0
@param rho01 Cross-correlation between channels (MR combined)
@param length in complex channel outputs*/
void qam64_qpsk(short *stream0_in,
short *stream1_in,
short *ch_mag,
short *stream0_out,
short *rho01,
int length);
/** \brief This function perform LLR computation for dual-stream (64QAM/64QAM) transmission.
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param rxdataF_comp_i Compensated channel output for interference
@param ch_mag Input from scaled channel magnitude square of h0'*g0
@param rho_i Correlation between channel of signal and inteference
@param dlsch_llr llr output
@param symbol OFDM symbol index in sub-frame
@param first_symbol_flag flag to indicate this is the first symbol of the dlsch
@param nb_rb number of RBs for this allocation
@param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
@param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_64qam_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
int **rxdataF_comp,
int **rxdataF_comp_i,
int **dl_ch_mag,
int **rho_i,
short *dlsch_llr,
unsigned char symbol,
unsigned char first_symbol_flag,
unsigned short nb_rb,
uint16_t pbch_pss_sss_adjust,
short **llr16p);
/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 64QAM/16QAM reception.
@param stream0_in Input from channel compensated (MR combined) stream 0
@param stream1_in Input from channel compensated (MR combined) stream 1
@param ch_mag Input from scaled channel magnitude square of h0'*g0
@param ch_mag_i Input from scaled channel magnitude square of h0'*g1
@param stream0_out Output from LLR unit for stream0
@param rho01 Cross-correlation between channels (MR combined)
@param length in complex channel outputs*/
void qam64_qam16(short *stream0_in,
short *stream1_in,
short *ch_mag,
short *ch_mag_i,
short *stream0_out,
short *rho01,
int length);
/** \brief This function perform LLR computation for dual-stream (64QAM/16QAM) transmission.
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param rxdataF_comp_i Compensated channel output for interference
@param ch_mag Input from scaled channel magnitude square of h0'*g0
@param ch_mag_i Input from scaled channel magnitude square of h0'*g1
@param rho_i Correlation between channel of signal and inteference
@param dlsch_llr llr output
@param symbol OFDM symbol index in sub-frame
@param first_symbol_flag flag to indicate this is the first symbol of the dlsch
@param nb_rb number of RBs for this allocation
@param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
@param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_64qam_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
int **rxdataF_comp,
int **rxdataF_comp_i,
int **dl_ch_mag,
int **dl_ch_mag_i,
int **rho_i,
short *dlsch_llr,
unsigned char symbol,
unsigned char first_symbol_flag,
unsigned short nb_rb,
uint16_t pbch_pss_sss_adjust,
short **llr16p);
/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 64QAM/64QAM reception.
@param stream0_in Input from channel compensated (MR combined) stream 0
@param stream1_in Input from channel compensated (MR combined) stream 1
@param ch_mag Input from scaled channel magnitude square of h0'*g0
@param ch_mag_i Input from scaled channel magnitude square of h0'*g1
@param stream0_out Output from LLR unit for stream0
@param rho01 Cross-correlation between channels (MR combined)
@param length in complex channel outputs*/
void qam64_qam64(short *stream0_in,
short *stream1_in,
short *ch_mag,
short *ch_mag_i,
short *stream0_out,
short *rho01,
int length);
/** \brief This function perform LLR computation for dual-stream (64QAM/64QAM) transmission.
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param rxdataF_comp_i Compensated channel output for interference
@param ch_mag Input from scaled channel magnitude square of h0'*g0
@param ch_mag_i Input from scaled channel magnitude square of h0'*g1
@param rho_i Correlation between channel of signal and inteference
@param dlsch_llr llr output
@param symbol OFDM symbol index in sub-frame
@param first_symbol_flag flag to indicate this is the first symbol of the dlsch
@param nb_rb number of RBs for this allocation
@param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
@param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_64qam_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
int **rxdataF_comp,
int **rxdataF_comp_i,
int **dl_ch_mag,
int **dl_ch_mag_i,
int **rho_i,
short *dlsch_llr,
unsigned char symbol,
unsigned char first_symbol_flag,
unsigned short nb_rb,
uint16_t pbch_pss_sss_adjust,
short **llr16p);
/** \brief This function generates log-likelihood ratios (decoder input) for single-stream QPSK received waveforms.
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param dlsch_llr llr output
@param symbol OFDM symbol index in sub-frame
@param first_symbol_flag
@param nb_rb number of RBs for this allocation
@param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
@param llr128p pointer to pointer to symbol in dlsch_llr
@param beamforming_mode beamforming mode
*/
int32_t dlsch_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int16_t *dlsch_llr,
uint8_t symbol,
uint8_t first_symbol_flag,
uint16_t nb_rb,
uint16_t pbch_pss_sss_adj,
int16_t **llr128p,
uint8_t beamforming_mode);
/**
\brief This function generates log-likelihood ratios (decoder input) for single-stream 16QAM received waveforms
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param dlsch_llr llr output
@param dl_ch_mag Squared-magnitude of channel in each resource element position corresponding to allocation and weighted for mid-point in 16QAM constellation
@param symbol OFDM symbol index in sub-frame
@param first_symbol_flag
@param nb_rb number of RBs for this allocation
@param pbch_pss_sss_adjust Adjustment factor in RE for PBCH/PSS/SSS allocations
@param llr128p pointer to pointer to symbol in dlsch_llr
@param beamforming_mode beamforming mode
*/
void dlsch_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int16_t *dlsch_llr,
int32_t **dl_ch_mag,
uint8_t symbol,
uint8_t first_symbol_flag,
uint16_t nb_rb,
uint16_t pbch_pss_sss_adjust,
int16_t **llr128p,
uint8_t beamforming_mode);
/**
\brief This function generates log-likelihood ratios (decoder input) for single-stream 16QAM received waveforms
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param dlsch_llr llr output
@param dl_ch_mag Squared-magnitude of channel in each resource element position corresponding to allocation, weighted by first mid-point of 64-QAM constellation
@param dl_ch_magb Squared-magnitude of channel in each resource element position corresponding to allocation, weighted by second mid-point of 64-QAM constellation
@param symbol OFDM symbol index in sub-frame
@param first_symbol_flag
@param nb_rb number of RBs for this allocation
@param pbch_pss_sss_adjust PBCH/PSS/SSS RE adjustment (in REs)
@param beamforming_mode beamforming mode
*/
void dlsch_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int16_t *dlsch_llr,
int32_t **dl_ch_mag,
int32_t **dl_ch_magb,
uint8_t symbol,
uint8_t first_symbol_flag,
uint16_t nb_rb,
uint16_t pbch_pss_sss_adjust,
int16_t **llr_save,
uint8_t beamforming_mode);
/** \fn dlsch_siso(LTE_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int32_t **rxdataF_comp_i,
uint8_t l,
uint16_t nb_rb)
\brief This function does the first stage of llr computation for SISO, by just extracting the pilots, PBCH and primary/secondary synchronization sequences.
