1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/*!\file PHY/CODING/nrPolar_tools/nr_polar_encoder.c
* \brief
* \author Turker Yilmaz
* \date 2018
* \version 0.1
* \company EURECOM
* \email turker.yilmaz@eurecom.fr
* \note
* \warning
*/
//#define DEBUG_POLAR_ENCODER
//#define DEBUG_POLAR_ENCODER_DCI
//#define DEBUG_POLAR_ENCODER_TIMING
#include "PHY/CODING/nrPolar_tools/nr_polar_defs.h"
#include "assertions.h"
//input [a_31 a_30 ... a_0]
//output [f_31 f_30 ... f_0] [f_63 f_62 ... f_32] ...
void polar_encoder(uint32_t *in,
uint32_t *out,
t_nrPolar_paramsPtr polarParams)
{
if (polarParams->idx == 0){//PBCH
nr_bit2byte_uint32_8_t(in, polarParams->payloadBits, polarParams->nr_polar_A);
/*
* Bytewise operations
*/
//Calculate CRC.
nr_matrix_multiplication_uint8_t_1D_uint8_t_2D(polarParams->nr_polar_A,
polarParams->crc_generator_matrix,
polarParams->nr_polar_crc,
polarParams->payloadBits,
polarParams->crcParityBits);
for (uint8_t i = 0; i < polarParams->crcParityBits; i++)
polarParams->nr_polar_crc[i] = (polarParams->nr_polar_crc[i] % 2);
//Attach CRC to the Transport Block. (a to b)
for (uint16_t i = 0; i < polarParams->payloadBits; i++)
polarParams->nr_polar_B[i] = polarParams->nr_polar_A[i];
for (uint16_t i = polarParams->payloadBits; i < polarParams->K; i++)
polarParams->nr_polar_B[i]= polarParams->nr_polar_crc[i-(polarParams->payloadBits)];
} else { //UCI
}
//Interleaving (c to c')
nr_polar_interleaver(polarParams->nr_polar_B,
polarParams->nr_polar_CPrime,
polarParams->interleaving_pattern,
polarParams->K);
//Bit insertion (c' to u)
nr_polar_bit_insertion(polarParams->nr_polar_CPrime,
polarParams->nr_polar_U,
polarParams->N,
polarParams->K,
polarParams->Q_I_N,
polarParams->Q_PC_N,
polarParams->n_pc);
//Encoding (u to d)
nr_matrix_multiplication_uint8_t_1D_uint8_t_2D(polarParams->nr_polar_U,
polarParams->G_N,
polarParams->nr_polar_D,
polarParams->N,
polarParams->N);
for (uint16_t i = 0; i < polarParams->N; i++)
polarParams->nr_polar_D[i] = (polarParams->nr_polar_D[i] % 2);
//Rate matching
//Sub-block interleaving (d to y) and Bit selection (y to e)
nr_polar_interleaver(polarParams->nr_polar_D,
polarParams->nr_polar_E,
polarParams->rate_matching_pattern,
polarParams->encoderLength);
/*
* Return bits.
*/
#ifdef DEBUG_POLAR_ENCODER
for (int i=0; i< polarParams->encoderLength;i++) printf("f[%d]=%d\n", i, polarParams->nr_polar_E[i]);
#endif
nr_byte2bit_uint8_32_t(polarParams->nr_polar_E, polarParams->encoderLength, out);
}
void polar_encoder_dci(uint32_t *in,
uint32_t *out,
t_nrPolar_paramsPtr polarParams,
uint16_t n_RNTI)
{
#ifdef DEBUG_POLAR_ENCODER_DCI
printf("[polar_encoder_dci] in: [0]->0x%08x \t [1]->0x%08x \t [2]->0x%08x \t [3]->0x%08x\n", in[0], in[1], in[2], in[3]);
#endif
/*
* Bytewise operations
*/
//(a to a')
nr_bit2byte_uint32_8_t(in, polarParams->payloadBits, polarParams->nr_polar_A);
for (int i=0; i<polarParams->crcParityBits; i++) polarParams->nr_polar_APrime[i]=1;
for (int i=0; i<polarParams->payloadBits; i++) polarParams->nr_polar_APrime[i+(polarParams->crcParityBits)]=polarParams->nr_polar_A[i];
#ifdef DEBUG_POLAR_ENCODER_DCI
printf("[polar_encoder_dci] A: ");
for (int i=0; i<polarParams->payloadBits; i++) printf("%d-", polarParams->nr_polar_A[i]);
printf("\n");
printf("[polar_encoder_dci] APrime: ");
for (int i=0; i<polarParams->K; i++) printf("%d-", polarParams->nr_polar_APrime[i]);
printf("\n");
printf("[polar_encoder_dci] GP: ");
for (int i=0; i<polarParams->crcParityBits; i++) printf("%d-", polarParams->crc_generator_matrix[0][i]);
printf("\n");
#endif
//Calculate CRC.
