nr_polar_decoding_tools.c 16.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
/*
 * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The OpenAirInterface Software Alliance licenses this file to You under
 * the OAI Public License, Version 1.1  (the "License"); you may not use this file
 * except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.openairinterface.org/?page_id=698
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *-------------------------------------------------------------------------------
 * For more information about the OpenAirInterface (OAI) Software Alliance:
 *      contact@openairinterface.org
 */

/*!\file PHY/CODING/nrPolar_tools/nr_polar_decoding_tools.c
 * \brief
 * \author Turker Yilmaz
 * \date 2018
 * \version 0.1
 * \company EURECOM
 * \email turker.yilmaz@eurecom.fr
 * \note
 * \warning
*/

#include "PHY/CODING/nrPolar_tools/nr_polar_defs.h"
#include "PHY/sse_intrin.h"
#include "PHY/impl_defs_top.h"

//#define DEBUG_NEW_IMPL 1

void updateLLR(double ***llr,
			   uint8_t **llrU,
			   uint8_t ***bit,
			   uint8_t **bitU,
			   uint8_t listSize,
			   uint16_t row,
			   uint16_t col,
			   uint16_t xlen,
			   uint8_t ylen)
{
	uint16_t offset = (xlen/(pow(2,(ylen-col-1))));
	for (uint8_t i=0; i<listSize; i++) {
		if (( (row) % (2*offset) ) >= offset ) {
			if(bitU[row-offset][col]==0) updateBit(bit, bitU, listSize, (row-offset), col, xlen, ylen);
			if(llrU[row-offset][col+1]==0) updateLLR(llr, llrU, bit, bitU, listSize, (row-offset), (col+1), xlen, ylen);
			if(llrU[row][col+1]==0) updateLLR(llr, llrU, bit, bitU, listSize, row, (col+1), xlen, ylen);
			llr[row][col][i] = (pow((-1),bit[row-offset][col][i])*llr[row-offset][col+1][i]) + llr[row][col+1][i];
		} else {
			if(llrU[row][col+1]==0) updateLLR(llr, llrU, bit, bitU, listSize, row, (col+1), xlen, ylen);
			if(llrU[row+offset][col+1]==0) updateLLR(llr, llrU, bit, bitU, listSize, (row+offset), (col+1), xlen, ylen);
			computeLLR(llr, row, col, i, offset);
		}
	}
	llrU[row][col]=1;

	//	printf("LLR (a %f, b %f): llr[%d][%d] %f\n",32*a,32*b,col,row,32*llr[col][row]);
}

void updateBit(uint8_t ***bit,
			   uint8_t **bitU,
			   uint8_t listSize,
			   uint16_t row,
			   uint16_t col,
			   uint16_t xlen,
			   uint8_t ylen)
{
	uint16_t offset = ( xlen/(pow(2,(ylen-col))) );

	for (uint8_t i=0; i<listSize; i++) {
		if (( (row) % (2*offset) ) >= offset ) {
			if (bitU[row][col-1]==0) updateBit(bit, bitU, listSize, row, (col-1), xlen, ylen);
			bit[row][col][i] = bit[row][col-1][i];
		} else {
			if (bitU[row][col-1]==0) updateBit(bit, bitU, listSize, row, (col-1), xlen, ylen);
			if (bitU[row+offset][col-1]==0) updateBit(bit, bitU, listSize, (row+offset), (col-1), xlen, ylen);
			bit[row][col][i] = ( (bit[row][col-1][i]+bit[row+offset][col-1][i]) % 2);
		}
	}

	bitU[row][col]=1;
}

void updatePathMetric(double *pathMetric,
		              double ***llr,
					  uint8_t listSize,
					  uint8_t bitValue,
					  uint16_t row)
{
	int8_t multiplier = (2*bitValue) - 1;
	for (uint8_t i=0; i<listSize; i++)
		pathMetric[i] += log ( 1 + exp(multiplier*llr[row][0][i]) ) ; //eq. (11b)

