coding_defs.h 18.5 KB
Newer Older
1 2 3 4 5
/*
 * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The OpenAirInterface Software Alliance licenses this file to You under
6
 * the OAI Public License, Version 1.1  (the "License"); you may not use this file
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 * except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.openairinterface.org/?page_id=698
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *-------------------------------------------------------------------------------
 * For more information about the OpenAirInterface (OAI) Software Alliance:
 *      contact@openairinterface.org
 */

22 23 24
/* file: PHY/CODING/defs.h
   purpose: Top-level definitions, data types and function prototypes for openairinterface coding blocks
   author: raymond.knopp@eurecom.fr
25
   date: 21.10.2009
26 27 28 29 30
*/
#ifndef __CODING_DEFS__H__
#define __CODING_DEFS__H__

#include <stdint.h>
laurent's avatar
laurent committed
31
#include <PHY/defs_common.h>
32 33 34 35 36 37 38

#define CRC24_A 0
#define CRC24_B 1
#define CRC16 2
#define CRC8 3

#define MAX_TURBO_ITERATIONS_MBSFN 8
39
#define MAX_TURBO_ITERATIONS max_turbo_iterations
40

41 42 43 44 45 46 47 48
typedef struct {
  unsigned short nb_bits;
  unsigned short f1;
  unsigned short f2;
} interleaver_TS_36_212_t;

extern const interleaver_TS_36_212_t f1f2[188];

49
#define LTE_NULL 2
50 51 52 53 54 55 56 57 58
typedef struct interleaver_codebook {
  unsigned long nb_bits;
  unsigned short f1;
  unsigned short f2;
  unsigned int beg_index;
} t_interleaver_codebook;
extern t_interleaver_codebook *f1f2mat;
extern short *il_tb;

59 60 61 62 63 64

/** @addtogroup _PHY_CODING_BLOCKS_
 * @{
*/

/** \fn lte_segmentation(uint8_t *input_buffer,
65 66 67 68 69 70 71 72
              uint8_t **output_buffers,
            uint32_t B,
            uint32_t *C,
            uint32_t *Cplus,
            uint32_t *Cminus,
            uint32_t *Kplus,
            uint32_t *Kminus,
            uint32_t *F)
73 74 75 76 77 78 79 80 81 82 83 84
\brief This function implements the LTE transport block segmentation algorithm from 36-212, V8.6 2009-03.
@param input_buffer
@param output_buffers
@param B
@param C
@param Cplus
@param Cminus
@param Kplus
@param Kminus
@param F
*/
int32_t lte_segmentation(uint8_t *input_buffer,
85 86 87 88 89 90 91 92
                         uint8_t **output_buffers,
                         uint32_t B,
                         uint32_t *C,
                         uint32_t *Cplus,
                         uint32_t *Cminus,
                         uint32_t *Kplus,
                         uint32_t *Kminus,
                         uint32_t *F);
93

94

95

96
/** \fn uint32_t sub_block_interleaving_turbo(uint32_t D, uint8_t *d,uint8_t *w)
97
\brief This is the subblock interleaving algorithm from 36-212 (Release 8, 8.6 2009-03), pages 15-16.
98 99 100 101 102 103 104 105 106
This function takes the d-sequence and generates the w-sequence.  The nu-sequence from 36-212 is implicit.
\param D Number of systematic bits plus 4 (plus 4 for termination)
\param d Pointer to input (d-sequence, turbo code output)
\param w Pointer to output (w-sequence, interleaver output)
\returns Interleaving matrix cardinality (\f$K_{\pi}\f$  from 36-212)
*/
uint32_t sub_block_interleaving_turbo(uint32_t D, uint8_t *d,uint8_t *w);

/** \fn uint32_t sub_block_interleaving_cc(uint32_t D, uint8_t *d,uint8_t *w)
107
\brief This is the subblock interleaving algorithm for convolutionally coded blocks from 36-212 (Release 8, 8.6 2009-03), pages 15-16.
108
This function takes the d-sequence and generates the w-sequence.  The nu-sequence from 36-212 is implicit.
109
\param D Number of input bits
110 111 112 113 114 115 116 117
\param d Pointer to input (d-sequence, convolutional code output)
\param w Pointer to output (w-sequence, interleaver output)
\returns Interleaving matrix cardinality (\f$K_{\pi}\f$  from 36-212)
*/
uint32_t sub_block_interleaving_cc(uint32_t D, uint8_t *d,uint8_t *w);


