simulator.c 21.9 KB
Newer Older
1 2 3 4 5
/*
  Author: Laurent THOMAS, Open Cells for Nokia
  copyleft: OpenAirInterface Software Alliance and it's licence
*/

laurent's avatar
laurent committed
6 7 8 9 10 11
/*
 * Open issues and limitations
 * The read and write should be called in the same thread, that is not new USRP UHD design
 * When the opposite side switch from passive reading to active R+Write, the synchro is not fully deterministic
 */

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <stdbool.h>
#include <errno.h>
#include <sys/epoll.h>
#include <string.h>

#include <common/utils/assertions.h>
#include <common/utils/LOG/log.h>
#include "common_lib.h"
#include <openair1/PHY/defs_eNB.h>
#include "openair1/PHY/defs_UE.h"
laurent's avatar
laurent committed
30
#include <openair1/SIMULATION/TOOLS/sim.h>
31 32 33 34 35 36

#define PORT 4043 //TCP port for this simulator
#define CirSize 3072000 // 100ms is enough
#define sampleToByte(a,b) ((a)*(b)*sizeof(sample_t))
#define byteToSample(a,b) ((a)/(sizeof(sample_t)*(b)))

laurent's avatar
laurent committed
37 38 39 40 41 42 43 44 45 46
#define MAX_SIMULATION_CONNECTED_NODES 5
#define GENERATE_CHANNEL 10 //each frame in DL

// Fixme: datamodel, external variables in .h files, ...
#include <common/ran_context.h>
extern double snr_dB;
extern RAN_CONTEXT_t RC;
//

pthread_mutex_t Sockmutex;
47 48 49 50 51 52

typedef struct buffer_s {
  int conn_sock;
  bool alreadyRead;
  uint64_t lastReceivedTS;
  bool headerMode;
laurent's avatar
laurent committed
53
  samplesBlockHeader_t th;
54 55 56 57
  char *transferPtr;
  uint64_t remainToTransfer;
  char *circularBufEnd;
  sample_t *circularBuf;
laurent's avatar
laurent committed
58
  channel_desc_t *channel_model;
59 60 61 62 63 64 65
} buffer_t;

typedef struct {
  int listen_sock, epollfd;
  uint64_t nextTimestamp;
  uint64_t typeStamp;
  char *ip;
laurent's avatar
laurent committed
66
  int saveIQfile;
67
  buffer_t buf[FD_SETSIZE];
laurent's avatar
laurent committed
68 69 70 71
  int rx_num_channels;
  int tx_num_channels;
  double sample_rate;
  double tx_bw;
72 73
} rfsimulator_state_t;

laurent's avatar
laurent committed
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
  Legacy study:
  The parameters are:
  gain&loss (decay, signal power, ...)
  either a fixed gain in dB, a target power in dBm or ACG (automatic control gain) to a target average
  => don't redo the AGC, as it was used in UE case, that must have a AGC inside the UE
  will be better to handle the "set_gain()" called by UE to apply it's gain (enable test of UE power loop)
  lin_amp = pow(10.0,.05*txpwr_dBm)/sqrt(nb_tx_antennas);
  a lot of operations in legacy, grouped in one simulation signal decay: txgain*decay*rxgain

  multi_path (auto convolution, ISI, ...)
  either we regenerate the channel (call again random_channel(desc,0)), or we keep it over subframes
  legacy: we regenerate each sub frame in UL, and each frame only in DL
*/
void rxAddInput( struct complex16 *input_sig, struct complex16 *after_channel_sig,
                 int rxAnt,
                 channel_desc_t *channelDesc,
                 int nbSamples,
                 uint64_t TS
               ) {
  // channelDesc->path_loss_dB should contain the total path gain
  // so, in actual RF: tx gain + path loss + rx gain (+antenna gain, ...)
  // UE and NB gain control to be added
  // Fixme: not sure when it is "volts" so dB is 20*log10(...) or "power", so dB is 10*log10(...)
  const double pathLossLinear = pow(10,channelDesc->path_loss_dB/20.0);
  // Energy in one sample to calibrate input noise
  //Fixme: modified the N0W computation, not understand the origin value
  const double KT=1.38e-23*290; //Boltzman*temperature
  // sampling rate is linked to acquisition band (the input pass band filter)
  const double noise_figure_watt = KT*channelDesc->sampling_rate;
  // Fixme: how to convert a noise in Watt into a 12 bits value out of the RF ADC ?
  // the parameter "-s" is declared as SNR, but the input power is not well defined
  // −132.24 dBm is a LTE subcarrier noise, that was used in origin code (15KHz BW thermal noise)
  const double rxGain= 132.24 - snr_dB; 
  // sqrt(4*noise_figure_watt) is the thermal noise factor (volts)
  // fixme: the last constant is pure trial results to make decent noise 
  const double noise_per_sample = sqrt(4*noise_figure_watt) * pow(10,rxGain/20) *10;
  // Fixme: we don't fill the offset length samples at begining ?
  // anyway, in today code, channel_offset=0
  const int dd = abs(channelDesc->channel_offset);
  const int nbTx=channelDesc->nb_tx;

