usrp_lib.cpp 50.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
/*
 * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The OpenAirInterface Software Alliance licenses this file to You under
 * the OAI Public License, Version 1.1  (the "License"); you may not use this file
 * except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.openairinterface.org/?page_id=698
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *-------------------------------------------------------------------------------
 * For more information about the OpenAirInterface (OAI) Software Alliance:
 *      contact@openairinterface.org
 */

/** usrp_lib.cpp
 *
 * \author: HongliangXU : hong-liang-xu@agilent.com
 */

#include <string.h>
#include <pthread.h>
#include <unistd.h>
#include <stdio.h>
#include <uhd/utils/thread_priority.hpp>
#include <uhd/usrp/multi_usrp.hpp>
#include <uhd/version.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/thread.hpp>
#include <boost/format.hpp>
#include <iostream>
#include <complex>
#include <fstream>
#include <cmath>
#include <time.h>
#include "common/utils/LOG/log.h"
#include "common_lib.h"
#include "assertions.h"
#include <sys/sysinfo.h>
#include <sys/resource.h>

#ifdef __SSE4_1__
#  include <smmintrin.h>
#endif

#ifdef __AVX2__
#  include <immintrin.h>
#endif

#ifdef __arm__
#  include <arm_neon.h>
#endif

/** @addtogroup _USRP_PHY_RF_INTERFACE_
 * @{
 */

/*! \brief USRP Configuration */
typedef struct {

  // --------------------------------
  // variables for USRP configuration
  // --------------------------------
  //! USRP device pointer
  uhd::usrp::multi_usrp::sptr usrp;

  //create a send streamer and a receive streamer
  //! USRP TX Stream
  uhd::tx_streamer::sptr tx_stream;
  //! USRP RX Stream
  uhd::rx_streamer::sptr rx_stream;

  //! USRP TX Metadata
  uhd::tx_metadata_t tx_md;
  //! USRP RX Metadata
  uhd::rx_metadata_t rx_md;

  //! Sampling rate
  double sample_rate;

  //! TX forward samples. We use usrp_time_offset to get this value
  int tx_forward_nsamps; //166 for 20Mhz

  // --------------------------------
  // Debug and output control
  // --------------------------------
  int num_underflows;
  int num_overflows;
  int num_seq_errors;
  int64_t tx_count;
  int64_t rx_count;
  int wait_for_first_pps;
  int use_gps;
  //! timestamp of RX packet
  openair0_timestamp rx_timestamp;

} usrp_state_t;

//void print_notes(void)
//{
// Helpful notes
//  std::cout << boost::format("**************************************Helpful Notes on Clock/PPS Selection**************************************\n");
//  std::cout << boost::format("As you can see, the default 10 MHz Reference and 1 PPS signals are now from the GPSDO.\n");
//  std::cout << boost::format("If you would like to use the internal reference(TCXO) in other applications, you must configure that explicitly.\n");
//  std::cout << boost::format("You can no longer select the external SMAs for 10 MHz or 1 PPS signaling.\n");
//  std::cout << boost::format("****************************************************************************************************************\n");
//}

static int sync_to_gps(openair0_device *device) {
  uhd::set_thread_priority_safe();
  //std::string args;
  //Set up program options
  //po::options_description desc("Allowed options");
  //desc.add_options()
  //("help", "help message")
  //("args", po::value<std::string>(&args)->default_value(""), "USRP device arguments")
  //;
  //po::variables_map vm;
  //po::store(po::parse_command_line(argc, argv, desc), vm);
  //po::notify(vm);
  //Print the help message
  //if (vm.count("help"))
  //{
  //  std::cout << boost::format("Synchronize USRP to GPS %s") % desc << std::endl;
  // return EXIT_FAILURE;
  //}
  //Create a USRP device
  //std::cout << boost::format("\nCreating the USRP device with: %s...\n") % args;
  //uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args);
  //std::cout << boost::format("Using Device: %s\n") % usrp->get_pp_string();
  usrp_state_t *s = (usrp_state_t *)device->priv;

  try {
    size_t num_mboards = s->usrp->get_num_mboards();
    size_t num_gps_locked = 0;

    for (size_t mboard = 0; mboard < num_mboards; mboard++) {
      std::cout << "Synchronizing mboard " << mboard << ": " << s->usrp->get_mboard_name(mboard) << std::endl;
      //Set references to GPSDO
      s->usrp->set_clock_source("gpsdo", mboard);
      s->usrp->set_time_source("gpsdo", mboard);
      //std::cout << std::endl;
      //print_notes();
      //std::cout << std::endl;
      //Check for 10 MHz lock
      std::vector<std::string> sensor_names = s->usrp->get_mboard_sensor_names(mboard);

      if(std::find(sensor_names.begin(), sensor_names.end(), "ref_locked") != sensor_names.end()) {
        std::cout << "Waiting for reference lock..." << std::flush;
        bool ref_locked = false;

        for (int i = 0; i < 30 and not ref_locked; i++) {
          ref_locked = s->usrp->get_mboard_sensor("ref_locked", mboard).to_bool();

          if (not ref_locked) {
            std::cout << "." << std::flush;
            boost::this_thread::sleep(boost::posix_time::seconds(1));
          }
        }

        if(ref_locked) {
          std::cout << "LOCKED" << std::endl;
        } else {
          std::cout << "FAILED" << std::endl;
          std::cout << "Failed to lock to GPSDO 10 MHz Reference. Exiting." << std::endl;
          exit(EXIT_FAILURE);
        }
      } else {
        std::cout << boost::format("ref_locked sensor not present on this board.\n");
      }

      //Wait for GPS lock
      bool gps_locked = s->usrp->get_mboard_sensor("gps_locked", mboard).to_bool();

      if(gps_locked) {
        num_gps_locked++;
        std::cout << boost::format("GPS Locked\n");
      } else {
        std::cerr << "WARNING:  GPS not locked - time will not be accurate until locked" << std::endl;
      }

      //Set to GPS time
      uhd::time_spec_t gps_time = uhd::time_spec_t(time_t(s->usrp->get_mboard_sensor("gps_time", mboard).to_int()));
      //s->usrp->set_time_next_pps(gps_time+1.0, mboard);
      s->usrp->set_time_next_pps(uhd::time_spec_t(0.0));
      //Wait for it to apply
      //The wait is 2 seconds because N-Series has a known issue where
      //the time at the last PPS does not properly update at the PPS edge
      //when the time is actually set.
      boost::this_thread::sleep(boost::posix_time::seconds(2));
      //Check times
      gps_time = uhd::time_spec_t(time_t(s->usrp->get_mboard_sensor("gps_time", mboard).to_int()));
      uhd::time_spec_t time_last_pps = s->usrp->get_time_last_pps(mboard);
      std::cout << "USRP time: " << (boost::format("%0.9f") % time_last_pps.get_real_secs()) << std::endl;
      std::cout << "GPSDO time: " << (boost::format("%0.9f") % gps_time.get_real_secs()) << std::endl;
      //if (gps_time.get_real_secs() == time_last_pps.get_real_secs())
      //    std::cout << std::endl << "SUCCESS: USRP time synchronized to GPS time" << std::endl << std::endl;
      //else
      //    std::cerr << std::endl << "ERROR: Failed to synchronize USRP time to GPS time" << std::endl << std::endl;
    }

    if (num_gps_locked == num_mboards and num_mboards > 1) {
      //Check to see if all USRP times are aligned
      //First, wait for PPS.
      uhd::time_spec_t time_last_pps = s->usrp->get_time_last_pps();

      while (time_last_pps == s->usrp->get_time_last_pps()) {
        boost::this_thread::sleep(boost::posix_time::milliseconds(1));
      }