/** \fn void sub_block_deinterleaving_turbo(uint32_t D, int16_t *d,int16_t *w)
118
\brief This is the subblock deinterleaving algorithm from 36-212 (Release 8, 8.6 2009-03), pages 15-16.
119 120 121 122 123 124 125 126
This function takes the w-sequence and generates the d-sequence.  The nu-sequence from 36-212 is implicit.
\param D Number of systematic bits plus 4 (plus 4 for termination)
\param d Pointer to output (d-sequence, turbo code output)
\param w Pointer to input (w-sequence, interleaver output)
*/
void sub_block_deinterleaving_turbo(uint32_t D, int16_t *d,int16_t *w);

/** \fn void sub_block_deinterleaving_cc(uint32_t D, int8_t *d,int8_t *w)
127
\brief This is the subblock deinterleaving algorithm for convolutionally-coded data from 36-212 (Release 8, 8.6 2009-03), pages 15-16.
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
This function takes the w-sequence and generates the d-sequence.  The nu-sequence from 36-212 is implicit.
\param D Number of input bits
\param d Pointer to output (d-sequence, turbo code output)
\param w Pointer to input (w-sequence, interleaver output)
*/
void sub_block_deinterleaving_cc(uint32_t D,int8_t *d,int8_t *w);

/** \fn generate_dummy_w(uint32_t D, uint8_t *w,uint8_t F)
\brief This function generates a dummy interleaved sequence (first row) for receiver, in order to identify
the NULL positions used to make the matrix complete.
\param D Number of systematic bits plus 4 (plus 4 for termination)
\param w This is the dummy sequence (first row), it will contain zeros and at most 31 "LTE_NULL" values
\param F Number of filler bits due added during segmentation
\returns Interleaving matrix cardinality (\f$K_{\pi}\f$ from 36-212)
*/

uint32_t generate_dummy_w(uint32_t D, uint8_t *w, uint8_t F);

/** \fn generate_dummy_w_cc(uint32_t D, uint8_t *w)
\brief This function generates a dummy interleaved sequence (first row) for receiver (convolutionally-coded data), in order to identify the NULL positions used to make the matrix complete.
\param D Number of systematic bits plus 4 (plus 4 for termination)
\param w This is the dummy sequence (first row), it will contain zeros and at most 31 "LTE_NULL" values
\returns Interleaving matrix cardinality (\f$K_{\pi}\f$ from 36-212)
*/
uint32_t generate_dummy_w_cc(uint32_t D, uint8_t *w);

/** \fn uint32_t lte_rate_matching_turbo(uint32_t RTC,
155 156 157 158 159 160 161 162 163 164 165
           uint32_t G,
           uint8_t *w,
           uint8_t *e,
           uint8_t C,
           uint32_t Nsoft,
           uint8_t Mdlharq,
           uint8_t Kmimo,
           uint8_t rvidx,
           uint8_t Qm,
           uint8_t Nl,
           uint8_t r)
166 167 168 169 170 171 172 173

\brief This is the LTE rate matching algorithm for Turbo-coded channels (e.g. DLSCH,ULSCH).  It is taken directly from 36-212 (Rel 8 8.6, 2009-03), pages 16-18 )
\param RTC R^TC_subblock from subblock interleaver (number of rows in interleaving matrix) for up to 8 segments
\param G This the number of coded transport bits allocated in sub-frame
\param w This is a pointer to the w-sequence (second interleaver output)
\param e This is a pointer to the e-sequence (rate matching output, channel input/output bits)
\param C Number of segments (codewords) in the sub-frame
\param Nsoft Total number of soft bits (from UE capabilities in 36-306)
174
\param Mdlharq Number of HARQ rounds
175 176 177 178 179
\param Kmimo MIMO capability for this DLSCH (0 = no MIMO)
\param rvidx round index (0-3)
\param Qm modulation order (2,4,6)
\param Nl number of layers (1,2)
\param r segment number
180
\param nb_rb Number of PRBs
181 182 183 184
\returns \f$E\f$, the number of coded bits per segment */