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param rxdataF_comp_i Compensated channel output for interference
@param l symbol in sub-frame
@param nb_rb Number of RBs in this allocation
*/
void dlsch_siso(LTE_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int32_t **rxdataF_comp_i,
uint8_t l,
uint16_t nb_rb);
/** \fn dlsch_alamouti(LTE_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int32_t **dl_ch_mag,
int32_t **dl_ch_magb,
uint8_t symbol,
uint16_t nb_rb)
\brief This function does Alamouti combining on RX and prepares LLR inputs by skipping pilots, PBCH and primary/secondary synchronization signals.
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param dl_ch_mag First squared-magnitude of channel (16QAM and 64QAM) for LLR computation. Alamouti combining should be performed on this as well. Result is stored in first antenna position
@param dl_ch_magb Second squared-magnitude of channel (64QAM only) for LLR computation. Alamouti combining should be performed on this as well. Result is stored in first antenna position
@param symbol Symbol in sub-frame
@param nb_rb Number of RBs in this allocation
*/
void dlsch_alamouti(LTE_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int32_t **dl_ch_mag,
int32_t **dl_ch_magb,
uint8_t symbol,
uint16_t nb_rb);
/** \fn dlsch_antcyc(LTE_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int32_t **dl_ch_mag,
int32_t **dl_ch_magb,
uint8_t symbol,
uint16_t nb_rb)
\brief This function does antenna selection (based on antenna cycling pattern) on RX and prepares LLR inputs by skipping pilots, PBCH and primary/secondary synchronization signals. Note that this is not LTE, it is just included for comparison purposes.
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param dl_ch_mag First squared-magnitude of channel (16QAM and 64QAM) for LLR computation. Alamouti combining should be performed on this as well. Result is stored in first antenna position
@param dl_ch_magb Second squared-magnitude of channel (64QAM only) for LLR computation. Alamouti combining should be performed on this as well. Result is stored in first antenna position
@param symbol Symbol in sub-frame
@param nb_rb Number of RBs in this allocation
*/
void dlsch_antcyc(LTE_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int32_t **dl_ch_mag,
int32_t **dl_ch_magb,
uint8_t symbol,
uint16_t nb_rb);
/** \fn dlsch_detection_mrc(LTE_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int32_t **rxdataF_comp_i,
int32_t **rho,
int32_t **rho_i,
int32_t **dl_ch_mag,
int32_t **dl_ch_magb,
uint8_t symbol,
uint16_t nb_rb,
uint8_t dual_stream_UE)
\brief This function does maximal-ratio combining for dual-antenna receivers.
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param rxdataF_comp_i Compensated channel output for interference
@param rho Cross correlation between spatial channels
@param rho_i Cross correlation between signal and inteference channels
@param dl_ch_mag First squared-magnitude of channel (16QAM and 64QAM) for LLR computation. Alamouti combining should be performed on this as well. Result is stored in first antenna position
@param dl_ch_magb Second squared-magnitude of channel (64QAM only) for LLR computation. Alamouti combining should be performed on this as well. Result is stored in first antenna position
@param symbol Symbol in sub-frame
@param nb_rb Number of RBs in this allocation
@param dual_stream_UE Flag to indicate dual-stream detection
*/
void dlsch_detection_mrc(LTE_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int32_t **rxdataF_comp_i,
int32_t **rho,
int32_t **rho_i,
int32_t **dl_ch_mag,
int32_t **dl_ch_magb,
int32_t **dl_ch_mag_i,
int32_t **dl_ch_magb_i,
uint8_t symbol,
uint16_t nb_rb,
uint8_t dual_stream_UE);
/** \fn dlsch_extract_rbs_single(int32_t **rxdataF,
int32_t **dl_ch_estimates,
int32_t **rxdataF_ext,
int32_t **dl_ch_estimates_ext,
uint16_t pmi,
uint8_t *pmi_ext,
uint32_t *rb_alloc,
uint8_t symbol,
uint8_t subframe,
LTE_DL_FRAME_PARMS *frame_parms)
\brief This function extracts the received resource blocks, both channel estimates and data symbols,
for the current allocation and for single antenna eNB transmission.
@param rxdataF Raw FFT output of received signal
@param dl_ch_estimates Channel estimates of current slot
@param rxdataF_ext FFT output for RBs in this allocation
@param dl_ch_estimates_ext Channel estimates for RBs in this allocation
@param pmi subband Precoding matrix indicator
@param pmi_ext Extracted PMI for chosen RBs
@param rb_alloc RB allocation vector
@param symbol Symbol to extract
@param subframe Subframe number
@param vrb_type Flag to indicate distributed VRB type
@param high_speed_flag
@param frame_parms Pointer to frame descriptor
*/
uint16_t dlsch_extract_rbs_single(int32_t **rxdataF,
int32_t **dl_ch_estimates,
int32_t **rxdataF_ext,
int32_t **dl_ch_estimates_ext,
uint16_t pmi,
uint8_t *pmi_ext,
uint32_t *rb_alloc,
uint8_t symbol,
uint8_t subframe,
uint32_t high_speed_flag,
LTE_DL_FRAME_PARMS *frame_parms);
/** \fn dlsch_extract_rbs_dual(int32_t **rxdataF,
int32_t **dl_ch_estimates,
int32_t **rxdataF_ext,
int32_t **dl_ch_estimates_ext,
uint16_t pmi,
uint8_t *pmi_ext,
uint32_t *rb_alloc,
uint8_t symbol,
LTE_DL_FRAME_PARMS *frame_parms)
\brief This function extracts the received resource blocks, both channel estimates and data symbols,
for the current allocation and for dual antenna eNB transmission.
@param rxdataF Raw FFT output of received signal
@param dl_ch_estimates Channel estimates of current slot
@param rxdataF_ext FFT output for RBs in this allocation
@param dl_ch_estimates_ext Channel estimates for RBs in this allocation
@param pmi subband Precoding matrix indicator
@param pmi_ext Extracted PMI for chosen RBs
@param rb_alloc RB allocation vector
@param symbol Symbol to extract
@param subframe Subframe index
@param high_speed_flag
@param frame_parms Pointer to frame descriptor
*/
uint16_t dlsch_extract_rbs_dual(int32_t **rxdataF,
int32_t **dl_ch_estimates,
int32_t **rxdataF_ext,
int32_t **dl_ch_estimates_ext,
uint16_t pmi,
uint8_t *pmi_ext,
uint32_t *rb_alloc,
uint8_t symbol,
uint8_t subframe,
uint32_t high_speed_flag,
LTE_DL_FRAME_PARMS *frame_parms);
/** \fn dlsch_extract_rbs_TM7(int32_t **rxdataF,
int32_t **dl_bf_ch_estimates,
int32_t **rxdataF_ext,
int32_t **dl_bf_ch_estimates_ext,
uint32_t *rb_alloc,
uint8_t symbol,
uint8_t subframe,
uint32_t high_speed_flag,
LTE_DL_FRAME_PARMS *frame_parms)
\brief This function extracts the received resource blocks, both channel estimates and data symbols,
for the current allocation and for single antenna eNB transmission.