nr_matrix_multiplication_uint8_t_1D_uint8_t_2D(polarParams->nr_polar_APrime,
polarParams->crc_generator_matrix,
polarParams->nr_polar_crc,
polarParams->K,
polarParams->crcParityBits);
for (uint8_t i = 0; i < polarParams->crcParityBits; i++) polarParams->nr_polar_crc[i] = (polarParams->nr_polar_crc[i] % 2);
#ifdef DEBUG_POLAR_ENCODER_DCI
printf("[polar_encoder_dci] CRC: ");
for (int i=0; i<polarParams->crcParityBits; i++) printf("%d-", polarParams->nr_polar_crc[i]);
printf("\n");
#endif
//Attach CRC to the Transport Block. (a to b)
for (uint16_t i = 0; i < polarParams->payloadBits; i++)
polarParams->nr_polar_B[i] = polarParams->nr_polar_A[i];
for (uint16_t i = polarParams->payloadBits; i < polarParams->K; i++)
polarParams->nr_polar_B[i]= polarParams->nr_polar_crc[i-(polarParams->payloadBits)];
//Scrambling (b to c)
for (int i=0; i<16; i++) {
polarParams->nr_polar_B[polarParams->payloadBits+8+i] =
( polarParams->nr_polar_B[polarParams->payloadBits+8+i] + ((n_RNTI>>(15-i))&1) ) % 2;
}
/* //(a to a')
nr_crc_bit2bit_uint32_8_t(in, polarParams->payloadBits, polarParams->nr_polar_aPrime);
//Parity bits computation (p)
polarParams->crcBit = crc24c(polarParams->nr_polar_aPrime, (polarParams->payloadBits+polarParams->crcParityBits));
#ifdef DEBUG_POLAR_ENCODER_DCI
printf("[polar_encoder_dci] crc: 0x%08x\n", polarParams->crcBit);
for (int i=0; i<32; i++)
{
printf("%d\n",((polarParams->crcBit)>>i)&1);
}
#endif
//(a to b)
//
// Bytewise operations
//
uint8_t arrayInd = ceil(polarParams->payloadBits / 8.0);
for (int i=0; i<arrayInd-1; i++){
for (int j=0; j<8; j++) {
polarParams->nr_polar_B[j+(i*8)] = ((polarParams->nr_polar_aPrime[3+i]>>(7-j)) & 1);
}
}
for (int i=0; i<((polarParams->payloadBits)%8); i++) {
polarParams->nr_polar_B[i+(arrayInd-1)*8] = ((polarParams->nr_polar_aPrime[3+(arrayInd-1)]>>(7-i)) & 1);
}
for (int i=0; i<8; i++) {
polarParams->nr_polar_B[polarParams->payloadBits+i] = ((polarParams->crcBit)>>(31-i))&1;
}
//Scrambling (b to c)
for (int i=0; i<16; i++) {
polarParams->nr_polar_B[polarParams->payloadBits+8+i] =
( (((polarParams->crcBit)>>(23-i))&1) + ((n_RNTI>>(15-i))&1) ) % 2;
}*/
#ifdef DEBUG_POLAR_ENCODER_DCI
printf("[polar_encoder_dci] B: ");
for (int i = 0; i < polarParams->K; i++) printf("%d-", polarParams->nr_polar_B[i]);
printf("\n");
#endif
//Interleaving (c to c')
nr_polar_interleaver(polarParams->nr_polar_B,
polarParams->nr_polar_CPrime,
polarParams->interleaving_pattern,
polarParams->K);
//Bit insertion (c' to u)
nr_polar_bit_insertion(polarParams->nr_polar_CPrime,
polarParams->nr_polar_U,
polarParams->N,
polarParams->K,
polarParams->Q_I_N,
polarParams->Q_PC_N,
polarParams->n_pc);
//Encoding (u to d)
nr_matrix_multiplication_uint8_t_1D_uint8_t_2D(polarParams->nr_polar_U,