      //Sleep a little to make sure all devices have seen a PPS edge
      boost::this_thread::sleep(boost::posix_time::milliseconds(200));
      //Compare times across all mboards
      bool all_matched = true;
      uhd::time_spec_t mboard0_time = s->usrp->get_time_last_pps(0);

      for (size_t mboard = 1; mboard < num_mboards; mboard++) {
        uhd::time_spec_t mboard_time = s->usrp->get_time_last_pps(mboard);

        if (mboard_time != mboard0_time) {
          all_matched = false;
          std::cerr << (boost::format("ERROR: Times are not aligned: USRP 0=%0.9f, USRP %d=%0.9f")
                        % mboard0_time.get_real_secs()
                        % mboard
                        % mboard_time.get_real_secs()) << std::endl;
        }
      }

      if (all_matched) {
        std::cout << "SUCCESS: USRP times aligned" << std::endl << std::endl;
      } else {
        std::cout << "ERROR: USRP times are not aligned" << std::endl << std::endl;
      }
    }
  } catch (std::exception &e) {
    std::cout << boost::format("\nError: %s") % e.what();
    std::cout << boost::format("This could mean that you have not installed the GPSDO correctly.\n\n");
    std::cout << boost::format("Visit one of these pages if the problem persists:\n");
    std::cout << boost::format(" * N2X0/E1X0: http://files.ettus.com/manual/page_gpsdo.html");
    std::cout << boost::format(" * X3X0: http://files.ettus.com/manual/page_gpsdo_x3x0.html\n\n");
    std::cout << boost::format(" * E3X0: http://files.ettus.com/manual/page_usrp_e3x0.html#e3x0_hw_gps\n\n");
    exit(EXIT_FAILURE);
  }

  return EXIT_SUCCESS;
}

#if defined(USRP_REC_PLAY)
#include "usrp_lib.h"
static FILE    *pFile = NULL;
int             mmapfd = 0;
int             iqfd = 0;
int             use_mmap = 1; // default is to use mmap
struct stat     sb;
iqrec_t        *ms_sample = NULL;                      // memory for all subframes
unsigned int    nb_samples = 0;
unsigned int    cur_samples = 0;
int64_t         wrap_count = 0;
int64_t         wrap_ts = 0;
unsigned int    u_sf_mode = 0;                         // 1=record, 2=replay
unsigned int    u_sf_record = 0;                       // record mode
unsigned int    u_sf_replay = 0;                       // replay mode
char            u_sf_filename[1024] = "";              // subframes file path
unsigned int    u_sf_max = DEF_NB_SF;                  // max number of recorded subframes
unsigned int    u_sf_loops = DEF_SF_NB_LOOP;           // number of loops in replay mode
unsigned int    u_sf_read_delay = DEF_SF_DELAY_READ;   // read delay in replay mode
unsigned int    u_sf_write_delay = DEF_SF_DELAY_WRITE; // write delay in replay mode

char config_opt_sf_file[] = CONFIG_OPT_SF_FILE;
char config_def_sf_file[] = DEF_SF_FILE;
char config_hlp_sf_file[] = CONFIG_HLP_SF_FILE;
char config_opt_sf_rec[] = CONFIG_OPT_SF_REC;
char config_hlp_sf_rec[] = CONFIG_HLP_SF_REC;
char config_opt_sf_rep[] = CONFIG_OPT_SF_REP;
char config_hlp_sf_rep[] = CONFIG_HLP_SF_REP;
char config_opt_sf_max[] = CONFIG_OPT_SF_MAX;
char config_hlp_sf_max[] = CONFIG_HLP_SF_MAX;
char config_opt_sf_loops[] = CONFIG_OPT_SF_LOOPS;
char config_hlp_sf_loops[] = CONFIG_HLP_SF_LOOPS;
char config_opt_sf_rdelay[] = CONFIG_OPT_SF_RDELAY;
char config_hlp_sf_rdelay[] = CONFIG_HLP_SF_RDELAY;
char config_opt_sf_wdelay[] = CONFIG_OPT_SF_WDELAY;
char config_hlp_sf_wdelay[] = CONFIG_HLP_SF_WDELAY;

#endif

/*! \brief Called to start the USRP transceiver. Return 0 if OK, < 0 if error
    @param device pointer to the device structure specific to the RF hardware target
*/
static int trx_usrp_start(openair0_device *device) {
#if defined(USRP_REC_PLAY)

  if (u_sf_mode != 2) { // not replay mode
#endif
    usrp_state_t *s = (usrp_state_t *)device->priv;
    // setup GPIO for TDD, GPIO(4) = ATR_RX
    //set data direction register (DDR) to output
    s->usrp->set_gpio_attr("FP0", "DDR", 0x1f, 0x1f);
    //set control register to ATR
    s->usrp->set_gpio_attr("FP0", "CTRL", 0x1f,0x1f);
    //set ATR register
    s->usrp->set_gpio_attr("FP0", "ATR_RX", 1<<4, 0x1f);
    // init recv and send streaming
    uhd::stream_cmd_t cmd(uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS);
    LOG_I(PHY,"Time in secs now: %llu \n", s->usrp->get_time_now().to_ticks(s->sample_rate));
    LOG_I(PHY,"Time in secs last pps: %llu \n", s->usrp->get_time_last_pps().to_ticks(s->sample_rate));

    if (s->use_gps == 1) {
      s->wait_for_first_pps = 1;
      cmd.time_spec = s->usrp->get_time_last_pps() + uhd::time_spec_t(1.0);
    } else {
      s->wait_for_first_pps = 0;
      cmd.time_spec = s->usrp->get_time_now() + uhd::time_spec_t(0.05);
    }

    cmd.stream_now = false; // start at constant delay
    s->rx_stream->issue_stream_cmd(cmd);
    s->tx_md.time_spec = cmd.time_spec + uhd::time_spec_t(1-(double)s->tx_forward_nsamps/s->sample_rate);
    s->tx_md.has_time_spec = true;
    s->tx_md.start_of_burst = true;
    s->tx_md.end_of_burst = false;
    s->rx_count = 0;
    s->tx_count = 0;
    s->rx_timestamp = 0;
#if defined(USRP_REC_PLAY)
  }

#endif
  return 0;
}
/*! \brief Terminate operation of the USRP transceiver -- free all associated resources
 * \param device the hardware to use
 */
static void trx_usrp_end(openair0_device *device) {
#if defined(USRP_REC_PLAY) // For some ugly reason, this can be called several times...
  static int done = 0;

  if (done == 1) return;

  done = 1;

  if (u_sf_mode != 2) { // not subframes replay
#endif
    usrp_state_t *s = (usrp_state_t *)device->priv;
    s->rx_stream->issue_stream_cmd(uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS);
    //send a mini EOB packet
    s->tx_md.end_of_burst = true;
    s->tx_stream->send("", 0, s->tx_md);
    s->tx_md.end_of_burst = false;
    sleep(1);
#if defined(USRP_REC_PLAY)
  }