}

void updatePathMetric2(double *pathMetric,
					   double ***llr,
					   uint8_t listSize,
					   uint16_t row)
{
	double *tempPM = malloc(sizeof(double) * listSize);
	memcpy(tempPM, pathMetric, (sizeof(double) * listSize));

	uint8_t bitValue = 0;
	int8_t multiplier = (2 * bitValue) - 1;
	for (uint8_t i = 0; i < listSize; i++)
		pathMetric[i] += log(1 + exp(multiplier * llr[row][0][i])); //eq. (11b)

	bitValue = 1;
	multiplier = (2 * bitValue) - 1;
	for (uint8_t i = listSize; i < 2*listSize; i++)
		pathMetric[i] = tempPM[(i-listSize)] + log(1 + exp(multiplier * llr[row][0][(i-listSize)])); //eq. (11b)

	free(tempPM);
}

void computeLLR(double ***llr,
				uint16_t row,
				uint16_t col,
				uint8_t i,
				uint16_t offset)
{
	double a = llr[row][col + 1][i];
	double b = llr[row + offset][col + 1][i];
	llr[row][col][i] = log((exp(a + b) + 1) / (exp(a) + exp(b))); //eq. (8a)
}

void updateCrcChecksum(uint8_t **crcChecksum,
					   uint8_t **crcGen,
					   uint8_t listSize,
					   uint32_t i2,
					   uint8_t len)
{
	for (uint8_t i = 0; i < listSize; i++) {
		for (uint8_t j = 0; j < len; j++) {
			crcChecksum[j][i] = ( (crcChecksum[j][i] + crcGen[i2][j]) % 2 );
		}
	}
}

void updateCrcChecksum2(uint8_t **crcChecksum,
						uint8_t **crcGen,
						uint8_t listSize,
						uint32_t i2,
						uint8_t len)
{
	for (uint8_t i = 0; i < listSize; i++) {
		for (uint8_t j = 0; j < len; j++) {
			crcChecksum[j][i+listSize] = ( (crcChecksum[j][i] + crcGen[i2][j]) % 2 );
		}
	}
}



decoder_node_t *new_decoder_node(int first_leaf_index, int level) {

  decoder_node_t *node=(decoder_node_t *)malloc(sizeof(decoder_node_t));

  node->first_leaf_index=first_leaf_index;
  node->level=level;
  node->Nv = 1<<level;
  node->leaf = 0;
  node->left=(decoder_node_t *)NULL;
  node->right=(decoder_node_t *)NULL;
  node->all_frozen=0;
  node->alpha  = (int16_t*)malloc16(node->Nv*sizeof(int16_t));
  node->beta   = (int16_t*)malloc16(node->Nv*sizeof(int16_t));
  memset((void*)node->beta,-1,node->Nv*sizeof(int16_t));
  
  return(node);
}

decoder_node_t *add_nodes(int level, int first_leaf_index, t_nrPolar_params *polarParams) {

  int all_frozen_below = 1;
  int Nv = 1<<level;
  decoder_node_t *new_node = new_decoder_node(first_leaf_index, level);
#ifdef DEBUG_NEW_IMPL
  printf("New node %d order %d, level %d\n",polarParams->tree.num_nodes,Nv,level);
#endif
  polarParams->tree.num_nodes++;
  if (level==0) {
#ifdef DEBUG_NEW_IMPL
    printf("leaf %d (%s)\n", first_leaf_index, polarParams->information_bit_pattern[first_leaf_index]==1 ? "information or crc" : "frozen");
#endif
    new_node->leaf=1;
    new_node->all_frozen = polarParams->information_bit_pattern[first_leaf_index]==0 ? 1 : 0;
    return new_node; // this is a leaf node
  }

  for (int i=0;i<Nv;i++) {
    if (polarParams->information_bit_pattern[i+first_leaf_index]>0)
    	all_frozen_below=0;
  }

  if (all_frozen_below==0)
	  new_node->left=add_nodes(level-1, first_leaf_index, polarParams);
  else {
#ifdef DEBUG_NEW_IMPL
    printf("aggregating frozen bits %d ... %d at level %d (%s)\n",first_leaf_index,first_leaf_index+Nv-1,level,((first_leaf_index/Nv)&1)==0?"left":"right");
#endif
    new_node->leaf=1;
    new_node->all_frozen=1;
  }
  if (all_frozen_below==0)
	  new_node->right=add_nodes(level-1,first_leaf_index+(Nv/2),polarParams);

#ifdef DEBUG_NEW_IMPL
  printf("new_node (%d): first_leaf_index %d, left %p, right %p\n",Nv,first_leaf_index,new_node->left,new_node->right);
#endif

  return(new_node);
}

void build_decoder_tree(t_nrPolar_params *polarParams)
{
  polarParams->tree.num_nodes=0;
  polarParams->tree.root = add_nodes(polarParams->n,0,polarParams);
#ifdef DEBUG_NEW_IMPL
  printf("root : left %p, right %p\n",polarParams->tree.root->left,polarParams->tree.root->right);
#endif
}