  for (int i=0; i<((int)nbSamples-dd); i++) {
    struct complex16 *out_ptr=after_channel_sig+dd+i;
    struct complex rx_tmp= {0};

    for (int txAnt=0; txAnt < nbTx; txAnt++) {
      const struct complex *channelModel= channelDesc->ch[rxAnt+(txAnt*channelDesc->nb_rx)];

      //const struct complex *channelModelEnd=channelModel+channelDesc->channel_length;
      for (int l = 0; l<(int)channelDesc->channel_length; l++) {
        // let's assume TS+i >= l
        // fixme: the rfsimulator current structure is interleaved antennas
        // this has been designed to not have to wait a full block transmission
        // but it is not very usefull
        // it would be better to split out each antenna in a separate flow
        // that will allow to mix ru antennas freely
        struct complex16 tx16=input_sig[((TS+i-l)*nbTx+txAnt)%CirSize];
        rx_tmp.x += tx16.r * channelModel[l].x - tx16.i * channelModel[l].y;
        rx_tmp.y += tx16.i * channelModel[l].x + tx16.r * channelModel[l].y;
      } //l
    }

    out_ptr->r += round(rx_tmp.x*pathLossLinear + noise_per_sample*gaussdouble(0.0,1.0));
    out_ptr->i += round(rx_tmp.y*pathLossLinear + noise_per_sample*gaussdouble(0.0,1.0));
    out_ptr++;
  }

  if ( (TS*nbTx)%CirSize+nbSamples <= CirSize )
    // Cast to a wrong type for compatibility !
    LOG_D(HW,"Input power %f, output power: %f, channel path loss %f, noise coeff: %f \n",
          10*log10((double)signal_energy((int32_t *)&input_sig[(TS*nbTx)%CirSize], nbSamples)),
          10*log10((double)signal_energy((int32_t *)after_channel_sig, nbSamples)),
          channelDesc->path_loss_dB,
          10*log10(noise_per_sample));
}

151 152 153 154 155
void allocCirBuf(rfsimulator_state_t *bridge, int sock) {
  buffer_t *ptr=&bridge->buf[sock];
  AssertFatal ( (ptr->circularBuf=(sample_t *) malloc(sampleToByte(CirSize,1))) != NULL, "");
  ptr->circularBufEnd=((char *)ptr->circularBuf)+sampleToByte(CirSize,1);
  ptr->conn_sock=sock;
laurent's avatar
laurent committed
156 157
  ptr->alreadyRead=false;
  ptr->lastReceivedTS=0;
158 159
  ptr->headerMode=true;
  ptr->transferPtr=(char *)&ptr->th;
laurent's avatar
laurent committed
160
  ptr->remainToTransfer=sizeof(samplesBlockHeader_t);
161 162 163 164 165 166
  int sendbuff=1000*1000*10;
  AssertFatal ( setsockopt(sock, SOL_SOCKET, SO_SNDBUF, &sendbuff, sizeof(sendbuff)) == 0, "");
  struct epoll_event ev= {0};
  ev.events = EPOLLIN | EPOLLRDHUP;
  ev.data.fd = sock;
  AssertFatal(epoll_ctl(bridge->epollfd, EPOLL_CTL_ADD,  sock, &ev) != -1, "");
laurent's avatar
laurent committed
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
  // create channel simulation model for this mode reception
  // snr_dB is pure global, coming from configuration paramter "-s"
  // Fixme: referenceSignalPower should come from the right place
  // but the datamodel is inconsistant
  // legacy: RC.ru[ru_id]->frame_parms.pdsch_config_common.referenceSignalPower
  // (must not come from ru[]->frame_parms as it doesn't belong to ru !!!)
  // Legacy sets it as:
  // ptr->channel_model->path_loss_dB = -132.24 + snr_dB - RC.ru[0]->frame_parms->pdsch_config_common.referenceSignalPower;
  // we use directly the paramter passed on the command line ("-s")
  // the value channel_model->path_loss_dB seems only a storage place (new_channel_desc_scm() only copy the passed value)
  // Legacy changes directlty the variable channel_model->path_loss_dB place to place
  // while calling new_channel_desc_scm() with path losses = 0
  ptr->channel_model=new_channel_desc_scm(bridge->tx_num_channels,bridge->rx_num_channels,
                                          AWGN,
                                          bridge->sample_rate,
                                          bridge->tx_bw,
                                          0.0, // forgetting_factor
                                          0, // maybe used for TA
                                          0); // path_loss in dB
  random_channel(ptr->channel_model,false);
187 188 189 190 191 192
}