#endif
#if defined(USRP_REC_PLAY)

  if (u_sf_mode == 1) { // subframes store
    pFile = fopen (u_sf_filename,"wb+");

    if (pFile == NULL) {
      std::cerr << "Cannot open " << u_sf_filename << std::endl;
    } else {
      unsigned int i = 0;
      unsigned int modu = 0;

      if ((modu = nb_samples % 10) != 0) {
        nb_samples -= modu; // store entire number of frames
      }

      std::cerr << "Writing " << nb_samples << " subframes to " << u_sf_filename << " ..." << std::endl;

      for (i = 0; i < nb_samples; i++) {
        fwrite(ms_sample+i, sizeof(unsigned char), sizeof(iqrec_t), pFile);
      }

      fclose (pFile);
      std::cerr << "File " << u_sf_filename << " closed." << std::endl;
    }
  }

  if (u_sf_mode == 1) { // record
    if (ms_sample != NULL) {
      free((void *)ms_sample);
      ms_sample = NULL;
    }
  }

  if (u_sf_mode == 2) { // replay
    if (use_mmap) {
      if (ms_sample != MAP_FAILED) {
        munmap(ms_sample, sb.st_size);
        ms_sample = NULL;
      }

      if (mmapfd != 0) {
        close(mmapfd);
        mmapfd = 0;
      }
    } else {
      if (ms_sample != NULL) {
        free(ms_sample);
        ms_sample = NULL;
      }

      if (iqfd != 0) {
        close(iqfd);
        iqfd = 0;
      }
    }
  }

#endif
}

/*! \brief Called to send samples to the USRP RF target
      @param device pointer to the device structure specific to the RF hardware target
      @param timestamp The timestamp at which the first sample MUST be sent
      @param buff Buffer which holds the samples
      @param nsamps number of samples to be sent
      @param antenna_id index of the antenna if the device has multiple antennas
      @param flags flags must be set to TRUE if timestamp parameter needs to be applied
*/
static int trx_usrp_write(openair0_device *device, openair0_timestamp timestamp, void **buff, int nsamps, int cc, int flags) {
  int ret=0;
#if defined(USRP_REC_PLAY)

  if (u_sf_mode != 2) { // not replay mode
#endif
    usrp_state_t *s = (usrp_state_t *)device->priv;
    int nsamps2;  // aligned to upper 32 or 16 byte boundary
#if defined(__x86_64) || defined(__i386__)
#ifdef __AVX2__
    nsamps2 = (nsamps+7)>>3;
    __m256i buff_tx[2][nsamps2];
#else
    nsamps2 = (nsamps+3)>>2;
    __m128i buff_tx[2][nsamps2];
#endif
#elif defined(__arm__)
    nsamps2 = (nsamps+3)>>2;
    int16x8_t buff_tx[2][nsamps2];
#endif

    // bring RX data into 12 LSBs for softmodem RX
    for (int i=0; i<cc; i++) {
      for (int j=0; j<nsamps2; j++) {
#if defined(__x86_64__) || defined(__i386__)
#ifdef __AVX2__
        buff_tx[i][j] = _mm256_slli_epi16(((__m256i *)buff[i])[j],4);
#else
        buff_tx[i][j] = _mm_slli_epi16(((__m128i *)buff[i])[j],4);
#endif
#elif defined(__arm__)
        buff_tx[i][j] = vshlq_n_s16(((int16x8_t *)buff[i])[j],4);
#endif
      }
    }

    s->tx_md.time_spec = uhd::time_spec_t::from_ticks(timestamp, s->sample_rate);
    s->tx_md.has_time_spec = flags;

    if(flags>0)
      s->tx_md.has_time_spec = true;
    else
      s->tx_md.has_time_spec = false;

    if (flags == 2) { // start of burst
      s->tx_md.start_of_burst = true;
      s->tx_md.end_of_burst = false;
    } else if (flags == 3) { // end of burst
      s->tx_md.start_of_burst = false;
      s->tx_md.end_of_burst = true;
    } else if (flags == 4) { // start and end
      s->tx_md.start_of_burst = true;
      s->tx_md.end_of_burst = true;
    } else if (flags==1) { // middle of burst
      s->tx_md.start_of_burst = false;
      s->tx_md.end_of_burst = false;
    }

    if(flags==10) { // fail safe mode
      s->tx_md.has_time_spec = false;
      s->tx_md.start_of_burst = false;
      s->tx_md.end_of_burst = true;
    }

    if (cc>1) {
      std::vector<void *> buff_ptrs;

      for (int i=0; i<cc; i++)
        buff_ptrs.push_back(buff_tx[i]);

      ret = (int)s->tx_stream->send(buff_ptrs, nsamps, s->tx_md,1e-3);
    } else
      ret = (int)s->tx_stream->send(buff_tx[0], nsamps, s->tx_md,1e-3);

    if (ret != nsamps)
      LOG_E(PHY,"[xmit] tx samples %d != %d\n",ret,nsamps);

#if defined(USRP_REC_PLAY)
  } else {
    struct timespec req;
    req.tv_sec = 0;
    req.tv_nsec = u_sf_write_delay * 1000;
    nanosleep(&req, NULL);
    ret = nsamps;
  }

#endif
  return ret;
}

/*! \brief Receive samples from hardware.
 * Read \ref nsamps samples from each channel to buffers. buff[0] is the array for
 * the first channel. *ptimestamp is the time at which the first sample
 * was received.
 * \param device the hardware to use
 * \param[out] ptimestamp the time at which the first sample was received.
 * \param[out] buff An array of pointers to buffers for received samples. The buffers must be large enough to hold the number of samples \ref nsamps.
 * \param nsamps Number of samples. One sample is 2 byte I + 2 byte Q => 4 byte.
 * \param antenna_id Index of antenna for which to receive samples
 * \returns the number of sample read
*/
static int trx_usrp_read(openair0_device *device, openair0_timestamp *ptimestamp, void **buff, int nsamps, int cc) {
  usrp_state_t *s = (usrp_state_t *)device->priv;
  int samples_received=0,i,j;
  int nsamps2;  // aligned to upper 32 or 16 byte boundary
#if defined(USRP_REC_PLAY)

  if (u_sf_mode != 2) { // not replay mode
#endif
#if defined(__x86_64) || defined(__i386__)
#ifdef __AVX2__
    nsamps2 = (nsamps+7)>>3;
    __m256i buff_tmp[2][nsamps2];
#else
    nsamps2 = (nsamps+3)>>2;
    __m128i buff_tmp[2][nsamps2];
#endif
#elif defined(__arm__)
    nsamps2 = (nsamps+3)>>2;
    int16x8_t buff_tmp[2][nsamps2];
#endif

    if (device->type == USRP_B200_DEV) {
      if (cc>1) {
        // receive multiple channels (e.g. RF A and RF B)
        std::vector<void *> buff_ptrs;

        for (int i=0; i<cc; i++) buff_ptrs.push_back(buff_tmp[i]);

        samples_received = s->rx_stream->recv(buff_ptrs, nsamps, s->rx_md);
      } else {
        // receive a single channel (e.g. from connector RF A)
        samples_received=0;

        while (samples_received != nsamps) {
          samples_received += s->rx_stream->recv(buff_tmp[0]+samples_received,
                                                 nsamps-samples_received, s->rx_md);

          if  ((s->wait_for_first_pps == 0) && (s->rx_md.error_code!=uhd::rx_metadata_t::ERROR_CODE_NONE))
            break;

          if ((s->wait_for_first_pps == 1) && (samples_received != nsamps)) {
            printf("sleep...\n"); //usleep(100);
          }
        }