polarParams->G_N,
polarParams->nr_polar_D,
polarParams->N,
polarParams->N);
for (uint16_t i = 0; i < polarParams->N; i++)
polarParams->nr_polar_D[i] = (polarParams->nr_polar_D[i] % 2);
//Rate matching
//Sub-block interleaving (d to y) and Bit selection (y to e)
nr_polar_interleaver(polarParams->nr_polar_D,
polarParams->nr_polar_E,
polarParams->rate_matching_pattern,
polarParams->encoderLength);
/*
* Return bits.
*/
nr_byte2bit_uint8_32_t(polarParams->nr_polar_E, polarParams->encoderLength, out);
#ifdef DEBUG_POLAR_ENCODER_DCI
printf("[polar_encoder_dci] E: ");
for (int i = 0; i < polarParams->encoderLength; i++) printf("%d-", polarParams->nr_polar_E[i]);
uint8_t outputInd = ceil(polarParams->encoderLength / 32.0);
printf("\n[polar_encoder_dci] out: ");
for (int i = 0; i < outputInd; i++) {
printf("[%d]->0x%08x\t", i, out[i]);
}
#endif
}
void polar_encoder_timing(uint32_t *in,
uint32_t *out,
t_nrPolar_paramsPtr polarParams,
double cpuFreqGHz,
FILE* logFile)
{
//Initiate timing.
time_stats_t timeEncoderCRCByte, timeEncoderCRCBit, timeEncoderInterleaver, timeEncoderBitInsertion, timeEncoder1, timeEncoder2, timeEncoderRateMatching, timeEncoderByte2Bit;
reset_meas(&timeEncoderCRCByte); reset_meas(&timeEncoderCRCBit); reset_meas(&timeEncoderInterleaver); reset_meas(&timeEncoderBitInsertion); reset_meas(&timeEncoder1); reset_meas(&timeEncoder2); reset_meas(&timeEncoderRateMatching); reset_meas(&timeEncoderByte2Bit);
uint16_t n_RNTI=0x0000;
start_meas(&timeEncoderCRCByte);
nr_crc_bit2bit_uint32_8_t(in, polarParams->payloadBits, polarParams->nr_polar_aPrime); //(a to a')
polarParams->crcBit = crc24c(polarParams->nr_polar_aPrime, (polarParams->payloadBits+polarParams->crcParityBits)); //Parity bits computation (p)
uint8_t arrayInd = ceil(polarParams->payloadBits / 8.0); //(a to b)
for (int i=0; i<arrayInd-1; i++)
for (int j=0; j<8; j++)
polarParams->nr_polar_B[j+(i*8)] = ((polarParams->nr_polar_aPrime[3+i]>>(7-j)) & 1);
for (int i=0; i<((polarParams->payloadBits)%8); i++) polarParams->nr_polar_B[i+(arrayInd-1)*8] = ((polarParams->nr_polar_aPrime[3+(arrayInd-1)]>>(7-i)) & 1);
for (int i=0; i<8; i++) polarParams->nr_polar_B[polarParams->payloadBits+i] = ((polarParams->crcBit)>>(31-i))&1;
for (int i=0; i<16; i++) polarParams->nr_polar_B[polarParams->payloadBits+8+i] = ( (((polarParams->crcBit)>>(23-i))&1) + ((n_RNTI>>(15-i))&1) ) % 2; //Scrambling (b to c)
stop_meas(&timeEncoderCRCByte);
start_meas(&timeEncoderCRCBit);
nr_bit2byte_uint32_8_t(in, polarParams->payloadBits, polarParams->nr_polar_A);
nr_matrix_multiplication_uint8_t_1D_uint8_t_2D(polarParams->nr_polar_A, polarParams->crc_generator_matrix, polarParams->nr_polar_crc, polarParams->payloadBits, polarParams->crcParityBits); //Calculate CRC.