void removeCirBuf(rfsimulator_state_t *bridge, int sock) {
  AssertFatal( epoll_ctl(bridge->epollfd, EPOLL_CTL_DEL,  sock, NULL) != -1, "");
  close(sock);
  free(bridge->buf[sock].circularBuf);
laurent's avatar
laurent committed
193 194 195
  // Fixme: no free_channel_desc_scm(bridge->buf[sock].channel_model) implemented
  // a lot of mem leaks
  free(bridge->buf[sock].channel_model);
196 197 198 199 200 201 202 203 204
  memset(&bridge->buf[sock], 0, sizeof(buffer_t));
  bridge->buf[sock].conn_sock=-1;
}

void socketError(rfsimulator_state_t *bridge, int sock) {
  if (bridge->buf[sock].conn_sock!=-1) {
    LOG_W(HW,"Lost socket \n");
    removeCirBuf(bridge, sock);

laurent's avatar
laurent committed
205
    if (bridge->typeStamp==UE_MAGICDL_FDD)
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
      exit(1);
  }
}

#define helpTxt "\
\x1b[31m\
rfsimulator: error: you have to run one UE and one eNB\n\
For this, export RFSIMULATOR=enb (eNB case) or \n\
                 RFSIMULATOR=<an ip address> (UE case)\n\
\x1b[m"

enum  blocking_t {
  notBlocking,
  blocking
};

void setblocking(int sock, enum blocking_t active) {
  int opts;
  AssertFatal( (opts = fcntl(sock, F_GETFL)) >= 0,"");

  if (active==blocking)
    opts = opts & ~O_NONBLOCK;
  else
    opts = opts | O_NONBLOCK;

  AssertFatal(fcntl(sock, F_SETFL, opts) >= 0, "");
}

laurent's avatar
laurent committed
234
static bool flushInput(rfsimulator_state_t *t, int timeout);
235

laurent's avatar
laurent committed
236 237 238 239 240 241 242 243
void fullwrite(int fd, void *_buf, ssize_t count, rfsimulator_state_t *t) {
  if (t->saveIQfile != -1) {
    if (write(t->saveIQfile, _buf, count) != count )
      LOG_E(HW,"write in save iq file failed (%s)\n",strerror(errno));
  }

  AssertFatal(fd>=0 && _buf && count >0 && t,
              "Bug: %d/%p/%zd/%p", fd, _buf, count, t);
244
  char *buf = _buf;
laurent's avatar
laurent committed
245
  ssize_t l;
246 247 248 249 250 251 252 253 254 255
  setblocking(fd, notBlocking);

  while (count) {
    l = write(fd, buf, count);

    if (l <= 0) {
      if (errno==EINTR)
        continue;

      if(errno==EAGAIN) {
laurent's avatar
laurent committed
256 257 258
        // The opposite side is saturated
        // we read incoming sockets meawhile waiting
        flushInput(t, 5);
259 260 261 262 263 264 265 266 267 268 269 270
        continue;
      } else
        return;
    }

