proto.h 88.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The OpenAirInterface Software Alliance licenses this file to You under
 * the OAI Public License, Version 1.0  (the "License"); you may not use this file
 * except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.openairinterface.org/?page_id=698
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *-------------------------------------------------------------------------------
 * For more information about the OpenAirInterface (OAI) Software Alliance:
 *      contact@openairinterface.org
 */

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/*! \file PHY/LTE_TRANSPORT/proto.h
 * \brief Function prototypes for PHY physical/transport channel processing and generation V8.6 2009-03
 * \author R. Knopp, F. Kaltenberger
 * \date 2011
 * \version 0.1
 * \company Eurecom
 * \email: knopp@eurecom.fr
 * \note
 * \warning
 */
#ifndef __LTE_TRANSPORT_PROTO__H__
#define __LTE_TRANSPORT_PROTO__H__
#include "PHY/defs.h"
#include <math.h>

// Functions below implement 36-211 and 36-212

/** @addtogroup _PHY_TRANSPORT_
 * @{
 */

43
/** \fn free_eNB_dlsch(LTE_eNB_DLSCH_t *dlsch,unsigned char N_RB_DL)
44 45 46 47 48
    \brief This function frees memory allocated for a particular DLSCH at eNB
    @param dlsch Pointer to DLSCH to be removed
*/
void free_eNB_dlsch(LTE_eNB_DLSCH_t *dlsch);

49
void clean_eNb_dlsch(LTE_eNB_DLSCH_t *dlsch);
50

51
/** \fn new_eNB_dlsch(uint8_t Kmimo,uint8_t Mdlharq,uint32_t Nsoft,uint8_t abstraction_flag, LTE_DL_FRAME_PARMS* frame_parms)
52 53 54 55
    \brief This function allocates structures for a particular DLSCH at eNB
    @returns Pointer to DLSCH to be removed
    @param Kmimo Kmimo factor from 36-212/36-213
    @param Mdlharq Maximum number of HARQ rounds (36-212/36-213)
56
    @param Nsoft Soft-LLR buffer size from UE-Category
57 58
    @params N_RB_DL total number of resource blocks (determine the operating BW)
    @param abstraction_flag Flag to indicate abstracted interface
59
    @param frame_parms Pointer to frame descriptor structure
60
*/
61
LTE_eNB_DLSCH_t *new_eNB_dlsch(uint8_t Kmimo,uint8_t Mdlharq,uint32_t Nsoft,uint8_t N_RB_DL, uint8_t abstraction_flag, LTE_DL_FRAME_PARMS* frame_parms);
62 63 64 65 66 67 68

/** \fn free_ue_dlsch(LTE_UE_DLSCH_t *dlsch)
    \brief This function frees memory allocated for a particular DLSCH at UE
    @param dlsch Pointer to DLSCH to be removed
*/
void free_ue_dlsch(LTE_UE_DLSCH_t *dlsch);

69 70 71 72 73 74 75 76 77 78
/** \fn new_ue_dlsch(uint8_t Kmimo,uint8_t Mdlharq,uint32_t Nsoft,uint8_t abstraction_flag)
    \brief This function allocates structures for a particular DLSCH at eNB
    @returns Pointer to DLSCH to be removed
    @param Kmimo Kmimo factor from 36-212/36-213
    @param Mdlharq Maximum number of HARQ rounds (36-212/36-213)
    @param Nsoft Soft-LLR buffer size from UE-Category
    @params N_RB_DL total number of resource blocks (determine the operating BW)
    @param abstraction_flag Flag to indicate abstracted interface
*/
LTE_UE_DLSCH_t *new_ue_dlsch(uint8_t Kmimo,uint8_t Mdlharq,uint32_t Nsoft,uint8_t max_turbo_iterations,uint8_t N_RB_DL, uint8_t abstraction_flag);
79 80


81
void clean_eNb_ulsch(LTE_eNB_ULSCH_t *ulsch);
82 83 84

void free_ue_ulsch(LTE_UE_ULSCH_t *ulsch);

85
LTE_eNB_ULSCH_t *new_eNB_ulsch(uint8_t max_turbo_iterations,uint8_t N_RB_UL, uint8_t abstraction_flag);
86

87
LTE_UE_ULSCH_t *new_ue_ulsch(unsigned char N_RB_UL, uint8_t abstraction_flag);
88

89 90
/** \fn dlsch_encoding(PHY_VARS_eNB *eNB,
    uint8_t *input_buffer,
91 92 93 94 95 96 97 98 99 100 101
    LTE_DL_FRAME_PARMS *frame_parms,
    uint8_t num_pdcch_symbols,
    LTE_eNB_DLSCH_t *dlsch,
    int frame,
    uint8_t subframe)
    \brief This function performs a subset of the bit-coding functions for LTE as described in 36-212, Release 8.Support is limited to turbo-coded channels (DLSCH/ULSCH). The implemented functions are:
    - CRC computation and addition
    - Code block segmentation and sub-block CRC addition
    - Channel coding (Turbo coding)
    - Rate matching (sub-block interleaving, bit collection, selection and transmission
    - Code block concatenation
102
    @param eNB Pointer to eNB PHY context
103 104 105 106 107 108 109 110 111 112 113
    @param input_buffer Pointer to input buffer for sub-frame
    @param frame_parms Pointer to frame descriptor structure
    @param num_pdcch_symbols Number of PDCCH symbols in this subframe
    @param dlsch Pointer to dlsch to be encoded
    @param frame Frame number
    @param subframe Subframe number
    @param rm_stats Time statistics for rate-matching
    @param te_stats Time statistics for turbo-encoding
    @param i_stats Time statistics for interleaving
    @returns status
*/
114 115
int32_t dlsch_encoding(PHY_VARS_eNB *eNB,
		       uint8_t *a,
116 117 118 119 120 121 122
                       uint8_t num_pdcch_symbols,
                       LTE_eNB_DLSCH_t *dlsch,
                       int frame,
                       uint8_t subframe,
                       time_stats_t *rm_stats,
                       time_stats_t *te_stats,
                       time_stats_t *i_stats);
123

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
/** \fn dlsch_encoding_2threads(PHY_VARS_eNB *eNB,
    uint8_t *input_buffer,
    uint8_t num_pdcch_symbols,
    LTE_eNB_DLSCH_t *dlsch,
    int frame,
    uint8_t subframe)
    \brief This function performs a subset of the bit-coding functions for LTE as described in 36-212, Release 8.Support is limited to turbo-coded channels (DLSCH/ULSCH). This version spawns 1 worker thread. The implemented functions are:
    - CRC computation and addition
    - Code block segmentation and sub-block CRC addition
    - Channel coding (Turbo coding)
    - Rate matching (sub-block interleaving, bit collection, selection and transmission
    - Code block concatenation
    @param eNB Pointer to eNB PHY context
    @param input_buffer Pointer to input buffer for sub-frame
    @param num_pdcch_symbols Number of PDCCH symbols in this subframe
    @param dlsch Pointer to dlsch to be encoded
    @param frame Frame number
    @param subframe Subframe number
    @param rm_stats Time statistics for rate-matching
    @param te_stats Time statistics for turbo-encoding
    @param i_stats Time statistics for interleaving
    @returns status
*/
int32_t dlsch_encoding_2threads(PHY_VARS_eNB *eNB,
				uint8_t *a,
				uint8_t num_pdcch_symbols,
				LTE_eNB_DLSCH_t *dlsch,
				int frame,
				uint8_t subframe,
				time_stats_t *rm_stats,
				time_stats_t *te_stats,
				time_stats_t *i_stats);

157
void dlsch_encoding_emul(PHY_VARS_eNB *phy_vars_eNB,
158 159
                         uint8_t *DLSCH_pdu,
                         LTE_eNB_DLSCH_t *dlsch);
160 161 162 163


// Functions below implement 36-211

164
/** \fn allocate_REs_in_RB(int32_t **txdataF,
165
    uint32_t *jj,
166
    uint32_t *jj2,
167 168
    uint16_t re_offset,
    uint32_t symbol_offset,
169 170
    LTE_DL_eNB_HARQ_t *dlsch0_harq,
    LTE_DL_eNB_HARQ_t *dlsch1_harq,
171
    uint8_t pilots,
172
    int16_t amp,
173 174 175 176 177 178 179 180 181
    int16_t *qam_table_s,
    uint32_t *re_allocated,
    uint8_t skip_dc,
    uint8_t skip_half,
    uint8_t use2ndpilots,
    LTE_DL_FRAME_PARMS *frame_parms);

    \brief Fills RB with data
    \param txdataF pointer to output data (frequency domain signal)
182 183
    \param jj index to output (from CW 1)
    \param jj index to output (from CW 2)
184 185
    \param re_offset index of the first RE of the RB
    \param symbol_offset index to the OFDM symbol
186 187
    \param dlsch0_harq Pointer to Transport block 0 HARQ structure
    \param dlsch0_harq Pointer to Transport block 1 HARQ structure
188 189
    \param pilots =1 if symbol_offset is an OFDM symbol that contains pilots, 0 otherwise
    \param amp Amplitude for symbols
190 191
    \param qam_table_s0 pointer to scaled QAM table for Transport Block 0 (by rho_a or rho_b)
    \param qam_table_s1 pointer to scaled QAM table for Transport Block 1 (by rho_a or rho_b)
192 193 194
    \param re_allocated pointer to allocation counter
    \param skip_dc offset for positive RBs
    \param skip_half indicate that first or second half of RB must be skipped for PBCH/PSS/SSS
195 196
    \param ue_spec_rs UE specific RS indicator 
    \param nb_antennas_tx_phy Physical antenna elements which can be different with antenna port number, especially in beamforming case
197 198 199 200 201 202
    \param use2ndpilots Set to use the pilots from antenna port 1 for PDSCH
    \param frame_parms Frame parameter descriptor
*/

// Functions below implement 36-211

203
/** \fn allocate_REs_in_RB(int32_t **txdataF,
204
    uint32_t *jj,
205
    uint32_t *jj2,
206 207
    uint16_t re_offset,
    uint32_t symbol_offset,
208 209
    LTE_DL_eNB_HARQ_t *dlsch0_harq,
    LTE_DL_eNB_HARQ_t *dlsch1_harq,
210
    uint8_t pilots,
211
    int16_t amp,
212 213 214 215 216 217 218 219 220
    int16_t *qam_table_s,
    uint32_t *re_allocated,
    uint8_t skip_dc,
    uint8_t skip_half,
    uint8_t use2ndpilots,
    LTE_DL_FRAME_PARMS *frame_parms);

    \brief Fills RB with data
    \param txdataF pointer to output data (frequency domain signal)
221 222
    \param jj index to output (from CW 1)
    \param jj index to output (from CW 2)
223 224
    \param re_offset index of the first RE of the RB
    \param symbol_offset index to the OFDM symbol
225 226
    \param dlsch0_harq Pointer to Transport block 0 HARQ structure
    \param dlsch0_harq Pointer to Transport block 1 HARQ structure
227 228
    \param pilots =1 if symbol_offset is an OFDM symbol that contains pilots, 0 otherwise
    \param amp Amplitude for symbols
229 230
    \param qam_table_s0 pointer to scaled QAM table for Transport Block 0 (by rho_a or rho_b)
    \param qam_table_s1 pointer to scaled QAM table for Transport Block 1 (by rho_a or rho_b)
231 232 233 234 235 236 237
    \param re_allocated pointer to allocation counter
    \param skip_dc offset for positive RBs
    \param skip_half indicate that first or second half of RB must be skipped for PBCH/PSS/SSS
    \param use2ndpilots Set to use the pilots from antenna port 1 for PDSCH
    \param frame_parms Frame parameter descriptor
*/