@param rxdataF Raw FFT output of received signal
@param dl_bf_ch_estimates Beamforming channel estimates of current slot
@param rxdataF_ext FFT output for RBs in this allocation
@param dl_bf_ch_estimates_ext Beamforming channel estimates for RBs in this allocation
@param rb_alloc RB allocation vector
@param symbol Symbol to extract
@param subframe Subframe number
@param high_speed_flag
@param frame_parms Pointer to frame descriptor
*/
uint16_t dlsch_extract_rbs_TM7(int32_t **rxdataF,
int32_t **dl_bf_ch_estimates,
int32_t **rxdataF_ext,
int32_t **dl_bf_ch_estimates_ext,
uint32_t *rb_alloc,
uint8_t symbol,
uint8_t subframe,
uint32_t high_speed_flag,
LTE_DL_FRAME_PARMS *frame_parms);
/** \brief This function performs channel compensation (matched filtering) on the received RBs for this allocation. In addition, it computes the squared-magnitude of the channel with weightings for 16QAM/64QAM detection as well as dual-stream detection (cross-correlation)
@param rxdataF_ext Frequency-domain received signal in RBs to be demodulated
@param dl_ch_estimates_ext Frequency-domain channel estimates in RBs to be demodulated
@param dl_ch_mag First Channel magnitudes (16QAM/64QAM)
@param dl_ch_magb Second weighted Channel magnitudes (64QAM)
@param rxdataF_comp Compensated received waveform
@param rho Cross-correlation between two spatial channels on each RX antenna
@param frame_parms Pointer to frame descriptor
@param symbol Symbol on which to operate
@param first_symbol_flag set to 1 on first DLSCH symbol
@param mod_order Modulation order of allocation
@param nb_rb Number of RBs in allocation
@param output_shift Rescaling for compensated output (should be energy-normalizing)
@param phy_measurements Pointer to UE PHY measurements
*/
void dlsch_channel_compensation(int32_t **rxdataF_ext,
int32_t **dl_ch_estimates_ext,
int32_t **dl_ch_mag,
int32_t **dl_ch_magb,
int32_t **rxdataF_comp,
int32_t **rho,
LTE_DL_FRAME_PARMS *frame_parms,
uint8_t symbol,
uint8_t first_symbol_flag,
uint8_t mod_order,
uint16_t nb_rb,
uint8_t output_shift,
PHY_MEASUREMENTS *phy_measurements);
void dlsch_dual_stream_correlation(LTE_DL_FRAME_PARMS *frame_parms,
unsigned char symbol,
unsigned short nb_rb,
int **dl_ch_estimates_ext,
int **dl_ch_estimates_ext_i,
int **dl_ch_rho_ext,
unsigned char output_shift);
void dlsch_channel_compensation_TM56(int **rxdataF_ext,
int **dl_ch_estimates_ext,
int **dl_ch_mag,
int **dl_ch_magb,
int **rxdataF_comp,
unsigned char *pmi_ext,
LTE_DL_FRAME_PARMS *frame_parms,
PHY_MEASUREMENTS *phy_measurements,
int eNB_id,
unsigned char symbol,
unsigned char mod_order,
unsigned short nb_rb,
unsigned char output_shift,
unsigned char dl_power_off);
void dlsch_channel_compensation_TM3(LTE_DL_FRAME_PARMS *frame_parms,
LTE_UE_PDSCH *lte_ue_pdsch_vars,
PHY_MEASUREMENTS *phy_measurements,
int eNB_id,
unsigned char symbol,
unsigned char mod_order0,
unsigned char mod_order1,
int round,
unsigned short nb_rb,
unsigned char output_shift);
/** \brief This function computes the average channel level over all allocated RBs and antennas (TX/RX) in order to compute output shift for compensated signal
@param dl_ch_estimates_ext Channel estimates in allocated RBs
@param frame_parms Pointer to frame descriptor
@param avg Pointer to average signal strength
@param pilots_flag Flag to indicate pilots in symbol
@param nb_rb Number of allocated RBs
*/
void dlsch_channel_level(int32_t **dl_ch_estimates_ext,
LTE_DL_FRAME_PARMS *frame_parms,
int32_t *avg,
uint8_t pilots_flag,
uint16_t nb_rb);
void dlsch_channel_level_TM3(int **dl_ch_estimates_ext,
LTE_DL_FRAME_PARMS *frame_parms,
int *avg,
uint8_t symbol,
unsigned short nb_rb);
void dlsch_channel_level_TM56(int32_t **dl_ch_estimates_ext,
LTE_DL_FRAME_PARMS *frame_parms,
unsigned char *pmi_ext,
int32_t *avg,
uint8_t symbol_mod,
uint16_t nb_rb);
void dlsch_channel_level_TM7(int32_t **dl_bf_ch_estimates_ext,
LTE_DL_FRAME_PARMS *frame_parms,
int32_t *avg,
uint8_t pilots_flag,
uint16_t nb_rb);
void dlsch_scale_channel(int32_t **dl_ch_estimates_ext,
LTE_DL_FRAME_PARMS *frame_parms,
LTE_UE_DLSCH_t **dlsch_ue,
uint8_t symbol_mod,
uint16_t nb_rb);
/** \brief This is the top-level entry point for DLSCH decoding in UE. It should be replicated on several
threads (on multi-core machines) corresponding to different HARQ processes. The routine first
computes the segmentation information, followed by rate dematching and sub-block deinterleaving the of the
received LLRs computed by dlsch_demodulation for each transport block segment. It then calls the
turbo-decoding algorithm for each segment and stops after either after unsuccesful decoding of at least
one segment or correct decoding of all segments. Only the segment CRCs are check for the moment, the
overall CRC is ignored. Finally transport block reassembly is performed.