    count -= l;
    buf += l;
  }
}

int server_start(openair0_device *device) {
  rfsimulator_state_t *t = (rfsimulator_state_t *) device->priv;
laurent's avatar
laurent committed
271
  t->typeStamp=ENB_MAGICDL_FDD;
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
  AssertFatal((t->listen_sock = socket(AF_INET, SOCK_STREAM, 0)) >= 0, "");
  int enable = 1;
  AssertFatal(setsockopt(t->listen_sock, SOL_SOCKET, SO_REUSEADDR, &enable, sizeof(int)) == 0, "");
  struct sockaddr_in addr = {
sin_family:
    AF_INET,
sin_port:
    htons(PORT),
sin_addr:
    { s_addr: INADDR_ANY }
  };
  bind(t->listen_sock, (struct sockaddr *)&addr, sizeof(addr));
  AssertFatal(listen(t->listen_sock, 5) == 0, "");
  struct epoll_event ev;
  ev.events = EPOLLIN;
  ev.data.fd = t->listen_sock;
  AssertFatal(epoll_ctl(t->epollfd, EPOLL_CTL_ADD,  t->listen_sock, &ev) != -1, "");
  return 0;
}

int start_ue(openair0_device *device) {
  rfsimulator_state_t *t = device->priv;
laurent's avatar
laurent committed
294
  t->typeStamp=UE_MAGICDL_FDD;
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
  int sock;
  AssertFatal((sock = socket(AF_INET, SOCK_STREAM, 0)) >= 0, "");
  struct sockaddr_in addr = {
sin_family:
    AF_INET,
sin_port:
    htons(PORT),
sin_addr:
    { s_addr: INADDR_ANY }
  };
  addr.sin_addr.s_addr = inet_addr(t->ip);
  bool connected=false;

  while(!connected) {
    LOG_I(HW,"rfsimulator: trying to connect to %s:%d\n", t->ip, PORT);

    if (connect(sock, (struct sockaddr *)&addr, sizeof(addr)) == 0) {
      LOG_I(HW,"rfsimulator: connection established\n");
      connected=true;
    }

    perror("rfsimulator");
    sleep(1);
  }

  setblocking(sock, notBlocking);
  allocCirBuf(t, sock);
  t->buf[sock].alreadyRead=true; // UE will start blocking on read
  return 0;
}

laurent's avatar
laurent committed
326
uint64_t lastW=-1;
327 328
int rfsimulator_write(openair0_device *device, openair0_timestamp timestamp, void **samplesVoid, int nsamps, int nbAnt, int flags) {
  rfsimulator_state_t *t = device->priv;
laurent's avatar
laurent committed
329
  LOG_D(HW,"sending %d samples at time: %ld\n", nsamps, timestamp);
330 331 332 333 334

  for (int i=0; i<FD_SETSIZE; i++) {
    buffer_t *ptr=&t->buf[i];

    if (ptr->conn_sock >= 0 ) {
laurent's avatar
laurent committed
335
      samplesBlockHeader_t header= {t->typeStamp, nsamps, nbAnt, timestamp};
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
      fullwrite(ptr->conn_sock,&header, sizeof(header), t);
      sample_t tmpSamples[nsamps][nbAnt];

      for(int a=0; a<nbAnt; a++) {
        sample_t *in=(sample_t *)samplesVoid[a];

        for(int s=0; s<nsamps; s++)
          tmpSamples[s][a]=in[s];
      }

      if (ptr->conn_sock >= 0 )
        fullwrite(ptr->conn_sock, (void *)tmpSamples, sampleToByte(nsamps,nbAnt), t);
    }
  }

laurent's avatar
laurent committed
351
  lastW=timestamp;
352 353
  LOG_D(HW,"sent %d samples at time: %ld->%ld, energy in first antenna: %d\n",
        nsamps, timestamp, timestamp+nsamps, signal_energy(samplesVoid[0], nsamps) );
laurent's avatar
laurent committed
354 355 356 357 358
  // Let's verify we don't have incoming data
  // This is mandatory when the opposite side don't transmit
  // This is mandatory when the opposite side don't transmit
  flushInput(t, 0);
  pthread_mutex_unlock(&Sockmutex);
359 360 361
  return nsamps;
}

laurent's avatar
laurent committed
362
static bool flushInput(rfsimulator_state_t *t, int timeout) {
363 364 365
  // Process all incoming events on sockets
  // store the data in lists
  struct epoll_event events[FD_SETSIZE]= {0};
laurent's avatar
laurent committed
366
  int nfds = epoll_wait(t->epollfd, events, FD_SETSIZE, timeout);
367 368

  if ( nfds==-1 ) {
laurent's avatar
laurent committed
369
    if ( errno==EINTR || errno==EAGAIN ) {
370
      return false;
laurent's avatar
laurent committed
371
    } else
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
      AssertFatal(false,"error in epoll_wait\n");
  }