238
int32_t allocate_REs_in_RB(PHY_VARS_eNB* phy_vars_eNB,
239
                           int32_t **txdataF,
240 241 242 243 244 245 246 247 248 249 250 251 252
                           uint32_t *jj,
                           uint32_t *jj2,
                           uint16_t re_offset,
                           uint32_t symbol_offset,
                           LTE_DL_eNB_HARQ_t *dlsch0_harq,
                           LTE_DL_eNB_HARQ_t *dlsch1_harq,
                           uint8_t pilots,
                           int16_t amp,
                           uint8_t precoder_index,
                           int16_t *qam_table_s0,
                           int16_t *qam_table_s1,
                           uint32_t *re_allocated,
                           uint8_t skip_dc,
253
                           uint8_t skip_half,
254 255 256
			   uint8_t lprime,
			   uint8_t mprime,
			   uint8_t Ns,
257 258
			   int *P1_SHIFT,
			   int *P2_SHIFT);
259

260

261
/** \fn int32_t dlsch_modulation(int32_t **txdataF,
262
    int16_t amp,
263 264 265 266 267
    uint32_t sub_frame_offset,
    LTE_DL_FRAME_PARMS *frame_parms,
    uint8_t num_pdcch_symbols,
    LTE_eNB_DLSCH_t *dlsch);

268
    \brief This function is the top-level routine for generation of the sub-frame signal (frequency-domain) for DLSCH.
269 270 271 272 273
    @param txdataF Table of pointers for frequency-domain TX signals
    @param amp Amplitude of signal
    @param sub_frame_offset Offset of this subframe in units of subframes (usually 0)
    @param frame_parms Pointer to frame descriptor
    @param num_pdcch_symbols Number of PDCCH symbols in this subframe
274 275
    @param dlsch0 Pointer to Transport Block 0 DLSCH descriptor for this allocation
    @param dlsch1 Pointer to Transport Block 0 DLSCH descriptor for this allocation
276
*/
277
int32_t dlsch_modulation(PHY_VARS_eNB* phy_vars_eNB,
278
                         int32_t **txdataF,
279 280 281 282 283
                         int16_t amp,
                         uint32_t sub_frame_offset,
                         uint8_t num_pdcch_symbols,
                         LTE_eNB_DLSCH_t *dlsch0,
                         LTE_eNB_DLSCH_t *dlsch1);
284
/*
285
  \brief This function is the top-level routine for generation of the sub-frame signal (frequency-domain) for MCH.
286 287 288 289 290 291
  @param txdataF Table of pointers for frequency-domain TX signals
  @param amp Amplitude of signal
  @param subframe_offset Offset of this subframe in units of subframes (usually 0)
  @param frame_parms Pointer to frame descriptor
  @param dlsch Pointer to DLSCH descriptor for this allocation
*/
292
int mch_modulation(int32_t **txdataF,
293 294 295 296
                   int16_t amp,
                   uint32_t subframe_offset,
                   LTE_DL_FRAME_PARMS *frame_parms,
                   LTE_eNB_DLSCH_t *dlsch);
297 298 299 300

/** \brief Top-level generation function for eNB TX of MBSFN
    @param phy_vars_eNB Pointer to eNB variables
    @param a Pointer to transport block
301
    @param abstraction_flag
302

303
*/
304
void generate_mch(PHY_VARS_eNB *phy_vars_eNB,eNB_rxtx_proc_t *proc,uint8_t *a);
305 306 307

/** \brief This function generates the frequency-domain pilots (cell-specific downlink reference signals)
    @param phy_vars_eNB Pointer to eNB variables
308
    @param proc Pointer to RXn-TXnp4 proc information
309
    @param mcs MCS for MBSFN
310 311
    @param ndi new data indicator
    @param rdvix
312
*/
313
void fill_eNB_dlsch_MCH(PHY_VARS_eNB *phy_vars_eNB,int mcs,int ndi,int rvidx);
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328

/** \brief This function generates the frequency-domain pilots (cell-specific downlink reference signals)
    @param phy_vars_ue Pointer to UE variables
    @param mcs MCS for MBSFN
    @param eNB_id index of eNB in ue variables
*/
void fill_UE_dlsch_MCH(PHY_VARS_UE *phy_vars_ue,int mcs,int ndi,int rvidx,int eNB_id);

/** \brief Receiver processing for MBSFN, symbols can be done separately for time/CPU-scheduling purposes
    @param phy_vars_ue Pointer to UE variables
    @param eNB_id index of eNB in ue variables
    @param subframe Subframe index of PMCH
    @param symbol Symbol index on which to act
*/
int rx_pmch(PHY_VARS_UE *phy_vars_ue,
329 330 331
            unsigned char eNB_id,
            uint8_t subframe,
            unsigned char symbol);
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350

/** \brief Dump OCTAVE/MATLAB files for PMCH debugging
    @param phy_vars_ue Pointer to UE variables
    @param eNB_id index of eNB in ue variables
    @param coded_bits_per_codeword G from 36.211
    @param subframe Index of subframe
    @returns 0 on success
*/
void dump_mch(PHY_VARS_UE *phy_vars_ue,uint8_t eNB_id,uint16_t coded_bits_per_codeword,int subframe);


/** \brief This function generates the frequency-domain pilots (cell-specific downlink reference signals)
    for N subframes.
    @param phy_vars_eNB Pointer to eNB variables
    @param txdataF Table of pointers for frequency-domain TX signals
    @param amp Amplitude of signal
    @param N Number of sub-frames to generate
*/
void generate_pilots(PHY_VARS_eNB *phy_vars_eNB,
351
                     int32_t **txdataF,
352 353
                     int16_t amp,
                     uint16_t N);
354 355 356 357 358 359 360 361 362

/**
   \brief This function generates the frequency-domain pilots (cell-specific downlink reference signals) for one slot only
   @param phy_vars_eNB Pointer to eNB variables
   @param txdataF Table of pointers for frequency-domain TX signals
   @param amp Amplitude of signal
   @param slot index (0..19)
   @param first_pilot_only (0 no)
*/
363
int32_t generate_pilots_slot(PHY_VARS_eNB *phy_vars_eNB,
364
                             int32_t **txdataF,
365 366 367 368
                             int16_t amp,
                             uint16_t slot,
                             int first_pilot_only);

369
int32_t generate_mbsfn_pilot(PHY_VARS_eNB *phy_vars_eNB,
370 371
                             eNB_rxtx_proc_t *proc,
			     int32_t **txdataF,
372
                             int16_t amp);
373

374 375
void generate_ue_spec_pilots(PHY_VARS_eNB *phy_vars_eNB,
                             uint8_t UE_id,
376
                             int32_t **txdataF,
377 378 379 380
                             int16_t amp,
                             uint16_t Ntti,
		             uint8_t beamforming_mode);

381
int32_t generate_pss(int32_t **txdataF,
382 383 384 385
                     int16_t amp,
                     LTE_DL_FRAME_PARMS *frame_parms,
                     uint16_t l,
                     uint16_t Ns);
386

387
int32_t generate_pss_emul(PHY_VARS_eNB *phy_vars_eNB,uint8_t sect_id);
388

389
int32_t generate_sss(int32_t **txdataF,
390 391 392 393
                     short amp,
                     LTE_DL_FRAME_PARMS *frame_parms,
                     unsigned short symbol,
                     unsigned short slot_offset);
394

395
int32_t generate_pbch(LTE_eNB_PBCH *eNB_pbch,
396
                      int32_t **txdataF,
397 398 399 400
                      int32_t amp,
                      LTE_DL_FRAME_PARMS *frame_parms,
                      uint8_t *pbch_pdu,
                      uint8_t frame_mod4);
401

402
int32_t generate_pbch_emul(PHY_VARS_eNB *phy_vars_eNB,uint8_t *pbch_pdu);
403 404 405 406 407 408 409

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream QPSK/QPSK reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
410
void qpsk_qpsk(int16_t *stream0_in,
411 412 413 414
               int16_t *stream1_in,
               int16_t *stream0_out,
               int16_t *rho01,
               int32_t length);
415 416 417 418 419 420 421 422 423 424 425 426

/** \brief This function perform LLR computation for dual-stream (QPSK/QPSK) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr128p pointer to pointer to symbol in dlsch_llr*/
427
int32_t dlsch_qpsk_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
428 429 430 431 432 433 434 435 436
                            int32_t **rxdataF_comp,
                            int32_t **rxdataF_comp_i,
                            int32_t **rho_i,
                            int16_t *dlsch_llr,
                            uint8_t symbol,
                            uint8_t first_symbol_flag,
                            uint16_t nb_rb,
                            uint16_t pbch_pss_sss_adj,
                            int16_t **llr128p);
437 438 439 440 441 442 443 444

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream QPSK/16QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
445 446
void qpsk_qam16(int16_t *stream0_in,
                int16_t *stream1_in,
447
                short *ch_mag_i,
448 449 450
                int16_t *stream0_out,
                int16_t *rho01,
                int32_t length);
451 452 453 454 455 456 457 458 459 460 461 462

/** \brief This function perform LLR computation for dual-stream (QPSK/16QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr128p pointer to pointer to symbol in dlsch_llr*/
463
int32_t dlsch_qpsk_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
464 465 466 467 468 469 470 471 472 473
                             int32_t **rxdataF_comp,
                             int32_t **rxdataF_comp_i,
                             int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
                             int32_t **rho_i,
                             int16_t *dlsch_llr,
                             uint8_t symbol,
                             uint8_t first_symbol_flag,
                             uint16_t nb_rb,
                             uint16_t pbch_pss_sss_adj,
                             int16_t **llr128p);
474 475 476 477 478 479 480 481

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream QPSK/64QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
482 483
void qpsk_qam64(int16_t *stream0_in,
                int16_t *stream1_in,
484
                short *ch_mag_i,
485 486 487
                int16_t *stream0_out,
                int16_t *rho01,
                int32_t length);
488 489 490 491 492 493 494 495 496 497 498 499

/** \brief This function perform LLR computation for dual-stream (QPSK/64QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr128p pointer to pointer to symbol in dlsch_llr*/
500
int32_t dlsch_qpsk_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
501 502 503 504 505 506 507 508 509 510
                             int32_t **rxdataF_comp,
                             int32_t **rxdataF_comp_i,
                             int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
                             int32_t **rho_i,
                             int16_t *dlsch_llr,
                             uint8_t symbol,
                             uint8_t first_symbol_flag,
                             uint16_t nb_rb,
                             uint16_t pbch_pss_sss_adj,
                             int16_t **llr128p);
511 512 513 514 515 516 517 518 519 520 521 522 523 524