@param phy_vars_ue Pointer to ue variables
@param dlsch_llr Pointer to LLR values computed by dlsch_demodulation
@param lte_frame_parms Pointer to frame descriptor
@param dlsch Pointer to DLSCH descriptor
@param subframe Subframe number
@param num_pdcch_symbols Number of PDCCH symbols
@param is_crnti indicates if PDSCH belongs to a CRNTI (necessary for parallelizing decoding threads)
@param llr8_flag If 1, indicate that the 8-bit turbo decoder should be used
@returns 0 on success, 1 on unsuccessful decoding
*/
uint32_t dlsch_decoding(PHY_VARS_UE *phy_vars_ue,
int16_t *dlsch_llr,
LTE_DL_FRAME_PARMS *lte_frame_parms,
LTE_UE_DLSCH_t *dlsch,
LTE_DL_UE_HARQ_t *harq_process,
uint8_t subframe,
uint8_t harq_pid,
uint8_t is_crnti,
uint8_t llr8_flag);
uint32_t dlsch_decoding_emul(PHY_VARS_UE *phy_vars_ue,
uint8_t subframe,
PDSCH_t dlsch_id,
uint8_t eNB_id);
/** \brief This function is the top-level entry point to PDSCH demodulation, after frequency-domain transformation and channel estimation. It performs
- RB extraction (signal and channel estimates)
- channel compensation (matched filtering)
- RE extraction (pilot, PBCH, synch. signals)
- antenna combining (MRC, Alamouti, cycling)
- LLR computation
@param phy_vars_ue Pointer to PHY variables
@param type Type of PDSCH (SI_PDSCH,RA_PDSCH,PDSCH,PMCH)
@param eNB_id eNb index (Nid1) 0,1,2
@param eNB_id_i Interfering eNB index (Nid1) 0,1,2, or 3 in case of MU-MIMO IC receiver
@param subframe Subframe number
@param symbol Symbol on which to act (within sub-frame)
@param first_symbol_flag set to 1 on first DLSCH symbol
@param dual_stream_UE Flag to indicate dual-stream interference cancellation
@param i_mod Modulation order of the interfering stream
*/
int32_t rx_pdsch(PHY_VARS_UE *phy_vars_ue,
PDSCH_t type,
uint8_t eNB_id,
uint8_t eNB_id_i,
uint32_t frame,
uint8_t subframe,
uint8_t symbol,
uint8_t first_symbol_flag,
uint8_t dual_stream_UE,
uint8_t i_mod,
uint8_t harq_pid);
int32_t rx_pdcch(LTE_UE_COMMON *lte_ue_common_vars,
LTE_UE_PDCCH **lte_ue_pdcch_vars,
LTE_DL_FRAME_PARMS *frame_parms,
uint32_t frame,
uint8_t subframe,
uint8_t eNB_id,
MIMO_mode_t mimo_mode,
uint32_t high_speed_flag,
uint8_t is_secondary_ue);
/*! \brief Performs detection of SSS to find cell ID and other framing parameters (FDD/TDD, normal/extended prefix)
@param phy_vars_ue Pointer to UE variables
@param tot_metric Pointer to variable containing maximum metric under framing hypothesis (to be compared to other hypotheses
@param flip_max Pointer to variable indicating if start of frame is in second have of RX buffer (i.e. PSS/SSS is flipped)
@param phase_max Pointer to variable (0 ... 6) containing rought phase offset between PSS and SSS (can be used for carrier
frequency adjustment. 0 means -pi/3, 6 means pi/3.
@returns 0 on success
*/
int rx_sss(PHY_VARS_UE *phy_vars_ue,int32_t *tot_metric,uint8_t *flip_max,uint8_t *phase_max);
/*! \brief receiver for the PBCH
\returns number of tx antennas or -1 if error
*/
uint16_t rx_pbch(LTE_UE_COMMON *lte_ue_common_vars,
LTE_UE_PBCH *lte_ue_pbch_vars,
LTE_DL_FRAME_PARMS *frame_parms,
uint8_t eNB_id,
MIMO_mode_t mimo_mode,
uint32_t high_speed_flag,
uint8_t frame_mod4);
uint16_t rx_pbch_emul(PHY_VARS_UE *phy_vars_ue,
uint8_t eNB_id,
uint8_t pbch_phase);
/*! \brief PBCH scrambling. Applies 36.211 PBCH scrambling procedure.
\param frame_parms Pointer to frame descriptor
\param coded_data Output of the coding and rate matching
\param length Length of the sequence*/
void pbch_scrambling(LTE_DL_FRAME_PARMS *frame_parms,
uint8_t* coded_data,
uint32_t length);
/*! \brief PBCH unscrambling
This is similar to pbch_scrabling with the difference that inputs are signed s16s (llr values) and instead of flipping bits we change signs.
\param frame_parms Pointer to frame descriptor
\param llr Output of the demodulator
\param length Length of the sequence
\param frame_mod4 Frame number modulo 4*/
void pbch_unscrambling(LTE_DL_FRAME_PARMS *frame_parms,
int8_t* llr,
uint32_t length,
uint8_t frame_mod4);
/*! \brief DCI Encoding. This routine codes an arbitrary DCI PDU after appending the 8-bit 3GPP CRC. It then applied sub-block interleaving and rate matching.
\param a Pointer to DCI PDU (coded in bytes)
\param A Length of DCI PDU in bits
\param E Length of DCI PDU in coded bits
\param e Pointer to sequence
\param rnti RNTI for CRC scrambling*/
void dci_encoding(uint8_t *a,
uint8_t A,
uint16_t E,
uint8_t *e,
uint16_t rnti);
/*! \brief Top-level DCI entry point. This routine codes an set of DCI PDUs and performs PDCCH modulation, interleaving and mapping.
\param num_ue_spec_dci Number of UE specific DCI pdus to encode
\param num_common_dci Number of Common DCI pdus to encode
\param dci_alloc Allocation vectors for each DCI pdu
\param n_rnti n_RNTI (see )
\param amp Amplitude of QPSK symbols
\param frame_parms Pointer to DL Frame parameter structure
\param txdataF Pointer to tx signal buffers
\param sub_frame_offset subframe offset in frame
@returns Number of PDCCH symbols
*/
uint8_t generate_dci_top(uint8_t num_ue_spec_dci,
uint8_t num_common_dci,
DCI_ALLOC_t *dci_alloc,
uint32_t n_rnti,
int16_t amp,
LTE_DL_FRAME_PARMS *frame_parms,
int32_t **txdataF,
uint32_t sub_frame_offset);
uint8_t generate_dci_top_emul(PHY_VARS_eNB *phy_vars_eNB,
uint8_t num_ue_spec_dci,
uint8_t num_common_dci,
DCI_ALLOC_t *dci_alloc,
uint8_t subframe);
void generate_64qam_table(void);
void generate_16qam_table(void);
uint16_t extract_crc(uint8_t *dci,uint8_t DCI_LENGTH);
/*! \brief LLR from two streams. This function takes two streams (qpsk modulated) and calculates the LLR, considering one stream as interference.
\param stream0_in pointer to first stream0
\param stream1_in pointer to first stream1
\param stream0_out pointer to output stream
\param rho01 pointer to correlation matrix
\param length*/
void qpsk_qpsk_TM3456(short *stream0_in,
short *stream1_in,
short *stream0_out,
short *rho01,
int length
);
/** \brief Attempt decoding of a particular DCI with given length and format.
@param DCI_LENGTH length of DCI in bits
@param DCI_FMT Format of DCI
@param e e-sequence (soft bits)
@param decoded_output Output of Viterbi decoder
*/
void dci_decoding(uint8_t DCI_LENGTH,
uint8_t DCI_FMT,
int8_t *e,
uint8_t *decoded_output);
/** \brief Do 36.213 DCI decoding procedure by searching different RNTI options and aggregation levels. Currently does
not employ the complexity reducing procedure based on RNTI.
@param phy_vars_ue UE variables
@param dci_alloc Pointer to DCI_ALLOC_t array to store results for DLSCH/ULSCH programming
@param do_common If 1 perform search in common search-space else ue-specific search-space
@param eNB_id eNB Index on which to act
@param subframe Index of subframe
@returns bitmap of occupied CCE positions (i.e. those detected)
*/
uint16_t dci_decoding_procedure(PHY_VARS_UE *phy_vars_ue,
DCI_ALLOC_t *dci_alloc,
int do_common,
int16_t eNB_id,
uint8_t subframe);
uint16_t dci_decoding_procedure_emul(LTE_UE_PDCCH **lte_ue_pdcch_vars,
uint8_t num_ue_spec_dci,
uint8_t num_common_dci,
DCI_ALLOC_t *dci_alloc_tx,
DCI_ALLOC_t *dci_alloc_rx,
int16_t eNB_id);
/** \brief Compute Q (modulation order) based on I_MCS PDSCH. Implements table 7.1.7.1-1 from 36.213.