  for (int nbEv = 0; nbEv < nfds; ++nbEv) {
    int fd=events[nbEv].data.fd;

    if (events[nbEv].events & EPOLLIN && fd == t->listen_sock) {
      int conn_sock;
      AssertFatal( (conn_sock = accept(t->listen_sock,NULL,NULL)) != -1, "");
      setblocking(conn_sock, notBlocking);
      allocCirBuf(t, conn_sock);
      LOG_I(HW,"A ue connected\n");
    } else {
      if ( events[nbEv].events & (EPOLLHUP | EPOLLERR | EPOLLRDHUP) ) {
        socketError(t,fd);
        continue;
      }

      buffer_t *b=&t->buf[fd];

      if ( b->circularBuf == NULL ) {
        LOG_E(HW, "received data on not connected socket %d\n", events[nbEv].data.fd);
        continue;
      }

laurent's avatar
laurent committed
397
      ssize_t blockSz;
398 399 400 401 402 403 404 405

      if ( b->headerMode)
        blockSz=b->remainToTransfer;
      else
        blockSz= b->transferPtr+b->remainToTransfer < b->circularBufEnd ?
                 b->remainToTransfer :
                 b->circularBufEnd - 1 - b->transferPtr ;

laurent's avatar
laurent committed
406
      ssize_t sz=recv(fd, b->transferPtr, blockSz, MSG_DONTWAIT);
407 408 409 410 411 412 413 414 415

      if ( sz < 0 ) {
        if ( errno != EAGAIN ) {
          LOG_E(HW,"socket failed %s\n", strerror(errno));
          abort();
        }
      } else if ( sz == 0 )
        continue;

laurent's avatar
laurent committed
416
      LOG_D(HW, "Socket rcv %zd bytes\n", sz);
417 418 419 420 421 422 423 424
      AssertFatal((b->remainToTransfer-=sz) >= 0, "");
      b->transferPtr+=sz;

      if (b->transferPtr==b->circularBufEnd - 1)
        b->transferPtr=(char *)b->circularBuf;

      // check the header and start block transfer
      if ( b->headerMode==true && b->remainToTransfer==0) {
laurent's avatar
laurent committed
425 426
        AssertFatal( (t->typeStamp == UE_MAGICDL_FDD  && b->th.magic==ENB_MAGICDL_FDD) ||
                     (t->typeStamp == ENB_MAGICDL_FDD && b->th.magic==UE_MAGICDL_FDD), "Socket Error in protocol");
427 428 429 430 431 432
        b->headerMode=false;
        b->alreadyRead=true;

        if ( b->lastReceivedTS != b->th.timestamp) {
          int nbAnt= b->th.nbAnt;

laurent's avatar
laurent committed
433 434 435 436 437 438
          for (uint64_t index=b->lastReceivedTS; index < b->th.timestamp; index++ ) {
            for (int a=0; a < nbAnt; a++) {
              b->circularBuf[(index*nbAnt+a)%CirSize].r=0;
              b->circularBuf[(index*nbAnt+a)%CirSize].i=0;
            }
          }
439 440 441 442 443

          LOG_W(HW,"gap of: %ld in reception\n", b->th.timestamp-b->lastReceivedTS );
        }

        b->lastReceivedTS=b->th.timestamp;
laurent's avatar
laurent committed
444 445
        AssertFatal(lastW == -1 || ( abs((double)lastW-b->lastReceivedTS) < (double)CirSize),
                    "Tx/Rx shift too large Tx:%lu, Rx:%lu\n", lastW, b->lastReceivedTS);
446 447 448 449 450
        b->transferPtr=(char *)&b->circularBuf[b->lastReceivedTS%CirSize];
        b->remainToTransfer=sampleToByte(b->th.size, b->th.nbAnt);
      }

      if ( b->headerMode==false ) {
laurent's avatar
laurent committed
451
        LOG_D(HW,"Set b->lastReceivedTS %ld\n", b->lastReceivedTS);
452 453
        b->lastReceivedTS=b->th.timestamp+b->th.size-byteToSample(b->remainToTransfer,b->th.nbAnt);

laurent's avatar
laurent committed
454 455 456 457
        // First block in UE, resync with the eNB current TS
        if ( t->nextTimestamp == 0 )
          t->nextTimestamp=b->lastReceivedTS-b->th.size;