uint32_t lte_rate_matching_turbo(uint32_t RTC,
185 186 187 188 189 190 191 192 193 194 195
                                 uint32_t G,
                                 uint8_t *w,
                                 uint8_t *e,
                                 uint8_t C,
                                 uint32_t Nsoft,
                                 uint8_t Mdlharq,
                                 uint8_t Kmimo,
                                 uint8_t rvidx,
                                 uint8_t Qm,
                                 uint8_t Nl,
                                 uint8_t r,
196
                                 uint8_t nb_rb);
197 198

/**
199 200 201 202 203 204 205 206
\brief This is the LTE rate matching algorithm for Convolutionally-coded channels (e.g. BCH,DCI,UCI).  It is taken directly from 36-212 (Rel 8 8.6, 2009-03), pages 16-18 )
\param RCC R^CC_subblock from subblock interleaver (number of rows in interleaving matrix) for up to 8 segments
\param E Number of coded channel bits
\param w This is a pointer to the w-sequence (second interleaver output)
\param e This is a pointer to the e-sequence (rate matching output, channel input/output bits)
\returns \f$E\f$, the number of coded bits per segment */

uint32_t lte_rate_matching_cc(uint32_t RCC,
207 208 209
                              uint16_t E,
                              uint8_t *w,
                              uint8_t *e);
210

211
/**
212 213 214
\brief This is the LTE rate matching algorithm for Turbo-coded channels (e.g. DLSCH,ULSCH).  It is taken directly from 36-212 (Rel 8 8.6, 2009-03), pages 16-18 )
\param RTC R^TC_subblock from subblock interleaver (number of rows in interleaving matrix)
\param G This the number of coded transport bits allocated in sub-frame
215
\param w This is a pointer to the soft w-sequence (second interleaver output) with soft-combined outputs from successive HARQ rounds
216
\param dummy_w This is the first row of the interleaver matrix for identifying/discarding the "LTE-NULL" positions
217
\param soft_input This is a pointer to the soft channel output
218 219
\param C Number of segments (codewords) in the sub-frame
\param Nsoft Total number of soft bits (from UE capabilities in 36-306)
220
\param Mdlharq Number of HARQ rounds
221 222 223 224 225 226
\param Kmimo MIMO capability for this DLSCH (0 = no MIMO)
\param rvidx round index (0-3)
\param clear 1 means clear soft buffer (start of HARQ round)
\param Qm modulation order (2,4,6)
\param Nl number of layers (1,2)
\param r segment number
227
\param E_out the number of coded bits per segment
228 229 230 231
\returns 0 on success, -1 on failure
*/

int lte_rate_matching_turbo_rx(uint32_t RTC,
232 233 234 235 236 237 238 239 240 241 242 243 244 245
                               uint32_t G,
                               int16_t *w,
                               uint8_t *dummy_w,
                               int16_t *soft_input,
                               uint8_t C,
                               uint32_t Nsoft,
                               uint8_t Mdlharq,
                               uint8_t Kmimo,
                               uint8_t rvidx,
                               uint8_t clear,
                               uint8_t Qm,
                               uint8_t Nl,
                               uint8_t r,
                               uint32_t *E_out);
246 247

uint32_t lte_rate_matching_turbo_rx_abs(uint32_t RTC,
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
                                        uint32_t G,
                                        double *w,
                                        uint8_t *dummy_w,
                                        double *soft_input,
                                        uint8_t C,
                                        uint32_t Nsoft,
                                        uint8_t Mdlharq,
                                        uint8_t Kmimo,
                                        uint8_t rvidx,
                                        uint8_t clear,
                                        uint8_t Qm,
                                        uint8_t Nl,
                                        uint8_t r,
                                        uint32_t *E_out);
/**
263 264 265 266