@param I_MCS */
uint8_t get_Qm(uint8_t I_MCS);
/** \brief Compute Q (modulation order) based on I_MCS for PUSCH. Implements table 8.6.1-1 from 36.213.
@param I_MCS */
uint8_t get_Qm_ul(uint8_t I_MCS);
/** \brief Compute I_TBS (transport-block size) based on I_MCS for PDSCH. Implements table 7.1.7.1-1 from 36.213.
@param I_MCS */
uint8_t get_I_TBS(uint8_t I_MCS);
/** \brief Compute I_TBS (transport-block size) based on I_MCS for PUSCH. Implements table 8.6.1-1 from 36.213.
@param I_MCS */
unsigned char get_I_TBS_UL(unsigned char I_MCS);
/** \brief Compute Q (modulation order) based on downlink I_MCS. Implements table 7.1.7.1-1 from 36.213.
@param I_MCS
@param nb_rb
@return Transport block size */
uint32_t get_TBS_DL(uint8_t mcs, uint16_t nb_rb);
/** \brief Compute Q (modulation order) based on uplink I_MCS. Implements table 7.1.7.1-1 from 36.213.
@param I_MCS
@param nb_rb
@return Transport block size */
uint32_t get_TBS_UL(uint8_t mcs, uint16_t nb_rb);
/* \brief Return bit-map of resource allocation for a given DCI rballoc (RIV format) and vrb type
@param N_RB_DL number of PRB on DL
@param indicator for even/odd slot
@param vrb vrb index
@param Ngap Gap indicator
*/
uint32_t get_prb(int N_RB_DL,int odd_slot,int vrb,int Ngap);
/* \brief Return prb for a given vrb index
@param vrb_type VRB type (0=localized,1=distributed)
@param rb_alloc_dci rballoc field from DCI
*/
uint32_t get_rballoc(vrb_t vrb_type,uint16_t rb_alloc_dci);
/* \brief Return bit-map of resource allocation for a given DCI rballoc (RIV format) and vrb type
@returns Transmission mode (1-7)
*/
uint8_t get_transmission_mode(module_id_t Mod_id, uint8_t CC_id, rnti_t rnti);
/* \brief
@param ra_header Header of resource allocation (0,1) (See sections 7.1.6.1/7.1.6.2 of 36.213 Rel8.6)
@param rb_alloc Bitmap allocation from DCI (format 1,2)
@returns number of physical resource blocks
*/
uint32_t conv_nprb(uint8_t ra_header,uint32_t rb_alloc,int N_RB_DL);
int get_G(LTE_DL_FRAME_PARMS *frame_parms,uint16_t nb_rb,uint32_t *rb_alloc,uint8_t mod_order,uint8_t Nl,uint8_t num_pdcch_symbols,int frame,uint8_t subframe, uint8_t beamforming_mode);
int adjust_G(LTE_DL_FRAME_PARMS *frame_parms,uint32_t *rb_alloc,uint8_t mod_order,uint8_t subframe);
int adjust_G2(LTE_DL_FRAME_PARMS *frame_parms,uint32_t *rb_alloc,uint8_t mod_order,uint8_t subframe,uint8_t symbol);
#ifndef modOrder
#define modOrder(I_MCS,I_TBS) ((I_MCS-I_TBS)*2+2) // Find modulation order from I_TBS and I_MCS
#endif
/** \fn uint8_t I_TBS2I_MCS(uint8_t I_TBS);
\brief This function maps I_tbs to I_mcs according to Table 7.1.7.1-1 in 3GPP TS 36.213 V8.6.0. Where there is two supported modulation orders for the same I_TBS then either high or low modulation is chosen by changing the equality of the two first comparisons in the if-else statement.
\param I_TBS Index of Transport Block Size
\return I_MCS given I_TBS
*/
uint8_t I_TBS2I_MCS(uint8_t I_TBS);
/** \fn uint8_t SE2I_TBS(float SE,
uint8_t N_PRB,
uint8_t symbPerRB);
\brief This function maps a requested throughput in number of bits to I_tbs. The throughput is calculated as a function of modulation order, RB allocation and number of symbols per RB. The mapping orginates in the "Transport block size table" (Table 7.1.7.2.1-1 in 3GPP TS 36.213 V8.6.0)
\param SE Spectral Efficiency (before casting to integer, multiply by 1024, remember to divide result by 1024!)
\param N_PRB Number of PhysicalResourceBlocks allocated \sa lte_frame_parms->N_RB_DL
\param symbPerRB Number of symbols per resource block allocated to this channel
\return I_TBS given an SE and an N_PRB
*/
uint8_t SE2I_TBS(float SE,
uint8_t N_PRB,
uint8_t symbPerRB);
/** \brief This function generates the sounding reference symbol (SRS) for the uplink according to 36.211 v8.6.0. If IFFT_FPGA is defined, the SRS is quantized to a QPSK sequence.
@param frame_parms LTE DL Frame Parameters
@param soundingrs_ul_config_dedicated Dynamic configuration from RRC during Connection Establishment
@param txdataF pointer to the frequency domain TX signal
@returns 0 on success*/
int generate_srs_rx(LTE_DL_FRAME_PARMS *frame_parms,
SOUNDINGRS_UL_CONFIG_DEDICATED *soundingrs_ul_config_dedicated,
int *txdataF);
int32_t generate_srs_tx_emul(PHY_VARS_UE *phy_vars_ue,
uint8_t subframe);
/*!
\brief This function is similar to generate_srs_tx but generates a conjugate sequence for channel estimation. If IFFT_FPGA is defined, the SRS is quantized to a QPSK sequence.
@param phy_vars_ue Pointer to PHY_VARS structure
@param eNB_id Index of destination eNB for this SRS
@param amp Linear amplitude of SRS
@param subframe Index of subframe on which to act
@returns 0 on success, -1 on error with message
*/
int32_t generate_srs_tx(PHY_VARS_UE *phy_vars_ue,
uint8_t eNB_id,
int16_t amp,
uint32_t subframe);
/*!
\brief This function generates the downlink reference signal for the PUSCH according to 36.211 v8.6.0. The DRS occuies the RS defined by rb_alloc and the symbols 2 and 8 for extended CP and 3 and 10 for normal CP.
*/
int32_t generate_drs_pusch(PHY_VARS_UE *phy_vars_ue,
UE_rxtx_proc_t *proc,
uint8_t eNB_id,
int16_t amp,
uint32_t subframe,
uint32_t first_rb,
uint32_t nb_rb,
uint8_t ant);
/*!
\brief This function initializes the Group Hopping, Sequence Hopping and nPRS sequences for PUCCH/PUSCH according to 36.211 v8.6.0. It should be called after configuration of UE (reception of SIB2/3) and initial configuration of eNB (or after reconfiguration of cell-specific parameters).
@param frame_parms Pointer to a LTE_DL_FRAME_PARMS structure (eNB or UE)*/
void init_ul_hopping(LTE_DL_FRAME_PARMS *frame_parms);
/*!