/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 16QAM/QPSK reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam16_qpsk(short *stream0_in,
                short *stream1_in,
                short *ch_mag,
                short *stream0_out,
                short *rho01,
525
                int length);
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
/** \brief This function perform LLR computation for dual-stream (16QAM/QPSK) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_16qam_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
                         int **rxdataF_comp,
                         int **rxdataF_comp_i,
                         int **dl_ch_mag,   //|h_0|^2*(2/sqrt{10})
                         int **rho_i,
                         short *dlsch_llr,
                         unsigned char symbol,
                         unsigned char first_symbol_flag,
                         unsigned short nb_rb,
                         uint16_t pbch_pss_sss_adjust,
                         short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 16QAM/16QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam16_qam16(short *stream0_in,
                 short *stream1_in,
                 short *ch_mag,
                 short *ch_mag_i,
                 short *stream0_out,
                 short *rho01,
                 int length);

/** \brief This function perform LLR computation for dual-stream (16QAM/16QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_16qam_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
                          int **rxdataF_comp,
                          int **rxdataF_comp_i,
                          int **dl_ch_mag,   //|h_0|^2*(2/sqrt{10})
                          int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
                          int **rho_i,
                          short *dlsch_llr,
                          unsigned char symbol,
                          unsigned char first_symbol_flag,
                          unsigned short nb_rb,
                          uint16_t pbch_pss_sss_adjust,
                          short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 16QAM/64QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam16_qam64(short *stream0_in,
                 short *stream1_in,
                 short *ch_mag,
                 short *ch_mag_i,
                 short *stream0_out,
                 short *rho01,
                 int length);

/** \brief This function perform LLR computation for dual-stream (16QAM/64QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_16qam_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
                          int **rxdataF_comp,
                          int **rxdataF_comp_i,
                          int **dl_ch_mag,   //|h_0|^2*(2/sqrt{10})
                          int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
                          int **rho_i,
                          short *dlsch_llr,
                          unsigned char symbol,
                          unsigned char first_symbol_flag,
                          unsigned short nb_rb,
                          uint16_t pbch_pss_sss_adjust,
                          short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 64QAM/64QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam64_qpsk(short *stream0_in,
                short *stream1_in,
                short *ch_mag,
                short *stream0_out,
                short *rho01,
                int length);

/** \brief This function perform LLR computation for dual-stream (64QAM/64QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_64qam_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
                         int **rxdataF_comp,
                         int **rxdataF_comp_i,
                         int **dl_ch_mag,
                         int **rho_i,
                         short *dlsch_llr,
                         unsigned char symbol,
                         unsigned char first_symbol_flag,
                         unsigned short nb_rb,
                         uint16_t pbch_pss_sss_adjust,
                         short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 64QAM/16QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam64_qam16(short *stream0_in,
                 short *stream1_in,
                 short *ch_mag,
                 short *ch_mag_i,
                 short *stream0_out,
                 short *rho01,
                 int length);

/** \brief This function perform LLR computation for dual-stream (64QAM/16QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_64qam_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
                          int **rxdataF_comp,
                          int **rxdataF_comp_i,
                          int **dl_ch_mag,
                          int **dl_ch_mag_i,
                          int **rho_i,
                          short *dlsch_llr,
                          unsigned char symbol,
                          unsigned char first_symbol_flag,
                          unsigned short nb_rb,
                          uint16_t pbch_pss_sss_adjust,
                          short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 64QAM/64QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam64_qam64(short *stream0_in,
                 short *stream1_in,
                 short *ch_mag,
                 short *ch_mag_i,
                 short *stream0_out,
                 short *rho01,
                 int length);

/** \brief This function perform LLR computation for dual-stream (64QAM/64QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_64qam_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
                          int **rxdataF_comp,
                          int **rxdataF_comp_i,
                          int **dl_ch_mag,
                          int **dl_ch_mag_i,
                          int **rho_i,
                          short *dlsch_llr,
                          unsigned char symbol,
                          unsigned char first_symbol_flag,
                          unsigned short nb_rb,
                          uint16_t pbch_pss_sss_adjust,
                          short **llr16p);


/** \brief This function generates log-likelihood ratios (decoder input) for single-stream QPSK received waveforms.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
762
    @param first_symbol_flag
763 764 765
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr128p pointer to pointer to symbol in dlsch_llr
766
    @param beamforming_mode beamforming mode
767
*/
768
int32_t dlsch_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
769 770 771 772 773 774
                       int32_t **rxdataF_comp,
                       int16_t *dlsch_llr,
                       uint8_t symbol,
                       uint8_t first_symbol_flag,
                       uint16_t nb_rb,
                       uint16_t pbch_pss_sss_adj,
775 776
                       int16_t **llr128p,
                       uint8_t beamforming_mode);
777 778 779 780 781 782 783 784 785 786 787 788

/**
   \brief This function generates log-likelihood ratios (decoder input) for single-stream 16QAM received waveforms
   @param frame_parms Frame descriptor structure
   @param rxdataF_comp Compensated channel output
   @param dlsch_llr llr output
   @param dl_ch_mag Squared-magnitude of channel in each resource element position corresponding to allocation and weighted for mid-point in 16QAM constellation
   @param symbol OFDM symbol index in sub-frame
   @param first_symbol_flag
   @param nb_rb number of RBs for this allocation
   @param pbch_pss_sss_adjust  Adjustment factor in RE for PBCH/PSS/SSS allocations
   @param llr128p pointer to pointer to symbol in dlsch_llr
789
   @param beamforming_mode beamforming mode
790 791 792
*/

void dlsch_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
793 794 795 796 797 798 799
                     int32_t **rxdataF_comp,
                     int16_t *dlsch_llr,
                     int32_t **dl_ch_mag,
                     uint8_t symbol,
                     uint8_t first_symbol_flag,
                     uint16_t nb_rb,
                     uint16_t pbch_pss_sss_adjust,
800 801
                     int16_t **llr128p,
                     uint8_t beamforming_mode);
802 803 804 805 806 807 808 809 810 811 812 813

/**
   \brief This function generates log-likelihood ratios (decoder input) for single-stream 16QAM received waveforms
   @param frame_parms Frame descriptor structure
   @param rxdataF_comp Compensated channel output
   @param dlsch_llr llr output
   @param dl_ch_mag Squared-magnitude of channel in each resource element position corresponding to allocation, weighted by first mid-point of 64-QAM constellation
   @param dl_ch_magb Squared-magnitude of channel in each resource element position corresponding to allocation, weighted by second mid-point of 64-QAM constellation
   @param symbol OFDM symbol index in sub-frame
   @param first_symbol_flag
   @param nb_rb number of RBs for this allocation
   @param pbch_pss_sss_adjust PBCH/PSS/SSS RE adjustment (in REs)
814
   @param beamforming_mode beamforming mode
815 816
*/
void dlsch_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
817 818 819 820 821 822 823 824
                     int32_t **rxdataF_comp,
                     int16_t *dlsch_llr,
                     int32_t **dl_ch_mag,
                     int32_t **dl_ch_magb,
                     uint8_t symbol,
                     uint8_t first_symbol_flag,
                     uint16_t nb_rb,
                     uint16_t pbch_pss_sss_adjust,
825
                     int16_t **llr_save,
826
                     uint8_t beamforming_mode);
827 828

/** \fn dlsch_siso(LTE_DL_FRAME_PARMS *frame_parms,
829 830
    int32_t **rxdataF_comp,
    int32_t **rxdataF_comp_i,
831 832 833 834 835 836 837 838 839 840 841
    uint8_t l,
    uint16_t nb_rb)
    \brief This function does the first stage of llr computation for SISO, by just extracting the pilots, PBCH and primary/secondary synchronization sequences.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param l symbol in sub-frame
    @param nb_rb Number of RBs in this allocation
*/

void dlsch_siso(LTE_DL_FRAME_PARMS *frame_parms,
842 843 844 845
                int32_t **rxdataF_comp,
                int32_t **rxdataF_comp_i,
                uint8_t l,
                uint16_t nb_rb);
846 847

/** \fn dlsch_alamouti(LTE_DL_FRAME_PARMS *frame_parms,
848 849 850
    int32_t **rxdataF_comp,
    int32_t **dl_ch_mag,
    int32_t **dl_ch_magb,
851 852 853 854 855 856 857 858 859 860 861
    uint8_t symbol,
    uint16_t nb_rb)
    \brief This function does Alamouti combining on RX and prepares LLR inputs by skipping pilots, PBCH and primary/secondary synchronization signals.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param dl_ch_mag First squared-magnitude of channel (16QAM and 64QAM) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param dl_ch_magb Second squared-magnitude of channel (64QAM only) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param symbol Symbol in sub-frame
    @param nb_rb Number of RBs in this allocation
*/
void dlsch_alamouti(LTE_DL_FRAME_PARMS *frame_parms,
862 863 864 865 866
                    int32_t **rxdataF_comp,
                    int32_t **dl_ch_mag,
                    int32_t **dl_ch_magb,
                    uint8_t symbol,
                    uint16_t nb_rb);
867 868

/** \fn dlsch_antcyc(LTE_DL_FRAME_PARMS *frame_parms,
869 870 871
    int32_t **rxdataF_comp,
    int32_t **dl_ch_mag,
    int32_t **dl_ch_magb,
872 873 874 875 876 877 878 879 880 881 882
    uint8_t symbol,
    uint16_t nb_rb)
    \brief This function does antenna selection (based on antenna cycling pattern) on RX and prepares LLR inputs by skipping pilots, PBCH and primary/secondary synchronization signals.  Note that this is not LTE, it is just included for comparison purposes.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param dl_ch_mag First squared-magnitude of channel (16QAM and 64QAM) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param dl_ch_magb Second squared-magnitude of channel (64QAM only) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param symbol Symbol in sub-frame
    @param nb_rb Number of RBs in this allocation
*/
void dlsch_antcyc(LTE_DL_FRAME_PARMS *frame_parms,
883 884 885 886 887
                  int32_t **rxdataF_comp,
                  int32_t **dl_ch_mag,
                  int32_t **dl_ch_magb,
                  uint8_t symbol,
                  uint16_t nb_rb);
888 889

/** \fn dlsch_detection_mrc(LTE_DL_FRAME_PARMS *frame_parms,
890 891 892 893 894 895
    int32_t **rxdataF_comp,
    int32_t **rxdataF_comp_i,
    int32_t **rho,
    int32_t **rho_i,
    int32_t **dl_ch_mag,
    int32_t **dl_ch_magb,
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
    uint8_t symbol,
    uint16_t nb_rb,
    uint8_t dual_stream_UE)

    \brief This function does maximal-ratio combining for dual-antenna receivers.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param rho Cross correlation between spatial channels
    @param rho_i Cross correlation between signal and inteference channels
    @param dl_ch_mag First squared-magnitude of channel (16QAM and 64QAM) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param dl_ch_magb Second squared-magnitude of channel (64QAM only) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param symbol Symbol in sub-frame
    @param nb_rb Number of RBs in this allocation
    @param dual_stream_UE Flag to indicate dual-stream detection
*/
void dlsch_detection_mrc(LTE_DL_FRAME_PARMS *frame_parms,
913 914 915 916 917 918 919 920 921 922 923
                         int32_t **rxdataF_comp,
                         int32_t **rxdataF_comp_i,
                         int32_t **rho,
                         int32_t **rho_i,
                         int32_t **dl_ch_mag,
                         int32_t **dl_ch_magb,
                         int32_t **dl_ch_mag_i,
                         int32_t **dl_ch_magb_i,
                         uint8_t symbol,
                         uint16_t nb_rb,
                         uint8_t dual_stream_UE);
924