#if defined(__arm__) || defined(__aarch64__)
// translate 1-1 SIMD functions from SSE to NEON
#define __m128i int16x8_t
#define __m64 int8x8_t
#define _mm_abs_epi16(a) vabsq_s16(a)
#define _mm_min_epi16(a,b) vminq_s16(a,b)
#define _mm_subs_epi16(a,b) vsubq_s16(a,b)
#define _mm_abs_pi16(a) vabs_s16(a)
#define _mm_min_pi16(a,b) vmin_s16(a,b)
#define _mm_subs_pi16(a,b) vsub_s16(a,b)
#endif

void applyFtoleft(const t_nrPolar_params *pp, decoder_node_t *node) {
  int16_t *alpha_v=node->alpha;
  int16_t *alpha_l=node->left->alpha;
  int16_t *betal = node->left->beta;
  int16_t a,b,absa,absb,maska,maskb,minabs;

#ifdef DEBUG_NEW_IMPL
  printf("applyFtoleft %d, Nv %d (level %d,node->left (leaf %d, AF %d))\n",node->first_leaf_index,node->Nv,node->level,node->left->leaf,node->left->all_frozen);


  for (int i=0;i<node->Nv;i++) printf("i%d (frozen %d): alpha_v[i] = %d\n",i,1-pp->information_bit_pattern[node->first_leaf_index+i],alpha_v[i]);
#endif

 

  if (node->left->all_frozen == 0) {
#if defined(__AVX2__)
    int avx2mod = (node->Nv/2)&15;
    if (avx2mod == 0) {
      __m256i a256,b256,absa256,absb256,minabs256;
      int avx2len = node->Nv/2/16;

      //      printf("avx2len %d\n",avx2len);
      for (int i=0;i<avx2len;i++) {
	a256       =((__m256i*)alpha_v)[i];
	b256       =((__m256i*)alpha_v)[i+avx2len];
	absa256    =_mm256_abs_epi16(a256);
	absb256    =_mm256_abs_epi16(b256);
	minabs256  =_mm256_min_epi16(absa256,absb256);
	((__m256i*)alpha_l)[i] =_mm256_sign_epi16(minabs256,_mm256_sign_epi16(a256,b256));
      }
    }
    else if (avx2mod == 8) {
      __m128i a128,b128,absa128,absb128,minabs128;
      a128       =*((__m128i*)alpha_v);
      b128       =((__m128i*)alpha_v)[1];
      absa128    =_mm_abs_epi16(a128);
      absb128    =_mm_abs_epi16(b128);
      minabs128  =_mm_min_epi16(absa128,absb128);
      *((__m128i*)alpha_l) =_mm_sign_epi16(minabs128,_mm_sign_epi16(a128,b128));
    }
    else if (avx2mod == 4) {
      __m64 a64,b64,absa64,absb64,minabs64;
      a64       =*((__m64*)alpha_v);
      b64       =((__m64*)alpha_v)[1];
      absa64    =_mm_abs_pi16(a64);
      absb64    =_mm_abs_pi16(b64);
      minabs64  =_mm_min_pi16(absa64,absb64);
      *((__m64*)alpha_l) =_mm_sign_pi16(minabs64,_mm_sign_pi16(a64,b64));
    }
    else
#else
    int sse4mod = (node->Nv/2)&7;
    int sse4len = node->Nv/2/8;
#if defined(__arm__) || defined(__aarch64__)
    int16x8_t signatimesb,comp1,comp2,negminabs128;
    int16x8_t zero=vdupq_n_s16(0);
#endif

    if (sse4mod == 0) {
      for (int i=0;i<sse4len;i++) {
	__m128i a128,b128,absa128,absb128,minabs128;
	int sse4len = node->Nv/2/8;
	