        if (samples_received == nsamps) s->wait_for_first_pps=0;
      }

      // bring RX data into 12 LSBs for softmodem RX
      for (int i=0; i<cc; i++) {
        for (int j=0; j<nsamps2; j++) {
#if defined(__x86_64__) || defined(__i386__)
#ifdef __AVX2__
          ((__m256i *)buff[i])[j] = _mm256_srai_epi16(buff_tmp[i][j],4);
#else
          ((__m128i *)buff[i])[j] = _mm_srai_epi16(buff_tmp[i][j],4);
#endif
#elif defined(__arm__)
          ((int16x8_t *)buff[i])[j] = vshrq_n_s16(buff_tmp[i][j],4);
#endif
        }
      }
    } else if (device->type == USRP_X300_DEV) {
      if (cc>1) {
        // receive multiple channels (e.g. RF A and RF B)
        std::vector<void *> buff_ptrs;

        for (int i=0; i<cc; i++) buff_ptrs.push_back(buff[i]);

        samples_received = s->rx_stream->recv(buff_ptrs, nsamps, s->rx_md,1.0);
      } else {
        // receive a single channel (e.g. from connector RF A)
        samples_received = s->rx_stream->recv(buff[0], nsamps, s->rx_md,1.0);
      }
    }

    if (samples_received < nsamps)
      LOG_E(PHY,"[recv] received %d samples out of %d\n",samples_received,nsamps);

    if ( s->rx_md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE)
      LOG_E(PHY, "%s\n", s->rx_md.to_pp_string(true).c_str());

    s->rx_count += nsamps;
    s->rx_timestamp = s->rx_md.time_spec.to_ticks(s->sample_rate);
    *ptimestamp = s->rx_timestamp;
#if defined (USRP_REC_PLAY)
  }

#endif
#if defined(USRP_REC_PLAY)

  if (u_sf_mode == 1) { // record mode
    // Copy subframes to memory (later dump on a file)
    if (nb_samples < u_sf_max) {
      (ms_sample+nb_samples)->header = BELL_LABS_IQ_HEADER;
      (ms_sample+nb_samples)->ts = *ptimestamp;
      memcpy((ms_sample+nb_samples)->samples, buff[0], nsamps*4);
      nb_samples++;
    }
  } else if (u_sf_mode == 2) { // replay mode
    if (cur_samples == nb_samples) {
      cur_samples = 0;
      wrap_count++;

      if (wrap_count == u_sf_loops) {
        std::cerr << "USRP device terminating subframes replay mode after " << u_sf_loops << " loops." << std::endl;
        return 0; // should make calling process exit
      }

      wrap_ts = wrap_count * (nb_samples * (((int)(device->openair0_cfg[0].sample_rate)) / 1000));

      if (!use_mmap) {
        if (lseek(iqfd, 0, SEEK_SET) == 0) {
          std::cerr << "Seeking at the beginning of IQ file" << std::endl;
        } else {
          std::cerr << "Problem seeking at the beginning of IQ file" << std::endl;
        }
      }
    }

    if (use_mmap) {
      if (cur_samples < nb_samples) {
        *ptimestamp = (ms_sample[0].ts + (cur_samples * (((int)(device->openair0_cfg[0].sample_rate)) / 1000))) + wrap_ts;

        if (cur_samples == 0) {
          std::cerr << "starting subframes file with wrap_count=" << wrap_count << " wrap_ts=" << wrap_ts
                    << " ts=" << *ptimestamp << std::endl;
        }

        memcpy(buff[0], &ms_sample[cur_samples].samples[0], nsamps*4);
        cur_samples++;
      }
    } else {
      // read sample from file
      if (read(iqfd, ms_sample, sizeof(iqrec_t)) != sizeof(iqrec_t)) {
        std::cerr << "pb reading iqfile at index " << sizeof(iqrec_t)*cur_samples << std::endl;
        close(iqfd);
        free(ms_sample);
        ms_sample = NULL;
        iqfd = 0;
        exit(-1);
      }

      if (cur_samples < nb_samples) {
        static int64_t ts0 = 0;

        if ((cur_samples == 0) && (wrap_count == 0)) {
          ts0 = ms_sample->ts;
        }

        *ptimestamp = ts0 + (cur_samples * (((int)(device->openair0_cfg[0].sample_rate)) / 1000)) + wrap_ts;

        if (cur_samples == 0) {
          std::cerr << "starting subframes file with wrap_count=" << wrap_count << " wrap_ts=" << wrap_ts
                    << " ts=" << *ptimestamp << std::endl;
        }

        memcpy(buff[0], &ms_sample->samples[0], nsamps*4);
        cur_samples++;
        // Prepare for next read
        off_t where = lseek(iqfd, cur_samples * sizeof(iqrec_t), SEEK_SET);
      }
    }

    struct timespec req;

    req.tv_sec = 0;

    req.tv_nsec = u_sf_read_delay * 1000;

    nanosleep(&req, NULL);

    return nsamps;
  }

#endif
  return samples_received;
}

/*! \brief Compares two variables within precision
 * \param a first variable
 * \param b second variable
*/
static bool is_equal(double a, double b) {
  return std::fabs(a-b) < std::numeric_limits<double>::epsilon();
}

void *freq_thread(void *arg) {
  openair0_device *device=(openair0_device *)arg;
  usrp_state_t *s = (usrp_state_t *)device->priv;
  s->usrp->set_tx_freq(device->openair0_cfg[0].tx_freq[0]);
  s->usrp->set_rx_freq(device->openair0_cfg[0].rx_freq[0]);
}
/*! \brief Set frequencies (TX/RX). Spawns a thread to handle the frequency change to not block the calling thread
 * \param device the hardware to use
 * \param openair0_cfg RF frontend parameters set by application
 * \param dummy dummy variable not used
 * \returns 0 in success
 */
int trx_usrp_set_freq(openair0_device *device, openair0_config_t *openair0_cfg, int dont_block) {
  usrp_state_t *s = (usrp_state_t *)device->priv;
  pthread_t f_thread;
  printf("Setting USRP TX Freq %f, RX Freq %f\n",openair0_cfg[0].tx_freq[0],openair0_cfg[0].rx_freq[0]);

  // spawn a thread to handle the frequency change to not block the calling thread
  if (dont_block == 1)
    pthread_create(&f_thread,NULL,freq_thread,(void *)device);
  else {
    s->usrp->set_tx_freq(device->openair0_cfg[0].tx_freq[0]);
    s->usrp->set_rx_freq(device->openair0_cfg[0].rx_freq[0]);
  }

  return(0);
}

/*! \brief Set RX frequencies
 * \param device the hardware to use
 * \param openair0_cfg RF frontend parameters set by application
 * \returns 0 in success
 */
int openair0_set_rx_frequencies(openair0_device *device, openair0_config_t *openair0_cfg) {
  usrp_state_t *s = (usrp_state_t *)device->priv;
  static int first_call=1;
  static double rf_freq,diff;
  uhd::tune_request_t rx_tune_req(openair0_cfg[0].rx_freq[0]);
  rx_tune_req.rf_freq_policy = uhd::tune_request_t::POLICY_MANUAL;
  rx_tune_req.rf_freq = openair0_cfg[0].rx_freq[0];
  rf_freq=openair0_cfg[0].rx_freq[0];
  s->usrp->set_rx_freq(rx_tune_req);
  return(0);
}