925 926 927 928
/** \fn dlsch_extract_rbs_single(int32_t **rxdataF,
    int32_t **dl_ch_estimates,
    int32_t **rxdataF_ext,
    int32_t **dl_ch_estimates_ext,
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
    uint16_t pmi,
    uint8_t *pmi_ext,
    uint32_t *rb_alloc,
    uint8_t symbol,
    uint8_t subframe,
    LTE_DL_FRAME_PARMS *frame_parms)
    \brief This function extracts the received resource blocks, both channel estimates and data symbols,
    for the current allocation and for single antenna eNB transmission.
    @param rxdataF Raw FFT output of received signal
    @param dl_ch_estimates Channel estimates of current slot
    @param rxdataF_ext FFT output for RBs in this allocation
    @param dl_ch_estimates_ext Channel estimates for RBs in this allocation
    @param pmi subband Precoding matrix indicator
    @param pmi_ext Extracted PMI for chosen RBs
    @param rb_alloc RB allocation vector
    @param symbol Symbol to extract
    @param subframe Subframe number
946
    @param vrb_type Flag to indicate distributed VRB type
947
    @param high_speed_flag
948 949
    @param frame_parms Pointer to frame descriptor
*/
950
uint16_t dlsch_extract_rbs_single(int32_t **rxdataF,
951 952 953 954 955 956 957 958 959 960
                                  int32_t **dl_ch_estimates,
                                  int32_t **rxdataF_ext,
                                  int32_t **dl_ch_estimates_ext,
                                  uint16_t pmi,
                                  uint8_t *pmi_ext,
                                  uint32_t *rb_alloc,
                                  uint8_t symbol,
                                  uint8_t subframe,
                                  uint32_t high_speed_flag,
                                  LTE_DL_FRAME_PARMS *frame_parms);
961

962 963 964 965
/** \fn dlsch_extract_rbs_dual(int32_t **rxdataF,
    int32_t **dl_ch_estimates,
    int32_t **rxdataF_ext,
    int32_t **dl_ch_estimates_ext,
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
    uint16_t pmi,
    uint8_t *pmi_ext,
    uint32_t *rb_alloc,
    uint8_t symbol,
    LTE_DL_FRAME_PARMS *frame_parms)
    \brief This function extracts the received resource blocks, both channel estimates and data symbols,
    for the current allocation and for dual antenna eNB transmission.
    @param rxdataF Raw FFT output of received signal
    @param dl_ch_estimates Channel estimates of current slot
    @param rxdataF_ext FFT output for RBs in this allocation
    @param dl_ch_estimates_ext Channel estimates for RBs in this allocation
    @param pmi subband Precoding matrix indicator
    @param pmi_ext Extracted PMI for chosen RBs
    @param rb_alloc RB allocation vector
    @param symbol Symbol to extract
    @param subframe Subframe index
982
    @param high_speed_flag
983 984
    @param frame_parms Pointer to frame descriptor
*/
985
uint16_t dlsch_extract_rbs_dual(int32_t **rxdataF,
986 987 988 989 990 991 992 993 994 995
                                int32_t **dl_ch_estimates,
                                int32_t **rxdataF_ext,
                                int32_t **dl_ch_estimates_ext,
                                uint16_t pmi,
                                uint8_t *pmi_ext,
                                uint32_t *rb_alloc,
                                uint8_t symbol,
                                uint8_t subframe,
                                uint32_t high_speed_flag,
                                LTE_DL_FRAME_PARMS *frame_parms);
996

Xiwen JIANG's avatar
Xiwen JIANG committed
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
/** \fn dlsch_extract_rbs_TM7(int32_t **rxdataF,
    int32_t **dl_bf_ch_estimates,
    int32_t **rxdataF_ext,
    int32_t **dl_bf_ch_estimates_ext,
    uint32_t *rb_alloc,
    uint8_t symbol,
    uint8_t subframe,
    uint32_t high_speed_flag,
    LTE_DL_FRAME_PARMS *frame_parms)
    \brief This function extracts the received resource blocks, both channel estimates and data symbols,
    for the current allocation and for single antenna eNB transmission.
    @param rxdataF Raw FFT output of received signal
    @param dl_bf_ch_estimates Beamforming channel estimates of current slot
    @param rxdataF_ext FFT output for RBs in this allocation
    @param dl_bf_ch_estimates_ext Beamforming channel estimates for RBs in this allocation
    @param rb_alloc RB allocation vector
    @param symbol Symbol to extract
    @param subframe Subframe number
    @param high_speed_flag
    @param frame_parms Pointer to frame descriptor
*/
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
uint16_t dlsch_extract_rbs_TM7(int32_t **rxdataF,
                               int32_t **dl_bf_ch_estimates,
                               int32_t **rxdataF_ext,
                               int32_t **dl_bf_ch_estimates_ext,
                               uint32_t *rb_alloc,
                               uint8_t symbol,
                               uint8_t subframe,
                               uint32_t high_speed_flag,
                               LTE_DL_FRAME_PARMS *frame_parms);

1028 1029 1030 1031 1032
/** \brief This function performs channel compensation (matched filtering) on the received RBs for this allocation.  In addition, it computes the squared-magnitude of the channel with weightings for 16QAM/64QAM detection as well as dual-stream detection (cross-correlation)
    @param rxdataF_ext Frequency-domain received signal in RBs to be demodulated
    @param dl_ch_estimates_ext Frequency-domain channel estimates in RBs to be demodulated
    @param dl_ch_mag First Channel magnitudes (16QAM/64QAM)
    @param dl_ch_magb Second weighted Channel magnitudes (64QAM)
1033
    @param rxdataF_comp Compensated received waveform
1034 1035 1036 1037 1038 1039 1040 1041 1042
    @param rho Cross-correlation between two spatial channels on each RX antenna
    @param frame_parms Pointer to frame descriptor
    @param symbol Symbol on which to operate
    @param first_symbol_flag set to 1 on first DLSCH symbol
    @param mod_order Modulation order of allocation
    @param nb_rb Number of RBs in allocation
    @param output_shift Rescaling for compensated output (should be energy-normalizing)
    @param phy_measurements Pointer to UE PHY measurements
*/
1043
void dlsch_channel_compensation(int32_t **rxdataF_ext,
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
                                int32_t **dl_ch_estimates_ext,
                                int32_t **dl_ch_mag,
                                int32_t **dl_ch_magb,
                                int32_t **rxdataF_comp,
                                int32_t **rho,
                                LTE_DL_FRAME_PARMS *frame_parms,
                                uint8_t symbol,
                                uint8_t first_symbol_flag,
                                uint8_t mod_order,
                                uint16_t nb_rb,
                                uint8_t output_shift,
                                PHY_MEASUREMENTS *phy_measurements);
1056 1057 1058 1059 1060 1061 1062 1063 1064

void dlsch_dual_stream_correlation(LTE_DL_FRAME_PARMS *frame_parms,
                                   unsigned char symbol,
                                   unsigned short nb_rb,
                                   int **dl_ch_estimates_ext,
                                   int **dl_ch_estimates_ext_i,
                                   int **dl_ch_rho_ext,
                                   unsigned char output_shift);

1065
void dlsch_channel_compensation_TM56(int **rxdataF_ext,
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
                                     int **dl_ch_estimates_ext,
                                     int **dl_ch_mag,
                                     int **dl_ch_magb,
                                     int **rxdataF_comp,
                                     unsigned char *pmi_ext,
                                     LTE_DL_FRAME_PARMS *frame_parms,
                                     PHY_MEASUREMENTS *phy_measurements,
                                     int eNB_id,
                                     unsigned char symbol,
                                     unsigned char mod_order,
                                     unsigned short nb_rb,
                                     unsigned char output_shift,
                                     unsigned char dl_power_off);
1079

1080
void dlsch_channel_compensation_TM3(LTE_DL_FRAME_PARMS *frame_parms,
1081 1082 1083 1084 1085 1086 1087 1088 1089
                                    LTE_UE_PDSCH *lte_ue_pdsch_vars,
                                    PHY_MEASUREMENTS *phy_measurements,
                                    int eNB_id,
                                    unsigned char symbol,
                                    unsigned char mod_order0,
                                    unsigned char mod_order1,
                                    int round,
                                    unsigned short nb_rb,
                                    unsigned char output_shift);
1090 1091


1092 1093 1094 1095 1096 1097 1098
/** \brief This function computes the average channel level over all allocated RBs and antennas (TX/RX) in order to compute output shift for compensated signal
    @param dl_ch_estimates_ext Channel estimates in allocated RBs
    @param frame_parms Pointer to frame descriptor
    @param avg Pointer to average signal strength
    @param pilots_flag Flag to indicate pilots in symbol
    @param nb_rb Number of allocated RBs
*/
1099
void dlsch_channel_level(int32_t **dl_ch_estimates_ext,
1100 1101 1102 1103
                         LTE_DL_FRAME_PARMS *frame_parms,
                         int32_t *avg,
                         uint8_t pilots_flag,
                         uint16_t nb_rb);
1104

1105
void dlsch_channel_level_TM3(int **dl_ch_estimates_ext,
1106 1107 1108 1109
                             LTE_DL_FRAME_PARMS *frame_parms,
                             int *avg,
                             uint8_t symbol,
                             unsigned short nb_rb);
1110 1111

void dlsch_channel_level_TM56(int32_t **dl_ch_estimates_ext,
1112 1113
                              LTE_DL_FRAME_PARMS *frame_parms,
                              unsigned char *pmi_ext,
1114
                              int32_t *avg,
1115 1116 1117
                              uint8_t symbol_mod,
                              uint16_t nb_rb);

1118 1119 1120 1121 1122 1123
void dlsch_channel_level_TM7(int32_t **dl_bf_ch_estimates_ext,
                         LTE_DL_FRAME_PARMS *frame_parms,
                         int32_t *avg,
                         uint8_t pilots_flag,
                         uint16_t nb_rb);

1124
void dlsch_scale_channel(int32_t **dl_ch_estimates_ext,
1125 1126 1127 1128 1129 1130
                         LTE_DL_FRAME_PARMS *frame_parms,
                         LTE_UE_DLSCH_t **dlsch_ue,
                         uint8_t symbol_mod,
                         uint16_t nb_rb);