	a128       =*((__m128i*)alpha_v);
	b128       =((__m128i*)alpha_v)[1];
	absa128    =_mm_abs_epi16(a128);
	absb128    =_mm_abs_epi16(b128);
	minabs128  =_mm_min_epi16(absa128,absb128);
#if defined(__arm__) || defined(__aarch64__)
	// unfortunately no direct equivalent to _mm_sign_epi16
	signatimesb=vxorrq_s16(a128,b128);
	comp1=vcltq_s16(signatimesb,zero);
	comp2=vcgeq_s16(signatimesb,zero);
	negminabs128=vnegq_s16(minabs128);
	*((__m128i*)alpha_l) =vorrq_s16(vandq_s16(minabs128,comp0),vandq_s16(negminabs128,comp1));
#else
	*((__m128i*)alpha_l) =_mm_sign_epi16(minabs128,_mm_sign_epi16(a128,b128));
#endif
      }
    }
    else if (sse4mod == 4) {
      __m64 a64,b64,absa64,absb64,minabs64;
      a64       =*((__m64*)alpha_v);
      b64       =((__m64*)alpha_v)[1];
      absa64    =_mm_abs_pi16(a64);
      absb64    =_mm_abs_pi16(b64);
      minabs64  =_mm_min_pi16(absa64,absb64);
#if defined(__arm__) || defined(__aarch64__)
	AssertFatal(1==0,"Need to do this still for ARM\n");
#else
      *((__m64*)alpha_l) =_mm_sign_pi16(minabs64,_mm_sign_epi16(a64,b64));
#endif
    }

    else
#endif
    { // equivalent scalar code to above, activated only on non x86/ARM architectures
      for (int i=0;i<node->Nv/2;i++) {
    	  a=alpha_v[i];
    	  b=alpha_v[i+(node->Nv/2)];
    	  maska=a>>15;
    	  maskb=b>>15;
    	  absa=(a+maska)^maska;
    	  absb=(b+maskb)^maskb;
    	  minabs = absa<absb ? absa : absb;
    	  alpha_l[i] = (maska^maskb)==0 ? minabs : -minabs;
    	  //	printf("alphal[%d] %d (%d,%d)\n",i,alpha_l[i],a,b);
    	  }
    }
    if (node->Nv == 2) { // apply hard decision on left node
      betal[0] = (alpha_l[0]>0) ? -1 : 1;
#ifdef DEBUG_NEW_IMPL
      printf("betal[0] %d (%p)\n",betal[0],&betal[0]);
#endif
      pp->nr_polar_U[node->first_leaf_index] = (1+betal[0])>>1; 
#ifdef DEBUG_NEW_IMPL
      printf("Setting bit %d to %d (LLR %d)\n",node->first_leaf_index,(betal[0]+1)>>1,alpha_l[0]);
#endif
    }
  }
}

void applyGtoright(const t_nrPolar_params *pp,decoder_node_t *node) {

  int16_t *alpha_v=node->alpha;
  int16_t *alpha_r=node->right->alpha;
  int16_t *betal = node->left->beta;
  int16_t *betar = node->right->beta;

#ifdef DEBUG_NEW_IMPL
  printf("applyGtoright %d, Nv %d (level %d), (leaf %d, AF %d)\n",node->first_leaf_index,node->Nv,node->level,node->right->leaf,node->right->all_frozen);
#endif
  
  if (node->right->all_frozen == 0) {  
#if defined(__AVX2__) 
    int avx2mod = (node->Nv/2)&15;
    if (avx2mod == 0) {
      int avx2len = node->Nv/2/16;
      
      for (int i=0;i<avx2len;i++) {
	((__m256i *)alpha_r)[i] = 
	  _mm256_subs_epi16(((__m256i *)alpha_v)[i+avx2len],
			    _mm256_sign_epi16(((__m256i *)alpha_v)[i],
					      ((__m256i *)betal)[i]));	
      }
    }
    else if (avx2mod == 8) {
      ((__m128i *)alpha_r)[0] = _mm_subs_epi16(((__m128i *)alpha_v)[1],_mm_sign_epi16(((__m128i *)alpha_v)[0],((__m128i *)betal)[0]));	
    }
    else if (avx2mod == 4) {
      ((__m64 *)alpha_r)[0] = _mm_subs_pi16(((__m64 *)alpha_v)[1],_mm_sign_pi16(((__m64 *)alpha_v)[0],((__m64 *)betal)[0]));	
    }
    else
#else
    int sse4mod = (node->Nv/2)&7;

    if (sse4mod == 0) {
      int sse4len = node->Nv/2/8;
      