for (uint8_t i = 0; i < polarParams->crcParityBits; i++) polarParams->nr_polar_crc[i] = (polarParams->nr_polar_crc[i] % 2);
for (uint16_t i = 0; i < polarParams->payloadBits; i++) polarParams->nr_polar_B[i] = polarParams->nr_polar_A[i]; //Attach CRC to the Transport Block. (a to b)
for (uint16_t i = polarParams->payloadBits; i < polarParams->K; i++) polarParams->nr_polar_B[i]= polarParams->nr_polar_crc[i-(polarParams->payloadBits)];
stop_meas(&timeEncoderCRCBit);
start_meas(&timeEncoderInterleaver); //Interleaving (c to c')
nr_polar_interleaver(polarParams->nr_polar_B, polarParams->nr_polar_CPrime, polarParams->interleaving_pattern, polarParams->K);
stop_meas(&timeEncoderInterleaver);
start_meas(&timeEncoderBitInsertion); //Bit insertion (c' to u)
nr_polar_bit_insertion(polarParams->nr_polar_CPrime, polarParams->nr_polar_U, polarParams->N, polarParams->K, polarParams->Q_I_N, polarParams->Q_PC_N, polarParams->n_pc);
stop_meas(&timeEncoderBitInsertion);
start_meas(&timeEncoder1); //Encoding (u to d)
nr_matrix_multiplication_uint8_t_1D_uint8_t_2D(polarParams->nr_polar_U, polarParams->G_N, polarParams->nr_polar_D, polarParams->N, polarParams->N);
stop_meas(&timeEncoder1);
start_meas(&timeEncoder2);
for (uint16_t i = 0; i < polarParams->N; i++) polarParams->nr_polar_D[i] = (polarParams->nr_polar_D[i] % 2);
stop_meas(&timeEncoder2);
start_meas(&timeEncoderRateMatching);//Rate matching //Sub-block interleaving (d to y) and Bit selection (y to e)
nr_polar_interleaver(polarParams->nr_polar_D, polarParams->nr_polar_E, polarParams->rate_matching_pattern, polarParams->encoderLength);
stop_meas(&timeEncoderRateMatching);
start_meas(&timeEncoderByte2Bit); //Return bits.
nr_byte2bit_uint8_32_t(polarParams->nr_polar_E, polarParams->encoderLength, out);
stop_meas(&timeEncoderByte2Bit);
fprintf(logFile,",%f,%f,%f,%f,%f,%f,%f,%f\n",
(timeEncoderCRCByte.diff_now/(cpuFreqGHz*1000.0)),
(timeEncoderCRCBit.diff_now/(cpuFreqGHz*1000.0)),
(timeEncoderInterleaver.diff_now/(cpuFreqGHz*1000.0)),
(timeEncoderBitInsertion.diff_now/(cpuFreqGHz*1000.0)),
(timeEncoder1.diff_now/(cpuFreqGHz*1000.0)),
(timeEncoder2.diff_now/(cpuFreqGHz*1000.0)),
(timeEncoderRateMatching.diff_now/(cpuFreqGHz*1000.0)),
(timeEncoderByte2Bit.diff_now/(cpuFreqGHz*1000.0)));
}
void build_polar_tables(t_nrPolar_paramsPtr polarParams) {
// build table b -> c'
AssertFatal(polarParams->K > 32, "K = %d < 33, is not supported yet\n",polarParams->K);
AssertFatal(polarParams->K < 65, "K = %d > 64, is not supported yet\n",polarParams->K);
int bit_i;
for (int byte=0;byte<8;byte++) {
for (int val=0;val<256;val++) {
for (int i=0;i<8;i++) {
bit_i=(val>>i)&1;
polarParams->cprime_tab[byte][val] |= (bit_i<<polarParams->interleaving_pattern[(8*byte)+i]);
}
}
}
AssertFatal(polarParams->N==512,"N = %d, not done yet\n",polarParams->N);
// build G bit vectors for information bit positions and convert the bit as bytes tables in nr_polar_kronecker_power_matrices.c to 64 bit packed vectors.