/** \brief This is the top-level entry point for DLSCH decoding in UE.  It should be replicated on several
1131
    threads (on multi-core machines) corresponding to different HARQ processes. The routine first
1132 1133 1134 1135 1136 1137 1138 1139 1140
    computes the segmentation information, followed by rate dematching and sub-block deinterleaving the of the
    received LLRs computed by dlsch_demodulation for each transport block segment. It then calls the
    turbo-decoding algorithm for each segment and stops after either after unsuccesful decoding of at least
    one segment or correct decoding of all segments.  Only the segment CRCs are check for the moment, the
    overall CRC is ignored.  Finally transport block reassembly is performed.
    @param phy_vars_ue Pointer to ue variables
    @param dlsch_llr Pointer to LLR values computed by dlsch_demodulation
    @param lte_frame_parms Pointer to frame descriptor
    @param dlsch Pointer to DLSCH descriptor
1141
    @param frame Frame number
1142 1143 1144 1145 1146 1147 1148
    @param subframe Subframe number
    @param num_pdcch_symbols Number of PDCCH symbols
    @param is_crnti indicates if PDSCH belongs to a CRNTI (necessary for parallelizing decoding threads)
    @param llr8_flag If 1, indicate that the 8-bit turbo decoder should be used
    @returns 0 on success, 1 on unsuccessful decoding
*/
uint32_t dlsch_decoding(PHY_VARS_UE *phy_vars_ue,
1149 1150 1151 1152
                        int16_t *dlsch_llr,
                        LTE_DL_FRAME_PARMS *lte_frame_parms,
                        LTE_UE_DLSCH_t *dlsch,
                        LTE_DL_UE_HARQ_t *harq_process,
1153
                        uint8_t frame,
1154 1155 1156 1157
                        uint8_t subframe,
                        uint8_t harq_pid,
                        uint8_t is_crnti,
                        uint8_t llr8_flag);
1158 1159

uint32_t dlsch_decoding_emul(PHY_VARS_UE *phy_vars_ue,
1160
                             uint8_t subframe,
1161
                             PDSCH_t dlsch_id,
1162
                             uint8_t eNB_id);
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179

/** \brief This function is the top-level entry point to PDSCH demodulation, after frequency-domain transformation and channel estimation.  It performs
    - RB extraction (signal and channel estimates)
    - channel compensation (matched filtering)
    - RE extraction (pilot, PBCH, synch. signals)
    - antenna combining (MRC, Alamouti, cycling)
    - LLR computation
    @param phy_vars_ue Pointer to PHY variables
    @param type Type of PDSCH (SI_PDSCH,RA_PDSCH,PDSCH,PMCH)
    @param eNB_id eNb index (Nid1) 0,1,2
    @param eNB_id_i Interfering eNB index (Nid1) 0,1,2, or 3 in case of MU-MIMO IC receiver
    @param subframe Subframe number
    @param symbol Symbol on which to act (within sub-frame)
    @param first_symbol_flag set to 1 on first DLSCH symbol
    @param dual_stream_UE Flag to indicate dual-stream interference cancellation
    @param i_mod Modulation order of the interfering stream
*/
1180
int32_t rx_pdsch(PHY_VARS_UE *phy_vars_ue,
1181 1182 1183
                 PDSCH_t type,
                 uint8_t eNB_id,
                 uint8_t eNB_id_i,
1184
                 uint32_t frame,
1185 1186 1187 1188 1189 1190
                 uint8_t subframe,
                 uint8_t symbol,
                 uint8_t first_symbol_flag,
                 uint8_t dual_stream_UE,
                 uint8_t i_mod,
                 uint8_t harq_pid);
1191

1192
int32_t rx_pdcch(LTE_UE_COMMON *lte_ue_common_vars,
1193 1194
                 LTE_UE_PDCCH **lte_ue_pdcch_vars,
                 LTE_DL_FRAME_PARMS *frame_parms,
1195
                 uint32_t frame,
1196 1197 1198 1199 1200
                 uint8_t subframe,
                 uint8_t eNB_id,
                 MIMO_mode_t mimo_mode,
                 uint32_t high_speed_flag,
                 uint8_t is_secondary_ue);
1201 1202 1203 1204 1205 1206 1207 1208 1209

/*! \brief Extract PSS and SSS resource elements
  @param phy_vars_ue Pointer to UE variables
  @param[out] pss_ext contain the PSS signals after the extraction
  @param[out] sss_ext contain the SSS signals after the extraction
  @returns 0 on success
*/
int pss_sss_extract(PHY_VARS_UE *phy_vars_ue,
                    int32_t pss_ext[4][72],
1210 1211
                    int32_t sss_ext[4][72],
					uint8_t subframe);
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228

/*! \brief Extract only PSS resource elements
  @param phy_vars_ue Pointer to UE variables
  @param[out] pss_ext contain the PSS signals after the extraction
  @returns 0 on success
*/
int pss_only_extract(PHY_VARS_UE *phy_vars_ue,
                    int32_t pss_ext[4][72]);

/*! \brief Extract only SSS resource elements
  @param phy_vars_ue Pointer to UE variables
  @param[out] sss_ext contain the SSS signals after the extraction
  @returns 0 on success
*/
int sss_only_extract(PHY_VARS_UE *phy_vars_ue,
                    int32_t sss_ext[4][72]);

1229 1230 1231 1232 1233 1234 1235 1236
/*! \brief Performs detection of SSS to find cell ID and other framing parameters (FDD/TDD, normal/extended prefix)
  @param phy_vars_ue Pointer to UE variables
  @param tot_metric Pointer to variable containing maximum metric under framing hypothesis (to be compared to other hypotheses
  @param flip_max Pointer to variable indicating if start of frame is in second have of RX buffer (i.e. PSS/SSS is flipped)
  @param phase_max Pointer to variable (0 ... 6) containing rought phase offset between PSS and SSS (can be used for carrier
  frequency adjustment. 0 means -pi/3, 6 means pi/3.
  @returns 0 on success
*/
1237
int rx_sss(PHY_VARS_UE *phy_vars_ue,int32_t *tot_metric,uint8_t *flip_max,uint8_t *phase_max);
1238 1239 1240 1241 1242

/*! \brief receiver for the PBCH
  \returns number of tx antennas or -1 if error
*/
uint16_t rx_pbch(LTE_UE_COMMON *lte_ue_common_vars,
1243 1244 1245 1246 1247 1248
                 LTE_UE_PBCH *lte_ue_pbch_vars,
                 LTE_DL_FRAME_PARMS *frame_parms,
                 uint8_t eNB_id,
                 MIMO_mode_t mimo_mode,
                 uint32_t high_speed_flag,
                 uint8_t frame_mod4);
1249 1250

uint16_t rx_pbch_emul(PHY_VARS_UE *phy_vars_ue,
1251 1252
                      uint8_t eNB_id,
                      uint8_t pbch_phase);
1253 1254 1255 1256

/*! \brief PBCH scrambling. Applies 36.211 PBCH scrambling procedure.
  \param frame_parms Pointer to frame descriptor
  \param coded_data Output of the coding and rate matching
1257
  \param length Length of the sequence*/
1258
void pbch_scrambling(LTE_DL_FRAME_PARMS *frame_parms,
1259 1260
                     uint8_t* coded_data,
                     uint32_t length);
1261 1262 1263 1264 1265 1266

/*! \brief PBCH unscrambling
  This is similar to pbch_scrabling with the difference that inputs are signed s16s (llr values) and instead of flipping bits we change signs.
  \param frame_parms Pointer to frame descriptor
  \param llr Output of the demodulator
  \param length Length of the sequence
1267
  \param frame_mod4 Frame number modulo 4*/
1268
void pbch_unscrambling(LTE_DL_FRAME_PARMS *frame_parms,
1269 1270 1271
                       int8_t* llr,
                       uint32_t length,
                       uint8_t frame_mod4);
1272 1273 1274 1275 1276 1277

/*! \brief DCI Encoding. This routine codes an arbitrary DCI PDU after appending the 8-bit 3GPP CRC.  It then applied sub-block interleaving and rate matching.
  \param a Pointer to DCI PDU (coded in bytes)
  \param A Length of DCI PDU in bits
  \param E Length of DCI PDU in coded bits
  \param e Pointer to sequence
1278
  \param rnti RNTI for CRC scrambling*/
1279
void dci_encoding(uint8_t *a,
1280 1281 1282 1283
                  uint8_t A,
                  uint16_t E,
                  uint8_t *e,
                  uint16_t rnti);
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294

/*! \brief Top-level DCI entry point. This routine codes an set of DCI PDUs and performs PDCCH modulation, interleaving and mapping.
  \param num_ue_spec_dci  Number of UE specific DCI pdus to encode
  \param num_common_dci Number of Common DCI pdus to encode
  \param dci_alloc Allocation vectors for each DCI pdu
  \param n_rnti n_RNTI (see )
  \param amp Amplitude of QPSK symbols
  \param frame_parms Pointer to DL Frame parameter structure
  \param txdataF Pointer to tx signal buffers
  \param sub_frame_offset subframe offset in frame
  @returns Number of PDCCH symbols
1295
*/
1296
uint8_t generate_dci_top(uint8_t num_ue_spec_dci,
1297 1298 1299 1300 1301
                         uint8_t num_common_dci,
                         DCI_ALLOC_t *dci_alloc,
                         uint32_t n_rnti,
                         int16_t amp,
                         LTE_DL_FRAME_PARMS *frame_parms,
1302
                         int32_t **txdataF,
1303
                         uint32_t sub_frame_offset);
1304 1305

uint8_t generate_dci_top_emul(PHY_VARS_eNB *phy_vars_eNB,
1306 1307 1308 1309
                              uint8_t num_ue_spec_dci,
                              uint8_t num_common_dci,
                              DCI_ALLOC_t *dci_alloc,
                              uint8_t subframe);
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321


void generate_64qam_table(void);
void generate_16qam_table(void);

uint16_t extract_crc(uint8_t *dci,uint8_t DCI_LENGTH);

/*! \brief LLR from two streams. This function takes two streams (qpsk modulated) and calculates the LLR, considering one stream as interference.
  \param stream0_in pointer to first stream0
  \param stream1_in pointer to first stream1
  \param stream0_out pointer to output stream
  \param rho01 pointer to correlation matrix
1322
  \param length*/
1323
void qpsk_qpsk_TM3456(short *stream0_in,
1324 1325 1326 1327 1328
                      short *stream1_in,
                      short *stream0_out,
                      short *rho01,
                      int length
                     );
1329 1330 1331 1332 1333 1334 1335 1336

/** \brief Attempt decoding of a particular DCI with given length and format.
    @param DCI_LENGTH length of DCI in bits
    @param DCI_FMT Format of DCI
    @param e e-sequence (soft bits)
    @param decoded_output Output of Viterbi decoder
*/
void dci_decoding(uint8_t DCI_LENGTH,
1337 1338 1339
                  uint8_t DCI_FMT,
                  int8_t *e,
                  uint8_t *decoded_output);
1340 1341 1342 1343 1344

/** \brief Do 36.213 DCI decoding procedure by searching different RNTI options and aggregation levels.  Currently does
    not employ the complexity reducing procedure based on RNTI.
    @param phy_vars_ue UE variables
    @param dci_alloc Pointer to DCI_ALLOC_t array to store results for DLSCH/ULSCH programming
1345
    @param do_common If 1 perform search in common search-space else ue-specific search-space
1346 1347 1348 1349 1350
    @param eNB_id eNB Index on which to act
    @param subframe Index of subframe
    @returns bitmap of occupied CCE positions (i.e. those detected)
*/
uint16_t dci_decoding_procedure(PHY_VARS_UE *phy_vars_ue,
1351 1352 1353 1354
                                DCI_ALLOC_t *dci_alloc,
                                int do_common,
                                int16_t eNB_id,
                                uint8_t subframe);
1355 1356 1357


uint16_t dci_decoding_procedure_emul(LTE_UE_PDCCH **lte_ue_pdcch_vars,
1358 1359 1360 1361 1362
                                     uint8_t num_ue_spec_dci,
                                     uint8_t num_common_dci,
                                     DCI_ALLOC_t *dci_alloc_tx,
                                     DCI_ALLOC_t *dci_alloc_rx,
                                     int16_t eNB_id);
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383