/*! \brief Set Gains (TX/RX)
 * \param device the hardware to use
 * \param openair0_cfg RF frontend parameters set by application
 * \returns 0 in success
 */
int trx_usrp_set_gains(openair0_device *device,
                       openair0_config_t *openair0_cfg) {
  usrp_state_t *s = (usrp_state_t *)device->priv;
  ::uhd::gain_range_t gain_range_tx = s->usrp->get_tx_gain_range(0);
  s->usrp->set_tx_gain(gain_range_tx.stop()-openair0_cfg[0].tx_gain[0]);
  ::uhd::gain_range_t gain_range = s->usrp->get_rx_gain_range(0);

  // limit to maximum gain
  if (openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0] > gain_range.stop()) {
    LOG_E(PHY,"RX Gain 0 too high, reduce by %f dB\n",
          openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0] - gain_range.stop());
    exit(-1);
  }

  s->usrp->set_rx_gain(openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0]);
  LOG_I(PHY,"Setting USRP RX gain to %f (rx_gain %f,gain_range.stop() %f)\n",
        openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0],
        openair0_cfg[0].rx_gain[0],gain_range.stop());
  return(0);
}

/*! \brief Stop USRP
 * \param card refers to the hardware index to use
 */
int trx_usrp_stop(openair0_device *device) {
  return(0);
}

/*! \brief USRPB210 RX calibration table */
rx_gain_calib_table_t calib_table_b210[] = {
  {3500000000.0,44.0},
  {2660000000.0,49.0},
  {2300000000.0,50.0},
  {1880000000.0,53.0},
  {816000000.0,58.0},
  {-1,0}
};

/*! \brief USRPB210 RX calibration table */
rx_gain_calib_table_t calib_table_b210_38[] = {
  {3500000000.0,44.0},
  {2660000000.0,49.8},
  {2300000000.0,51.0},
  {1880000000.0,53.0},
  {816000000.0,57.0},
  {-1,0}
};

/*! \brief USRPx310 RX calibration table */
rx_gain_calib_table_t calib_table_x310[] = {
  {3500000000.0,77.0},
  {2660000000.0,81.0},
  {2300000000.0,81.0},
  {1880000000.0,82.0},
  {816000000.0,85.0},
  {-1,0}
};

/*! \brief Set RX gain offset
 * \param openair0_cfg RF frontend parameters set by application
 * \param chain_index RF chain to apply settings to
 * \returns 0 in success
 */
void set_rx_gain_offset(openair0_config_t *openair0_cfg, int chain_index,int bw_gain_adjust) {
  int i=0;
  // loop through calibration table to find best adjustment factor for RX frequency
  double min_diff = 6e9,diff,gain_adj=0.0;

  if (bw_gain_adjust==1) {
    switch ((int)openair0_cfg[0].sample_rate) {
      case 30720000:
        break;

      case 23040000:
        gain_adj=1.25;
        break;

      case 15360000:
        gain_adj=3.0;
        break;

      case 7680000:
        gain_adj=6.0;
        break;

      case 3840000:
        gain_adj=9.0;
        break;

      case 1920000:
        gain_adj=12.0;
        break;

      default:
        LOG_E(PHY,"unknown sampling rate %d\n",(int)openair0_cfg[0].sample_rate);
        exit(-1);
        break;
    }
  }

  while (openair0_cfg->rx_gain_calib_table[i].freq>0) {
    diff = fabs(openair0_cfg->rx_freq[chain_index] - openair0_cfg->rx_gain_calib_table[i].freq);
    LOG_I(PHY,"cal %d: freq %f, offset %f, diff %f\n",
          i,
          openair0_cfg->rx_gain_calib_table[i].freq,
          openair0_cfg->rx_gain_calib_table[i].offset,diff);

    if (min_diff > diff) {
      min_diff = diff;
      openair0_cfg->rx_gain_offset[chain_index] = openair0_cfg->rx_gain_calib_table[i].offset+gain_adj;
    }

    i++;
  }
}

/*! \brief print the USRP statistics
* \param device the hardware to use
* \returns  0 on success
*/
int trx_usrp_get_stats(openair0_device *device) {
  return(0);
}

/*! \brief Reset the USRP statistics
 * \param device the hardware to use
 * \returns  0 on success
 */
int trx_usrp_reset_stats(openair0_device *device) {
  return(0);
}

#if defined(USRP_REC_PLAY)
extern "C" {
  /*! \brief Initializer for USRP record/playback config
   * \param parameter array description
   * \returns  0 on success
   */
  int trx_usrp_recplay_config_init(paramdef_t *usrp_recplay_params) {
    // --subframes-file
    memcpy(usrp_recplay_params[0].optname, config_opt_sf_file, strlen(config_opt_sf_file));
    usrp_recplay_params[0].helpstr = config_hlp_sf_file;
    usrp_recplay_params[0].paramflags=PARAMFLAG_NOFREE;
    usrp_recplay_params[0].strptr=(char **)&u_sf_filename;
    usrp_recplay_params[0].defstrval = NULL;
    usrp_recplay_params[0].type=TYPE_STRING;
    usrp_recplay_params[0].numelt=sizeof(u_sf_filename);
    // --subframes-record
    memcpy(usrp_recplay_params[1].optname, config_opt_sf_rec, strlen(config_opt_sf_rec));
    usrp_recplay_params[1].helpstr = config_hlp_sf_rec;
    usrp_recplay_params[1].paramflags=PARAMFLAG_BOOL;
    usrp_recplay_params[1].uptr=&u_sf_record;
    usrp_recplay_params[1].defuintval=0;
    usrp_recplay_params[1].type=TYPE_UINT;
    usrp_recplay_params[1].numelt=0;
    // --subframes-replay
    memcpy(usrp_recplay_params[2].optname, config_opt_sf_rep, strlen(config_opt_sf_rep));
    usrp_recplay_params[2].helpstr = config_hlp_sf_rep;
    usrp_recplay_params[2].paramflags=PARAMFLAG_BOOL;
    usrp_recplay_params[2].uptr=&u_sf_replay;
    usrp_recplay_params[2].defuintval=0;
    usrp_recplay_params[2].type=TYPE_UINT;
    usrp_recplay_params[2].numelt=0;
    // --subframes-max
    memcpy(usrp_recplay_params[3].optname, config_opt_sf_max, strlen(config_opt_sf_max));
    usrp_recplay_params[3].helpstr = config_hlp_sf_max;
    usrp_recplay_params[3].paramflags=0;
    usrp_recplay_params[3].uptr=&u_sf_max;
    usrp_recplay_params[3].defuintval=DEF_NB_SF;
    usrp_recplay_params[3].type=TYPE_UINT;
    usrp_recplay_params[3].numelt=0;
    // --subframes-loops
    memcpy(usrp_recplay_params[4].optname, config_opt_sf_loops, strlen(config_opt_sf_loops));
    usrp_recplay_params[4].helpstr = config_hlp_sf_loops;
    usrp_recplay_params[4].paramflags=0;
    usrp_recplay_params[4].uptr=&u_sf_loops;
    usrp_recplay_params[4].defuintval=DEF_SF_NB_LOOP;
    usrp_recplay_params[4].type=TYPE_UINT;
    usrp_recplay_params[4].numelt=0;
    // --subframes-read-delay
    memcpy(usrp_recplay_params[5].optname, config_opt_sf_rdelay, strlen(config_opt_sf_rdelay));
    usrp_recplay_params[5].helpstr = config_hlp_sf_rdelay;
    usrp_recplay_params[5].paramflags=0;
    usrp_recplay_params[5].uptr=&u_sf_read_delay;
    usrp_recplay_params[5].defuintval=DEF_SF_DELAY_READ;
    usrp_recplay_params[5].type=TYPE_UINT;
    usrp_recplay_params[5].numelt=0;
    // --subframes-write-delay
    memcpy(usrp_recplay_params[6].optname, config_opt_sf_wdelay, strlen(config_opt_sf_wdelay));
    usrp_recplay_params[6].helpstr = config_hlp_sf_wdelay;
    usrp_recplay_params[6].paramflags=0;
    usrp_recplay_params[6].uptr=&u_sf_write_delay;
    usrp_recplay_params[6].defuintval=DEF_SF_DELAY_WRITE;
    usrp_recplay_params[6].type=TYPE_UINT;
    usrp_recplay_params[6].numelt=0;
    return 0; // always ok
  }
}
#endif