458 459 460 461
        if ( b->remainToTransfer==0) {
          LOG_D(HW,"Completed block reception: %ld\n", b->lastReceivedTS);
          b->headerMode=true;
          b->transferPtr=(char *)&b->th;
laurent's avatar
laurent committed
462
          b->remainToTransfer=sizeof(samplesBlockHeader_t);
463 464 465 466 467 468 469 470 471 472 473
          b->th.magic=-1;
        }
      }
    }
  }

  return nfds>0;
}

int rfsimulator_read(openair0_device *device, openair0_timestamp *ptimestamp, void **samplesVoid, int nsamps, int nbAnt) {
  if (nbAnt != 1) {
laurent's avatar
laurent committed
474
    LOG_W(HW, "rfsimulator: only 1 antenna tested\n");
475 476
  }

laurent's avatar
laurent committed
477
  pthread_mutex_lock(&Sockmutex);
478 479 480 481 482 483 484 485 486 487 488 489
  rfsimulator_state_t *t = device->priv;
  LOG_D(HW, "Enter rfsimulator_read, expect %d samples, will release at TS: %ld\n", nsamps, t->nextTimestamp+nsamps);
  // deliver data from received data
  // check if a UE is connected
  int first_sock;

  for (first_sock=0; first_sock<FD_SETSIZE; first_sock++)
    if (t->buf[first_sock].circularBuf != NULL )
      break;

  if ( first_sock ==  FD_SETSIZE ) {
    // no connected device (we are eNB, no UE is connected)
laurent's avatar
laurent committed
490
    if (!flushInput(t, 10)) {
491 492 493 494 495 496
      for (int x=0; x < nbAnt; x++)
        memset(samplesVoid[x],0,sampleToByte(nsamps,1));

      t->nextTimestamp+=nsamps;
      LOG_W(HW,"Generated void samples for Rx: %ld\n", t->nextTimestamp);
      *ptimestamp = t->nextTimestamp-nsamps;
laurent's avatar
laurent committed
497
      pthread_mutex_unlock(&Sockmutex);
498 499 500 501 502 503 504 505
      return nsamps;
    }
  } else {
    bool have_to_wait;

    do {
      have_to_wait=false;

laurent's avatar
laurent committed
506 507 508 509 510 511 512 513
      for ( int sock=0; sock<FD_SETSIZE; sock++) {
        if ( t->buf[sock].circularBuf && t->buf[sock].alreadyRead )
          if ( t->buf[sock].lastReceivedTS == 0 ||
               (t->nextTimestamp+nsamps) > t->buf[sock].lastReceivedTS ) {
            have_to_wait=true;
            break;
          }
      }
514 515 516 517 518 519

      if (have_to_wait)
        /*printf("Waiting on socket, current last ts: %ld, expected at least : %ld\n",
          ptr->lastReceivedTS,
          t->nextTimestamp+nsamps);
        */
laurent's avatar
laurent committed
520
        flushInput(t, 3);
521 522 523 524 525 526 527
    } while (have_to_wait);
  }

  // Clear the output buffer
  for (int a=0; a<nbAnt; a++)
    memset(samplesVoid[a],0,sampleToByte(nsamps,1));

laurent's avatar
laurent committed
528
  // Add all input nodes signal in the output buffer
529 530 531 532
  for (int sock=0; sock<FD_SETSIZE; sock++) {
    buffer_t *ptr=&t->buf[sock];

    if ( ptr->circularBuf && ptr->alreadyRead ) {
laurent's avatar
laurent committed
533 534 535 536 537 538 539 540 541 542 543 544 545 546
      bool reGenerateChannel=false;

      //fixme: when do we regenerate
      // it seems legacy behavior is: never in UL, each frame in DL
      if (reGenerateChannel)
        random_channel(ptr->channel_model,0);

      for (int a=0; a<nbAnt; a++)
        rxAddInput( ptr->circularBuf, (struct complex16 *) samplesVoid[a],
                    a,
                    ptr->channel_model,
                    nsamps,
                    t->nextTimestamp
                  );
547 548 549 550 551 552 553 554 555
    }
  }