/** \brief Compute Q (modulation order) based on I_MCS PDSCH.  Implements table 7.1.7.1-1 from 36.213.
    @param I_MCS */
uint8_t get_Qm(uint8_t I_MCS);

/** \brief Compute Q (modulation order) based on I_MCS for PUSCH.  Implements table 8.6.1-1 from 36.213.
    @param I_MCS */
uint8_t get_Qm_ul(uint8_t I_MCS);

/** \brief Compute I_TBS (transport-block size) based on I_MCS for PDSCH.  Implements table 7.1.7.1-1 from 36.213.
    @param I_MCS */
uint8_t get_I_TBS(uint8_t I_MCS);

/** \brief Compute I_TBS (transport-block size) based on I_MCS for PUSCH.  Implements table 8.6.1-1 from 36.213.
    @param I_MCS */
unsigned char get_I_TBS_UL(unsigned char I_MCS);

/** \brief Compute Q (modulation order) based on downlink I_MCS. Implements table 7.1.7.1-1 from 36.213.
    @param I_MCS
    @param nb_rb
    @return Transport block size */
1384
uint32_t get_TBS_DL(uint8_t mcs, uint16_t nb_rb);
1385 1386 1387 1388 1389

/** \brief Compute Q (modulation order) based on uplink I_MCS. Implements table 7.1.7.1-1 from 36.213.
    @param I_MCS
    @param nb_rb
    @return Transport block size */
1390
uint32_t get_TBS_UL(uint8_t mcs, uint16_t nb_rb);
1391 1392

/* \brief Return bit-map of resource allocation for a given DCI rballoc (RIV format) and vrb type
1393 1394 1395 1396 1397 1398 1399 1400
   @param N_RB_DL number of PRB on DL
   @param indicator for even/odd slot
   @param vrb vrb index
   @param Ngap Gap indicator
*/
uint32_t get_prb(int N_RB_DL,int odd_slot,int vrb,int Ngap);

/* \brief Return prb for a given vrb index 
1401 1402 1403
   @param vrb_type VRB type (0=localized,1=distributed)
   @param rb_alloc_dci rballoc field from DCI
*/
1404
uint32_t get_rballoc(vrb_t vrb_type,uint16_t rb_alloc_dci);
1405

1406

1407 1408 1409
/* \brief Return bit-map of resource allocation for a given DCI rballoc (RIV format) and vrb type
   @returns Transmission mode (1-7)
*/
1410
uint8_t get_transmission_mode(module_id_t Mod_id, uint8_t CC_id, rnti_t rnti);
1411

1412

1413
/* \brief
1414
   @param ra_header Header of resource allocation (0,1) (See sections 7.1.6.1/7.1.6.2 of 36.213 Rel8.6)
1415
   @param rb_alloc Bitmap allocation from DCI (format 1,2)
1416 1417 1418 1419
   @returns number of physical resource blocks
*/
uint32_t conv_nprb(uint8_t ra_header,uint32_t rb_alloc,int N_RB_DL);

1420
int get_G(LTE_DL_FRAME_PARMS *frame_parms,uint16_t nb_rb,uint32_t *rb_alloc,uint8_t mod_order,uint8_t Nl,uint8_t num_pdcch_symbols,int frame,uint8_t subframe, uint8_t beamforming_mode);
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446

int adjust_G(LTE_DL_FRAME_PARMS *frame_parms,uint32_t *rb_alloc,uint8_t mod_order,uint8_t subframe);
int adjust_G2(LTE_DL_FRAME_PARMS *frame_parms,uint32_t *rb_alloc,uint8_t mod_order,uint8_t subframe,uint8_t symbol);


#ifndef modOrder
#define modOrder(I_MCS,I_TBS) ((I_MCS-I_TBS)*2+2) // Find modulation order from I_TBS and I_MCS
#endif

/** \fn uint8_t I_TBS2I_MCS(uint8_t I_TBS);
    \brief This function maps I_tbs to I_mcs according to Table 7.1.7.1-1 in 3GPP TS 36.213 V8.6.0. Where there is two supported modulation orders for the same I_TBS then either high or low modulation is chosen by changing the equality of the two first comparisons in the if-else statement.
    \param I_TBS Index of Transport Block Size
    \return I_MCS given I_TBS
*/
uint8_t I_TBS2I_MCS(uint8_t I_TBS);

/** \fn uint8_t SE2I_TBS(float SE,
    uint8_t N_PRB,
    uint8_t symbPerRB);
    \brief This function maps a requested throughput in number of bits to I_tbs. The throughput is calculated as a function of modulation order, RB allocation and number of symbols per RB. The mapping orginates in the "Transport block size table" (Table 7.1.7.2.1-1 in 3GPP TS 36.213 V8.6.0)
    \param SE Spectral Efficiency (before casting to integer, multiply by 1024, remember to divide result by 1024!)
    \param N_PRB Number of PhysicalResourceBlocks allocated \sa lte_frame_parms->N_RB_DL
    \param symbPerRB Number of symbols per resource block allocated to this channel
    \return I_TBS given an SE and an N_PRB
*/
uint8_t SE2I_TBS(float SE,
1447 1448
                 uint8_t N_PRB,
                 uint8_t symbPerRB);
1449 1450 1451 1452 1453 1454
/** \brief This function generates the sounding reference symbol (SRS) for the uplink according to 36.211 v8.6.0. If IFFT_FPGA is defined, the SRS is quantized to a QPSK sequence.
    @param frame_parms LTE DL Frame Parameters
    @param soundingrs_ul_config_dedicated Dynamic configuration from RRC during Connection Establishment
    @param txdataF pointer to the frequency domain TX signal
    @returns 0 on success*/
int generate_srs_rx(LTE_DL_FRAME_PARMS *frame_parms,
1455 1456
                    SOUNDINGRS_UL_CONFIG_DEDICATED *soundingrs_ul_config_dedicated,
                    int *txdataF);
1457

1458
int32_t generate_srs_tx_emul(PHY_VARS_UE *phy_vars_ue,
1459
                             uint8_t subframe);
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469

/*!
  \brief This function is similar to generate_srs_tx but generates a conjugate sequence for channel estimation. If IFFT_FPGA is defined, the SRS is quantized to a QPSK sequence.
  @param phy_vars_ue Pointer to PHY_VARS structure
  @param eNB_id Index of destination eNB for this SRS
  @param amp Linear amplitude of SRS
  @param subframe Index of subframe on which to act
  @returns 0 on success, -1 on error with message
*/

1470
int32_t generate_srs_tx(PHY_VARS_UE *phy_vars_ue,
1471 1472 1473
                        uint8_t eNB_id,
                        int16_t amp,
                        uint32_t subframe);
1474 1475 1476 1477 1478

/*!
  \brief This function generates the downlink reference signal for the PUSCH according to 36.211 v8.6.0. The DRS occuies the RS defined by rb_alloc and the symbols 2 and 8 for extended CP and 3 and 10 for normal CP.
*/

1479
int32_t generate_drs_pusch(PHY_VARS_UE *phy_vars_ue,
1480
			   UE_rxtx_proc_t *proc,
1481 1482 1483 1484 1485 1486
                           uint8_t eNB_id,
                           int16_t amp,
                           uint32_t subframe,
                           uint32_t first_rb,
                           uint32_t nb_rb,
                           uint8_t ant);
1487 1488 1489 1490 1491 1492

/*!
  \brief This function initializes the Group Hopping, Sequence Hopping and nPRS sequences for PUCCH/PUSCH according to 36.211 v8.6.0. It should be called after configuration of UE (reception of SIB2/3) and initial configuration of eNB (or after reconfiguration of cell-specific parameters).
  @param frame_parms Pointer to a LTE_DL_FRAME_PARMS structure (eNB or UE)*/
void init_ul_hopping(LTE_DL_FRAME_PARMS *frame_parms);

1493 1494 1495 1496 1497 1498 1499 1500

/*!
  \brief This function implements the initialization of paging parameters for UE (See Section 7, 36.304).It must be called after setting IMSImod1024 during UE startup and after receiving SIB2
  @param ue Pointer to UE context
  @param defaultPagingCycle T from 36.304 (0=32,1=64,2=128,3=256)
  @param nB nB from 36.304 (0=4T,1=2T,2=T,3=T/2,4=T/4,5=T/8,6=T/16,7=T/32*/
int init_ue_paging_info(PHY_VARS_UE *ue, long defaultPagingCycle, long nB);

1501
int32_t compareints (const void * a, const void * b);
1502 1503


1504
void ulsch_modulation(int32_t **txdataF,
1505 1506 1507 1508 1509
                      int16_t amp,
                      frame_t frame,
                      uint32_t subframe,
                      LTE_DL_FRAME_PARMS *frame_parms,
                      LTE_UE_ULSCH_t *ulsch);
1510 1511


1512
void ulsch_extract_rbs_single(int32_t **rxdataF,
1513 1514 1515 1516 1517 1518
                              int32_t **rxdataF_ext,
                              uint32_t first_rb,
                              uint32_t nb_rb,
                              uint8_t l,
                              uint8_t Ns,
                              LTE_DL_FRAME_PARMS *frame_parms);
1519

1520
uint8_t subframe2harq_pid(LTE_DL_FRAME_PARMS *frame_parms,frame_t frame,uint8_t subframe);
1521 1522
uint8_t subframe2harq_pid_eNBrx(LTE_DL_FRAME_PARMS *frame_parms,uint8_t subframe);

1523 1524
int generate_ue_dlsch_params_from_dci(int frame,
				      uint8_t subframe,
1525
                                      void *dci_pdu,
1526
                                      rnti_t rnti,
1527 1528 1529 1530 1531 1532
                                      DCI_format_t dci_format,
                                      LTE_UE_DLSCH_t **dlsch,
                                      LTE_DL_FRAME_PARMS *frame_parms,
                                      PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,
                                      uint16_t si_rnti,
                                      uint16_t ra_rnti,
1533
                                      uint16_t p_rnti,
1534 1535
                                      uint8_t beamforming_mode,
                                      uint16_t tc_rnti);
1536

1537 1538
int32_t generate_eNB_dlsch_params_from_dci(int frame,
    uint8_t subframe,
1539 1540 1541 1542 1543 1544 1545 1546 1547
    void *dci_pdu,
    rnti_t rnti,
    DCI_format_t dci_format,
    LTE_eNB_DLSCH_t **dlsch_eNB,
    LTE_DL_FRAME_PARMS *frame_parms,
    PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,
    uint16_t si_rnti,
    uint16_t ra_rnti,
    uint16_t p_rnti,
1548 1549
    uint16_t DL_pmi_single,
    uint8_t beamforming_mode);
1550

1551
int32_t generate_eNB_ulsch_params_from_rar(uint8_t *rar_pdu,
1552 1553 1554 1555
    frame_t frame,
    uint8_t subframe,
    LTE_eNB_ULSCH_t *ulsch,
    LTE_DL_FRAME_PARMS *frame_parms);
1556 1557

int generate_ue_ulsch_params_from_dci(void *dci_pdu,
1558
                                      rnti_t rnti,
1559 1560 1561
                                      uint8_t subframe,
                                      DCI_format_t dci_format,
                                      PHY_VARS_UE *phy_vars_ue,
1562 1563
                                      UE_rxtx_proc_t *proc,
				      uint16_t si_rnti,
1564 1565 1566 1567 1568
                                      uint16_t ra_rnti,
                                      uint16_t p_rnti,
                                      uint16_t cba_rnti,
                                      uint8_t eNB_id,
                                      uint8_t use_srs);
1569