extern "C" {
  /*! \brief Initialize Openair USRP target. It returns 0 if OK
   * \param device the hardware to use
   * \param openair0_cfg RF frontend parameters set by application
   */
  int device_init(openair0_device *device, openair0_config_t *openair0_cfg) {
    LOG_D(PHY, "openair0_cfg[0].sdr_addrs == '%s'\n", openair0_cfg[0].sdr_addrs);
    LOG_D(PHY, "openair0_cfg[0].clock_source == '%d'\n", openair0_cfg[0].clock_source);
#if defined(USRP_REC_PLAY)
    paramdef_t usrp_recplay_params[7];
    struct sysinfo systeminfo;
    // to check
    static int done = 0;

    if (done == 1) {
      return 0;
    } // prevent from multiple init

    done = 1;
    // end to check
    // Use mmap for IQ files for systems with less than 6GB total RAM
    sysinfo(&systeminfo);

    if (systeminfo.totalram < 6144000000) {
      use_mmap = 0;
    }

    memset(usrp_recplay_params, 0, 7*sizeof(paramdef_t));
    memset(&u_sf_filename[0], 0, 1024);

    if (trx_usrp_recplay_config_init(usrp_recplay_params) != 0) {
      std::cerr << "USRP device record/replay mode configuration error exiting" << std::endl;
      return -1;
    }

    config_process_cmdline(usrp_recplay_params,sizeof(usrp_recplay_params)/sizeof(paramdef_t),NULL);

    if (strlen(u_sf_filename) == 0) {
      (void) strcpy(u_sf_filename, DEF_SF_FILE);
    }

    if (u_sf_replay == 1) u_sf_mode = 2;

    if (u_sf_record == 1) u_sf_mode = 1;

    if (u_sf_mode == 2) {
      // Replay subframes from from file
      int bw_gain_adjust=0;
      device->openair0_cfg = openair0_cfg;
      device->type = USRP_B200_DEV;
      openair0_cfg[0].rx_gain_calib_table = calib_table_b210_38;
      bw_gain_adjust=1;
      openair0_cfg[0].tx_sample_advance     = 80;
      openair0_cfg[0].tx_bw                 = 20e6;
      openair0_cfg[0].rx_bw                 = 20e6;
      openair0_cfg[0].iq_txshift = 4;//shift
      openair0_cfg[0].iq_rxrescale = 15;//rescale iqs
      set_rx_gain_offset(&openair0_cfg[0],0,bw_gain_adjust);
      device->priv = NULL;
      device->trx_start_func = trx_usrp_start;
      device->trx_write_func = trx_usrp_write;
      device->trx_read_func  = trx_usrp_read;
      device->trx_get_stats_func = trx_usrp_get_stats;
      device->trx_reset_stats_func = trx_usrp_reset_stats;
      device->trx_end_func   = trx_usrp_end;
      device->trx_stop_func  = trx_usrp_stop;
      device->trx_set_freq_func = trx_usrp_set_freq;
      device->trx_set_gains_func   = trx_usrp_set_gains;
      device->openair0_cfg = openair0_cfg;
      std::cerr << "USRP device initialized in subframes replay mode for " << u_sf_loops << " loops. Use mmap="
                << use_mmap << std::endl;
    } else {
#endif
      uhd::set_thread_priority_safe(1.0);
      usrp_state_t *s = (usrp_state_t *)calloc(sizeof(usrp_state_t),1);

      if (openair0_cfg[0].clock_source==gpsdo)
        s->use_gps =1;

      // Initialize USRP device
      device->openair0_cfg = openair0_cfg;
      int vers=0,subvers=0,subsubvers=0;
      int bw_gain_adjust=0;
#if defined(USRP_REC_PLAY)

      if (u_sf_mode == 1) {
        std::cerr << "USRP device initialized in subframes record mode" << std::endl;
      }

#endif
      sscanf(uhd::get_version_string().c_str(),"%d.%d.%d",&vers,&subvers,&subsubvers);
      LOG_I(PHY,"UHD version %s (%d.%d.%d)\n",
            uhd::get_version_string().c_str(),vers,subvers,subsubvers);

      std::string args;
      if (openair0_cfg[0].sdr_addrs == NULL) {
        args = "type=b200";
      } else {
        args = openair0_cfg[0].sdr_addrs;
	LOG_I(PHY,"Checking for USRP with args %s\n",openair0_cfg[0].sdr_addrs);
      }

      uhd::device_addrs_t device_adds = uhd::device::find(args);

      if (device_adds.size() == 0) {
        std::cerr<<"No USRP Device Found. " << args << std::endl;
        free(s);
        return -1;
      } else if (device_adds.size() > 1) {
        std::cerr<<"More than one USRP Device Found. Please specify device more precisely in config file." << std::endl;
	free(s);
	return -1;
      }

      std::cerr << "Found USRP " << device_adds[0].get("type") << "\n";
      double usrp_master_clock;

      if (device_adds[0].get("type") == "b200") {
        printf("Found USRP b200\n");
        device->type = USRP_B200_DEV;
        usrp_master_clock = 30.72e6;
        args += boost::str(boost::format(",master_clock_rate=%f") % usrp_master_clock);
        args += ",num_send_frames=256,num_recv_frames=256, send_frame_size=15360, recv_frame_size=15360" ;
      }

      if (device_adds[0].get("type") == "n3xx") {
        printf("Found USRP n300\n");
        device->type=USRP_X300_DEV; //treat it as X300 for now
        usrp_master_clock = 122.88e6;
        args += boost::str(boost::format(",master_clock_rate=%f") % usrp_master_clock);
      }

      if (device_adds[0].get("type") == "x300") {
        printf("Found USRP x300\n");
        device->type=USRP_X300_DEV;
        usrp_master_clock = 184.32e6;
        args += boost::str(boost::format(",master_clock_rate=%f") % usrp_master_clock);
      }

      s->usrp = uhd::usrp::multi_usrp::make(args);