\brief This function implements the initialization of paging parameters for UE (See Section 7, 36.304).It must be called after setting IMSImod1024 during UE startup and after receiving SIB2
@param ue Pointer to UE context
@param defaultPagingCycle T from 36.304 (0=32,1=64,2=128,3=256)
@param nB nB from 36.304 (0=4T,1=2T,2=T,3=T/2,4=T/4,5=T/8,6=T/16,7=T/32*/
int init_ue_paging_info(PHY_VARS_UE *ue, long defaultPagingCycle, long nB);
int32_t compareints (const void * a, const void * b);
void ulsch_modulation(int32_t **txdataF,
int16_t amp,
frame_t frame,
uint32_t subframe,
LTE_DL_FRAME_PARMS *frame_parms,
LTE_UE_ULSCH_t *ulsch);
void ulsch_extract_rbs_single(int32_t **rxdataF,
int32_t **rxdataF_ext,
uint32_t first_rb,
uint32_t nb_rb,
uint8_t l,
uint8_t Ns,
LTE_DL_FRAME_PARMS *frame_parms);
uint8_t subframe2harq_pid(LTE_DL_FRAME_PARMS *frame_parms,frame_t frame,uint8_t subframe);
uint8_t subframe2harq_pid_eNBrx(LTE_DL_FRAME_PARMS *frame_parms,uint8_t subframe);
int generate_ue_dlsch_params_from_dci(int frame,
uint8_t subframe,
void *dci_pdu,
rnti_t rnti,
DCI_format_t dci_format,
LTE_UE_DLSCH_t **dlsch,
LTE_DL_FRAME_PARMS *frame_parms,
PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,
uint16_t si_rnti,
uint16_t ra_rnti,
uint16_t p_rnti,
uint8_t beamforming_mode);
int32_t generate_eNB_dlsch_params_from_dci(int frame,
uint8_t subframe,
void *dci_pdu,
rnti_t rnti,
DCI_format_t dci_format,
LTE_eNB_DLSCH_t **dlsch_eNB,
LTE_DL_FRAME_PARMS *frame_parms,
PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,
uint16_t si_rnti,
uint16_t ra_rnti,
uint16_t p_rnti,
uint16_t DL_pmi_single,
uint8_t beamforming_mode);
int32_t generate_eNB_ulsch_params_from_rar(uint8_t *rar_pdu,
frame_t frame,
uint8_t subframe,
LTE_eNB_ULSCH_t *ulsch,
LTE_DL_FRAME_PARMS *frame_parms);
int generate_ue_ulsch_params_from_dci(void *dci_pdu,
rnti_t rnti,
uint8_t subframe,
DCI_format_t dci_format,
PHY_VARS_UE *phy_vars_ue,
UE_rxtx_proc_t *proc,
uint16_t si_rnti,
uint16_t ra_rnti,
uint16_t p_rnti,
uint16_t cba_rnti,
uint8_t eNB_id,
uint8_t use_srs);
int32_t generate_ue_ulsch_params_from_rar(PHY_VARS_UE *phy_vars_ue,
UE_rxtx_proc_t *proc,
uint8_t eNB_id);
double sinr_eff_cqi_calc(PHY_VARS_UE *phy_vars_ue,
uint8_t eNB_id);
uint8_t sinr2cqi(double sinr,uint8_t trans_mode);
int generate_eNB_ulsch_params_from_dci(PHY_VARS_eNB *PHY_vars_eNB,
eNB_rxtx_proc_t *proc,
void *dci_pdu,
rnti_t rnti,
DCI_format_t dci_format,
uint8_t UE_id,
uint16_t si_rnti,
uint16_t ra_rnti,
uint16_t p_rnti,
uint16_t cba_rnti,
uint8_t use_srs);
void dump_ulsch(PHY_VARS_eNB *phy_vars_eNB,eNB_rxtx_proc_t *proc,uint8_t UE_id);
int dump_dci(LTE_DL_FRAME_PARMS *frame_parms, DCI_ALLOC_t *dci);
int dump_ue_stats(PHY_VARS_UE *phy_vars_ue, UE_rxtx_proc_t *proc, char* buffer, int length, runmode_t mode, int input_level_dBm);
int dump_eNB_stats(PHY_VARS_eNB *phy_vars_eNB, char* buffer, int length);
void generate_pcfich_reg_mapping(LTE_DL_FRAME_PARMS *frame_parms);
void pcfich_scrambling(LTE_DL_FRAME_PARMS *frame_parms,
uint8_t subframe,
uint8_t *b,
uint8_t *bt);
void pcfich_unscrambling(LTE_DL_FRAME_PARMS *frame_parms,
uint8_t subframe,
int16_t *d);
void generate_pcfich(uint8_t num_pdcch_symbols,
int16_t amp,
LTE_DL_FRAME_PARMS *frame_parms,
int32_t **txdataF,
uint8_t subframe);
uint8_t rx_pcfich(LTE_DL_FRAME_PARMS *frame_parms,
uint8_t subframe,
LTE_UE_PDCCH *lte_ue_pdcch_vars,
MIMO_mode_t mimo_mode);
void generate_phich_reg_mapping(LTE_DL_FRAME_PARMS *frame_parms);
void init_transport_channels(uint8_t);
void generate_RIV_tables(void);
/*!
\brief This function performs the initial cell search procedure - PSS detection, SSS detection and PBCH detection. At the
end, the basic frame parameters are known (Frame configuration - TDD/FDD and cyclic prefix length,
N_RB_DL, PHICH_CONFIG and Nid_cell) and the UE can begin decoding PDCCH and DLSCH SI to retrieve the rest. Once these
parameters are know, the routine calls some basic initialization routines (cell-specific reference signals, etc.)
@param phy_vars_ue Pointer to UE variables
*/
int initial_sync(PHY_VARS_UE *phy_vars_ue, runmode_t mode);
void rx_ulsch(PHY_VARS_eNB *phy_vars_eNB,
eNB_rxtx_proc_t *proc,
uint8_t eNB_id, // this is the effective sector id
uint8_t UE_id,
LTE_eNB_ULSCH_t **ulsch,
uint8_t cooperation_flag);
void rx_ulsch_emul(PHY_VARS_eNB *phy_vars_eNB,
eNB_rxtx_proc_t *proc,
uint8_t sect_id,
uint8_t UE_index);
/*!
\brief Encoding of PUSCH/ACK/RI/ACK from 36-212.
@param a Pointer to ulsch SDU
@param frame_parms Pointer to Frame parameters
@param ulsch Pointer to ulsch descriptor
@param harq_pid HARQ process ID
@param tmode Transmission mode (1-7)
@param control_only_flag Generate PUSCH with control information only
@param Nbundled Parameter for ACK/NAK bundling (36.213 Section 7.3)
*/
uint32_t ulsch_encoding(uint8_t *a,
PHY_VARS_UE *phy_vars_ue,
uint8_t harq_pid,
uint8_t eNB_id,
uint8_t tmode,
uint8_t control_only_flag,
uint8_t Nbundled);
/*!