1570
int32_t generate_ue_ulsch_params_from_rar(PHY_VARS_UE *phy_vars_ue,
1571 1572
					  UE_rxtx_proc_t *proc,
					  uint8_t eNB_id);
1573
double sinr_eff_cqi_calc(PHY_VARS_UE *phy_vars_ue,
1574 1575
                         uint8_t eNB_id,
						 uint8_t subframe);
Raymond Knopp's avatar
Raymond Knopp committed
1576 1577 1578

uint8_t sinr2cqi(double sinr,uint8_t trans_mode);

1579
int generate_eNB_ulsch_params_from_dci(PHY_VARS_eNB *PHY_vars_eNB,
1580
				       eNB_rxtx_proc_t *proc,
1581
				       void *dci_pdu,
1582
                                       rnti_t rnti,
1583
				       DCI_format_t dci_format,
1584
                                       uint8_t UE_id,
1585
				       uint16_t si_rnti,
1586 1587 1588 1589
                                       uint16_t ra_rnti,
                                       uint16_t p_rnti,
                                       uint16_t cba_rnti,
                                       uint8_t use_srs);
1590 1591


1592
void dump_ulsch(PHY_VARS_eNB *phy_vars_eNB,eNB_rxtx_proc_t *proc,uint8_t UE_id);
1593 1594


1595

1596 1597 1598 1599


int dump_dci(LTE_DL_FRAME_PARMS *frame_parms, DCI_ALLOC_t *dci);

1600
int dump_ue_stats(PHY_VARS_UE *phy_vars_ue, UE_rxtx_proc_t *proc, char* buffer, int length, runmode_t mode, int input_level_dBm);
1601 1602 1603 1604 1605 1606 1607
int dump_eNB_stats(PHY_VARS_eNB *phy_vars_eNB, char* buffer, int length);



void generate_pcfich_reg_mapping(LTE_DL_FRAME_PARMS *frame_parms);

void pcfich_scrambling(LTE_DL_FRAME_PARMS *frame_parms,
1608 1609 1610
                       uint8_t subframe,
                       uint8_t *b,
                       uint8_t *bt);
1611 1612

void pcfich_unscrambling(LTE_DL_FRAME_PARMS *frame_parms,
1613 1614
                         uint8_t subframe,
                         int16_t *d);
1615 1616

void generate_pcfich(uint8_t num_pdcch_symbols,
1617 1618
                     int16_t amp,
                     LTE_DL_FRAME_PARMS *frame_parms,
1619
                     int32_t **txdataF,
1620
                     uint8_t subframe);
1621 1622

uint8_t rx_pcfich(LTE_DL_FRAME_PARMS *frame_parms,
1623 1624 1625
                  uint8_t subframe,
                  LTE_UE_PDCCH *lte_ue_pdcch_vars,
                  MIMO_mode_t mimo_mode);
1626 1627 1628 1629 1630 1631 1632 1633 1634

void generate_phich_reg_mapping(LTE_DL_FRAME_PARMS *frame_parms);


void init_transport_channels(uint8_t);

void generate_RIV_tables(void);

/*!
1635 1636
  \brief This function performs the initial cell search procedure - PSS detection, SSS detection and PBCH detection.  At the
  end, the basic frame parameters are known (Frame configuration - TDD/FDD and cyclic prefix length,
1637 1638 1639 1640 1641 1642 1643
  N_RB_DL, PHICH_CONFIG and Nid_cell) and the UE can begin decoding PDCCH and DLSCH SI to retrieve the rest.  Once these
  parameters are know, the routine calls some basic initialization routines (cell-specific reference signals, etc.)
  @param phy_vars_ue Pointer to UE variables
*/
int initial_sync(PHY_VARS_UE *phy_vars_ue, runmode_t mode);

void rx_ulsch(PHY_VARS_eNB *phy_vars_eNB,
1644 1645
              eNB_rxtx_proc_t *proc,
	      uint8_t eNB_id,  // this is the effective sector id
1646 1647 1648
              uint8_t UE_id,
              LTE_eNB_ULSCH_t **ulsch,
              uint8_t cooperation_flag);
1649 1650

void rx_ulsch_emul(PHY_VARS_eNB *phy_vars_eNB,
1651
		   eNB_rxtx_proc_t *proc,
1652 1653
                   uint8_t sect_id,
                   uint8_t UE_index);
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665

/*!
  \brief Encoding of PUSCH/ACK/RI/ACK from 36-212.
  @param a Pointer to ulsch SDU
  @param frame_parms Pointer to Frame parameters
  @param ulsch Pointer to ulsch descriptor
  @param harq_pid HARQ process ID
  @param tmode Transmission mode (1-7)
  @param control_only_flag Generate PUSCH with control information only
  @param Nbundled Parameter for ACK/NAK bundling (36.213 Section 7.3)
*/
uint32_t ulsch_encoding(uint8_t *a,
1666 1667 1668 1669 1670 1671
                        PHY_VARS_UE *phy_vars_ue,
                        uint8_t harq_pid,
                        uint8_t eNB_id,
                        uint8_t tmode,
                        uint8_t control_only_flag,
                        uint8_t Nbundled);
1672 1673 1674 1675 1676 1677 1678 1679 1680

/*!
  \brief Encoding of PUSCH/ACK/RI/ACK from 36-212 for emulation
  @param ulsch_buffer Pointer to ulsch SDU
  @param phy_vars_ue Pointer to UE top-level descriptor
  @param eNB_id ID of eNB receiving this PUSCH
  @param harq_pid HARQ process ID
  @param control_only_flag Generate PUSCH with control information only
*/
1681
int32_t ulsch_encoding_emul(uint8_t *ulsch_buffer,
1682 1683 1684 1685
                            PHY_VARS_UE *phy_vars_ue,
                            uint8_t eNB_id,
                            uint8_t harq_pid,
                            uint8_t control_only_flag);
1686 1687 1688 1689

/*!
  \brief Decoding of PUSCH/ACK/RI/ACK from 36-212.
  @param phy_vars_eNB Pointer to eNB top-level descriptor
1690
  @param proc Pointer to RXTX proc variables
1691 1692 1693 1694 1695 1696 1697 1698
  @param UE_id ID of UE transmitting this PUSCH
  @param subframe Index of subframe for PUSCH
  @param control_only_flag Receive PUSCH with control information only
  @param Nbundled Nbundled parameter for ACK/NAK scrambling from 36-212/36-213
  @param llr8_flag If 1, indicate that the 8-bit turbo decoder should be used
  @returns 0 on success
*/
unsigned int  ulsch_decoding(PHY_VARS_eNB *phy_vars_eNB,
1699
			     eNB_rxtx_proc_t *proc,
1700 1701 1702 1703
                             uint8_t UE_id,
                             uint8_t control_only_flag,
                             uint8_t Nbundled,
                             uint8_t llr8_flag);
1704

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
/*!
  \brief Decoding of ULSCH data component from 36-212. This one spawns 1 worker thread in parallel,half of the segments in each thread.
  @param phy_vars_eNB Pointer to eNB top-level descriptor
  @param UE_id ID of UE transmitting this PUSCH
  @param harq_pid HARQ process ID
  @param llr8_flag If 1, indicate that the 8-bit turbo decoder should be used
  @returns 0 on success
*/
int ulsch_decoding_data_2thread(PHY_VARS_eNB *eNB,
				int UE_id,
				int harq_pid,
				int llr8_flag);

/*!
  \brief Decoding of ULSCH data component from 36-212. This one is single thread.
  @param phy_vars_eNB Pointer to eNB top-level descriptor
  @param UE_id ID of UE transmitting this PUSCH
  @param harq_pid HARQ process ID
  @param llr8_flag If 1, indicate that the 8-bit turbo decoder should be used
  @returns 0 on success
*/
int ulsch_decoding_data(PHY_VARS_eNB *eNB,
			int UE_id,
			int harq_pid,
			int llr8_flag);

1731
uint32_t ulsch_decoding_emul(PHY_VARS_eNB *phy_vars_eNB,
1732 1733
                             eNB_rxtx_proc_t *proc,
			     uint8_t UE_index,
1734
                             uint16_t *crnti);
1735 1736

void generate_phich_top(PHY_VARS_eNB *phy_vars_eNB,
1737
			eNB_rxtx_proc_t *proc,
1738
                        int16_t amp,
1739
                        uint8_t sect_id);
1740 1741 1742

/* \brief  This routine demodulates the PHICH and updates PUSCH/ULSCH parameters.
   @param phy_vars_ue Pointer to UE variables
1743
   @param proc Pointer to RXN_TXNp4 proc
1744 1745 1746 1747 1748
   @param subframe Subframe of received PDCCH/PHICH
   @param eNB_id Index of eNB
*/

void rx_phich(PHY_VARS_UE *phy_vars_ue,
1749
	      UE_rxtx_proc_t *proc,
1750 1751
              uint8_t subframe,
              uint8_t eNB_id);
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766


/** \brief  This routine provides the relationship between a PHICH TXOp and its corresponding PUSCH subframe (Table 8.3.-1 from 36.213).
    @param frame_parms Pointer to DL frame configuration parameters
    @param subframe Subframe of received/transmitted PHICH
    @returns subframe of PUSCH transmission
*/
uint8_t phich_subframe2_pusch_subframe(LTE_DL_FRAME_PARMS *frame_parms,uint8_t subframe);

/** \brief  This routine provides the relationship between a PHICH TXOp and its corresponding PUSCH frame (Table 8.3.-1 from 36.213).
    @param frame_parms Pointer to DL frame configuration parameters
    @param frame Frame of received/transmitted PHICH
    @param subframe Subframe of received/transmitted PHICH
    @returns frame of PUSCH transmission
*/
1767
uint8_t phich_frame2_pusch_frame(LTE_DL_FRAME_PARMS *frame_parms,frame_t frame,uint8_t subframe);
1768

Raymond Knopp's avatar
 
Raymond Knopp committed
1769
void print_CQI(void *o,UCI_format_t uci_format,uint8_t eNB_id,int N_RB_DL);
1770

1771
void extract_CQI(void *o,UCI_format_t uci_format,LTE_eNB_UE_stats *stats,uint8_t N_RB_DL, uint16_t * crnti, uint8_t * access_mode);
1772

1773
void fill_CQI(LTE_UE_ULSCH_t *ulsch,PHY_MEASUREMENTS *meas,uint8_t eNB_id, uint8_t harq_pid,int N_RB_DL, rnti_t rnti, uint8_t trans_mode,double sinr_eff);
1774 1775
void reset_cba_uci(void *o);

Raymond Knopp's avatar
 
Raymond Knopp committed
1776 1777
uint16_t quantize_subband_pmi(PHY_MEASUREMENTS *meas,uint8_t eNB_id,int nb_subbands);
uint16_t quantize_subband_pmi2(PHY_MEASUREMENTS *meas,uint8_t eNB_id,uint8_t a_id,int nb_subbands);
1778