// keep only rows of G which correspond to information/crc bits
for (int i=0;i<polarParams->K;i++) {
memset((void*)polarParams->G_N_tab[i],0,(polarParams->N/64)*sizeof(uint64_t));
for (int j=0;j<polarParams->N;j++)
polarParams->G_N_tab[i][j/64] |= polarParams->G_N[polarParams->Q_I_N[i]][j]<<(j&63);
}
}
void polar_encoder_fast(int64_t *A,
int64_t *D,
int bitlen,
int32_t crcmask,
t_nrPolar_paramsPtr polarParams) {
AssertFatal(polarParams->K > 32, "K = %d < 33, is not supported yet\n",polarParams->K);
AssertFatal(polarParams->K < 65, "K = %d > 64, is not supported yet\n",polarParams->K);
uint64_t B,Cprime;
// append crc
B = *A | ((crcmask^crc24c(A,bitlen))<<bitlen);
uint8_t *Bbyte = (uint8_t*)&B;
// for each byte of B, lookup in corresponding table for 64-bit word corresponding to that byte and its position
Cprime = polarParams->cprime_tab[0][Bbyte[0]] |
polarParams->cprime_tab[1][Bbyte[1]] |
polarParams->cprime_tab[2][Bbyte[2]] |
polarParams->cprime_tab[3][Bbyte[3]] |
polarParams->cprime_tab[4][Bbyte[4]] |
polarParams->cprime_tab[5][Bbyte[5]] |
polarParams->cprime_tab[6][Bbyte[6]] |
polarParams->cprime_tab[7][Bbyte[7]];
// now do Gu product (here using 64-bit XORs, we can also do with SIMD after)
// here we're reading out the bits LSB -> MSB, is this correct w.r.t. 3GPP ?
uint64_t Cprime_i = -(Cprime & 1); // this converts bit 0 as, 0 => 0000x00, 1 => 1111x11
D[0] = Cprime_i & polarParams->G_N_tab[0][0];
D[1] = Cprime_i & polarParams->G_N_tab[0][1];
D[2] = Cprime_i & polarParams->G_N_tab[0][2];
D[3] = Cprime_i & polarParams->G_N_tab[0][3];
D[4] = Cprime_i & polarParams->G_N_tab[0][4];
D[5] = Cprime_i & polarParams->G_N_tab[0][5];
D[6] = Cprime_i & polarParams->G_N_tab[0][6];
D[7] = Cprime_i & polarParams->G_N_tab[0][7];
for (int i=1;i<bitlen;i++) {
Cprime_i = -((Cprime>>i)&1);
D[0] ^= (Cprime_i & polarParams->G_N_tab[i][0]);
D[1] ^= (Cprime_i & polarParams->G_N_tab[i][1]);
D[2] ^= (Cprime_i & polarParams->G_N_tab[i][2]);
D[3] ^= (Cprime_i & polarParams->G_N_tab[i][3]);
D[4] ^= (Cprime_i & polarParams->G_N_tab[i][4]);
D[5] ^= (Cprime_i & polarParams->G_N_tab[i][5]);
D[6] ^= (Cprime_i & polarParams->G_N_tab[i][6]);
D[7] ^= (Cprime_i & polarParams->G_N_tab[i][7]);
}
// Rate matching on the 8 64-bit D bit-strings should be performed more or less like
// The interleaving on the single 64-bit input in the first step. We just need 64 lookup tables I guess, and they will have large entries
}