  *ptimestamp = t->nextTimestamp; // return the time of the first sample
  t->nextTimestamp+=nsamps;
  LOG_D(HW,"Rx to upper layer: %d from %ld to %ld, energy in first antenna %d\n",
        nsamps,
        *ptimestamp, t->nextTimestamp,
        signal_energy(samplesVoid[0], nsamps));
laurent's avatar
laurent committed
556
  pthread_mutex_unlock(&Sockmutex);
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
  return nsamps;
}
int rfsimulator_request(openair0_device *device, void *msg, ssize_t msg_len) {
  abort();
  return 0;
}
int rfsimulator_reply(openair0_device *device, void *msg, ssize_t msg_len) {
  abort();
  return 0;
}
int rfsimulator_get_stats(openair0_device *device) {
  return 0;
}
int rfsimulator_reset_stats(openair0_device *device) {
  return 0;
}
void rfsimulator_end(openair0_device *device) {}
int rfsimulator_stop(openair0_device *device) {
  return 0;
}
int rfsimulator_set_freq(openair0_device *device, openair0_config_t *openair0_cfg,int exmimo_dump_config) {
  return 0;
}
int rfsimulator_set_gains(openair0_device *device, openair0_config_t *openair0_cfg) {
  return 0;
}
__attribute__((__visibility__("default")))
int device_init(openair0_device *device, openair0_config_t *openair0_cfg) {
laurent's avatar
laurent committed
585 586 587
  // to change the log level, use this on command line
  // --log_config.hw_log_level debug
  // (for phy layer, replace "hw" by "phy"
588 589 590 591 592 593 594
  rfsimulator_state_t *rfsimulator = (rfsimulator_state_t *)calloc(sizeof(rfsimulator_state_t),1);

  if ((rfsimulator->ip=getenv("RFSIMULATOR")) == NULL ) {
    LOG_E(HW,helpTxt);
    exit(1);
  }

laurent's avatar
laurent committed
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
  pthread_mutex_init(&Sockmutex, NULL);

  if ( strncasecmp(rfsimulator->ip,"enb",3) == 0 ||
       strncasecmp(rfsimulator->ip,"server",3) == 0 )
    rfsimulator->typeStamp = ENB_MAGICDL_FDD;
  else
    rfsimulator->typeStamp = UE_MAGICDL_FDD;

  LOG_I(HW,"rfsimulator: running as %s\n", rfsimulator-> typeStamp == ENB_MAGICDL_FDD ? "(eg)NB" : "UE");
  char *saveF;

  if ((saveF=getenv("saveIQfile")) != NULL) {
    rfsimulator->saveIQfile=open(saveF,O_APPEND| O_CREAT|O_TRUNC | O_WRONLY, 0666);

    if ( rfsimulator->saveIQfile != -1 )
      LOG_I(HW,"rfsimulator: will save written IQ samples  in %s\n", saveF);
    else
      LOG_E(HW, "can't open %s for IQ saving (%s)\n", saveF, strerror(errno));
  } else
    rfsimulator->saveIQfile = -1;

  device->trx_start_func       = rfsimulator->typeStamp == ENB_MAGICDL_FDD ?
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
                                 server_start :
                                 start_ue;
  device->trx_get_stats_func   = rfsimulator_get_stats;
  device->trx_reset_stats_func = rfsimulator_reset_stats;
  device->trx_end_func         = rfsimulator_end;
  device->trx_stop_func        = rfsimulator_stop;
  device->trx_set_freq_func    = rfsimulator_set_freq;
  device->trx_set_gains_func   = rfsimulator_set_gains;
  device->trx_write_func       = rfsimulator_write;
  device->trx_read_func      = rfsimulator_read;
  /* let's pretend to be a b2x0 */
  device->type = USRP_B200_DEV;
  device->openair0_cfg=&openair0_cfg[0];
  device->priv = rfsimulator;

  for (int i=0; i<FD_SETSIZE; i++)
    rfsimulator->buf[i].conn_sock=-1;

  AssertFatal((rfsimulator->epollfd = epoll_create1(0)) != -1,"");
laurent's avatar
laurent committed
636 637 638 639 640 641 642
  // initialize channel simulation
  rfsimulator->tx_num_channels=openair0_cfg->tx_num_channels;
  rfsimulator->rx_num_channels=openair0_cfg->rx_num_channels;
  rfsimulator->sample_rate=openair0_cfg->sample_rate;
  rfsimulator->tx_bw=openair0_cfg->tx_bw;
  randominit(0);
  set_taus_seed(0);
643 644
  return 0;
}