      // lock mboard clocks
      if (openair0_cfg[0].clock_source == internal)
        s->usrp->set_clock_source("internal");
      else
        s->usrp->set_clock_source("external");

      if (device->type==USRP_X300_DEV) {
        openair0_cfg[0].rx_gain_calib_table = calib_table_x310;
#if defined(USRP_REC_PLAY)
        std::cerr << "-- Using calibration table: calib_table_x310" << std::endl; // Bell Labs info
#endif
        LOG_I(PHY,"%s() sample_rate:%u\n", __FUNCTION__, (int)openair0_cfg[0].sample_rate);

        switch ((int)openair0_cfg[0].sample_rate) {
          case 122880000:
            // from usrp_time_offset
            //openair0_cfg[0].samples_per_packet    = 2048;
            openair0_cfg[0].tx_sample_advance     = 15; //to be checked
            openair0_cfg[0].tx_bw                 = 80e6;
            openair0_cfg[0].rx_bw                 = 80e6;
            break;

          case 61440000:
            // from usrp_time_offset
            //openair0_cfg[0].samples_per_packet    = 2048;
            openair0_cfg[0].tx_sample_advance     = 15;
            openair0_cfg[0].tx_bw                 = 40e6;
            openair0_cfg[0].rx_bw                 = 40e6;
            break;

          case 30720000:
            // from usrp_time_offset
            //openair0_cfg[0].samples_per_packet    = 2048;
            openair0_cfg[0].tx_sample_advance     = 15;
            openair0_cfg[0].tx_bw                 = 20e6;
            openair0_cfg[0].rx_bw                 = 20e6;
            break;

          case 15360000:
            //openair0_cfg[0].samples_per_packet    = 2048;
            openair0_cfg[0].tx_sample_advance     = 45;
            openair0_cfg[0].tx_bw                 = 10e6;
            openair0_cfg[0].rx_bw                 = 10e6;
            break;

          case 7680000:
            //openair0_cfg[0].samples_per_packet    = 2048;
            openair0_cfg[0].tx_sample_advance     = 50;
            openair0_cfg[0].tx_bw                 = 5e6;
            openair0_cfg[0].rx_bw                 = 5e6;
            break;

          case 1920000:
            //openair0_cfg[0].samples_per_packet    = 2048;
            openair0_cfg[0].tx_sample_advance     = 50;
            openair0_cfg[0].tx_bw                 = 1.25e6;
            openair0_cfg[0].rx_bw                 = 1.25e6;
            break;

          default:
            LOG_E(PHY,"Error: unknown sampling rate %f\n",openair0_cfg[0].sample_rate);
            exit(-1);
            break;
        }
      }

      if (device->type == USRP_B200_DEV) {
        if ((vers == 3) && (subvers == 9) && (subsubvers>=2)) {
          openair0_cfg[0].rx_gain_calib_table = calib_table_b210;
          bw_gain_adjust=0;
#if defined(USRP_REC_PLAY)
          std::cerr << "-- Using calibration table: calib_table_b210" << std::endl; // Bell Labs info
#endif
        } else {
          openair0_cfg[0].rx_gain_calib_table = calib_table_b210_38;
          bw_gain_adjust=1;
#if defined(USRP_REC_PLAY)
          std::cerr << "-- Using calibration table: calib_table_b210_38" << std::endl; // Bell Labs info
#endif
        }

        switch ((int)openair0_cfg[0].sample_rate) {
          case 30720000:
            s->usrp->set_master_clock_rate(30.72e6);
            //openair0_cfg[0].samples_per_packet    = 1024;
            openair0_cfg[0].tx_sample_advance     = 115;
            openair0_cfg[0].tx_bw                 = 20e6;
            openair0_cfg[0].rx_bw                 = 20e6;
            break;

          case 23040000:
            s->usrp->set_master_clock_rate(23.04e6); //to be checked
            //openair0_cfg[0].samples_per_packet    = 1024;
            openair0_cfg[0].tx_sample_advance     = 113;
            openair0_cfg[0].tx_bw                 = 20e6;
            openair0_cfg[0].rx_bw                 = 20e6;
            break;

          case 15360000:
            s->usrp->set_master_clock_rate(30.72e06);
            //openair0_cfg[0].samples_per_packet    = 1024;
            openair0_cfg[0].tx_sample_advance     = 103;
            openair0_cfg[0].tx_bw                 = 20e6;
            openair0_cfg[0].rx_bw                 = 20e6;
            break;

          case 7680000:
            s->usrp->set_master_clock_rate(30.72e6);
            //openair0_cfg[0].samples_per_packet    = 1024;
            openair0_cfg[0].tx_sample_advance     = 80;
            openair0_cfg[0].tx_bw                 = 20e6;
            openair0_cfg[0].rx_bw                 = 20e6;
            break;

          case 1920000:
            s->usrp->set_master_clock_rate(30.72e6);
            //openair0_cfg[0].samples_per_packet    = 1024;
            openair0_cfg[0].tx_sample_advance     = 40;
            openair0_cfg[0].tx_bw                 = 20e6;
            openair0_cfg[0].rx_bw                 = 20e6;
            break;

          default:
            LOG_E(PHY,"Error: unknown sampling rate %f\n",openair0_cfg[0].sample_rate);
            exit(-1);
            break;
        }
      }

      /* device specific */
      //openair0_cfg[0].txlaunch_wait = 1;//manage when TX processing is triggered
      //openair0_cfg[0].txlaunch_wait_slotcount = 1; //manage when TX processing is triggered
      openair0_cfg[0].iq_txshift = 4;//shift
      openair0_cfg[0].iq_rxrescale = 15;//rescale iqs

      for(int i=0; i<s->usrp->get_rx_num_channels(); i++) {
        if (i<openair0_cfg[0].rx_num_channels) {
          s->usrp->set_rx_rate(openair0_cfg[0].sample_rate,i);
          s->usrp->set_rx_freq(openair0_cfg[0].rx_freq[i],i);
          set_rx_gain_offset(&openair0_cfg[0],i,bw_gain_adjust);
          ::uhd::gain_range_t gain_range = s->usrp->get_rx_gain_range(i);
          // limit to maximum gain
          AssertFatal( openair0_cfg[0].rx_gain[i]-openair0_cfg[0].rx_gain_offset[i] <= gain_range.stop(),
                       "RX Gain too high, lower by %f dB\n",
                       openair0_cfg[0].rx_gain[i]-openair0_cfg[0].rx_gain_offset[i] - gain_range.stop());
          s->usrp->set_rx_gain(openair0_cfg[0].rx_gain[i]-openair0_cfg[0].rx_gain_offset[i],i);
          LOG_I(PHY,"RX Gain %d %f (%f) => %f (max %f)\n",i,
                openair0_cfg[0].rx_gain[i],openair0_cfg[0].rx_gain_offset[i],
                openair0_cfg[0].rx_gain[i]-openair0_cfg[0].rx_gain_offset[i],gain_range.stop());
        }
      }

      LOG_D(PHY, "usrp->get_tx_num_channels() == %zd\n", s->usrp->get_tx_num_channels());
      LOG_D(PHY, "openair0_cfg[0].tx_num_channels == %d\n", openair0_cfg[0].tx_num_channels);

      for(int i=0; i<s->usrp->get_tx_num_channels(); i++) {
        ::uhd::gain_range_t gain_range_tx = s->usrp->get_tx_gain_range(i);

        if (i<openair0_cfg[0].tx_num_channels) {
          s->usrp->set_tx_rate(openair0_cfg[0].sample_rate,i);
          s->usrp->set_tx_freq(openair0_cfg[0].tx_freq[i],i);
          s->usrp->set_tx_gain(gain_range_tx.stop()-openair0_cfg[0].tx_gain[i],i);
          LOG_I(PHY,"USRP TX_GAIN:%3.2lf gain_range:%3.2lf tx_gain:%3.2lf\n", gain_range_tx.stop()-openair0_cfg[0].tx_gain[i], gain_range_tx.stop(), openair0_cfg[0].tx_gain[i]);
        }
      }

      //s->usrp->set_clock_source("external");
      //s->usrp->set_time_source("external");
      // display USRP settings
      LOG_I(PHY,"Actual master clock: %fMHz...\n",s->usrp->get_master_clock_rate()/1e6);
      sleep(1);
      // create tx & rx streamer
      uhd::stream_args_t stream_args_rx("sc16", "sc16");
      int samples=openair0_cfg[0].sample_rate;
      int max=s->usrp->get_rx_stream(stream_args_rx)->get_max_num_samps();
      samples/=10000;
      LOG_I(PHY,"RF board max packet size %u, size for 100µs jitter %d \n", max, samples);

      if ( samples < max )
        stream_args_rx.args["spp"] = str(boost::format("%d") % samples );