\brief Encoding of PUSCH/ACK/RI/ACK from 36-212 for emulation
@param ulsch_buffer Pointer to ulsch SDU
@param phy_vars_ue Pointer to UE top-level descriptor
@param eNB_id ID of eNB receiving this PUSCH
@param harq_pid HARQ process ID
@param control_only_flag Generate PUSCH with control information only
*/
int32_t ulsch_encoding_emul(uint8_t *ulsch_buffer,
PHY_VARS_UE *phy_vars_ue,
uint8_t eNB_id,
uint8_t harq_pid,
uint8_t control_only_flag);
/*!
\brief Decoding of PUSCH/ACK/RI/ACK from 36-212.
@param phy_vars_eNB Pointer to eNB top-level descriptor
@param proc Pointer to RXTX proc variables
@param UE_id ID of UE transmitting this PUSCH
@param subframe Index of subframe for PUSCH
@param control_only_flag Receive PUSCH with control information only
@param Nbundled Nbundled parameter for ACK/NAK scrambling from 36-212/36-213
@param llr8_flag If 1, indicate that the 8-bit turbo decoder should be used
@returns 0 on success
*/
unsigned int ulsch_decoding(PHY_VARS_eNB *phy_vars_eNB,
eNB_rxtx_proc_t *proc,
uint8_t UE_id,
uint8_t control_only_flag,
uint8_t Nbundled,
uint8_t llr8_flag);
/*!
\brief Decoding of ULSCH data component from 36-212. This one spawns 1 worker thread in parallel,half of the segments in each thread.
@param phy_vars_eNB Pointer to eNB top-level descriptor
@param UE_id ID of UE transmitting this PUSCH
@param harq_pid HARQ process ID
@param llr8_flag If 1, indicate that the 8-bit turbo decoder should be used
@returns 0 on success
*/
int ulsch_decoding_data_2thread(PHY_VARS_eNB *eNB,
int UE_id,
int harq_pid,
int llr8_flag);
/*!
\brief Decoding of ULSCH data component from 36-212. This one is single thread.
@param phy_vars_eNB Pointer to eNB top-level descriptor
@param UE_id ID of UE transmitting this PUSCH
@param harq_pid HARQ process ID
@param llr8_flag If 1, indicate that the 8-bit turbo decoder should be used
@returns 0 on success
*/
int ulsch_decoding_data(PHY_VARS_eNB *eNB,
int UE_id,
int harq_pid,
int llr8_flag);
uint32_t ulsch_decoding_emul(PHY_VARS_eNB *phy_vars_eNB,
eNB_rxtx_proc_t *proc,
uint8_t UE_index,
uint16_t *crnti);
void generate_phich_top(PHY_VARS_eNB *phy_vars_eNB,
eNB_rxtx_proc_t *proc,
int16_t amp,
uint8_t sect_id);
/* \brief This routine demodulates the PHICH and updates PUSCH/ULSCH parameters.
@param phy_vars_ue Pointer to UE variables
@param proc Pointer to RXN_TXNp4 proc
@param subframe Subframe of received PDCCH/PHICH
@param eNB_id Index of eNB
*/
void rx_phich(PHY_VARS_UE *phy_vars_ue,
UE_rxtx_proc_t *proc,
uint8_t subframe,
uint8_t eNB_id);
/** \brief This routine provides the relationship between a PHICH TXOp and its corresponding PUSCH subframe (Table 8.3.-1 from 36.213).
@param frame_parms Pointer to DL frame configuration parameters
@param subframe Subframe of received/transmitted PHICH
@returns subframe of PUSCH transmission
*/
uint8_t phich_subframe2_pusch_subframe(LTE_DL_FRAME_PARMS *frame_parms,uint8_t subframe);
/** \brief This routine provides the relationship between a PHICH TXOp and its corresponding PUSCH frame (Table 8.3.-1 from 36.213).
@param frame_parms Pointer to DL frame configuration parameters
@param frame Frame of received/transmitted PHICH
@param subframe Subframe of received/transmitted PHICH
@returns frame of PUSCH transmission
*/
uint8_t phich_frame2_pusch_frame(LTE_DL_FRAME_PARMS *frame_parms,frame_t frame,uint8_t subframe);
void print_CQI(void *o,UCI_format_t uci_format,uint8_t eNB_id,int N_RB_DL);
void extract_CQI(void *o,UCI_format_t uci_format,LTE_eNB_UE_stats *stats,uint8_t N_RB_DL, uint16_t * crnti, uint8_t * access_mode);
void fill_CQI(LTE_UE_ULSCH_t *ulsch,PHY_MEASUREMENTS *meas,uint8_t eNB_id, uint8_t harq_pid,int N_RB_DL, rnti_t rnti, uint8_t trans_mode,double sinr_eff);
void reset_cba_uci(void *o);
uint16_t quantize_subband_pmi(PHY_MEASUREMENTS *meas,uint8_t eNB_id,int nb_subbands);
uint16_t quantize_subband_pmi2(PHY_MEASUREMENTS *meas,uint8_t eNB_id,uint8_t a_id,int nb_subbands);
uint64_t pmi2hex_2Ar1(uint32_t pmi);
uint64_t pmi2hex_2Ar2(uint32_t pmi);
uint64_t cqi2hex(uint32_t cqi);
uint16_t computeRIV(uint16_t N_RB_DL,uint16_t RBstart,uint16_t Lcrbs);
uint32_t pmi_extend(LTE_DL_FRAME_PARMS *frame_parms,uint8_t wideband_pmi);
int get_nCCE_offset_l1(int *CCE_table,
const unsigned char L,
const int nCCE,
const int common_dci,
const unsigned short rnti,
const unsigned char subframe);
uint16_t get_nCCE(uint8_t num_pdcch_symbols,LTE_DL_FRAME_PARMS *frame_parms,uint8_t mi);
uint16_t get_nquad(uint8_t num_pdcch_symbols,LTE_DL_FRAME_PARMS *frame_parms,uint8_t mi);
uint8_t get_mi(LTE_DL_FRAME_PARMS *frame,uint8_t subframe);
uint16_t get_nCCE_mac(uint8_t Mod_id,uint8_t CC_id,int num_pdcch_symbols,int subframe);
uint8_t get_num_pdcch_symbols(uint8_t num_dci,DCI_ALLOC_t *dci_alloc,LTE_DL_FRAME_PARMS *frame_parms,uint8_t subframe);
void pdcch_interleaving(LTE_DL_FRAME_PARMS *frame_parms,int32_t **z, int32_t **wbar,uint8_t n_symbols_pdcch,uint8_t mi);
void pdcch_unscrambling(LTE_DL_FRAME_PARMS *frame_parms,
uint8_t subframe,
int8_t* llr,
uint32_t length);
void pdcch_scrambling(LTE_DL_FRAME_PARMS *frame_parms,
uint8_t subframe,
uint8_t *e,
uint32_t length);
void dlsch_scrambling(LTE_DL_FRAME_PARMS *frame_parms,
int mbsfn_flag,
LTE_eNB_DLSCH_t *dlsch,
int G,
uint8_t q,
uint8_t Ns);
void dlsch_unscrambling(LTE_DL_FRAME_PARMS *frame_parms,
int mbsfn_flag,
LTE_UE_DLSCH_t *dlsch,
int G,
int16_t* llr,
uint8_t q,
uint8_t Ns);
void init_ncs_cell(LTE_DL_FRAME_PARMS *frame_parms,uint8_t ncs_cell[20][7]);
void generate_pucch1x(int32_t **txdataF,
LTE_DL_FRAME_PARMS *frame_parms,
uint8_t ncs_cell[20][7],
PUCCH_FMT_t fmt,
PUCCH_CONFIG_DEDICATED *pucch_config_dedicated,
uint16_t n1_pucch,
uint8_t shortened_format,
uint8_t *payload,
int16_t amp,
uint8_t subframe);
void generate_pucch2x(int32_t **txdataF,
LTE_DL_FRAME_PARMS *fp,
uint8_t ncs_cell[20][7],
PUCCH_FMT_t fmt,
PUCCH_CONFIG_DEDICATED *pucch_config_dedicated,
uint16_t n2_pucch,
uint16_t *payload,
int A,
int B2,
int16_t amp,
uint8_t subframe,
uint16_t rnti);
void generate_pucch_emul(PHY_VARS_UE *phy_vars_ue,
UE_rxtx_proc_t *proc,
PUCCH_FMT_t format,
uint8_t ncs1,
uint8_t *pucch_ack_payload,
uint8_t sr);
uint32_t rx_pucch(PHY_VARS_eNB *phy_vars_eNB,
PUCCH_FMT_t fmt,
uint8_t UE_id,
uint16_t n1_pucch,
uint16_t n2_pucch,
uint8_t shortened_format,
uint8_t *payload,
int frame,
uint8_t subframe,
uint8_t pucch1_thres);
int32_t rx_pucch_emul(PHY_VARS_eNB *phy_vars_eNB,
eNB_rxtx_proc_t *proc,
uint8_t UE_index,
PUCCH_FMT_t fmt,
uint8_t n1_pucch_sel,
uint8_t *payload);
/*!