Raymond Knopp's avatar
 
Raymond Knopp committed
1779
uint64_t pmi2hex_2Ar1(uint32_t pmi);
1780

Raymond Knopp's avatar
 
Raymond Knopp committed
1781
uint64_t pmi2hex_2Ar2(uint32_t pmi);
1782

Raymond Knopp's avatar
 
Raymond Knopp committed
1783
uint64_t cqi2hex(uint32_t cqi);
1784 1785 1786 1787 1788

uint16_t computeRIV(uint16_t N_RB_DL,uint16_t RBstart,uint16_t Lcrbs);

uint32_t pmi_extend(LTE_DL_FRAME_PARMS *frame_parms,uint8_t wideband_pmi);

1789 1790 1791 1792 1793 1794
int get_nCCE_offset_l1(int *CCE_table,
		       const unsigned char L, 
		       const int nCCE, 
		       const int common_dci, 
		       const unsigned short rnti, 
		       const unsigned char subframe);
1795 1796 1797 1798 1799 1800 1801

uint16_t get_nCCE(uint8_t num_pdcch_symbols,LTE_DL_FRAME_PARMS *frame_parms,uint8_t mi);

uint16_t get_nquad(uint8_t num_pdcch_symbols,LTE_DL_FRAME_PARMS *frame_parms,uint8_t mi);

uint8_t get_mi(LTE_DL_FRAME_PARMS *frame,uint8_t subframe);

1802
uint16_t get_nCCE_mac(uint8_t Mod_id,uint8_t CC_id,int num_pdcch_symbols,int subframe);
1803 1804 1805

uint8_t get_num_pdcch_symbols(uint8_t num_dci,DCI_ALLOC_t *dci_alloc,LTE_DL_FRAME_PARMS *frame_parms,uint8_t subframe);

1806
void pdcch_interleaving(LTE_DL_FRAME_PARMS *frame_parms,int32_t **z, int32_t **wbar,uint8_t n_symbols_pdcch,uint8_t mi);
1807 1808

void pdcch_unscrambling(LTE_DL_FRAME_PARMS *frame_parms,
1809 1810 1811
                        uint8_t subframe,
                        int8_t* llr,
                        uint32_t length);
1812 1813

void pdcch_scrambling(LTE_DL_FRAME_PARMS *frame_parms,
1814 1815 1816
                      uint8_t subframe,
                      uint8_t *e,
                      uint32_t length);
1817 1818

void dlsch_scrambling(LTE_DL_FRAME_PARMS *frame_parms,
1819 1820 1821 1822 1823
                      int mbsfn_flag,
                      LTE_eNB_DLSCH_t *dlsch,
                      int G,
                      uint8_t q,
                      uint8_t Ns);
1824 1825

void dlsch_unscrambling(LTE_DL_FRAME_PARMS *frame_parms,
1826 1827 1828 1829 1830 1831
                        int mbsfn_flag,
                        LTE_UE_DLSCH_t *dlsch,
                        int G,
                        int16_t* llr,
                        uint8_t q,
                        uint8_t Ns);
1832 1833 1834

void init_ncs_cell(LTE_DL_FRAME_PARMS *frame_parms,uint8_t ncs_cell[20][7]);

Raymond Knopp's avatar
Raymond Knopp committed
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
void generate_pucch1x(int32_t **txdataF,
		      LTE_DL_FRAME_PARMS *frame_parms,
		      uint8_t ncs_cell[20][7],
		      PUCCH_FMT_t fmt,
		      PUCCH_CONFIG_DEDICATED *pucch_config_dedicated,
		      uint16_t n1_pucch,
		      uint8_t shortened_format,
		      uint8_t *payload,
		      int16_t amp,
		      uint8_t subframe);
1845

Raymond Knopp's avatar
Raymond Knopp committed
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
void generate_pucch2x(int32_t **txdataF,
		      LTE_DL_FRAME_PARMS *fp,
		      uint8_t ncs_cell[20][7],
		      PUCCH_FMT_t fmt,
		      PUCCH_CONFIG_DEDICATED *pucch_config_dedicated,
		      uint16_t n2_pucch,
		      uint16_t *payload,
		      int A,
		      int B2,
		      int16_t amp,
		      uint8_t subframe,
		      uint16_t rnti);


1860
void generate_pucch_emul(PHY_VARS_UE *phy_vars_ue,
1861
			 UE_rxtx_proc_t *proc,
1862 1863 1864
                         PUCCH_FMT_t format,
                         uint8_t ncs1,
                         uint8_t *pucch_ack_payload,
1865 1866
                         uint8_t sr);

1867 1868


1869 1870 1871 1872 1873 1874 1875
uint32_t rx_pucch(PHY_VARS_eNB *phy_vars_eNB,
		  PUCCH_FMT_t fmt,
		  uint8_t UE_id,
		  uint16_t n1_pucch,
		  uint16_t n2_pucch,
		  uint8_t shortened_format,
		  uint8_t *payload,
1876
		  int     frame,
1877 1878
		  uint8_t subframe,
		  uint8_t pucch1_thres);
1879

1880
int32_t rx_pucch_emul(PHY_VARS_eNB *phy_vars_eNB,
1881
		      eNB_rxtx_proc_t *proc,
1882 1883 1884 1885 1886
		      uint8_t UE_index,
		      PUCCH_FMT_t fmt,
		      uint8_t n1_pucch_sel,
		      uint8_t *payload);

1887 1888 1889 1890 1891 1892 1893 1894 1895


/*!
  \brief Check for PRACH TXop in subframe
  @param frame_parms Pointer to LTE_DL_FRAME_PARMS
  @param frame frame index to check
  @param subframe subframe index to check
  @returns 0 on success
*/
1896
int is_prach_subframe(LTE_DL_FRAME_PARMS *frame_parms,frame_t frame, uint8_t subframe);
1897 1898 1899 1900 1901 1902 1903 1904 1905

/*!
  \brief Generate PRACH waveform
  @param phy_vars_ue Pointer to ue top-level descriptor
  @param eNB_id Index of destination eNB
  @param subframe subframe index to operate on
  @param index of preamble (0-63)
  @param Nf System frame number
  @returns 0 on success
1906

1907
*/
1908
int32_t generate_prach(PHY_VARS_UE *phy_vars_ue,uint8_t eNB_id,uint8_t subframe,uint16_t Nf);
1909 1910 1911 1912 1913 1914 1915 1916 1917

/*!
  \brief Process PRACH waveform
  @param phy_vars_eNB Pointer to eNB top-level descriptor
  @param preamble_energy_list List of energies for each candidate preamble
  @param preamble_delay_list List of delays for each candidate preamble
  @param Nf System frame number
  @param tdd_mapindex Index of PRACH resource in Table 5.7.1-4 (TDD)
  @returns 0 on success
1918

1919
*/
1920
void rx_prach(PHY_VARS_eNB *phy_vars_eNB,uint16_t *preamble_energy_list, uint16_t *preamble_delay_list, uint16_t Nf, uint8_t tdd_mapindex);
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946

/*!
  \brief Helper for MAC, returns number of available PRACH in TDD for a particular configuration index
  @param frame_parms Pointer to LTE_DL_FRAME_PARMS structure
  @returns 0-5 depending on number of available prach
*/
uint8_t get_num_prach_tdd(LTE_DL_FRAME_PARMS *frame_parms);

/*!
  \brief Return the PRACH format as a function of the Configuration Index and Frame type.
  @param prach_ConfigIndex PRACH Configuration Index
  @param frame_type 0-FDD, 1-TDD
  @returns 0-1 accordingly
*/
uint8_t get_prach_fmt(uint8_t prach_ConfigIndex,lte_frame_type_t frame_type);

/*!
  \brief Helper for MAC, returns frequency index of PRACH resource in TDD for a particular configuration index
  @param frame_parms Pointer to LTE_DL_FRAME_PARMS structure
  @returns 0-5 depending on number of available prach
*/
uint8_t get_fid_prach_tdd(LTE_DL_FRAME_PARMS *frame_parms,uint8_t tdd_map_index);

/*!
  \brief Comp ute DFT of PRACH ZC sequences.  Used for generation of prach in UE and reception of PRACH in eNB.
  @param prach_config_common Pointer to prachConfigCommon structure
1947
  @param Xu DFT output
1948 1949
*/
void compute_prach_seq(PRACH_CONFIG_COMMON *prach_config_common,
1950 1951
                       lte_frame_type_t frame_type,
                       uint32_t X_u[64][839]);
1952 1953 1954

void init_prach_tables(int N_ZC);

1955 1956 1957
void init_unscrambling_lut(void);
void init_scrambling_lut(void);

1958 1959 1960 1961 1962 1963 1964
/*!
  \brief Return the status of MBSFN in this frame/subframe
  @param frame Frame index
  @param subframe Subframe index
  @param frame_parms Pointer to frame parameters
  @returns 1 if subframe is for MBSFN
*/
1965
int is_pmch_subframe(frame_t frame, int subframe, LTE_DL_FRAME_PARMS *frame_parms);
1966

1967
uint8_t is_not_pilot(uint8_t pilots, uint8_t re, uint8_t nushift, uint8_t use2ndpilots);
1968

1969 1970
uint8_t is_not_UEspecRS(int8_t lprime, uint8_t re, uint8_t nushift, uint8_t Ncp, uint8_t beamforming_mode);

1971
uint32_t dlsch_decoding_abstraction(double *dlsch_MIPB,
1972 1973 1974 1975
                                    LTE_DL_FRAME_PARMS *lte_frame_parms,
                                    LTE_UE_DLSCH_t *dlsch,
                                    uint8_t subframe,
                                    uint8_t num_pdcch_symbols);
1976 1977 1978 1979

// DL power control functions
double get_pa_dB(PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated);

1980
double computeRhoA_eNB(PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,
1981
                       LTE_eNB_DLSCH_t *dlsch_eNB,
1982
                       int dl_power_off);
1983 1984 1985 1986

double computeRhoB_eNB(PDSCH_CONFIG_DEDICATED  *pdsch_config_dedicated,
                       PDSCH_CONFIG_COMMON *pdsch_config_common,
                       uint8_t n_antenna_port,
1987
                       LTE_eNB_DLSCH_t *dlsch_eNB,int dl_power_off);
1988

1989
double computeRhoA_UE(PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
                      LTE_UE_DLSCH_t *dlsch_ue,
                      uint8_t dl_power_off);

double computeRhoB_UE(PDSCH_CONFIG_DEDICATED  *pdsch_config_dedicated,
                      PDSCH_CONFIG_COMMON *pdsch_config_common,
                      uint8_t n_antenna_port,
                      LTE_UE_DLSCH_t *dlsch_ue,
                      uint8_t dl_power_off);

/*void compute_sqrt_RhoAoRhoB(PDSCH_CONFIG_DEDICATED  *pdsch_config_dedicated,
  PDSCH_CONFIG_COMMON *pdsch_config_common,
  uint8_t n_antenna_port,
  LTE_UE_DLSCH_t *dlsch_ue);
*/
2004

Florian Kaltenberger's avatar
Florian Kaltenberger committed
2005 2006 2007
uint8_t get_prach_prb_offset(LTE_DL_FRAME_PARMS *frame_parms, uint8_t tdd_mapindex, uint16_t Nf); 

uint8_t ul_subframe2pdcch_alloc_subframe(LTE_DL_FRAME_PARMS *frame_parms,uint8_t n);
2008

2009 2010
/**@}*/
#endif