\brief This is the LTE rate matching algorithm for Convolutionally-coded channels (e.g. BCH,DCI,UCI).  It is taken directly from 36-212 (Rel 8 8.6, 2009-03), pages 16-18 )
\param RCC R^CC_subblock from subblock interleaver (number of rows in interleaving matrix)
\param E This the number of coded bits allocated for channel
267
\param w This is a pointer to the soft w-sequence (second interleaver output) with soft-combined outputs from successive HARQ rounds
268
\param dummy_w This is the first row of the interleaver matrix for identifying/discarding the "LTE-NULL" positions
269 270
\param soft_input This is a pointer to the soft channel output
\returns \f$E\f$, the number of coded bits per segment
271 272
*/
void lte_rate_matching_cc_rx(uint32_t RCC,
273 274 275 276
                             uint16_t E,
                             int8_t *w,
                             uint8_t *dummy_w,
                             int8_t *soft_input);
277 278 279 280 281 282 283 284

/** \fn void ccodedot11_encode(uint32_t numbytes,uint8_t *inPtr,uint8_t *outPtr,uint8_t puncturing)
\brief This function implements a rate 1/2 constraint length 7 convolutional code.
@param numbytes Number of bytes to encode
@param inPtr Pointer to input buffer
@param outPtr Pointer to output buffer
@param puncturing Puncturing pattern (Not used at present, to be removed)
*/
285 286 287 288
void ccodedot11_encode (uint32_t numbytes,
                        uint8_t *inPtr,
                        uint8_t *outPtr,
                        uint8_t puncturing);
289 290 291

/*!\fn void ccodedot11_init(void)
\brief This function initializes the generator polynomials for an 802.11 convolutional code.*/
292
void ccodedot11_init(void);
293 294 295

/*!\fn void ccodedot11_init_inv(void)
\brief This function initializes the trellis structure for decoding an 802.11 convolutional code.*/
296
void ccodedot11_init_inv(void);
297

298

299

300

301 302


303
/** \fn void ccodelte_encode(int32_t numbits,uint8_t add_crc, uint8_t *inPtr,uint8_t *outPtr,uint16_t rnti)
304
\brief This function implements the LTE convolutional code of rate 1/3
305
  with a constraint length of 7 bits. The inputs are bit packed in octets
306 307 308 309 310 311 312 313
(from MSB to LSB). Trellis tail-biting is included here.
@param numbits Number of bits to encode
@param add_crc crc to be appended (8 bits) if add_crc = 1
@param inPtr Pointer to input buffer
@param outPtr Pointer to output buffer
@param rnti RNTI for CRC scrambling
*/
void
314
ccodelte_encode (int32_t numbits,
315 316 317 318
                 uint8_t add_crc,
                 uint8_t *inPtr,
                 uint8_t *outPtr,
                 uint16_t rnti);
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

/*!\fn void ccodelte_init(void)
\brief This function initializes the generator polynomials for an LTE convolutional code.*/
void ccodelte_init(void);

/*!\fn void ccodelte_init_inv(void)
\brief This function initializes the trellis structure for decoding an LTE convolutional code.*/
void ccodelte_init_inv(void);

/*!\fn void ccodelte_init(void)
\brief This function initializes the generator polynomials for an DAB convolutional code (first 3 bits).*/
void ccodedab_init(void);

/*!\fn void ccodelte_init_inv(void)
\brief This function initializes the trellis structure for decoding an DAB convolutional code (first 3 bits).*/
void ccodedab_init_inv(void);

336 337


338 339
/*!\fn void crcTableInit(void)
\brief This function initializes the different crc tables.*/
340
//void crcTableInit (void);
341

342 343


344
/*!\fn uint32_t crc24a(uint8_t *inPtr, int32_t bitlen)
345
\brief This computes a 24-bit crc ('a' variant for overall transport block)
346 347 348 349
based on 3GPP UMTS/LTE specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits
*/
350
uint32_t crc24a (uint8_t * inptr, uint32_t bitlen);
351 352

/*!\fn uint32_t crc24b(uint8_t *inPtr, int32_t bitlen)
353
\brief This computes a 24-bit crc ('b' variant for transport-block segments)
354 355 356 357
based on 3GPP UMTS/LTE specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits
*/
358 359
uint32_t crc24b (uint8_t * inptr, uint32_t bitlen);
    