\brief Check for PRACH TXop in subframe
@param frame_parms Pointer to LTE_DL_FRAME_PARMS
@param frame frame index to check
@param subframe subframe index to check
@returns 0 on success
*/
int is_prach_subframe(LTE_DL_FRAME_PARMS *frame_parms,frame_t frame, uint8_t subframe);
/*!
\brief Generate PRACH waveform
@param phy_vars_ue Pointer to ue top-level descriptor
@param eNB_id Index of destination eNB
@param subframe subframe index to operate on
@param index of preamble (0-63)
@param Nf System frame number
@returns 0 on success
*/
int32_t generate_prach(PHY_VARS_UE *phy_vars_ue,uint8_t eNB_id,uint8_t subframe,uint16_t Nf);
/*!
\brief Process PRACH waveform
@param phy_vars_eNB Pointer to eNB top-level descriptor
@param preamble_energy_list List of energies for each candidate preamble
@param preamble_delay_list List of delays for each candidate preamble
@param Nf System frame number
@param tdd_mapindex Index of PRACH resource in Table 5.7.1-4 (TDD)
@returns 0 on success
*/
void rx_prach(PHY_VARS_eNB *phy_vars_eNB,uint16_t *preamble_energy_list, uint16_t *preamble_delay_list, uint16_t Nf, uint8_t tdd_mapindex);
/*!
\brief Helper for MAC, returns number of available PRACH in TDD for a particular configuration index
@param frame_parms Pointer to LTE_DL_FRAME_PARMS structure
@returns 0-5 depending on number of available prach
*/
uint8_t get_num_prach_tdd(LTE_DL_FRAME_PARMS *frame_parms);
/*!
\brief Return the PRACH format as a function of the Configuration Index and Frame type.
@param prach_ConfigIndex PRACH Configuration Index
@param frame_type 0-FDD, 1-TDD
@returns 0-1 accordingly
*/
uint8_t get_prach_fmt(uint8_t prach_ConfigIndex,lte_frame_type_t frame_type);
/*!
\brief Helper for MAC, returns frequency index of PRACH resource in TDD for a particular configuration index
@param frame_parms Pointer to LTE_DL_FRAME_PARMS structure
@returns 0-5 depending on number of available prach
*/
uint8_t get_fid_prach_tdd(LTE_DL_FRAME_PARMS *frame_parms,uint8_t tdd_map_index);
/*!
\brief Comp ute DFT of PRACH ZC sequences. Used for generation of prach in UE and reception of PRACH in eNB.
@param prach_config_common Pointer to prachConfigCommon structure
@param Xu DFT output
*/
void compute_prach_seq(PRACH_CONFIG_COMMON *prach_config_common,
lte_frame_type_t frame_type,
uint32_t X_u[64][839]);
void init_prach_tables(int N_ZC);
void init_unscrambling_lut(void);
void init_scrambling_lut(void);
/*!
\brief Return the status of MBSFN in this frame/subframe
@param frame Frame index
@param subframe Subframe index
@param frame_parms Pointer to frame parameters
@returns 1 if subframe is for MBSFN
*/
int is_pmch_subframe(frame_t frame, int subframe, LTE_DL_FRAME_PARMS *frame_parms);
uint8_t is_not_pilot(uint8_t pilots, uint8_t re, uint8_t nushift, uint8_t use2ndpilots);
uint8_t is_not_UEspecRS(int8_t lprime, uint8_t re, uint8_t nushift, uint8_t Ncp, uint8_t beamforming_mode);
uint32_t dlsch_decoding_abstraction(double *dlsch_MIPB,
LTE_DL_FRAME_PARMS *lte_frame_parms,
LTE_UE_DLSCH_t *dlsch,
uint8_t subframe,
uint8_t num_pdcch_symbols);
// DL power control functions
double get_pa_dB(PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated);
double computeRhoA_eNB(PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,
LTE_eNB_DLSCH_t *dlsch_eNB,
int dl_power_off);
double computeRhoB_eNB(PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,
PDSCH_CONFIG_COMMON *pdsch_config_common,
uint8_t n_antenna_port,
LTE_eNB_DLSCH_t *dlsch_eNB,int dl_power_off);
double computeRhoA_UE(PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,
LTE_UE_DLSCH_t *dlsch_ue,
uint8_t dl_power_off);
double computeRhoB_UE(PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,
PDSCH_CONFIG_COMMON *pdsch_config_common,
uint8_t n_antenna_port,
LTE_UE_DLSCH_t *dlsch_ue,
uint8_t dl_power_off);
/*void compute_sqrt_RhoAoRhoB(PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,
PDSCH_CONFIG_COMMON *pdsch_config_common,
uint8_t n_antenna_port,
LTE_UE_DLSCH_t *dlsch_ue);
*/
uint8_t get_prach_prb_offset(LTE_DL_FRAME_PARMS *frame_parms, uint8_t tdd_mapindex, uint16_t Nf);
uint8_t ul_subframe2pdcch_alloc_subframe(LTE_DL_FRAME_PARMS *frame_parms,uint8_t n);
/**@}*/
#endif