      for (int i=0;i<sse4len;i++) {
#if defined(__arm__) || defined(__aarch64__)
	((int16x8_t *)alpha_r)[0] = vsubq_s16(((int16x8_t *)alpha_v)[1],vmulq_epi16(((int16x8_t *)alpha_v)[0],((int16x8_t *)betal)[0]));
#else
	((__m128i *)alpha_r)[0] = _mm_subs_epi16(((__m128i *)alpha_v)[1],_mm_sign_epi16(((__m128i *)alpha_v)[0],((__m128i *)betal)[0]));
#endif	
      }
    }
    else if (sse4mod == 4) {
#if defined(__arm__) || defined(__aarch64__)
      ((int16x4_t *)alpha_r)[0] = vsub_s16(((int16x4_t *)alpha_v)[1],vmul_epi16(((int16x4_t *)alpha_v)[0],((int16x4_t *)betal)[0]));
#else
      ((__m64 *)alpha_r)[0] = _mm_subs_pi16(((__m64 *)alpha_v)[1],_mm_sign_pi16(((__64 *)alpha_v)[0],((__m64 *)betal)[0]));	
#endif
    }
    else 
#endif
      {// equivalent scalar code to above, activated only on non x86/ARM architectures or Nv=1,2
	for (int i=0;i<node->Nv/2;i++) {
	  alpha_r[i] = alpha_v[i+(node->Nv/2)] - (betal[i]*alpha_v[i]);
	}
      }
    if (node->Nv == 2) { // apply hard decision on right node
      betar[0] = (alpha_r[0]>0) ? -1 : 1;
      pp->nr_polar_U[node->first_leaf_index+1] = (1+betar[0])>>1;
#ifdef DEBUG_NEW_IMPL
      printf("Setting bit %d to %d (LLR %d)\n",node->first_leaf_index+1,(betar[0]+1)>>1,alpha_r[0]);
#endif
    } 
  }
}

int16_t all1[16] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1};

void computeBeta(const t_nrPolar_params *pp,decoder_node_t *node) {

  int16_t *betav = node->beta;
  int16_t *betal = node->left->beta;
  int16_t *betar = node->right->beta;
#ifdef DEBUG_NEW_IMPL
  printf("Computing beta @ level %d first_leaf_index %d (all_frozen %d)\n",node->level,node->first_leaf_index,node->left->all_frozen);
#endif
  if (node->left->all_frozen==0) { // if left node is not aggregation of frozen bits
#if defined(__AVX2__) 
    int avx2mod = (node->Nv/2)&15;
    register __m256i allones=*((__m256i*)all1);
    if (avx2mod == 0) {
      int avx2len = node->Nv/2/16;
      for (int i=0;i<avx2len;i++) {
	((__m256i*)betav)[i] = _mm256_or_si256(_mm256_cmpeq_epi16(((__m256i*)betar)[i],
								  ((__m256i*)betal)[i]),allones);
      }
    }
    else if (avx2mod == 8) {
      ((__m128i*)betav)[0] = _mm_or_si128(_mm_cmpeq_epi16(((__m128i*)betar)[0],
							  ((__m128i*)betal)[0]),*((__m128i*)all1));
    }
    else if (avx2mod == 4) {
      ((__m64*)betav)[0] = _mm_or_si64(_mm_cmpeq_pi16(((__m64*)betar)[0],
						      ((__m64*)betal)[0]),*((__m64*)all1));
    }
    else
#else
    int avx2mod = (node->Nv/2)&15;

    if (ssr4mod == 0) {
      int ssr4len = node->Nv/2/8;
      register __m128i allones=*((__m128i*)all1);
      for (int i=0;i<sse4len;i++) {
      ((__m256i*)betav)[i] = _mm_or_si128(_mm_cmpeq_epi16(((__m128i*)betar)[i], ((__m128i*)betal)[i]),allones);
      }
    }
    else if (sse4mod == 4) {
      ((__m64*)betav)[0] = _mm_or_si64(_mm_cmpeq_pi16(((__m64*)betar)[0], ((__m64*)betal)[0]),*((__m64*)all1));
    }
    else
#endif
      {
	for (int i=0;i<node->Nv/2;i++) {
		betav[i] = (betal[i] != betar[i]) ? 1 : -1;
	}
      }
  }
  else memcpy((void*)&betav[0],betar,(node->Nv/2)*sizeof(int16_t));
  memcpy((void*)&betav[node->Nv/2],betar,(node->Nv/2)*sizeof(int16_t));
}

void generic_polar_decoder(const t_nrPolar_params *pp,decoder_node_t *node) {


  // Apply F to left
  applyFtoleft(pp, node);
  // if left is not a leaf recurse down to the left
  if (node->left->leaf==0)
    generic_polar_decoder(pp, node->left);

  applyGtoright(pp, node);
  if (node->right->leaf==0) generic_polar_decoder(pp, node->right);

  computeBeta(pp, node);

}