360 361 362 363
/*!\fn uint32_t crc16(uint8_t *inPtr, int32_t bitlen)
\brief This computes a 16-bit crc based on 3GPP UMTS specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits*/
364
uint32_t crc16 (uint8_t * inptr, uint32_t bitlen);
365 366 367 368 369

/*!\fn uint32_t crc12(uint8_t *inPtr, int32_t bitlen)
\brief This computes a 12-bit crc based on 3GPP UMTS specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits*/
370
uint32_t crc12 (uint8_t * inptr, uint32_t bitlen);
371 372 373 374 375

/*!\fn uint32_t crc8(uint8_t *inPtr, int32_t bitlen)
\brief This computes a 8-bit crc based on 3GPP UMTS specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits*/
376 377
uint32_t crc8 (uint8_t * inptr, uint32_t bitlen);
    
378 379 380 381 382 383 384 385 386 387
/*!\fn void phy_viterbi_dot11_sse2(int8_t *y, uint8_t *decoded_bytes, uint16_t n,int offset,int traceback)
\brief This routine performs a SIMD optmized Viterbi decoder for the 802.11 64-state convolutional code. It can be
run in segments with final trace back after last segment.
@param y Pointer to soft input (coded on 8-bits but should be limited to 4-bit precision to avoid overflow)
@param decoded_bytes Pointer to decoded output
@param n Length of input/trellis depth in bits for this run
@param offset offset in receive buffer for segment on which to operate
@param traceback flag to indicate that traceback should be performed*/
void phy_viterbi_dot11_sse2(int8_t *y,uint8_t *decoded_bytes,uint16_t n);

388
/*!\fn void phy_viterbi_lte_sse2(int8_t *y, uint8_t *decoded_bytes, uint16_t n)
389 390 391 392
\brief This routine performs a SIMD optmized Viterbi decoder for the LTE 64-state tail-biting convolutional code.
@param y Pointer to soft input (coded on 8-bits but should be limited to 4-bit precision to avoid overflow)
@param decoded_bytes Pointer to decoded output
@param n Length of input/trellis depth in bits*/
393
//void phy_viterbi_lte_sse2(int8_t *y,uint8_t *decoded_bytes,uint16_t n);
394
void phy_viterbi_lte_sse2(int8_t *y,uint8_t *decoded_bytes,uint16_t n);
395 396 397 398 399 400 401 402 403 404 405 406

/*!\fn void phy_generate_viterbi_tables(void)
\brief This routine initializes metric tables for the optimized Viterbi decoder.
*/
void phy_generate_viterbi_tables( void );

/*!\fn void phy_generate_viterbi_tables_lte(void)
\brief This routine initializes metric tables for the optimized LTE Viterbi decoder.
*/
void phy_generate_viterbi_tables_lte( void );


407 408 409 410 411
/*!\fn int32_t rate_matching(uint32_t N_coded,
             uint32_t N_input,
             uint8_t *inPtr,
             uint8_t N_bps,
             uint32_t off)
412 413 414 415 416 417 418 419
\brief This routine performs random puncturing of a coded sequence.
@param N_coded Number of coding bits to be output
@param N_input Number of input bits
@param *inPtr Pointer to coded input
@param N_bps Number of modulation bits per symbol (1,2,4)
@param off Offset for seed

*/
420 421 422 423 424
int32_t rate_matching(uint32_t N_coded,
                      uint32_t N_input,
                      uint8_t *inPtr,
                      uint8_t N_bps,
                      uint32_t off);
425

426 427 428 429
int32_t rate_matching_lte(uint32_t N_coded,
                          uint32_t N_input,
                          uint8_t *inPtr,
                          uint32_t off);
430 431


432

433

434 435 436
uint32_t crcbit (uint8_t * ,
                 int32_t,
                 uint32_t);
437 438 439 440

int16_t reverseBits(int32_t ,int32_t);
void phy_viterbi_dot11(int8_t *,uint8_t *,uint16_t);

441 442 443 444
decoder_if_t phy_threegpplte_turbo_decoder;
decoder_if_t phy_threegpplte_turbo_decoder8;
decoder_if_t phy_threegpplte_turbo_decoder16;

445
#endif