      LOG_I(PHY,"rx_max_num_samps %zu\n",
            s->usrp->get_rx_stream(stream_args_rx)->get_max_num_samps());

      for (int i = 0; i<openair0_cfg[0].rx_num_channels; i++)
        stream_args_rx.channels.push_back(i);

      s->rx_stream = s->usrp->get_rx_stream(stream_args_rx);
      uhd::stream_args_t stream_args_tx("sc16", "sc16");

      for (int i = 0; i<openair0_cfg[0].tx_num_channels; i++)
        stream_args_tx.channels.push_back(i);

      s->tx_stream = s->usrp->get_tx_stream(stream_args_tx);

      /* Setting TX/RX BW after streamers are created due to USRP calibration issue */
      for(int i=0; i<s->usrp->get_tx_num_channels() && i<openair0_cfg[0].tx_num_channels; i++)
        s->usrp->set_tx_bandwidth(openair0_cfg[0].tx_bw,i);

      for(int i=0; i<s->usrp->get_rx_num_channels() && i<openair0_cfg[0].rx_num_channels; i++)
        s->usrp->set_rx_bandwidth(openair0_cfg[0].rx_bw,i);

      for (int i=0; i<openair0_cfg[0].rx_num_channels; i++) {
        LOG_I(PHY,"RX Channel %d\n",i);
        LOG_I(PHY,"  Actual RX sample rate: %fMSps...\n",s->usrp->get_rx_rate(i)/1e6);
        LOG_I(PHY,"  Actual RX frequency: %fGHz...\n", s->usrp->get_rx_freq(i)/1e9);
        LOG_I(PHY,"  Actual RX gain: %f...\n", s->usrp->get_rx_gain(i));
        LOG_I(PHY,"  Actual RX bandwidth: %fM...\n", s->usrp->get_rx_bandwidth(i)/1e6);
        LOG_I(PHY,"  Actual RX antenna: %s...\n", s->usrp->get_rx_antenna(i).c_str());
      }

      for (int i=0; i<openair0_cfg[0].tx_num_channels; i++) {
        LOG_I(PHY,"TX Channel %d\n",i);
        LOG_I(PHY,"  Actual TX sample rate: %fMSps...\n", s->usrp->get_tx_rate(i)/1e6);
        LOG_I(PHY,"  Actual TX frequency: %fGHz...\n", s->usrp->get_tx_freq(i)/1e9);
        LOG_I(PHY,"  Actual TX gain: %f...\n", s->usrp->get_tx_gain(i));
        LOG_I(PHY,"  Actual TX bandwidth: %fM...\n", s->usrp->get_tx_bandwidth(i)/1e6);
        LOG_I(PHY,"  Actual TX antenna: %s...\n", s->usrp->get_tx_antenna(i).c_str());
      }

      LOG_I(PHY,"Device timestamp: %f...\n", s->usrp->get_time_now().get_real_secs());
      device->priv = s;
      device->trx_start_func = trx_usrp_start;
      device->trx_write_func = trx_usrp_write;
      device->trx_read_func  = trx_usrp_read;
      device->trx_get_stats_func = trx_usrp_get_stats;
      device->trx_reset_stats_func = trx_usrp_reset_stats;
      device->trx_end_func   = trx_usrp_end;
      device->trx_stop_func  = trx_usrp_stop;
      device->trx_set_freq_func = trx_usrp_set_freq;
      device->trx_set_gains_func   = trx_usrp_set_gains;
      device->openair0_cfg = openair0_cfg;
      s->sample_rate = openair0_cfg[0].sample_rate;

      // TODO:
      // init tx_forward_nsamps based usrp_time_offset ex
      if(is_equal(s->sample_rate, (double)30.72e6))
        s->tx_forward_nsamps  = 176;

      if(is_equal(s->sample_rate, (double)15.36e6))
        s->tx_forward_nsamps = 90;

      if(is_equal(s->sample_rate, (double)7.68e6))
        s->tx_forward_nsamps = 50;

      if (s->use_gps == 1) {
        if (sync_to_gps(device)) {
          LOG_I(PHY,"USRP fails to sync with GPS...\n");
          exit(0);
        }
      }

#if defined(USRP_REC_PLAY)
    }

#endif
#if defined(USRP_REC_PLAY)

    if (u_sf_mode == 1) { // record mode
      ms_sample = (iqrec_t *) malloc(u_sf_max * sizeof(iqrec_t));

      if (ms_sample == NULL) {
        std::cerr<< "Memory allocation failed for subframe record or replay mode." << std::endl;
        exit(-1);
      }

      memset(ms_sample, 0, u_sf_max * BELL_LABS_IQ_BYTES_PER_SF);
    }

    if (u_sf_mode == 2) {
      if (use_mmap) {
        // use mmap
        mmapfd = open(u_sf_filename, O_RDONLY | O_LARGEFILE);

        if (mmapfd != 0) {
          fstat(mmapfd, &sb);
          std::cerr << "Loading subframes using mmap() from " << u_sf_filename << " size=" << (uint64_t)sb.st_size << " bytes ..." << std::endl;
          ms_sample = (iqrec_t *) mmap(NULL, sb.st_size, PROT_WRITE, MAP_PRIVATE, mmapfd, 0);

          if (ms_sample != MAP_FAILED) {
            nb_samples = (sb.st_size / sizeof(iqrec_t));
            int aligned = (((unsigned long)ms_sample & 31) == 0)? 1:0;
            std::cerr<< "Loaded "<< nb_samples << " subframes." << std::endl;

            if (aligned == 0) {
              std::cerr<< "mmap address is not 32 bytes aligned, exiting." << std::endl;
              close(mmapfd);
              exit(-1);
            }
          } else {
            std::cerr << "Cannot mmap file, exiting." << std::endl;
            close(mmapfd);
            exit(-1);
          }
        } else {
          std::cerr << "Cannot open " << u_sf_filename << " , exiting." << std::endl;
          exit(-1);
        }
      } else {
        iqfd = open(u_sf_filename, O_RDONLY | O_LARGEFILE);

        if (iqfd != 0) {
          fstat(iqfd, &sb);
          nb_samples = (sb.st_size / sizeof(iqrec_t));
          std::cerr << "Loading " << nb_samples << " subframes from " << u_sf_filename
                    << " size=" << (uint64_t)sb.st_size << " bytes ..." << std::endl;
          // allocate buffer for 1 sample at a time
          ms_sample = (iqrec_t *) malloc(sizeof(iqrec_t));

          if (ms_sample == NULL) {
            std::cerr<< "Memory allocation failed for individual subframe replay mode." << std::endl;
            close(iqfd);
            exit(-1);
          }

          memset(ms_sample, 0, sizeof(iqrec_t));

          // point at beginning of file
          if (lseek(iqfd, 0, SEEK_SET) == 0) {
            std::cerr << "Initial seek at beginning of the file" << std::endl;
          } else {
            std::cerr << "Problem initial seek at beginning of the file" << std::endl;
          }
        } else {
          std::cerr << "Cannot open " << u_sf_filename << " , exiting." << std::endl;
          exit(-1);
        }
      }
    }

#endif
    return 0;
  }
}
/*@}*/